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§1. Introduction

We fix an algebraically closed field 2 of an arbitrary characteristic in
this paper.

It is shown in [1] that if X is a normal projective variety over £ such
that Cl X~Z, then R(X°, L)=@;_,H%(X", L®) is a graded factorial ring,
where X° is the open subvariety of X consisting of smooth points, L is the
ample generator of PicX°~ClX~Z and ClX is the group of linear
equivalence classes of Weil divisors. Graded £-algebras isomorphic to such
ones are called geometric graded factorial rings. All the graded factorial
k-algebras A with non-negative degrees such that £y A4, are completely
classified once geometric factorial rings are classified [1]. The classification
of such graded £-algebras of dimension <2 is given in [1]. However in the
case of dimension 3, it seems rather difficult to classify geometric graded
factorial rings because even non-singular projective surfaces X over £ such
that Pic X~Z are not classified at all. In view of this fact, it seems
worthwhile to restrict ourselves to normal projective surfaces X such that
ClX ~Z which admits a non-trivial action of G,. This is equivalent to
considering geometric graded factorial rings of dimension 3 which admit
a nondegenerate bigradation (for the definition, see §2).

Our main result is the following.

Theorem 1.1. Let R be a geometric graded factorial rving of dimension
3 whick admits a nondegenerate bigradation. Then there exists one and only
one index D (see below) such that R is isomorphic to Ry given in the following
examples.

Example I. Let ®=(¢,, ¢,, ¢3) be a triple of pairwise relatively prime
positive integers with ¢; >¢,>¢5. Then

Ro="F[xq, x5, 23] deg xy=e¢; (=1, 2, 3),

is a geometric graded factorial ring which admits a nondegenerate bigradation.
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Example II. Let >3, ¢;>--->>¢,>1 and m be positive integers such
that eq, -+, ¢, are pairwise relatively prime and (¢, m)=1 where e=[[}_1¢;.
Let ag=1, -+, a, be mutually distinct elements of £*. Then for ®=(e, a, m),
e=(e;, -+, ¢r) and a=(ag, -+, a,),

R¢=k[x1, ey Xy u]/[,
where I=(x514-agxsb+x3%, -, 2,54 a,x5% 42,7,

deg x;=c¢le; (=1, :--,7), and deg u=m,
is a geometric graded factorial ring which admits a nondegenerate bigradation.

Example IIl. Let »>2, ¢, >-->¢,>1, ¢c<d, /, m and p be positive
integers such that

D (e, e))=1 A<i<j<r), (¢, d, e)=1 where e=[]]_1¢,

2) /, m, p are prime to each other, moreover /< if c=d.

3) let+md=pe.
Let 63=1, ---, 4,, &6 be mutually distinct elements of £* if »>3 and 6=1 if
r=2. Then for ®=(e, b, ¢), e=(ey, :**, &), b=(b3, ***, by, 6) and ¢c=(c, 4, /,
m 8),

Ro=Fk[xy, -+, %4, ¢, V][]

is a geometric graded factorial ring which admits a nondegenerate bigradation,
where 7=(x1%14bgxyf+x3%, -+, x,04-bpx5%+ 2,5, x,61-bxy%4-uf0®) if » >3,
I=(x24 202+ 00 if r=2, deg x;=pele; (=1, --+,7), degu=/ and degv=mw.

(The factoriality of the rings given in Example II and the geometricity of
the rings given in Examples I, II and III follow easily from the results of [1].
The factoriality of the rings given in Example III is shown in §2.) We
introduce a bigradation on the rings given above in §2. We study Gp,-surfaces
in §3 as a preliminary to later sections. In §4, we consider an arbitrary
normal projective surface X with a nontrivial Gp-action (called a Gp-surface)
such that CILX~Z. We take a desingularization g: ¥~>X such that 7: X—P!
is a morphism (P! is the projective line whose function field is £(X)¢»). Then
it is proved that the number 7 of exceptional curves for g which are not
contained in the fibres of 7 is 1 or 2. The cases /=1 and 2 are treated as
Cases 1 and 2, respectively. In §5, we shall prove that in Case 1 R(X°, L) is
isomorphic to a graded ring given in Example I or II. In §6, it is proved
that in Case 2 R(X°, L) is isomorphic to a graded ring given in Example I or
III. Thus the existence of @ in Theorem 1.1 is proved. §7 is devoted to the
proof of the uniqueness of ®.

The author expresses his hearty thanks to Professor S. Mori for his kind
advice.

Notation and terminology. For an integral domain 4, we denote by
Q(A) the quotient field of 4. For a graded integral domain 4=@®;cz4;, we
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denote by QH(A) the quotient ring S714, where S=U,;ecz{4;—{0}}. Then
QH(A) has a natural gradation induced by 4. All homomorphisms between
graded rings are assumed to preserve gradation.

§2. Bigraded factorial rings

In this section, by a graded ring, we understand an almost geometric

graded ring over 4 defined in [1].

Definition 2.1. Let R=@®;,(R; be a graded ring, and R, ; £-submodules
of R(¢,j€Z,i>0), and R;=@ ;ezR;;. Then we call R=@; jezR;,; a bigraded
ring if Ry ;Ry yC Ry, forall 2,7, 7, 7' Z 7,70 and Ry o=4.

For a bigraded ring R, we define a dual action of Gy, p: R—£[¢, ¢ 1| QiR
by w(@)=#tQa (a= R, ;). This dual action of Gy, on the graded ring R induces
a G-action on Proj R.

Lemma 2.2. [f a bigraded ring R is an integral domain and R, ;R >0
or some 1,7,7 (j5~]"), then the action of G, on ProjR is nontrivial.
J:7 \J77

Proof. Take non-zero elements f&R;; and g&R,; . Then the open
subscheme D(f)=Spec(R[f1])¢ is Gp-stable, but the induced dual action
sends g/fER[f !, to ' I®glf. Hence the Gp-action on D(f) is nontrivial,
and thus the action on Proj R is nontrivial. q.e.d.

Definition 2.3. We call a bigraded ring R nondegenerate, if there exist
integers 4, 7', 7, 7’ such that ¢, i'>0, 7/'—7'j5=0 and R, ;, Ry y7-0.

It is easy to see that if a nondegenerate bigraded ring R is an integral
domain, R satisfies the condition of lemma 2.2 for the integers 7z’, 77, and
Z'7. Thus the natural Gp-action on ProjR (introduced above) is nontrivial.

In the remainder of this section, we show that the examples in §1 are
factorial nondegenerate bigraded rings.

Example I: If we define the bigradation of the graded ring R,=#4[x,
%9, x3] by degx;=(ey, 0), degxy=(es, 0), and degxz=(e3, 1), then R, becomes
a nondegenerate bigraded ring. Thus Proj R4 has a nontrivial Gp-action. In
fact, Proj Ry is a torus embedding of dimension 2.

Example II: If we define the bigradation on R, (P=(e, a, m)) by
degx;=(ele;, 0) (=1, -+, ») degu=(m, 1), then R4 becomes a nondegenerate
bigraded ring.

Example III: If we define the bigradation on R, (P=(e, b, ¢)) by
degx;=(pele;, 0) (G=1, -+, ), degu=(/, —d), degv=(m, ¢), then R, becomes
a nondegenerate bigraded ring. The factoriality of R4 follows from the
following theorem.

Theorem 2.4. Let r (1) be an integer and e >+ >e,>1 be positive
integers such that (ey, ej)=1 for all i, j 1<i<j<#). Let c>d be positive
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integers such that (¢, d, e)=1 where e=1|}_1e;, and let ay=1, -, a, be
mutually distinct elements of k*. Then the ring R=F~A[xq, -+, x,, 1, V|1, where
I=(x1814 x50 au’v?, -, 2,54 2,5+ auv%), is a factorial ring.

Proof. By (¢c,d,e)=1 there exist positive integers /, 7% such that (/,772)=1
and (lc4-7md, e)=1. We consider the graded ring S=#£[x;, u, v], where
deg x,=/lc+md, degu=/le,, degv=7sme;. Then since S is a graded factorial
ring, it follows from Theorem 4.1 in [1] that R is also a graded factorial ring.
In fact, it is easy to see that e=(ey, -, ¢;) and v=(—x51—ayu‘v?, -+, —x,%1—
a,u°v%) form a ramification data defined in [1, §4]. Hence S[vY¢] is a graded
factorial ring by Theorem 4.1 in [1]. Thus R=S[v'] is factorial.  q.e.d.

It is easy to see that R, (P=(e, b, €)) is isomorphic to a ring given in
Theorem 2.4.

§3. G,-surfaces

In this section, we shall study some properties of surfaces with a Gp,-action.
The results we obtain are essentially the same as in [4], [5].

Definition 3.1. If X is a surface and p:G,X X—X is a nontrivial
Gm-action, we call {X, u} {or, simply, X) a Gp-surface. Let {X, u}, {V, v}
be Gp-surfaces. We call a morphism f: X—Y a G,,-morphism if f makes the
following diagram commute.

CuXx X 2/ s ¢ <y

| l“
x L 5 y

First, we shall study normal affine G,-surface.

Let {X, p} be a normal affine G,,-surface and X=SpecA4. Then there
is a gradation 4 =@, <cz4; such that the dual action j: A—£[¢, # ]QyA4 sends
acA; to #Qa for all i=Z [SGAD]. Since A is an integral domain,
QH(A)=K]|z, z7'], where K is the field QH(A4), and 2z is a homogeneous
element of degree 4>0. As the induced dual action of G,, on QH(A) sends
z to 18Rz, K is the field of all the G,,-invariant elements of the function field
Q(A4) of X. Since Q(A)=K(z), tr.degyK=1. Hence we can take the
nonsingular projective curve C whose function field is X. Let ¢: X—C be
the rational map associated to the inclusion K'>Q(4).

Proposition 3.2. [f the rational map ¢: X—C is a morphism, then
Q(A\)=K and the general fibres of ¢ are smooth curves.

Proof. Since A%m=A4,, the morphism = : X—Spec 4, is the categorical
quotient [GIT]. By the universality of the categorical quotient, there is a
unique morphism g : Spec 4y—C such that p=gom. But as 4, is the subring
of K, g is a birational morphism and K=Q(4,). Let S=4,—{0}, then
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S14 is a normal K-subalgebra of QH(A)=K][z, 2] whose quotient field is
Q(4)=K(2). Such a K-subalgebra must be K[z], K[z7!], or K[z, z7!]. In
the case S7'A=XK]Jz], let A be Ag[uy, -+, uy), and 2y, ---, #, homogeneous
elements of A. There exists a non-zero element f & A4, such that A;>z, and
2'i(Ag)rDuy (i=1, -+, n) where »r;=degu/d. Then A;=(Ay)s[z]. Hence the
geometric fibres of the morphism = : X—Spec 4, on D(f) are isomorphic to
Al,  Similarly one can show that, in the case ST14=K[z71] or K[z, z7],
there exists a non-zero element f& A, such that the geometric fibres of the
morphism on D(f) are isomorphic to A! or A'— {0}, respectively. In all the
cases, general fibres of 7 are smooth curves. On the other hand, g: Spec4,
—(C is a birational morphism and C is a nonsingular curve, hence g is an
open immersion. Thus general fibres of p=geon are smooth curves. q.e.d.

Proposition 3.3. f the set XCn of Guy-invariant points of X is of
dimension 1, X6n~Spec 4.

Proof. If m, is the maximal ideal of A associated to a point x& X%m, m,
is homogeneous and A[m,=#4. This implies that m,DA4; (#5<0). Hence by
Hilbert’s zero point theorem, the ideal a of the reduced closed subscheme X¢n
contains A4; (¢+-0). Thus the ring homomorphism A4y—>4/a is a surjection,
and X®m can be considered as a closed subscheme of SpecA4,. But A4, is
integral and at most of dimension 1. Hence if dim X¢n=1, X¢n~Spec 4,.

q.e.d.

Definition 3.4. If a smooth projective Gp-surface S is a ruled surface
over a curve C, the G,-action on S induces a G-action on €. We call S a
G p-ruled surface if the G -action on C is trivial.

Proposition 3.5. Let S be a Gp-ruled surface, then there are two
sections Cy and Cy of the structure morphism w: S—C such that SC»n=CyU C;
and CoN C1=.

Proof. Since G acts on each fibre P! of m, there are at least two
invariant points on each fibre of #. Hence we can take a nonempty Gy,-stable
affine open subvariety U of S such that general fibres of the natural morphism
U—C have Gp-invariant points [3]. Then dim US»2¢0, hence by Proposition
3.3 Ubn~SpecA,, where A=@,czA; and U=SpecA. On the other hand by
Proposition 3.2, Spec A4, is birational to C. Hence there is a rational map
s1: C—>U%n—S. Since S is complete and C is nonsingular, s, is a morphism.
Let s;(C)=C,, C;CS%». Taking another G,-stable affine open subvariety U’
disjoint from C; [3], we obtain another section 54 : C—S such that Cy=s(C)C
S¢m.  Since Proposition 3.3 implies that no two G-invariant curves intersect
with each other [3], CoN C;=@ and S¢» contains no fibre of 7. Hence there
are exactly two invariant points on each fibre of =, thus S¢»=CyU C;.

q.e.d.
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Proposition 3.6. Let X be a nonsingular projective Gy-surface. Then
there are a nonsingular projective Gp-surface X, a Guy-ruled surface S and
birational Gu-morphisms f: X—X, h: X—S.

Proof. Let L be the function field of X and K the field of all the
Gp-invariant elements of L. Let C be the nonsingular projective curve whose
function field is X (tr.degyK =1 by the result in the affine case). Let gg: X—C
be the rational map associated to the inclusion K'->Z. If g4 is not a morphism,
then every fundamental point x; of g is Gy-invariant and the blowing-up X;
of X, at x, is a Gp-surface, and the morphism X,—X is a Gp-morphism. If
£1:X1;—C is not a morphism, the same operation can be repeated. Thus
there is a sequence of Gp,-morphisms X=X,»X, ;—>—>X,=2X such that
gn: X—C is a morphism (elimination of indeterminacy). Since X can be
covered by a finite number of G,-stable affine open subvarieties, by Proposition
3.2 general fibres of g, are nonsingular curves. But general fibres of g, are
complete curves with a nontrivial G,-action, so they are isomorphic to Pl
Then it is well-known that, by successive contraction of exceptional curves of
the first kind on special fibres, one obtains a ruled surface S over C and g,

factors through S—C, namely g,ﬁX’iS—»C. Since exceptional curves of the
first kind on G,-surfaces are Gp-stable, S is a Gy-surface and % is a
G p-morphism. q.e.d.

Proposition 3.7. Let X be a normal projective Gy-surface. Then there

are a nonsingular projective Gp-surface X, a Gp-ruled surface S and birational
Gm-morphisms f: X—>X and h: X—S.

Proof. The desingularization of a surface is done by finite repetition of
blowing up along an isolated singular point and the normalization. Thus
the Gp-action on X can be extended to them. Hence there exist a nonsingular
projective Gp-surface X', and a birational G,-morphism g: X'—>X. By
Proposition 3.6 there are X and S and f': X—X', 2: X—>S. Set f=gof'

g.e.d.

In the remainder of this section, we quote some well-known lemmas,
for the reader’s convenience, which are necessary in the following section.

Lemma 3.8. Let X and V be nonsingular projective surfaces, and
0: X—Y a birational morphism which induces an isomorphism X—¢ 1 (P)—
Y—{P} for a point PEY. Set o Y (P)= U} Xy, where X; (=1,---.7) is an
trreducible curve of X. Then if we consider the injection ¢*:Cl Y—-Cl1X,

Cl X =¢*(Cl Y)@é‘,Ich(X,).

Proof. By the factorization theorem for birational morphisms of non-
singular projective surfaces, we may assume that ¢ is a quadratic transfor-
mation. In this case, the assertion is obvious. q.e.d.
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Lemma 3.9. Let X be a nonsingular projective surface, Y a normal
projective surface, and ¢:X—Y a birational morphism which induces an
isomorphism X—q@ W(P)—>Y—A{P} for a point PEY. Set ¢ 1 (P)=U7-1X,,
where Xy (G=1,--,n) is an irreducible curve on X. Then cl(Xy), -, cl(Xy) are
linearly independent over Z and

CLX)(S Zel(X)~=Cl V.
i=1
In particular, if C1Y is a finitely generated Z-module, so is C1.X, and

rank Cl X=rank Cl Y-+}#.

Proof. Let X°=X—U?_ X, then C1X°~ClY and f:ClX—ClX° is
surjective and Ker f is generated by cl(X;) (=1, ---, #). The linear indepen-
dence of cl(Xy) (7=1, -+, #) follows from [2]. Hence ClX/(X7-1Zcl(X,))~=
Clx°~ClY. q.e.d.

Lemma 3.10. Let F be a free Z-module of rank n, and ay, -+, a, be
elements of F. Then if Fllay, -, a,) ts a free Z-module of rank n—r, F[la,)
is a free Z-module of rank n—1.

Proof. The exact sequence
0—<ay, oy arp —> F —> Ffay, =+, arp —>0

splits, since F/{ay,*+,a,) is a free Z-module. Hence there is a free submodule
E of rank n—7 of F such that F=<{ay, :+, a,)@E. Since {ay, -*+, @,y is of
rank 7, ay, -+, a, are linearly independent over Z and F/{a,;)~{ay, ***, a,yDE
is a free Z-module of rank z—1. q.e.d.

Lemma 3.11. Let X be a nonsingular Gy-surface, and L an invertible
sheaf on X such that dim HO(X, LYoo, If a linear subspace V C P(H(X,
LYY) contains all the points of P(HYX, L)V) whick correspond to Gp-stable
divisors of X, then V=P(HX, L)V).

Proof. The condition implies that I contains all the Gp-invariant points
of the induced G-action on P(HO(X, L)V). Since every Gp-action on a
projective space is diagonalizable, Gy-invariant points of P(A %X, L)V) span
P(H(X, L)V). Hence V=P(H(X, L)V). q.e.d.

§4. The ring R(X)
Let X be a normal projective Gp-surface such that Cl.X>~Z. Then by
Proposition 3.7, there are a nonsingular projective Gp-surface X, a Gp-ruled

surface S and birational G,-morphisms f: X—>X and g:X—S. From now
on, we fix such a 4-ple {X, S, £, g} for X.

Definition 4.1. Let X° be a nonsingular open subvariety of X such
that X— X° is a finite set. Let L&Pic X°~ClX~Z be the ample generator
of PicX°. Then we call R(X®, L)y=@7-oH°(X°, L®) the canonical homo-
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geneous coordinate ring of X, and denote it by R(X).
R(X) is a geometric graded factorial ring of dimension 3, and independent
of the choice of X° (see [1]).

Proposition 4.2. S s a rational ruled surface.

Proof. Since ClX~Z and f: X—X is a birational morphism, C1X is a
finitely generated Z-module by Lemma 3.9. Since g:X—S is also a bira-
tional morphism, Cl.S is a finitely generated Z-module. Thus the base curve
of S is rational. q.e.d.

Let 7": S—P! be the structure morphism of the rational Gp-ruled surface
S, and let 7=n"0 g: X—P!. Since general fibres of = are isomorphic to P1,
we can take a, +++, a, & P! (z>>3) such that for every closed point a& P1— {a,,
-+, ap} 77 (a) is isomorphic to Pl Let 7 Yay)= X%l 615X, ((=1, -, n),
where ¢;5, Xy (G=1, -+, n, 1<j<r;) are positive integers and irreducible
curves on X, respectively. By Lemma 3.5, there are two sections €y’ and Cy’
of 7’ such that Cy’ N C;'=@ and S¢»=Cy' UC;". Let C, and C; be the proper
transforms of €y’ and C;’ by g, respectively. C,y and C; are G,-invariant
curves on X.

Proposition 4.3. Every Gp-stable irreducible divisor of X defined over
£ is one of the following curves.

1) 77 Y(a), where a is a closed point of P1—{ay, -+, an},

2) Xy =1, 0, 1< j<r,

3 Cyand C,.

Proof. Let C be a Gp-stable irreducible divisor of X. If C is contained
in 77 (a;) for some z, then CC UjL,X;; and C=X,,; for some 1<;<ry. If
CE7nY(ay) for all 7 and C ¢ CyUCy, there is a closed point x&C such that x

is not Gp-invariant and 7(x)€ {ay, --*, a,}. Then C contains the closure of
the orbit of x, which is equal to 7~ !(m(x)). Hence C=n"1(n(x)). This is the
case (1). q.e.d.

Theorem 4.4. X is obtained from X by contracting (T P1r)—n—+1
components of

(U XpuUGyUC,.
1<i<n
1</ <n

If one denotes bv R the union of the remaining n+1 components, then one of
the following two cases occurs:

Case 1. There are an integer i (i=0 or 1) and n integers my, -+, my,
A<y for all ©) such that

n
R_—_Ct U (i':JlXt,mx)'

Case 2. There are n integers my, «+, my A<m;ry for all 7) suck that
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n
(UXy)DRD UXym,-
g =1

Proof. Since rank C1S=2, rank ClX=X7,7;—#»-+2 by Lemma 3.9.
On the other hand, rank C1.X=1. Hence by Lemma 3.9, f: XX contracts
exactly 317 ,7;—n+1 curves of X. But since f is a G,-morphism, those
curves are Gp-stable. By Proposition 4.3, there are only three types of
Gm-stable curves. But since the self-intersection number of a curve 771(a)
ae{ay, -+, a,} is 0, 771(a) is not an exceptional curve of the morphism f [2].
Thus the first assertion is proved. Since the self-intersection number of
7 Ya;)=e,;X 4,7 is O for each 7, there are # integers mey, -+, w2, (12, <7,
for all 7) such that RO U?; Xy m;- Then the case 1 occurs if Rd U Xy,
and the case 2 occurs if RC U4 Xy,;. q.ed.

Definition 4.5. We call the components of R given in Theorem 4.4
remaining curves.

We will determine the canonical homogeneous coordinate ring R(X) in
each case in the following sections.

§5. Case 1

By renumbering the curves in Theorem 4.4, we may assume that
R=CyU(U%,X;,1) and e;,,>-+-=>¢,,;. Forsimplicity, we denote, in this section,
X1 and ¢;,; by X; and ¢;, respectively (7/=1, .-+, #). We can take elements
$1y o0+, Sp of HO(PY, Op(1)) such that (s;)g=a; and s;+a;s5+5,=0 (=3, -+, %),
where ag=1, -+, @, are mutually distinct elements of £* uniquely determined
by ay, +++, ay. Iet 7 be the largest number (1<{r<(%) such that ¢, >1, if ¢; >1,
and let » be 0 if ¢;=1.

Theorem 5.1. (e, ¢))=1 for all i and j suck that 1<i<j<n, and there
is a positive integer m with the following property: [f r=0, 1, or 2.
R(X)>~Fk[x,, x4, 1], where degxy=e; (1=1, 2) and degu=m.
If r=>3,
R(X)=Fk[xq, -+, %y, ]|, where deg x;=cele; (=1, ---, 7),
degu=m, e=[]}_1e; and

I={x1514-agxs®+x3%, -+, 2,91+ a,x,%+x,%).

Proof. Since S is a rational ruled surface, Cl S is generated by -2
divisors YV;=7""Ya;) (=1, ---, #) and Cy’ and C,’. The relations among them
are generated by # divisors V,—Y; (/=2, .-+, ) and Cy'—C,'"+4£Y,, where
% is the self-intersection number of C;’. By Lemma 3.8, Cl X is generated by
Xy G=1, <+, n, 1<j<#y) and Cy and C;. Again by Lemma 3.8, the rela-
tions among them are generated by the total transforms of the 7 divisors
Vi— YV, (=2, ---, n) and Cy’—C;'+£Y;. If we set
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g¥Cy'—C\)= Edt.th,H—Co—Cp

then we have
1 ri
grY,—Yy)= Elel,.'}X 1,1—ElemX I

r1
gX(Cy'—CY+AY)=Co—C1+ iZ:jdtJXt.f'l_kjglelJXlJ'

Since

ClX~Cl X|Zcl(C))+ Zcl(Xy,)),
Xij&R
ClX is generated by #-41 remaining curves X, (¢=1, .-+, ) and C,. The
relations among them are generated by » divisors, e, X;—e, X; (=2, -+, n),
and Cy— X711 X+ 4e;X;. Thus one has

ClX~ ilzut/ﬁ Z(ejuy—emy),
i= i=1

where #,, -+, u, are linearly independent over Z. Then noting that Cl.X ~Z,
one sees easily that (e;, ¢)=1 if 7547 by Lemma 3.10. Since ¢;cl(X;)=¢;ClX
for every j, one can take a divisor £ such that (e/e;)cl E=clX; for every
i (e=[]7-1¢;). Then cl£ generates CI.X. Let X°=X— UL, U,X;;—Cy,
then X°is a smooth open subvariety of X and X—X° is a finite set. For
simplicity, we denote the restriction to X° of a divisor on X by the same
symbol (if there is no danger of confusion). We set L=0y(E). Since
LB~ yo(e;X;), we fix an isomorphism 7*Op(1l)| xo~L®¢ and identify them
from now on in this section. Since (7*(s))g=¢;X; and H%(X°, Ox-)=#, there
is an element %; of A 9(X°, L®%%) such that (%,)o=2X; and %%i=n*(s;) for every
7. Since ClX is generated by clE, Cy~mE for some integer . One has
m >0 because Cy >0 and ClX~Z. Hence there is an element # of H%(X°,
L®™) such that ()g=C,. It follows from Lemma 4.3 that G,,-stable irreducible
divisors of X° are X, ---, X, Cy, and 77 1(a), where a is an arbitrary closed
point of P1—{ay, ---, a,}. For as%a,, ay there is an element a=£* such that
a=(sy4asy)e, hence n7l(a)=(n*(s;+asy))e=(%,%+ax;%),. Thus all the
Gp-stable effective divisors on X° equivalent to Z cl £ are zeros of sections of
HO(X°, L®) which are homogeneous polynomials of degree 7 in %y, -+, %y, #
(t(eZ,7>0). Hence R(X) is generated by %, -+, %,, # as a k-algebra, by
Lemma 3.11. On the other hand, since s;+as,+5,=0 (=3, -+, #), one has
ot apx+%,5=0 (/=3, -+, ). If 7 satisfies the conditions »<7<(# and
2<4, #%; can be written as a polynomial in %, and Z,. We define a morphism
of graded k-algebras Z:4&[xy, -, x,, #]>R(X) by A(x)=2%,; (=1, -+, #) and
h(w)=a, where degx;=ele; (¢=1, -+, ) and degu=m. When »=0, 1, or 2,
R(X) is the image of £[x;, x5, #]. Since dimR(X)=3, R(X)=k[x,, x5, u],
where deg x;=¢; (/=1, 2) and degu=m. When »>3, % induces a surjection
klxy, -+, 2y, u][[>R(X), where I=(x%1+4agxslr+x3%, -+, 2,9Fa,x,%+x,°%).
Since £[xy, -++, %y, #]// is a factorial ring of dimension 3 by [1], and dim R(X)
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=3, we obtain R(X)~£[x,, -+, x,, #]/], where degx;=c¢/e; (=1, ---, #) and
degu=mm. qg.e.d.

Remark 5.2. Since R(X) is a geometric graded factorial ring, (e, m)=1
by [1, Corollary 2.9]. Hence R(X) is isomorphic to a graded ring given in
Example I or II.

§6. Case 2

Again by renumbering the curves, we may assume that R=(U?,X;;)
UXp,g and ey, >ey1,1, €n,1n,2- In the case ¢,,;=e¢,,,, we may further-
more assume that the divisor f(X,,s—Xp,1) is linearly equivalent to 0 or some
positive multiple of it is ample (note that Cl.X~Z and X is projective). For
simplicity, we denote, in this section, Xy 1, e5,1, Xu,1, Xn,2) €n,1, and ey,9 by
Xy e, U, V, ¢, and d, respectively (7=1, -, n—1). We can take elements
S0, =y Sp—y of HO(PY, Op(l)) such that (sp)e=0a; (=1, -+, n—1), (so)o=04,
s1+bise+5,=0 (G=3, -+, n—1) and s;+bsy;+s5o=0, where b3=1, ---, 6,4, &
are mutually distinct elements of £* uniquely determined by a4, «-+, a,. Let »
be the largest number (1-<{r<(z—1) such that ¢,>1, if ¢,>>1, and let » be 0 if
e;=1.

Theorem 6.1. (¢;, ¢)=1 for all 1<i<j<n—1, and (¢, d, &)=1, where
e=[1Zle;. There are positive integers [, m, p with the following property:
If r=00r 1,

R(X)~k[xy, u, v], where degx,=p, degu=17 and degv=m.
If r=>2,

R(X)~k[xq, -, 2p, 12, V][,

T=(x1C14-bgx0%+-x3%, -, 219 +bpxo%4-x,%, 2,814 bxy%+202),
where deg xy=pele; (1=1, ---, n—1), degu=17 and degv=m.

Proof. Asin Case 1, C1X is generated by X;;(F=1, -, n, 1<;<r)),
Cp and (7, and the relations among them are generated by

T1 ri
Elelanlyj_jz_:lei,in,j (Z =2; Yy ”)s

r1
Co—Cit+ z dy,1 X, z,1+k1§1€1.1X 1.4-
Since by Lemma 3.9,

~ 1
CLX=CLYZZel(C)+ T Zel(Xuy)
= ¢R

Xisj

ClX is generated by the classes of the remaining curves Xy, -+-, X,_;, U, V,

and the relations among them are generated by 7 divisors ¢, X;—e; X; (=2, ---,

n—1), e X1—cU—dV and TP .d; 1 Xi+dp,1U+tdpoV-+kei X;. 1t follows

from Lemma 3.10 that (¢, ¢)=1 for all 1</ <j<#—1 and (¢, &, ¢)=1. Let
ri

- n—1 Tn
X°=X—U U X;;— U Xpj—Co—Cy,
i=17=2 j=3
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then X° is a nonsingular open subvariety of X and X—X° is a finite set.
Let L be the ample generator of Pic(X°)~ClIX~Z. Then there is a positive
integer p’ such that L®?'~7*0p(1)|y». We fix such an isomorphism and
identify them. Since L®?'~0 y+(e;X)), ¢; divides p' (=1, ---, n—1). Hence
there is a positive integer p, such that p'=pe. Since (7*(s;)o=e;X; G=1, ---,
n—1) and HO(X°, Oyo)=£k, there is an element x; of HO(X°, L®P¢¢) such
that (£)y=2X; and #zfi=n*(sy)) (¢=1, .-+, u—1). Since (7*(sp))o=cU+dV,
there are elements ze H%(X°, L®) and 2 HO(X°, L®™) for some positive
integers / and m such that (#)o=U and (0)y=V and #9%=m,(s,). If ¢c=d,
then /<m by our definition of ¢,,; and e,,,. Asin Case 1, R(X) is generated
by %y, +**, £y—1, %, ¥ as a k-algebra. On the other hand, since s;46;55+5;,=0
(¢=3, .-+, n—1) and s;+6bs,+5¢=0, one has %46+ %,=0 (=3, ---,
n—1) and %,%1+4-0%,%2+#°94=0. If 7 satisfies the conditions »<7<{7#—1 and
1<Z, #; can be written as a polynomial in #;, # and 2. We define a morphism
of graded #4-algebras Z:%&[x,, -+, x,, %, v]>R(X) by A(x)=2%; (=1, ---, n—1)
and 4(u)=# and /A(v)=0, where degx;=pefe; (=1, ---, n—1), degu=/, and
degv=m. When »=0, or 1, R(X) is the image of £[x,, #, v]. Since dim
R(X)=3, R(X)~Fk|x,,u,v], where degx,=p, degu=/, and degv=m. When
r>2, % induces a surjection £[xy, -+, &y, #, 0] [[>R(X), where I=(x%1+bgx,%
Fxg%, oo, 21O F-bpxple 0, x 0%t ufv%).  Since £[xq, -0, xp, %, V][] is a
factorial ring of dimension 3 by the results of §2 and dim R(X)=3, we obtain
R(X)~Fk[xy, -+, %y, u, V][], where degx;=pele, (=1, ---, n—1), degu=/, and
degv=m. q.e.d.

Remark 6.2. Since R(X) is a geometric graded factorial ring, 7/, s,
2 are pairwise relatively prime by [1, Corollary 2.9]. Hence R(X) is isomorphic
to a graded ring given in Example I or III.

§7. The proof of Theorem 1.1.

Let R be a graded ring in Theorem 1.1, and fix a nondegenerate
bigradation. Then X=Proj R is a normal projective surface such that
Cl X~Z 1, §1], and X has a structure of Gy-surface {X, p} induced by the
bigradation. It was proved in previous sections that R(X)~R,, for an index @.
Since R~R(X)[1, §2], R~Rs. Thus the existence of @ is proved.

Now it is sufficient to prove that if Rz~ R4 then @=@’. The indices @
given in Examples I, II, and III are called of types I, I, and III, respectively.

Definition 7.1. For integers ay, -+, @y, b1, ***, by, we denote [aq, +-+, @y]
=[&y, -**, bm) if and only if z=wm and there is a permutation s&S, such that
by=asq (=1, -+, n).

Let R=@5-¢R; be a graded ring with non-negative degrees and of finite
type over £ such that Ry=#A. Let {#;, -+, #,} be a minimal basis of
R,=@;-0R; as an R-module consisting of homogeneous elements. Then
[dega,, -+, deg#,] is uniquely determined by R (independent of the choice of
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uy, ey oy [1, §2]).

Definition 7.2. Under the above notation, we denote [deg;, -+, deg ]
and # by D(R) and »n(R), respectively.
Of course, if R~R', D(R)=D(R') and n(R)=n(R").

Proposition 7.3. Let @ and D' be two indices such that Ry~Ry,'. If O
is of type I, then d=D'.

Proof. Since n(Ry)=n(Rs)=3, it is obvious that @’ is of type I. Let
D=(ey, ¢5, ¢3) and D' =(e;’, 5, e3"). Then D(Ry)=][ey, €3, e5] and D(Ry)=
[e1', €3’y e3"].  Since e;=>e5=>e3, ¢,">¢,' ¢35’ and D(Rgy)=D(Ry), (e1, €3, ¢3)=
(e1, €3', €3"). Hence @=9'. q.e.d.

It is easy to see that the automorphism group Aut (R) of R (given in
Definition 7.2) as a graded #-algebra is a linear algebraic group over 2. We
denote by rank Aut®(R) the rank of the 0O-component Aut’(R) of Aut(R),
the dimension of a maximal torus of Aut®(R).

Proposion 7.4. Let @ be an index of type II or III. Then
rank Aut®(Rz)=2.

Proof. Let TC Aut’(R,;) be the 2-dimensional torus associated to the
bigradation Ry=@;,;R;,; of R4 given in §2%¥. It is sufficient to prove that the
centralizer Z(7') is of dimension 2. By the definition of the centralizer, every
element of Z(7T") preserves the bigradation of R.

First, let us assume that @ is of type II, and set ®=(e, a, 7). Then,
every element of Z(7") induces automorphisms of

iC-?ORi:OZé[xl? Tt xr]/(x1e‘+ﬂaxze’+xse’, e, 21Oyt 2,°r)

and D Rim,i="+[u].
>0
Since x4, -+, x,, # generate Ry over £, the kernel of the homomorphism

Z(T)— Aut (z@oRt’O) X Aut (t@okm’i>

of algebraic groups is of dimension 0. By the exact sequence of [1, Theorem
4.5], Aut(@®20R4,0)=Cp. Since Aut(@®isoRim,1)~=Cm, Z(T) is of dimension 2.

Next, let @ be of type III, and set @=(e, b, ¢). We admit the following
lemma and continue the proof.

Lemma 7.5. Ry, ,,=kx; =1, -, 7).
Thus every element of Z(7") induces automorphisms of
R'=Fk[Ropeser,00 ***» Roeserol
=k[xy, -+, 2] /(210 Fbgxo % 237, o+, 200 %146y 2004 2,%7)
and R”zk[ki,_d, Rm,d]=,é[u, Zl].

Since R, is generated by xy, +++, x;, %, v over £, the kernel of the homomorphism
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Z(T) — Aut(R") X Auty;_gr.(R'")

of algebraic groups is of dimension 0, where Auty;_g, (R'") denotes the algebraic
subgroup of Aut(R’") consisting of elements preserving bigradation. On the
other hand, if »>3 Aut(R")~G,, and Auty_g, (R")>=~G,2 Thus one sees that
Z(T) is of dimension 2, in view of the equation x;%-+6bx,%+u’02=0. If
r=2, dim Z(7")=2 easily follows from the equation x4+ x,%-+2°2%=0.

q.e.d.

Proof of Lemma 7.5. Since Ry, is generated by monomials in
Xy, %p, %, 0, it is sufficient to prove the following assertion: If non-negative
integers /;, -+, /,, ¢, ¢’ satisfies the condition x;h-2,22%? & Rp,e;0, then
/;=0 (j#1i) and g=¢'=0. The condition x;h---x,lru%? & Ryp,,,; implies

X lipelertglt-gm=pele M
—gd+¢'c=0 )

Thus there is a non-negative integer /y, such that g=/yc/e, and ¢’ =/yd]e,,
where ¢g=(¢, d). Hence we have

gl+q'm=1Ly(lc+md)|eg=1Lypeleo,

r

st es=e'ley &)
by (1), where e¢'=e¢ge. By the equation (3), we have /;'/e;=0 (mod ¢;)
(0<j<r, j5~i). Since (eq, e)=(c, d, €)=1, we have (¢'[e;, ¢)=1 and /;=0

(mod ¢;) for every j~i. Hence we have /;=0 (0<;<r, j5~7) by (3), and
g=¢'=0 by /,=0. q.e.d.

Definition 7.6. For a bigraded ring R=@,jczRy,; we set M(R)={(s,
7 Rii{0}}.

Definition 7.7. For a bigraded ring R, let ¢ (resp. ¢") be the minimum
(resp. the maximum) of {j[Z; (7, ;))e M(R)—(0, 0)} (which exists since R is
assumed to be of finite type over £). Then we define KRl'= G;BRM (resp.

i

ig=j
R'= i(—D Ry ).
10'=1
Let @ be an index of type II. Then, with respect to the bigradation of

Ry given in §2,
Rof=ilxy, -, m)l(esf-Fagegtsctmgf, -, 240 a2,
Ry"'=4k[u].
Let @ be an index of type III. Then Rgl=4[x] and R, =#£[v], with respect
to the bigradation given in §2.
Let @ and @' be indices of type II or IIl such that Rg~R4. Let

Ro=®,jezRs,; and Ry=Py,jczR5,; be the bigradation given in §2. There
are the 2-dimensional tori 7" and 7" of Aut®(Rs) and Aut®(Rg) associated to
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the above bigradation of R4 and Ry, respectively. Since Rg~R, and rank
Aut®(Ry)=2, there is an isomorphism ¢: R"5 R¢’ such that 7 is mapped onto
7’ by the induced isomorphism @:Aut’(Rs)3Aut®(Ry). Hence there are
rational numbers 6=x0 and v such that §/+vieZ for all (¢, ))e M(Rg) and
O(Ry,))=Ris5+m- It is clear that Ryl is mapped isomorphically onto R}/ if
>0 and Ry if 6<0 by ¢.

First, let us assume that @ is of type II. Then @’ is also of type Il and
8>0, because Rl'=4F[xy, -+, 2,]/(x18 4 agxsbe+x3%, -+, x1%1Fa,x5%+x,°r) is not
generated by one homogeneous element over £ Thus we have R,~R.
Let ®=(e, a, m) and ®'=(e’, a’, m'). Then one obtains e=e’ and a=a’ by
[1, Theorem 5.1], and m=m" by D(Rgs)=(eley, **+, eler, m) and D(Ry)=(e/ey,
.-+, eler, m"). Thus we obtain:

Proposition 7.8. Let @ and @' be two indices such that Ry~Ry. If
D is of type 11, then D=’,
Thus it remains to treat the case where @ and @’ are of type III. Let
®=(e, b, c) and ®'=(e’, b’, ¢’). We have shown that
o(u)=au and p(v)=Pov for some a,fE £* if §>0,
p()=0av and ¢(v)=Px for some a,f= £* if §<0.
In each case, it holds that
o Re+vRs)=uRp+vRy.

Hence ¢ induces an isomorphism

R«b/(u’ U) = qu’/(ur 7’)'
Thus it is obvious that v=0, because M(Ry/(u,v)), M(Ry[(2,2))C{(,0); 2= Z}.
From D(Rof(u, v))=[peler, -, pele;] and D(Ry|(u, v))=[p'e'[e'y, -+, pe'[e' 1],
it follows that »=7', p=p' and e=e’. Since the two graded #-algebras
k[ Rpesen0r ***> Rpeser,o
=[xy, ooy 2] [(01 1B+ x3%, oo, 211Gy’ 20,%),

and
'é[R;?e/ehOa ) Rlpe/er,o]
=klxy, -0, 2,)[(21 7105w 2 F 255, -0, 21146, 254 2,%7)
are isomorphic with each other, one obtains (43, -, 6,)=(é3', -+, 4,") by [,
Theorem 5.1]. In view of Lemma 7.5, Ry/(xy, -+, xp)~=Rp/[(x1, -**, x,), One

has A[u, v]/(u°v®) ~ k[u, v]/(x°'v?). Hence c=c', d=d', /=0, and m=m'.
From these facts, it follows easily that 6=4". Hence we have ®=®’. Thus
we obtain:

Proposition 7.9. Let @ and D' be two indices such that Ry~Rqy. If
D is of type I11, then D=,
Thus Theorem 1.1 is completely proved, by Propositions 7.3, 7.8, and 7.9.
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*) There is a Gp2%-action on R defined by (a, B)(»)=alfir for every a,fc£*
and »&R;;. 7 is the image of this action in Aut®(R).
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