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§ 1. Introduction
W e fix  an algebraically closed field k of an arbitrary characteristic in

this paper.
It is shown in [1] that if X  is a normal projective variety over k such

that Cl X Z , then R (X ° , L )=3 01-10 (X° , L®) is  a graded factorial ring,
where X ° is the open subvariety of X  consisting of smooth points, L  is the
ample generator o f  Pic X°- - -C 1 X --Z  an d  C 1 X  is  the group o f  linear
equivalence classes of Weil divisors. Graded k-algebras isomorphic to such
ones are called geometric graded factorial rin gs. A ll the graded factorial
k-algebras A  with non-negative degrees such that k A  0 are completely
classified once geometric factorial rings are classified [1]. The classification
o f such graded k-algebras of dimension < 2  is given in [1]. However in the
case of dimension 3, it seems rather difficult to classify geometric graded
factorial rings because even non-singular projective surfaces X  over k such
that Pic X "--Z  are not classified at all. I n  v iew  o f  th is  fact, it seems
worthwhile to restrict ourselves to normal projective surfaces X  such that
C 1 X - Z  which admits a non-trivial action of Gm . This is equivalent to
considering geometric graded factorial rings of dimension 3  which admit
a  nondegenerate bigradation (for the definition, see §2).

Our main result is the following.

Theorem 1.1. Let R be a g eom e tr ic  g ra d ed  fa c to r ia l r in g  o f d im en s io n
3 w h ich  a dm its  a  nondegenerate bi g ra d a t io n . T h en  th e r e  ex is t s  o n e  a n d  on ly
one index  0 (see b elow ) su ch  tha t R is  isom orph ic to  R o  g iv en  in  the f o l l o w in g
examples.

E xam ple I. Let 0=-(e 1 , e 2 , e 3) be a triple of pairwise relatively prime
positive integers with e1 > e 2 > e 3 . Then

R o = k [x l , x 2 , x 3] deg x i = e t  ( i= 1 ,  2 ,  3 ) ,

is a geometric graded factorial ring which admits a nondegenerate bigradation.
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Example II. L e t  r > 3 ,  e 1> • • • > e r > 1  and m  be positive integers such
that e l , •••, e,. are pairw ise relatively prime and ( e ,  m ) =1  where e = fl
Let a 3 =1 , • • • , a,. be mutually distinct elements of

 k * .
 T h e n  for 0 — (e , a, m ),

•••, er )  and a= (a3 , ••• , a,.),

R ,=k [x i , •-• , x r ,
where 1=(X1 e 1 +a3X2 e z+X3 e3 , • • • , Xie , + a r X2e2 + X r

e r),

deg x i = e /e t ( i= 1 ,  • • • ,  r) ,  and deg u =m ,

is a geometric graded factorial ring which admits a nondegenerate bigradation.

Example III. L e t  r > 2 ,  e1>... >e,.> 1 , c <d ,  1 ,  m  and p  be positive
integers such that

1) (ei , 6'5) = 1  ( 1 < i <  j < r ) ,  (c, d, e ) =1  where e =  fl ';=1e1,
2) 1, m, p  are prime to each other, moreover /<n i if c=d .
3 )  1c+ m d=fie.

Let b3 = 1, •••, br , b  be mutually distinct elements of k *  if r > 3  and b = 1  if
r = 2 .  Then for 0 = ( e ,  b, c), •••, e ,.) , b=(b 3 , •••,b r , b )  and c = ( e ,  d, 1,

R o =k [x j , •••, X , u,

is a geometric graded factorial ring which admits a nondegenerate bigradation,
where /= (xiel± b3x2€4x3e3, •••, x iei+brx2ez+xrer, x i ei+bx 2 e4 u cva ) if r > 3 ,

_ ( x i ei + x 2 e2+ u cv d\)  if r= 2, deg x i =fte/e i r ) ,  d e g  u=/ and deg v =  m.
(The factoriality of the rings given in Example II and the geom etricity of

the rings given in Examples I , II and III follow easily from the results of [1].
The fac to ria lity  of the rings given in  Example I I I  is shown in  § 2 . )  We
introduce a bigradation  on the rings given above in §2. We study Gm -surfaces
in  §3  as a preliminary to later sections. In § 4 , we consider an arbitrary
normal projective surface X  with a nontrivial Gm -action (called a Gm -surface)
such that Cl XL-1-:Z .  We take a desingularization g: :;t--./I" such that 7r:
is a morphism (PI- is the projective line whose function field is k (X )G .).  Then
it is proved that the number i  o f exceptional curves fo r  g  which are not
contained in the fibres of 7 T  is 1 or 2. The cases i = 1  and 2  are treated as
Cases 1 and 2 , respectively. In §5, we shall prove that in Case 1 R (X ° , L ) is
isomorphic to a graded ring given in Example I o r  I I .  In  §6, it is proved
that in Case 2  R(X° , L) is isomorphic to a graded ring given in Example I or
III. Thus the existence of 0  in Theorem 1.1 is proved. §7 is devoted to the
proof of the uniqueness of 0 .

The author expresses his hearty thanks to Professor S. Mori for his kind
advice.

Notation and term in o logy . For an integral domain A , we denote by
Q(A ) the quotient field of A . F o r  a  graded integral domain A =(:),. c z A i , we
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denote by QH(A) the quotient ring S 'A ,  where S = U  ez{A i —  {0}1. T h e n
QH(A) has a natural gradation induced by A .  All homomorphisms between
graded rings are assumed to preserve gradation.

§2 . B igraded  factorial rings
In  this section, by a  graded ring, we understand an almost geometric

graded ring over k defined in  [1].

Definition 2.1. Let R =C ) i > o R i be a graded ring, and R i d  k-submodules
of R (i, jE Z , i  >0), and R1== R1, 5. Then we call R = 0 ,

1,1 z R i ,5 a bigraded
ring if R i d Re d , E R i + i , ,,i+ 3,  fo r all i, j, j 'E Z  i , i' > 0  and R o ,o =k.

For a bigraded ring R, we define a dual action of G ., p,: R—>k[t, t - 1® k R
by p,(a) =---tiOa (aER i d ). This dual action of G . on the graded ring R induces
a Gm -action on Proj R.

Lemma 2.2. I f  a bigraded ring R is  an in te g ra l d om a in  and R c i R c i , \  0
f o r  s o m e  j , j '  ( j   I  j '), t h e n  the action of G .  on  Proj R  i s  n o n tr iv ia l .

P ro o f. T a k e  non-zero elements f E R i d  an d  g E R i x .  Then the open
subscheme D(f)=Spec(R[f - 1 ]) 0 is  G m -stable, but the induced dual action
sends g lf E R [f - 1 10 to glf. Hence the Gm -action on D (f )  is nontrivial,
and thus the action on Proj R is nontrivial. q . e . d .

Definition 2.3. We call a bigraded ring R nondegenerate, if there exist
integers i , i ' , j , j '  such that i, i'>0, i'j/  0 and R i d , Re d ,  /  O.

It is easy to see that if a  nondegenerate bigraded ring R  is an integral
domain, R  satisfies the condition of lemma 2.2 for the integers ii', ,  and
i'j. Thus the natural Gm -action on ProjR (introduced above) is nontrivial.

In the remainder o f this section, we show that the examples in  §1 are
factorial nondegenerate bigraded rings.

Example I: I f  we define the bigradation of the graded ring R o =k[x l ,
X2 , x3] by deg x i = (e i , 0), deg x2 = (e 2 , 0), and degx 3 = (e 3 , 1), then R o  becomes
a nondegenerate bigraded r in g .  Thus Proj R o  has a nontrivial Gm -action. In
fact, Proj R , is a torus embedding of dimension 2.

Example I I :  I f  we define the bigradation o n  R o  (0---(e, a, m )) by
degx i =(e/e i , 0) (1=1, •••, r) deg u=(m, 1), then R o  becomes a nondegenerate
bigraded ring.

Example I I I :  I f  we define th e bigradation on R o  b ,  c ) )  by
degx i =(pe/e i , 0) (i=1, • • •, r), deg u=(/, — d), deg v=(m, c), then R o  becomes
a  nondegenerate bigraded ring. T h e  factoriality o f  R o  follows from the
following theorem.

Theorem  2 .4 . Let r  (> 1 ) b e an i n t e g e r  and ei >•••>e r > 1  be positive
in t e g e r s  s u ch  th a t  ( e t , ej ) =-1 f o r  a l l  i, j (1 < i < j < r ) .  Let c> d  be positive
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in tegers such  that (c, d ,  e ) = 1  w here e= [ J  _l ei ,  an d  le t  a 2 =1 , • • •  a, be
m utually  distinct elements of  k * .  T h e n  the  ring R =k [x i ,••• ,x„u,v],11 . , where
1 =(x i ei+x 2 e2H-a2 uevd, •••,x i ei+x ,er-Fa r uevci), is a factorial ring.

P ro o f .  By (c ,d ,e )=1  there exist positive integers /, rn such that (1,r» )=1

and (lcd-y ïtd,e)=1. We consider the graded r in g  S =k [x i ,  u ,  v i ,  where

degx 1 =/cH-Wid, deg u= ie l , deg v=rne l . Then since S  is a  graded factorial
ring, it follows from Theorem 4.1 in [1] that R  is also a graded factorial ring.
In fact, it is easy to see that e=--(e2 , •••, e,.) and v=(— x i et—a2 u('vd, •••, — x 1

6 i-
a r ucvd) form a ramification data defined in [1, §4]. Hence S[vlie] is a graded
factorial ring by Theorem 4.1 in [1]. Thus R =S [v lie] is factorial. q.e.d.

It is easy to see that R o  (0 =(e , b , c ))  is isomorphic to a  r in g  given in
Theorem 2.4.

§ 3 .  G.-surfaces
In this section, we shall study some properties of surfaces with a Gm -action.

The results we obtain are essentially the same as in [4], [5].

Definition 3.1. I f  X  is a  surface and p , : G .x X — ›-X  is  a  nontrivial
Gm -action, we call {X , ill (or, simply, X )  a  Gm -surface. Let { X ,{  Y ,
be Gm -surfaces. We call a morphismf : X—›- Y a Gm -morphism if f  makes the
following diagram commute.

Gm  X X  1"  x f  —> Gm  X Y

X   ---> Y .
First, we shall study normal affine Gm -surface.
Let { X, tc} be a normal affine Gm -surface and X = Spec A .  Then there

is a gradation A  =C) i  E z A i  such that the dual a c t io n  : A—>k[t, t - l]O k A  sends
aE A  t o  t O a  fo r  a ll i Z  [S G A D ] . Since A  is  an  integral domain,
QH(A )=K [z , 2. - 1 ,  where K  is the field  QH(A ) 0  a n d  z  is  a  homogeneous
element of degree d > 0 .  As the induced dual action of G . on Q H (A ) sends
z  to tdO z , K  is the field of all the Gm -invariant elements of the function field
Q (A ) of X .  S in c e  Q(A )--- K (z ), tr.deg k K = 1 .  Hence we can take the
nonsingular projective curve C  whose function fi eld is K .  L e t ça : X — >C be
the rational map associated to the inclusion K --.Q(A ).

Proposition 3 .2 .  I f  th e  rational m ap  ça: X — C  is  a m o rp h ism . then
Q(A 0 )= K  and the general _fibres of W are smooth curves.

Proof. S in c e  A G .=A 0 ,  the morphism 77 : X—>SpecA 0  is the categorical
quotient [GIT]. By the universality of the categorical quotient, there is a
unique morphism g : SpecA 0 —>C such that ço=-gorr. But as A 0 is the subring
o f K , g  is a birational m orphism  and K =Q (A 0 ). L e t  S = A 0 —{0 } , then
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S 'A  is  a normal K-subalgebra of QH(A)= K[z , z - 1 ]  whose quotient field is
Q (A )= K (z ) .  Such a K-subalgebra must be K [z], K [z - 3 1, or K[z , z- 1 ]. In
the case S - 1 -A = K [z ],  let A  be A o [u i , •• • , un ] ,  and u l , •••, un  homogeneous
elements of A .  There exists a non-zero element f  E A 0 such that A f D z, and
zr, (A 0 )1  D  u i (1=1, • • • , n) where r i ---degu i ld. T h e n  A f =  (A 0 ) f [z]. Hence the
geometric fibres of the morphism IT  :  X---›-Spec A o on  D ( f )  are isomorphic to
Al. S im ila rly  one can show that, in the case S - 1 A = K [z - 1 ] or K[z,
there exists a non-zero element f  A o  such that the geometric fibres of the
morphism on D ( f )  are isomorphic to Al or Al— {O}, respectively. In all the
cases, general fibres of IT are smooth curves. On the other hand, g: Spec A 0

--)-C is a birational morphism and C is a  nonsingular curve, hence g  is an
open immersion. Thus general fibres of yo=go7r are smooth curves. q.e.d.

Proposition 3.3. If th e  s e t X G . o f G .-in v arian t p o in ts  o f X  i s  of
dim ension 1,

Proof . I f  m, is the maximal ideal of A  associated to a point zE XG., m,
is homogeneous and A lm ,= -k . This implies that ma,D A i (i  /  0). Hence by
Hilbert's zero point theorem, the ideal a of the reduced closed subscheme
contains A i  (i 0). Thus the ring homomorphism A 0—)-A/a is a surjection,
and XGm can be considered as a closed subscheme o f Spec A 0 . But A 0 is
integral and at most of dimension 1. Hence if dim X . = ,  XG."--SpecA o .

q.e.d.

Definition 3 .4 .  If a smooth projective Gm -surface S  is a ruled surface
over a curve C, the Gm -action on S  induces a Gm -action on C .  We call S  a
Gm -ruled surface if the Gm -action on C is trivial.

Proposition 3 .5 .  L e t  S  b e  a  G .-ru le d  surface, th e n  th e re  are two
sections C0 and C , of the structure morphism IT  :  such that SG .=C o UC,
and co n ci  = 0 .

Proof . S in c e  G .  acts on each fibre P 1 o f 7r, there are at least two
invariant points on each fibre of 7r. Hence we can take a nonempty Gm -stable
affine open subvariety U of S such that general fibres of the natural morphism
U—)-C have Gm -invariant points [3]. Then dim UG.  \  0, hence by Proposition
3.3 UG.:- Spec A o , where A = a „ z A i and U=Spec A .  On the other hand by
Proposition 3.2, Spec A o is birational to C. Hence there is a  rational map
s1 : C--)-UG.—)-S. Since S is complete and C is nonsingular, s i  is a morphism.
Let s l (C )=C i , Ci c S G . .  Taking another Gm -stable affine open subvariety U'
disjoint from Cj. [3], we obtain another section so : C-3-S such that Co =s o (C )c
S G .•  Since Proposition 3.3 implies that no two Gm -invariant curves intersect
with each other [3], Co ri C1 = 0  and SGm contains no fibre of 7r. Hence there
are exactly two invariant points on each fibre of 7r, thus SG .=C o  U

q.e.d.
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Proposition 3 . 6 .  L et X  be a n o n s in gu la r  p r o je c t iv e  G .- su r fa c e .  T h e n
th e r e  are  a n o n s in g u la r  p r o je c t i v e  G .- s u r fa c e  X, a  G .- r u l e d  surf ace  S  and
birational G .-m orphism s f

P roo f. L e t  L  be the function field  of X  and K  the field o f a ll the
G.-invariant elements of L .  Let C be the nonsingular projective curve whose
function field is K  (tr. deg k K = 1 by the result in the affine case). Let g 0 :
be the rational map associated to the inclusion K L . L .  If g 0  is not a morphism,
then every fundamental point x 1 of g  is G .-invariant and the blowing-up X 1

of X 0  at x 1 is  a G.-surface, and the morphism X 1—±X is a G .-m o rp h ism . If
X i --)-C is  no t a morphism, the sam e operation can be repeated. Thus

there is a sequence of G.-morphisms 2t=-X,—)-X._ 1 -->•••—>X0 = X  such that
g : . . —>-C i s  a  m orphism  (elimination o f indeterm inacy). S ince TX can be
covered by a finite number of G.-stable affine open subvarieties, by Proposition
3.2 general fibres of g n , are nonsingular curves. But general fibres of g .  are
complete curves with a nontrivial G .-action, so they are isomorphic to P 1 .
Then it is well-known that, by successive contraction of exceptional curves of
the first kind on special fibres, one obtains a ruled surface S  over C  and g .

h
factors through S C ,  namely /17.--->S— )-C. Since exceptional curves of the
firs t k in d  on  G .-surfaces are G .-stab le , S  i s  a  G .-surface and h  i s  a
G.-morphism. q . e . d .

Proposition 3 . 7 .  L et X  be a norm al projective G .- s u r fa c e .  T h e n  t h e r e
are a n on s in gu la r  projective G .-su r fa c e  .7Y. a  G .-ru le d  su r fa c e  S  and birational
Gi n -m orphism s f : Ye-,x and h:TX—.)-S.

P r o o f .  The desingularization of a surface is done by finite repetition of
blowing up along an isolated singular point and the normalization. Thus
the G.-action on X  can be extended to them. Hence there exist a nonsingular
projective G .-surface X', a n d  a  birational G .-m orphism  g:X '--)-X . By
Proposition 3 .6  there are :V and S  and f '  ,  — > - S .  Set f  -=go f '

q.e.d.

In the remainder o f th is section, we quote some well-known lemmas,
for the reader's convenience, which are necessary in the following section.

L em m a 3 . 8 .  L e t  X  a n d  Y  b e  n o n s in g u la r  projectiv e s u r fa c e s ,  and
ço: X ---)-Y  a birational m orphism  w h ich  in d u c e s  an  i s o m o rp h ism  X—ço- 1 -(P)---
Y — {P} f o r  a point P YY. S e t ço — i(P)=U 7'_ 1 X 1 ,  w h e r e  X i ( i=1 ,... ,n )  is  an
i r r e d u c ib le  cu r v e  of  X .  T h e n  if  w e  c o n s id e r  the injection yo*: Cl Y--)-Cl

Ci X=99 * (Ci Y)Cl iE Zci(X i ).

P ro o f.  B y  the factorization theorem for birational morphisms of non-
singular projective surfaces, w e m ay assume that yo is  a quadratic transfor-
m a tio n . In this case, the assertion is obvious. q.e.d.
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Lemma 3.9. Let X  b e a n on sin gu la r projective s u r f a c e ,  Y a normal
projective surface, and ço: X—)-Y a  birational morphism w h i c h  in d u c e s  an
isom o rp h ism  X —90- 1 (P)-- Y — {P} fo r  a  p o in t  P E  Y. S e t  so- i(P)-= U7= 1 ,1( ,,
w h ere  X i (i=1,••• ,n) is an ir redu cib le cu rv e on X . T h e n  cl(X 1 ),• • • , cl(X )  are
lin ea r ly  in d ep en d en t o v er  Z and

Cl X/( 7AZ cl (X i )) Cl Y.

In  pa rticu la r , i f  Cl Y is a _ fin itely generated Z-module, so  is  Cl X , and

rank Cl X = ra n k  Cl Y -H .

P roo f. L e t  X °=X —  U 1 X 1 , th e n  Cl X ° i.-_-C1 Y and f :C1X—)-C1X° is
surjective and Ker f  is generated by c l(X i ) (i= 1 , •••, n). The linear indepen-
dence of c l(X i ) (i= 1 , •••, n ) follows from [2]. Hence Cl X/(E
Cl X°2--_' Cl Y. q.e.d.

Lemma 3 .1 0 .  Let F  b e  a free Z-module of ra nk  n , and a l , • •• „a,. be
elem en ts of F .  T h e n  i f  Fl<a i ,• • • ,a,.> is  a  fr e e  Z-module of rank n—r, Fl<a i >
is  a  fr ee  Z-module of rank  n -1 .

P roo f. The exact sequence

0 —3 <al , • • • , ar > — 3 F  F/<ezi, • • • , ar > — 30

splits, since F/<a i , •••,a r > is a free Z -m o d u le . Hence there is a free submodule
E  of rank n—r of F  such that F=<a i ,•••,a,X ) E .  Since <a l , •••, ar > is  of
rank r , a l , •••, ar  are linearly independent over Z  and Fl<a l > <a2 , • • • , ar >C)E
is a free Z-module of rank n -1 . q.e.d.

Lemma 3 . 1 1 .  Let X  be a n on s in gu la r  G .-su r fa ce , and L  an in vertib le
sh ea f on X  su ch  th a t dim H °(X  ,L )< 0 0  . If a  l in ea r  su b sp a ce  V  P (H °(X  ,
L )v ) co n ta in s  a ll the points of P(H°(X , L)v) w h ich  correspond to  G .-sta b le
d iv iso r s  of X , th en  V = P (H °() ,L )v ).

P roo f. The condition implies that V contains all the Gm -invariant points
of the induced G m -action on  P(H°(X, L)v). Since every G m -action on a
projective space is d iago n alizab le , Gm -invariant points of P (H °(X , L )v ) span
P (H ° (X , L )v ). Hence V =P(H°(X, L)v). q.e.d.

§ 4 .  The ring R (X )
Let X  be a normal projective Gm -surface such that C1X - --Z .  Then by

Proposition 3.7 , there are a nonsingular projective Gm -surface a Gm -ruled
surface S  and birational G m -morphisms f:Yfr--)-X  and g:.7Y—)-S. From now
on, we fix such a 4-ple S, f ,  g} for X.

Definition 4 . 1 .  Let X °  b e  a  nonsingular open subvariety of X  such
that X— X° is a finite set. L e t  L E Pic b e  the ample generator
o f Pic X ° .  Then we call R(X° , L)=3F____ 0 H°(X° , L° 1)  the canonical homo-
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geneous coordinate ring of X, and denote it by R (X ).
R (X ) is a geometric graded factorial ring of dimension 3, and independent

of the choice of X °  (see [1]).

Proposition 4 .2 .  S  is  a ra tion a l ru led  su r fa ce .

P roo f. S in ce  C l X Z  and is a birational morphism, C l i s  a
finitely generated Z-module by Lemma 3.9. Since g :2 V -)-S  is also a bira-
tional morphism, ClS is a finitely generated Z-m odule. Thus the base curve
of S  is rational. q.e.d.

Let 77!:S .-)-P l be the structure morphism of the rational Gm -ruled surface
S , and let 7r=77-' g:2t->-13 1 . Since general fibres of IT are isomorphic to Pl,
we can take a l , •••, an E P  ( n > 3 )  such that for every closed point a E  P l-  la i ,
•-• ,a n } 7r- l(a ) is isomorphic to Pl. Let ir (a i ) =  • • - ,  n ) ,
where e i d , X 1,5 (i=1 , •••, n , 1 < j < r i ) are positive integers and irreducible
curves on :le, respectively. By Lemma 3.5, there are two sections Co ' and CI '
of 7r' such that Co ' (-1 CV= 0  and S G .-C o ' U C1 '. Let Co  and C l  be the proper
transforms o f Co '  and by g , respectively. Co  and C l  are Gm -invariant
curves on X.

Proposition 4 .3 .  E very G m -s ta b le  ir r ed u cib le  d iv iso r  o f  d e f i n e d  o v e r
k is  one of th e  fo llow in g  cu rv es .

1) 7r- 1 (a), w h er e  a is  a clo sed  p o in t of {al, ••• an } ,
2) X 1,5 i= 1 ,  • • •  ,n , l<  j< r
3 )  Co ana '

P r o o f .  Let C be a Gm -stable irreducible divisor of :Y. If C is contained
in 7r- l(a 1)  for some i ,  then C c  U i X i d  and C = X i ,j  for some l <  j < r j . I f
C  7r- 1 (a i )  for all i  and C c C o  U CI , there is a closed point x C  such that x
is not G m -invariant and IT(x) E {a l , •••, a„}. Then C  contains the closure of
the orbit of x , which is equal to 7r- 1 (7r(x)). Hence C=7r - 1 (7r(x)). This is the
case (1). q.e.d.

Theorem  4 .4 .  X  i s  o b ta in ed  fr om b y  c o n t r a c t in g  (E1'= i r i ) - n + 1
com pon en ts o f

U  X 1 ,3 ) U  Co U
15i5n
15j 5i

If one d enotes b y R  the union of the r em a in in g  n + 1  com pon en ts , th en  one of
th e  fo llow in g  tw o  cases o ccu r s :

Case 1. T h e r e  are  an  in t e g e r  i  ( i= 0  or 1) a n d  n  in t e g e r s  m l , ••• , m n

(1 < m 1< r 1 fo r  a ll i )  su ch  tha t

R = C i U(U i X i ,m i ).

Case 2. There are n  in teg er s  m l , ••• , m n  (1<m i < r i  fo r  a ll i )  su ch  tha t
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(U X i, i )D R D  U X i, m i .

Proof . Since rank C1S=2, rank CI.TY=E7_ 1r 1—n+2 by Lemma 3.9.
On the other hand, rank Cl X=1. Hence by Lemma 3.9,  c o n t r a c t s
exactly EI:_ 1r i —n+1 curves o f jt .  B u t  since f  is  a G m -morphism, those
curves are G.-stable. B y  Proposition 4.3, there are only three types of
Gm -stable curves. But since the self-intersection number o f a  curve 17-- 1 (a)
a€E {a1 , •••, an } is 0, 7r - 1 (a) is not an exceptional curve of the morphism f  [2].
Thus the first assertion is proved. S in c e  the self-intersection number of
77-1 (ai ) =-E 5ec i X i d  is 0 for each i ,  there are n  integers m i , •••, m n  (1<m 1< r i

for all i )  such that R D  U Then the case 1 occurs if Rcr U
and the case 2 occurs if Rc U c i X i d  . q.e.d.

Definition 4 .5 .  We call the components o f R  given in  Theorem 4.4
remaining curves.

We will determine the canonical homogeneous coordinate ring R (X ) in
each case in the following sections.

§ 5 .  Case 1
By renumbering the curves in  Theorem  4.4, we may assume that

R = C o U ( U "iL 1X 1,1) and e1 ,1>• • • > e n ,i . For simplicity, we denote, in this section,
X 1,1 and e1,1 by X i  and 6'1 ,  respectively (i=1, •••, n ) .  We can take elements
si , •••, sn  of H°(./3 1 , Op(1)) such that (s i ) o _—ai  and s i + a i s2 + s i -----0 (i=3, •-•, n),
where a 3 =1, •••, an are mutually distinct elements of k *  uniquely determined
by a i , •••, an . Let r be the largest number (1 <r <n )  such that e,.>1, if e1>1,
and let r be 0 if e 1 ==1.

Theorem 5 .1 .  (ei , ei ) =1  f o r all  i  an d  j  s u c h  th at l<" i<j<n , and there
is a positive integer m  w ith the follow ing property : I f  r= 0 ,1 ,  or 2.

R (X ) - k[x i , x2 , u], w here degx i =e i  (i=1, 2) and degu.---m.

I f  r>3 ,

••• , x r ,  u ]/ I ,  w h ere  deg x i = ele i  (i=1, ••• ,

deg u = In, e= f l  1
L 1e1 and

I —(x i ei-l-a3 x 2 e2+ x 3 e3, ••• , x i eid-ar x 2 e2+x r er).

Proof . S in ce  S  is a  rational ruled surface, Cl S  is generated by n+2
divisors Y1=71-' - 1 (a i ) (i=1, •••, n) and Co ' and C1 '. The relations among them
are generated by n  divisors ( i = 2 ,  • • • ,  n )  and C0 '— C1 '± k  where
k  is the self-intersection number of C1 '. By Lemma 3.8, Cl ;Iris generated by
X 1,5 (i=1, n , l <  j < r i )  and Co  and C 1 . Again by Lemma 3.8, the rela-
tions among them are generated by the total transforms of the n  divisors
Y 1— Y1 ( i=2 ,  •••, n) and C 0 ' — C 1 ' + k Y 1 .  I f  w e  set



450 M asa-N ori Ishida

g*(Co' — C1 ') = J ar L i)

then we have
r i r i

g*(I7 E  X  E
5=15 = 1

r i
g*(C o ' —  +k 1 7

 1) = C 0 — C1 + E id+  k E
5=1

Since

C1X - -- C1X/Zcl(C i ) d -  E  Z cI(X id),xi, j aR

C 1X  is generated by 0 - 1  remaining curves X i  ( i= 1 , • • • ,  n )  and C o . The
relations among them are generated by n  divisors, e i X i —e i X i  ( 1= 2 , ••• , n),
and Co — E i d i , iX i d-ke i X i . Thus one has

Cl E  Zu i l E

where u l , •••, u n  are linearly independent over Z .  Then noting that
one sees easily that (ei , e; )=1  if i j  by Lemma 3 . 1 0 .  Since ei cl(X i ) E e5 C1 X
fo r  every j ,  one can take a divisor E  such that (e/e i ) c lE = c 1 X i f o r  every

I (e = Then cl E  generates Cl X . L e t  X °= X —  U 2X,5— C 1 ,
then X° is a smooth open subvariety  o f X  and X —  X ° is a finite set. F o r
simplicity, we denote the restriction to X ° o f  a  divisor on  X  by the same
symbol (if there is no danger of confusion). We se t L =0  x o(E). Since

we fix an isomorphism ir*Op(1)1 x ."--L®e and identify them
from now on in this section . Since (77-*(si )),3 = e i X i  and H ° ( X °  ,  0 .) =k ,  there
is an element -Xi  of H°(X ° , L ® e l e i )  such that ( i )0 = -X i and =77-*(s i ) for every
i. Since C 1X  is generated by c l E ,  CO 3---InE  for some integer m . One has
m > 0  because Co > 0  and C1X - --Z. Hence there is an element it-  o f  H°(X ° ,
L®m) such that (i2)0 =C 0 . It follows from Lemma 4.3 that Gm -stable irreducible
divisors of X° are X 1 , •••, X n , Co , and 7r---1 (a ) , where a  is an arbitrary closed
point of P ' . (a 1 , •••, ari l. For a c c i , a 2 there is an element aE k *  such that
a = ( s 1 --Fas2)0 , hence 7r- i( i) =  (77-*(s a s 2 )) 0  W i d - a i --2 e0,3 . Thus all the
Gm -stable effective divisors on X° equivalent to i cl E  are zeros of sections of
H°(X ° , L®i) which are homogeneous polynomials of degree i  in Xi , •••, 7-4
(iE Z , 1> 0 ) .  Hence R (X ) is generated by X i , •••, Xn , 7.7 as a k-a lgebra , by
Lemma 3 .1 1 .  On the other hand, since s 1 d--a i s2 + s i = 0  (1 = 3 , ••• , n ) , one has

(1= 3 , ) I f  i  satisfies the conditions r < i < n  and
2 < 1, can be written as a polynomial in x i  and We define a m orphism
o f graded k-algebras h:k [x i , • •• , xn , u]---R (X ) by h(x i )=  (1=1, n )  and
1i(u)=17, where d eg x i = e /e i  (1= 1 , •••, n) and d e g u = m .  When r = 0 ,  1 ,  or 2,
R (X ) is the image o f  k[x l , x 2 , it]. Since d im R (X )= -- 3 ,  R (X ).-'k [x i , x 2 , u],
where degx i = e i  (1 = 1 , 2 )  and d e g u = m .  When r > 3 ,  h induces a surjection
k[x i , • • , Xi., u ]II-4 -R (X ), where /=  (x l ei + a 3x 2 e2+  x 3 es, • • • , -1-ar x 2 e2+  x r er).
Since k[x i , •••, x r , u ]/ /  is a factorial ring of dimension 3  by [1], and dim R (X )
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= 3 , we obtain R(X ) - - --k[x i , •••, X i., u ]/ / ,  where degx i =e/e i  ( i= 1 , • • •  n )  and
degu-=m. q.e.d.

R em ark  5 .2 .  Since R (X ) is a geometric graded factorial ring, (e, m )= 1
by [1, Corollary 2.91. Hence R (X ) is isomorphic to a graded ring given in
Example I or II.

§6. C a se  2
Again by renumbering the curves, we may assume that R =( U

U X n , 2  and e1 ,1 >••• > -  n - 1 ,1 )  e n ,1 < e 5 ,2 •  In the case en ,1 =e„, 2 , we may further-
more assume that the divisor f(X „, 2 - X , 1) is linearly equivalent to 0 or some
positive multiple of it is ample (note that C1X - --'2 . and X  is projective). F o r
simplicity, we denote, in this section, X 1,1 , e1,1 , X n ,1 , X n ,2 , e , 1 , and 6.5 ,2 by
X i , ei , U , V , c, and d , respectively ( 1 =1 ,  • • • ,n - 1 ) .  We can take elements
so , •••, sn _1 o f  H°(13 1 ,  Op(1)) such that (si )0 = a 1 ( i= 1 , ••• , n -1 ) , (so)0 = a 5 ,
s i +b 1s2 -Fs i = 0  (1= 3 , •••, n - 1 )  and s i + bs 2 ± s 0 = 0 ,  where b3 =1, •••,b
are mutually distinct elements of k* uniquely determined by a l , •••, an . Let r
be the largest number ( 1 < r < n - 1 )  such that er > 1 ,  if ei > l ,  and let r  be 0 if
el = 1 .

Theorem  6 .1 .  (ei , ej )= 1  f o r a l l l<  i < n - 1 ,  and  (c, d, e)=1, w h ere
e=1 - 11

i 'Tilei . T here are p o s it iv e  in te g e r s  1, m, p  w ith  the fo l lo w in g  p r o p e r ty :
I f  r=0  or 1,

R (X ) - -k[x i , u ,v ], w h e r e  degx i = p ,  d e g u = /  an d  degv= m .
I f  r>2 ,

R (2 /{ )-- k [X 1 ,  • • • , X e., u, v ]ll,
1-  ( X i e l + b 3 X 2 e2 + X 3 e2 , • • • , brX 2e2-1--X rer, b X 2 e 2  u(va),

w h ere  degx i =pe/e i  (1=1, •••, n - 1 ) ,  d e g u = I  and deg v= m.
P roo f. As in Case 1, Cl i s  g e n e r a t e d  b y  X 1,5 (1=1, •••, n ,1 < j < r  i ),

Co and C1 , and the relations among them are generated by

r ' e X j e X c i  (1=2, ••• ,n),
5=1

71
CO -  C 1 +  E

5=1
Since by Lemma 3.9,

Cl X C l r i t / i  Z c l  ( C 1) - F  E  Z c l (X 1,5),
5=0 X i,j c R

Cl X  is generated by the classes of the remaining curves X 1 ,  • • • , X 5 _ 1 ,  U , V,
and the relations among them are generated by n divisors ei X i - ei X i  (1=2, •••,
n -1 ) , e iX i - c U - d V  and E 'iL i a'i , i X i d-ti5 ,1 U±c/5 ,2  V-i-ke i X i . It follows
from Lemma 3.10 that (ei , ei ) = 1  for all 1 < i < j < n  - 1  and (c, d, e ) = 1 .  Let

n - 1  r i
X ° =./V - U U X 1,5 -  U  X 5 ,5 - Co - C11

1=15=2 5=3



452 M asa-N ori Ishida

then X ° is a nonsingular open subvarie ty  of X  and X  -  X °  is  a  finite set.
Let L  be the ample generator of Pic (X°)::--_Cl X Z. Then there is a positive
integer p ' such that .L° 2)' 7r*Op(1)1 x .. We fix such an isomorphism and
identify them. Since L®/''---O z o(ei X i ), ei  divides p' (1=1, • • • , n-1). Hence
there is a positive integer p , such that p '=_ p e . Since (7*(s i )) 0 = e i X i  (1= 1, •-•,
n - 1 )  and H ° ( X °  ,  0 . ) =k ,  there is an element i  o f  H°(X ° , L ® P e l e i )  such
that (i-1)0 = X 1 and .-x i ei= e ( s i )  (1 = 1 , ••• , n - 1 ) .  Since 

( 7 r * ( s n ) ) o = c
 U ± d  V,

there are elements a E H 0 (X ° , L 0 1 )  and D EH °(X ° , L ""') for some positive
integers 1 and m  such that (fc)0 = U  and (0) 0 =  V  and fief)d =77- * (s„). I f  c=d ,
then l m by our definition of e, 1 and e , 2 . As in Case 1, R (X ) is generated
by •••, u,  D as a k - a lg e b r a .  On the other hand, since s 1 + b i s 2 + s i = 0
(1= 3 , ••• , n - 1 )  and s i + 6 s 2 + s o -=-0, one has .-x 1 ei+ b 1.-x2 e2+ .V i= 0  ( 1 = 3 , • • • ,
n - 1 )  and . 1 ei-kb.i'2 €2+ i -tco 2 = 0 .  If i  satisfies the conditions r < i< n  - 1  and
1 < 1, x 1 can be written as a polynomial in g  and D. W e define a m orphism
of graded k-algebras h:k [x i , • • • , x„, u, v]-0-R(X ) by h(x  ( 1 = 1 ,  •  •  •  ,  n - 1 )
and h(u)= -12 and h (v )=0 , where degx i = pele i  (1=1 , •• •  , n -1 ), degu=1 , and
deg v = - m .  When r = 0 ,  or 1 , R (X ) is the image of k[x i , u, v ]. Since dim
R (X )=3 , k [ x  u  ,  v ] ,  where degx i = p ,  d e g u = / ,  and deg v = m .  When
r>2 ,  h induces a surjection k[x i , •••, x,-, u ,v ]II-)-R (X ), where / = ( x i ei-i-b3 x 2 e2
+ x 3 es, • • • , Xi e l + b r X2e 2 - F- Xr

e r, X i e1 +bX 2 e2 +7,l e Va ) .  Since k[x i ,  •••, r ,  u, v 1II is a
factorial ring of dimension 3  by the results of §2  and dim R (X )=3 , we obtain

•••, x,., u ,v ]I I ,  where deg x i =pe/e i  (1= 1, •••, n - 1 ) ,  d e g u = / ,  and
deg v =m . q.e.d.

Rem ark 6 . 2 .  Since R (X ) is a geometric graded factorial ring, 1, m ,
p  are pairwise relatively prime by [1, Corollary 2 .9 ] .  Hence R (X ) is isomorphic
to a graded ring given in Example I or III.

§ 7. The proof o f Theorem  1.1.
Let R  be a  graded rin g  in  Theorem 1 .1 ,  and fix  a  nondegenerate

bigradation. Then X = Proj R  is  a normal projective surface such that
Cl X_-_-tZ  [I, §1] ,  and X  has a structure of G m -surface {X, tc}  induced by the
b ig ra d a tio n . It was proved in previous sections that R (X ) R ,  for an index 0 •

Since R 1 ?( X ) [1 ,  §21, R2-zR o . Thus the existence of 0  is proved.
Now it is sufficient to prove that if R o

-- -R o , then 0 = 0 ' .  The indices 0
given in Examples I, II, and III are called of types I, II, and III, respectively.

Definition 7 . 1 .  For integers a l , •••, an , b 1 , • • • , b . ,  we denote [a1 , • • • , an ]
=[b 1 ,•••,b, n ]  if and only if n=--m and there is a permutation sE  S „  such that
bi =a s ( i )  (1=1, • • ,n).

Let R = 0 7 _ 0 R 1 be a graded ring with non-negative degrees and of finite
type over k  such that R o =k . L e t  {u 1 , •••, u n }  b e  a minimal basis of
R + =  1 > 0 R 1 as  an  R -m o d u le  consisting o f homogeneous elements. Then
[degu i , •••, degu n ]  is uniquely determined by R  (independent of the choice of
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.• • [
1

,  §2 ]).

D efin ition  7 . 2 .  Under the above notation, we denote {deg u 1 , • • •, deg un ]
and n by D (R) and n(R) , respectively.

Of course, if R R', D (R )=  D (R ') and n (R )=n (R ').

Proposition 7 . 3 .  L et 0  and 0 ' be two indices su ch  tha t R,' . I f  0
is  of  typ e I , then

P roo f. S in c e  n (R ,,)= n (R ,)= 3 , it is obvious that 0 ' is of type I. Let
0 = (e i , e2 , e3 )  and 0' = (e , e2 ', e 3 '). Then D(R 0 ) =[e 1 , e 2 ,  e3 ] and D ( R ) =

e2 ', e 3 1. Since e1 > e 2 > e 3 , e 1 ' > e 2 ' > e 3 '  and D (R o ) = D (R o ,), (e1 , e 2 , e 3 ) =
(e l ', e2 ', e 3 '). Hence 0 = 0 '. q.e.d.

It is easy to see that the automorphism group Aut (R ) o f  R  (given in
Definition 7.2) as a graded k-algebra is a linear algebraic group over k. We
denote by rank A ut°(R ) the rank of the 0-component Aut° (R )  o f Aut (R),
the dimension of a maximal torus of Aut°(R).

P r o p o s io n  7 .4 .  L e t  0  b e  a n  in d e x  o f  t y p e  I I  o r  I I I .  T h e n
rank Aut° (R ,)= 2 .

P roo f. L e t  T OE Aut°(R o )  be the 2-dimensional torus associated to the
bigradation R ,= C ) i ,J .Ri d  of R , given in §2* ) . It is sufficient to prove that the
centralizer Z (T )  is of dimension 2. By the definition of the centralizer, every
element of Z (T )  preserves the bigradation of R.

First, let us assume that 0  is of type II, and set 0= (e, a, . Then,
every element of Z (T )  induces automorphisms of

and

0 -Ri,o—k[xi, • • • ,t o
C) R in z ,i =k[u] .

x r ] l (x i e ,+ a 3 x 2 e2 + x 3 e3 , x 1 e1 + a r x 2 e2 + x r e o

Since x 1 ,•••, x r , u generate R , over k, the kernel of the homomorphism

A ut (ç)R i ,o) X Aut (00 R i m ,i )

of algebraic groups is of dimension 0. By the exact sequence o f [1, Theorem
4.5], Aut (C) i , o R i3O ) Grn . Since Aut Z (T )  is of dimension 2.

Next, let 0  be of type III, and set 0 = (e , b , c ) .  W e admit the following
lemma and continue the proof.

L em m a 7 . 5 .  R p e , (i=1, • • • , r).
Thus every element of Z (T )  induces automorphisms of

R'=k[RPe/e1,0, • • • -R P e le r ,0 ]

=k[X i, • • • , X r ]/ (X i e l + 63X 2 e 2 + X 3 e 3 , • • • , Xi e 1 + b r X2 e 2 ± X r
e , )

and R " =k [R c _ d , R„,,]=k[u, 7)].

Since R o  is generated by x l , • • • , xr , u, r  over k, the kernel of the homomorphism
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Z (T ) Aut(R' ) X Aut bt_g r .(R")

of algebraic groups is of dimension 0, where Aut b i_g r .(R ") denotes the algebraic
subgroup of A ut(R ") consisting o f elements preserving b ig ra d a tio n . On the
other hand, if r> 3  A u t(R ') Gn, and Aut t,i _g ,..(R") - Gm,2 . Thus one sees that
Z ( T )  is  of dimension 2 , in  view of the equation x i ei-d-bx2 e2d-ucya-=0. I f
r= 2 , d im Z (T )= 2  easily follows from the equation x i ei-i-x2

6 2-1-ucyd=-0.
q.e.d.

Proof of Lemma 7.5. Since Rp o ,„ 0 is generated by monomials in
•••, X, u, y, it is sufficient to prove the following assertion: If non-negative

integers /1 , •••, 4, q ,  q '  satisfies the condition x i i i•••xr i rtt q v g ' E -RPetet,o, then
/ i = 0  ( j  i)  and q=--- q' .  The condition xiii•••xrirugyglE  RPe/ei implies

E (1)
5=1
—qd+ q' c= 0 (2)

Thus there is a non-negative integer 4  such that q = 1 0c/e0 an d  g'=-1 0 d/e 0 ,
where eo = (c , d). Hence we have

q l+ q 'm = 10(1c+ m d)leo= loP eleo ,
E ij e7e; =e7e i ( 3 )

by ( I ) ,  where e' = e 0e. By the equation (3 ) , w e have /3e1/e5= 0  (mod ej )
(0< j< r ,  j  / 1 ) .  Since (e0 , e)= (c , d, e ) = 1 ,  we have (e' lei , 6.5) = 1  and
(mod e 5 )  for every j   /  i. Hence we have /5- 0  ( 0 < j < r ,  j   /  i )  by (3 ) , and
q= q ' = 0  by 4 = 0 . q.e.d.

Definition 7.6. For a bigraded ring R = C ) i ,j E z R i ,j ,  we set M (R) = «i,
j ) ;  R 1 ,5 \ O }} .

Definition 7 .7 .  For a bigraded ring R , let q  (resp. q ')  be the minimum
(resp . the maximum) of j/ i ;  ( i ,  j )E M (R )— (0 , 0 »  (which exists since R  is
assumed to be o f finite type over k). Then we define  R 1 = i 3  /21,5 (resp.

iq=i
R r  0  R i d ) .

Let 0  be an index of type II. Then, with respect to the bigradation of
R o  given in §2,

R = k l[ x 1 , • ••, x r ]/ (x i e1+ a 3 x 2 e2+ x 3 ea, ± a rx2e2+xrer),

R o r k [u] .

Let 0  be an index of type III. Then R ,= k [ u ]  and R o r= k [y ], with respect
to the bigradation given in §2.

Let 0  and 0 '  be ind ices o f type II or III such that R e .  Let
R a,=C ) i ,i z R i d  and Re-= -C ) i ,j „ z R , i  be the bigradation given in §2. There
are the 2-dimensional tori T  and T ' of Aute(R o )  and A ute(R e) associated to
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the above bigradation  of R o  and R e ,  respectively. Since and rank
A u e (R o ) = 2 ,  there is an isomorphism p :R R o ,  such that T is mapped onto
T ' by the induced isomorphism "p:Aut°(R o )'_ ,̀- 'A u t ° ( R e ) .  Hence there are
rational numbers 8  \0 and v  such that 8 j + v i E Z  for all (i, j)E11/(R o )  and
p(R i ,5) = R 1 + . It is clear that R o l  is mapped isom orphically  onto 14, if
8 > 0  and 14, if 8< 0  by p.

First, let us assume that 0  is of type II. Then 0 '  is also of type II and
8 > 0 ,  because R i= k [x i , •••, x r 1/(x i ei+ a 3x 2e4 x 3e3, •••, x i ei+ a r x 2 e2+ x r er) is not
generated by one homogeneous element over k. Thus we have
Let 0=(e , a, m ) and 0' =(e' , a', m ') .  Then one obtains e  e '  and a = a ' by
[1, Theorem 5.1], and m = m ' by D (R )= (e / e 1 , •-•, e'e r , m ) and D (R e )= (e le i ,
•••, eler , m ' ) .  Thus we obtain:

Proposition 7 . 8 .  L et 0  and 0 ' be tw o indices such that I f
0  is of  ty pe II, then 0 = 0 '.

Thus it remains to treat the case where 0  and 0 '  are o f type III. Let
0—(e, b, c) and 0' =(e' , b', c'). We have shown that

yo(u)=au and p (v )= v  for some a,f3 k* if 8 > 0 ,

p(u)---av and yo(v)=/3u for some a,PEk* if 8 < 0 .

In each case, it holds that

ço(uR,H-yR 0 ) = u R e + y R e .

Hence p induces an isomorphism

R o l(u, y) -1'4- R'/(u, y).

Thus it is obvious that v = 0 , because M(R,I(u,y)), M(Rel(u,y))OE  { (i3 O); iE Z } .
From D(R,I(u, y))=[pele i , •••, peler ]  and D (R o

,/(u, v))= [fi'e7e ' 1 ,  •  - • ,

it follows that r = r ',p = p ' and e = e ' .  Since the two graded h-algebras

k[RPelei, 0  •  •  •  R P e/ er ,0 ]

= k [X i, •  • • , X r ]1 (X i e l + b 3 X 2 e 2 H— X3 e 8 , • • • , Xi e i d — brX 2 e 2 + X r e r ) ,

and

k [R 1 0 e/ e1 ,0 , •  .•  R 'P eler ,0 1

= k[X i, •  • • , X ,E X i e l + b 3 '  X2 e 2 H— X3 e 3 , • • • , X i
e i +  x 2 ez ± x r e r )

are isomorphic with each other, one obtains (b3 , •••, b r) = (b 3 ', br ' )  b y  [1,
Theorem 5 . 1 ] .  In  view o f Lemma 7 .5 , R ,,/(x 1 , •-•, x r ) - R o

,/(x l , •-•, x r ) ,  one
has k[u, y]l(u('ycl) ." k[u, y]gue'ycl'). Hence c= c' , d= d' , 1=1', a n d  m =m '
From these facts, it follows easily that b = b '.  Hence we have 0 = 0 ' .  Thus
we obtain:

Proposition 7 . 9 .  L et 0  and 'V  be tw o indices such  that R,"*--12e. I f
0  is of  ty pe  III, then  0 = 'V .

Thus Theorem 1.1 is completely proved, by Propositions 7.3, 7 .8 , and 7.9.
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* )  There is a Gr a z-action on R  defined by (a , /3)(r)=- 4 1 r  for every a,PGk*
and rE R i j . T  is the image of this action in Aut° (R).
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