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0. Introduction

Let W be a Riemann surface and let H*(W) be the Banach algebra of
bounded analytic functions on W endowed with the uniform norm. The maximal
ideal space and the Choquet boundary of H*(W) will be denoted by M(W) and
d0.W, respectively.

K will stand for a set of continuous linear forms on H*(W) with |L|=
L(1)=1. we will, of course, consider surfaces which admit nonconstant bounded
analytic functions. In this situation, we can identify M(¥) with a subset of K,
i.e. the set of all multiplicative linear forms in K. It is known that K is a
weak* compact convex set in the dual of H*(W). The purpose of this paper is
to investigate the order relation between the harmonic measures on relatively
compact subdomains of W and the representing measures supported on the
Shilov boundary S. For every point p of W, we can characterize a represent
ing measure dv on S having a positive kernel Q(z, ) with a parameter
zeW as follows. Q(z, )dv is a representing measure for z, and furthermore for

all geCy(S), SgQ(z, )dv is a bounded harmonic function on W which can be

continuously extended to W\Ud W and coincides with g on d,W. In other words,
the Dirichlet problem for geCg(S) is always solvable in this sense. we shall
call the measure dv “a singular harmonic measure for p”.

Gamelin [4] has shown that 0,/ is a closed and extremely disconnected
subset of M(W), whenever W is a plane domain. In the latter half of this paper,
we shall discuss the results in [4] from real analytic point of view, under the
following situation; namely we suppose that W is a Riemann surface whose
points can be separated by H®(W) and the inclusion W, IM(W) is an open
map. In this process, we find that the singular harmonic measure for every
point of W is not unique in general.

we follow the useful terminologies in Gamelin [4], Alfsen [1], and
Schaefer [8]. Further, comments on notations may be omitted if they seem
self-explanatory.
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1. The State space

we will denote by Cg(T) the linear space of real valued finite continuous
functions on a compact Hausdorff space T, and by M(T) the linear space of real
valued finite regular Borel measures supported on 7. In the sequel, we shall
often write a finite regular Borel measure on some compact space as a “measure”
simply. Let K be the set defined in the preceding section which is endowed
with the weak* topology. Throughout this paper K will be called “the state
space of H*(W)”, because K is identical with the state space of Re H*(W), the
linear space of real parts of functions in H*(W). K is a compact convex set,
and every element of Re H*(W) is viewed as a continuous affine function on K.
Further K contains the maximal ideal space of H*(W) as a compact subset of K.
The Shilov boundary of K coincides with that of M(W), the same is also valid
for the Choluet boundary.

Let f be an arbitrary real valued bounded function on a set containing S.
The lower envelope f of f is defined by fzsup{u :ueRe H*(W) and u |S<f|S}
where u|S denotes the restriction of u to S. Similarly, the upper envelope f
of f is defined as a function: f=inf{u : ueRe H*(W) u|S=f|S}.

Note that f=—(—\;‘), and f |W is a continuous subnarmonic function on W
under the analytic structure on W.

Let P be the set of all continuous convex functions on K. Each f€P can
be uniformly approximated from below on K by a function: sup{u.:u.e
Re H*(W)1<k=<n}. Hence f< f holds for all feP, and f|W is also a continuous
subharmonic function on W. Since P forms a convex cone in Cg(K), it defines
an order on M(K). This order relation (Choquet’s order relation) will be denoted

by <, namely du<dv<=gfdu§§fdv for all feP. (See Alfsen [1])
Theorem 1.1. Let U,(1=k=n) be sublinear functionals on Cg(S) such that

Uw(f) is negative for negative fCg(S). Assume that a positive measure dveM(S)
satisfies

gfdvé :a U.(f)  for any feCg(S).

Then for each k (1=k=n) there exists a positive measure dv, with dv= Eldvk

which satisfies Sfdv,,é Uy(f) for all fECKS).

Sketch of the proof. (For details, see Alfsen [1].) Let @ be the sublinear
functional on Cgr(S)*, the Cartesian product of n-copies of Cg(S), defined by

O(fy, -+, fo)= kzn_jl U.(fr). Let L be alinear form on the diagonal set {(f,---,f):f
€Cgr(S)} defined by L(f, -, f)=5fdv. Then, we have L<®. Hence by Hahn-

Banach’s extension theorem there exists the linear form L on Cr(S)" such that
[<®, and L=L on the diagonal set. Setting L.(f)=L(,.,0,10,.,0), we
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have a desired functional, 1<k =n).
For later applications, we need the following theorem.

Theorem 1.2. Let dv and du be positive measures of M(K). Suppose that
Sfduégfdv for all positive feP. Then, there exists a positive measure dw of
M(K) such that du<dw and dw=hdv for he L=(dv) with 0=h=1.

Proof. Let Q@ be a convex subset of Cg(K) such that Q:{qu: Sqdugl}.

Denote by C and U the positive cone and the open unit ball of Lk(dv) respectively.
Then the open convex set U—C is disjoint from the convex set ¢ in Lk(dv).
To see this, suppose QN\(U—C)=q. Then,

1§Sqdu§S(OVq)du §S(0Vq)dv

where 0V g denotes sup{0, ¢}. On the other hand, from ¢geU—C we obtain
S(OVq)dv<1. This is a contradiction. Hence we have QN\(U—C)=¢.

By the separation theorem, there exists a continuous linear form ¥ and a
constant ¢ such that ¥(Q)=c¢ and ¢>¥'(f) for all feU—C. Since —CSU—-C, ¥
is positive. We may assume ¥(r)=1, where z=1/||du|. Since Q— {r} forms a
convex cone, we obtain inf [¥(Q— {z})]=0. Therefore,

0=inf [¥(Q— {)]zc—¥()=c—1,

so that, T Q=¥ (t)=1=c= V(WU ~—C). In particular, FU)<1, i.e. |¥|=1. Let
heL=(dv) be the function which corresponds to ¥. Then, 0=h=1 and

ghdvzlldull. Finally for any feP the function (f—|—||f||+1)/S(f—|—||fll+1)du

belongs to Q. Hence we obtain S(f-l—llf”+l)hdv/g(f+||f|l+l)dugl, so that,
fr171+ DRav=(r+ 114+ D, e frhavzfsau. Tous dw=hdv is a desired

measure.

2. Singular harmonic measures

In this section, we will consider Riemann surfaces which admit nonconstant
bounded analytic functions, i.e. We O 5. (Note that the separation axiom is
not assumed for H=(W).) Let D be any relatively compact subdomain of W.
A3 will denote the harmonic measure supported on 0D with center p&D. Since
the canonical inclusion W<, M(W) is continuous, D is also relatively compact in
M(W), even when this inclusion is not injective. So 13 is well defined in MW),
and we use the same notation for this measure.

Definition 2.1. We call a positive measure dv on K “a singular harmonic
measure for peW* if supp(dv)ES and dv>d2A3 for every D which contains p.
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Note that every singular harmonic measure dv for p€W is a representing
measure for p, because Sihdvggihdlgzih(p) hold for all 4 of Re H*(W)C
{PN—P}.

Theorem 2.2. There exists a singular harmonic measure for every point
peWw.

Proof. For any feCg(S), U(f, z) denotes the least harmonic majorant of
fIW. The functional Cr(S)=f——U(—f, p) is the sublinear functional such that
—U(—/f, p) is negative for negative f€Cgr(S), and —U(—u|S, p)=u(p) for all
ueRe H*(W). By Hahn-Banach’s extension theorem, there exists a positive

measure dv supported on S such that Sfdvg—U(—f, p) for all feCr(S). We
verify that dv is a singular harmonic measure for p. From g=g for all geP,

U(g|S, z)=g(z) follows. This yields

S—gdlggS—U(gIS, )dAp=—U(glS, ﬁ)zg—gdv

i.e. Sgdnggdlg where D denotes any relatively compact subdomain of W. Thus

dv is a singular harmonic measure for .

Corollary 2.3. A positive measure dv supported on S is a singular harmonic

measure for pEW if and only if ggdng(g, p) holds for every geCg(S).

Proof. 1t is sufficient to prove the necessity. Let dv be any singular har-
monic measure for p. By the definition, we have Sfdvggfdlg for all feP,
where D denotes any relatively compact subdomain of W. This yields Sfdvg
supD{S fd]’,?}. By an argument of the lattice theoretic supremum, for an arbitrary
A5 and any geCg(S) there exists an increasing sequence {f,} of P such that
f2=g and andlg—»Sngig as n—oo. This yields Sgdvgggdlg. Consequently,
we obtain

Sgdvgsup {Sgdl‘,?: pW}=U(g, p).

Corollary 2.4. A singular harmonic measular for p is unique if and only if

U(f, pp=—U(—f, p) hold for all feCr(S).

Proof. The necessity is the direct consequence of the method employed in
Theorem 2.2. For the sufficiency, let f be any element of Cg(S). Then for an
arbitrary singular harmonic measure dv for p, —U(—f, p)ggfdng(f, ») holds,

i.e. U(f, p)=\-fdv. Consequently we obtain the uniqueness.

v
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Theorem 2.5. There exists a singular harmonic measure for every point
pEW which enjoys the Jensen's inequality :

Jlogfidv=loglf(p)1,  feH=GH).

Proof. Let J and j be families of functions on MIV) defined by J=
{ﬁlailoglfil 1 a:20, fiEH”(W)(lgién)}, and J={uYuY - Vun: uscJA<i<n)},

respectively. Every element of J attains its maximum on S, the same is also
valid for j. For any geCg(S), § is the function defined by §=sup{hej: h<g
on S}. g|W is the lower envelope of the subharmonic functions on W. Hence
it has the least harmonic majorant V(g, z). Clearly Cr(S)2g——V(—g, p) is
a sublinear functional on Cg(S) such that —V(—g, p) is negative for negative
g€Cx(S) and —V(—u, p)=u(p) for all u=Re H*(W). By Hahn-Banach’s ex-
tension theorem, there exists a positive measure du supported on S such that

—V(—g, p)gggdu holds for every g of Cg(S). Since f contains Re H*(W), we
have §=3=g for all geP. This yields Sgdugggdlg, i.e. du>-dag, where D is

any relatively compact subdomain of W. Thus du is a singular harmonic measure
for p. Next, we verify the Jensen’s inequality for du. By the fact that
(—n)Vlog|f| belongs to J/ and is continuous on S (neN) for every feH>W),

it follows S(—n)vlogIf[dugV[:(—n)vlog[fI, p]. Combining this with V[(—n)
Viog|f|, pI=log|f(p)|, we see S(—n)vlogIflduzloglﬂp)l- Letting n—oo, we
obtain the Jensen’s inequality : Sloglflduglog[f(p)l, where f is any element of
H>(W).

Remark. By the same method, we can construct directly a measure which
enjoys Arens-Singer’s equality.

From now on, we will set about the construction of the positive kernel for
Dirichlet integral. For this aim, we need several Immas.

Lemma 2.6. Let T be any extremely disconnected compact Hausdorff space
and let dv be the positive normal measure on T with the closed support : Supp {dv}
=T. Then, for any feL=(dv), there exists a continuous fuunction g=Cr(T)
such that g coincides with f a.e. with vespect to dv. In particular, we can
identify the maximal ideal space of L=(dv) with T, including the topology.

Definition 2.7. Let T be any extremely disconnected compact Hausdorff space

and let dv be the positive measure on T such that Shdvzsup {Sfdv:feF}» where

F denotes any upper bound directed family of Cr(T) with the supremum heCg(T).
Then, dv is a normal measure on T.



180 C. Matsuoka

By an elementary argument, we can see the above lemma. Hence, we omit
the proof.

Let HB(W) be the Banach space of all bounded harmonic functions on W
endowed with the sup-norm topology. It is known that HB(W) is an order
complete Banach lattice under the canonical order, i.e. fSgef(2)<g(z) for all
zeW. The state space of HB(W) contains the points of W as the point evalua-
tions valuations on HB(W). The Choquet boundary 0,HB of the state space is
a closed and extremely disconnected subset of the state space under the weak*
topology. By the fact HB(W)|0.HB=Cgr(0.HB), we see that a representing
measure dr, for any zeW supported on 0,HB is unique, where the term “a
representing measure for z” signify a positive measure which represents the
point evaluation at z. For {dr,}(zeW), we need some informations.

Lemma 2.8. {dc,}(z€W) are normal measures on 0.HB and are mutually
absolutely bounded continuous.

Proof. For the normality of any dr,, let FCHB(W) be any upper bounded
directed family with the supremum h. Then, we have h(z)=sup{f(z): feF}.

Therefore, ghdrzzsup{gfdrz: fEF} holds. By Def. 2.7, we conclude dr, is

normal.
From the Harnack’s inequality for positive harmonic functions, we see that
for any z and x of W, there exists a positive constant ¢=c(z, x) such that cf(z)

> f(x)Z ¢-1f(2) for every positive fe HBOV). This yields cggdrzgggdz'xz c“lggdrz

for every nonnegative geCr(0.HB). Consequently, we have ¢ *<dr,/dr,=Zc.

Corollary 2.9. The closed support of any dr, coincides with d.HB.

Proof. For any feHB(W) and x€W, we hove | f(x)|=}gf{df,/dr,} dz'z|§
sup{|f(p)| : peSupp(dz,)}. Hence, supp(dc.) (£0.HB) is the minimal boundary,
i.e. supp(dr,)=0d.HB.

Combining Lemma 2.6 with Lemma. 2.8, we have the following.

Corollary 2.10. For any zeW, the maximal ideal space of L=(dr,) can be
identified with 0.HB, including the topology.

Lemma 2.11. Choose any peW and fix it in the sequel. Set dz,/dz,=P(z, )
(zeW) and dr=<,. Then we can regard P(z, q) as a continuous function on
W x0,HB. Furthermore, for every q=0.HB, P(z, q) is a positive harmonic func-
tions on W.

Proof. By Corollary 2.10, we can regard P(z, ¢) as a continuous function
on 0.HB for every zeW. Let p(z, x) be the Harnack’s function, i.e.

o(z, x)=inf{c:c=h(2)/h(x), h(x)/h(z) for Yhe HP(W)}
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where HP(W) denotes the family of all positive harmonic functions on W.
Then, we see that for every nonnegative geCgr(0.HB), p(z, x)’lggP(z, dr=
SgP(x, )dtép(z,x)XgP(z, )dz. This yvields p(z, x)"*P(z, )<P(x, )<p(z, x)P(z, )

on . HB. In particular, p(p, x)"'<P(x, )=p(p, x) for every x€W. Since p(z, x)
tends to 1 as x—zeW, we have ||P(z, )—P(x, )|—0, as x—z. Thus we
obtain that P(z, ¢) is continuous on WXxo.HB. Further, by the o-compactness
of W, P(z, g) is a measurable function on the og-algebra generated by F(W)X
F(0.HB) where (W) and F0.HB) denote the o-algebra of Borel sets of W and
0.HB, respectively. Let D be any relatively compact subdomain of W, and let

g be any element of Cr(0.HB). Then we see that S{SgP(x, )df}dlf(x)z
gg{SP(x, )dZ?(x)}drzggP(z, )z, so that, SP(;:, )dAP=P(z, ) a.e. with respect
to dz, because a representing measure for zeW supported on d.HB is unique.
By the elementary argument, we can see that XP(x, ¢)dA2(x) is continuous on
d0.HB. Therefore we conclude SP(x, ¢)dA?=P(z, gq) on 0.HB, i.e. P(z,q) is a

harmonic function on W for every ¢=d.HB.

Theorem. 2.12. For any peW and any singular harmonic measure dv for
D, there exists a positive kernel Q(z, ) of L=(dv) with a parameter z€W satisfy-
ing the following conditions.

1) Foo every zeW, Q(z, )dv is a singular harmonic measure for z.

2) For every he L>(dv), ShQ(z, Ydv is a bounded harmonic function on W
with |[hQ, Hdv| <]Al.

3) For every geCg(S), SgQ(z, Ydv can be continuously extended to 0,W and
coincides with g on 0, W. In particular ”SgQ(z, )dv“zllgl] holds.

Proof. Let ¢ be a map defined on the power set P(9.HB) of 0.HB into
0.HB such that ¢(E)eE for every nonempty E of P(d.HB). Let [{éoO k}] be
the family of all decompositions of 0.HB into finite disjoint closed-open sets with
k\le »=0.HB, (i.e. {O,;} (1=<k=<n) are disjoint closed-open sets.) We define an
order on [{O Ok}] such that {O ok}g{(ﬁ O}}@every O, is contained in some

k=1 k=1 i=1 n
Oj. Under this order, the above family is directed upward. For any {kk=)10 k}
set dr,=dz|0, (1=k=n). Then the functionals C,&S)Bg—»S—U(—g, Mz, (1=

k=n) are sublinear functionals on Cg(S) which are negative for negotive ge
Cr(S). By Corollary 2.3, for any singular harmonic measure dv for p, we have

n

ZS—U(—g, )d‘c;zzg—U(—g, Yde=—U(—g, p)gggdv. By Theorem 1.1, there

k=1
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is a positive decomposition kZZ}lh,,dv=dv of dv such that every h,dv{h,s L=(dv)}
is positive, and for every geCk(S), [~U—g, Mraz[ghidv (1=k=n). set
Py(2)=P(z, (0,)) (1=k=n). From the Harnack’s inequality for P(z, q) it follows
o(p, 2)'< élPk(z)hkép(p, 2). Thus we have the family { élp,,(zmk} which is
uniformly bounded for every zeW, and is directed upward under the order
induced from [{’gj‘ok}]. We denote by E, (zeW) the weak* compact subset :

{fel=dv): |fll=p(p, 2)} of L=(dv). By Tihonov’s theorem, the direct product
space WISI E, is compact under the direct product topology. We can regard every

élPk(z)h » as an element of ung" Since {kZ:)lPk(z)h k} is directed upward, it
forms a filter base. Hence in WI;[ E, it has a cluster point {g.,}(zeW). Set

Q(z, )=q, (zeW). Then for every zeW p(p, 2)'=Q(z, )=p(p, z) a.e. with
respect to dv. From ||P(z, )—P(x, J={p(z, x)—1}p(p, 2), it follows

” é‘rlpk(z)hk— kE:)lPk(x)hk

={po(z, x)—1} p(p, 2) @

so that [|Q(z, )—Q(x, = {o(z, x)—1} p(p, 2). In particular we see that Q(x, )
is norm convergent to Q(z, ) if x tends to z. Let M(dv) be the maximal ideal
space of L=(dv). By £ we will denote the Gelfand transform of g L>(dv) into
C(M(dv)). Since the Gelfand transform of L~(dv) is an isometric algebra iso-
morphism, we have:

10z, )—Qx, = A{plz, x)—1} p(p, 2) @)

This yields that Q(z, g) is a continuous function on W XM(dv). Further it is a
measurable function on a c-algebra generated by F(W)XLZEM(dv)), where FW)
and F(M(dv)) denoted the s-algebras of Borel sets of W and M(dv), respectively.
We claim that O(z, g) is a positive harmonic function for every ¢=M(dv).
Let D be a relatively compact subdomain of W, and let {E;} 7, be any decom-
position of 0D into finite disjoint Bair sets, whose diameters are less than a
given positive number ¢ with some metric on W. By inequalities (1) and (2),
for any positive number ¢, if we take ¢ sufficiently small, we have the follow-

ing inequalities for all members of H:éP,,(z)hk}] and 6(2, ) (zeD):

|E{2 PeeomafazEy— £ Pacona| e
and

=e¢, 3)

I\Sé(x, )dl?(x)—jgl G(Zj, )Zf(Ej)

where z;(1=<j=<m) denote any, but fixed, point of E; From this we have

“é@(z,, Y2(E)— Q(z, )Hg, so that, Ngé(z,-, YP(E)— Oz, )ng. With the
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inequality (3), this yields Hgé(x, )dA2(x)— 0z, )ngs. Letting ¢ —0, we have
S@(x, )de’(x):Q~(z, ). Thus (5(2, g) is actually a positive harmonic function
on W for every geM(dv). Let d¥ be the positive measure on M(dv) which cor-
responds to dv, i.e. d¥ satisfies ggdﬁzggdv for every ge L=(dv). For any ge
Le(dv) we have {{[2G0x, Haobae e =(a{[ @, yareen)do={gdcx, av. Thus
Sé@(z, )dﬁzSgQ(z, )dv is a harmonic function on W for every ge L*(dv).

Next, we verify that Q(z, )dv is a singular harmonic measure for zeW.
Clearly Q(z, )dv is a positive measure supported on S. For any g=Cx(S), we

have [Utg, Jari={ghidv. This vields 3 {Ute, Paazs=[g{ 5 Paainaav.
Now, 3 SU(g, IAOLIEDS) SOkU(g, )P(z, $(0))dr holds for every geCa(S),
and the family [{}ZO k}] are directed upward under the order (=). Hence we
see lim élgU(g, YPi(z)dz,=U(g, z). This implies U(g, z)éSgQ(z, )dv. By Co-
rollary 2.3, we conclude Q(z, )dv is a singular harmonic measure for z€W. In
particular, Q(z, )dv is a probability measure on S, so that, HSgQ(z, )dv”éll gll
holds for every ge L*(dv).

Finally we investigate the boundary value of the Dirichlet integral : S gQ(z, )dv
for any geCr(S). Since Q(z, )dv is a singular harmonic measure for z, we
have inequalities: g(z)=—U(—g, z)gSgQ(z, Ydv=U(g, 2)=g(z). Furthermore, g
and g are upper and lower semicontinuous function on K, respectively, and
coincide with g on d/W. Consequently, we conclude that SgQ(z, )dv can be
extended continuously to W\Uad,W and coincides with g on 9.,W. In particular

we have “SgQ(z, )de=|| gl for all geCx(S). Finally, note that Q(p, )=1.

Using the cone f, function g and V(g, z) we obtain similar results for
Jensen’s measure.

Theorem 2.13. Let du be any singular harmonic measure for an arbitrary
point of W, constructed in Theorem 2.5. Then there is a positive kernel R(z, )
of L=(du) satisfying the following conditions.

1) For every zeW, R(z, ) du is a singular harmonic measure for z which
satisfies the Jensen’s inequality.

2) For every geCg(S), SgR(z, )Ydu is a bounded harmonic function on W
which can be extended continuously to W\JO W and furthermore || g|= “ SgR(z, Ydull.

Theorem 2.14. Let dw be any positive measure compactly supprted on W
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and let dv be any singular harmonic measure for a point of W. Suppose dw
satisjies Sgdw_s_ggdv for all positive geP. Then, there exists a positive measure

du such that 0=du/dv=1 and dw<du. In case that ds is a measure which is
absolutely continuous with respect to dw. Then there exists a measure dt which

is absolutely continuous with respect to dv such that ||dt|=|ds| and Sgdtzggds
for all ge H=(W).

Proof. The first assertion is a special case of Theorem 1.2. For the latter
half of assertion, take he L¥(dw) such that ds=hdw. We define functions A%
and h, (neN) by

—h if n—1=Z—h<n

h if n—1=h<n (neN)
and hr=

0 otherwise. 0 otherwise.

Then we have Sg[l/n]h:dwéggdwéggdv for all positive g&P. By Theorem

1.2, there existive measures fidv (neN) such that hidw<fidv. From ||hidwl||
=|fzdvl, it follows | X fidv—3 frdv| =X (| hdw |+l hzdw )= | hdw|=|ds|. Thus
dt=2(f+—fn)dv is a desired measure.

Corollary 2.15. Let D be any relatively compact subdomain of W and let d2
be the harmonic measure supported on dD. Suppose dw is absolutely continuous
with respect to dA. Then, there exists a measure du which is absolutely continuous

with respect to dv, and satisfies ||dul = |dwll, further, Sgdwzggdu hold for all
geH>(W). (See [9].)

Characterizing the unit disk 4 by means of the order relation of measures,
we will finish this section.

Theorem 2.16. Let W be any open Riemann surface which admits nonconstant
bounded analytic functions. Then the following assertions are equivalent.

1) For every g=Cg(S), § is harmonic on W.

2) Every representing measure for a point of W supported on S is a singular
harmonic measure.

3) There exists a point p of W such that for any representing measure dv
for p supported on S, and for arbitrary point z€W, there is a representing
measure du, with ||du,/dv|<oo.

4) There exists a function f€H*(W) such that ||fI=<1 and 4—f(W) is an
AB-negligible set, moreover, every element of H=(W) can be represented by a
power series of f.

5) H*(W)|S is a logmodular algebra.

Proof. (1)=>(2)=(3) is obvious. For (3)=(5), choose any geCxr(S). By
Hahn-Banach’s extension theorem, there is a representing measure dv for peW
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supported on S such that Sgdvzé(p). Let {u,} be the sequence of Re H*(W)

such that u,(p)—g(p) and u,<g on S. Then u,—g in L'(dv), so that, u,—g
in L(du,), where du, denotes the representing measure for zeW with |du,/dv|

<o, From a chain of inequalities Sgdu,gg(z)gun(z)zgundu,, it follows

lim u,(2)=g(2) for any zeW. Thus we see that {u,} converges to g uniformly
on any compact set of W. Set u,=Re fo(fneH*(W)) and F,=exp{f.}. Here,
we may assume lim F,=F( H*(W)). Note that F is an invertible element of
H>(W). Since log|F,|=u, on W, we have log|F|=g on W. Since g and g are
upper and lower semicontinuous, respectively and coincide with g on d9.W, we
have log|F|=g on d,W. Consequently, we conclude log|F|=g on S. Because
W =S.

5)=(4): We denote by *H*(W) the *weak closure of H*(W) in L>(dv),
where dv is the unique representing measure for an arbitrary point of W. Note
that every point of W is canonically contained in the maximal ideal space of

*H>(W). For any ge*H=(W), SgQ(z, )dv is a bounded analytic function on W
with ”SgQ(z, )dv”éll gll where Q(z, )dv denotes the singular harmonic measure

for z. This implies that all points of W belong to the same Gleason part *W
for *H=(W). By Hoffman’s theorem on logmodular algebras, there is an he
*H*(W) with h(p)=0 such that h:*W—4 is a bijection and geh~* is analytic
on 4 for every ge*H=(W). In particular, g can be represented by a power
series of h on *W. Set h|W=f. Then feH*(W) and the analytic function
feh~Y(Z) on 4 coincides with Z on the open set h(W). Hence we have h=f on
*W, so that f represents every geH*(W) by its power series on W. Since
gof{geH>(f(W))} belongs to H*(W), gefef'=g must be extended analytically
to 4, i.e. 4—f(W) is an AB-negligible set. (4)=(1) is almost obvious, because
H*(W)>g—ge-f*eH*(4) is an isometric algebra isomorphism.

Corollary 2.17. Let W be any open Riemann surface for which H>(W)
separates the points on W. Then W is essentially a unit disk, if and only if W
satisfies one of the conditions in Theorem 2.16.

Remark. Using the same method, we can construct a singular harmonic
measure with respect to every closed subalgebra of H*(W) with a unit. In
particular, for any bounded plane domain there exists a singular harmonic
measure supported on the topological boundary of the domain. In general it
does not coincide with the harmonic measure. We will discuss the details in
Section 4.

3. Supports of measures

Here we are mainly interested in the pland domains. Our methods of the
proofs, however, are also valid for a little more general surface W such that
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H~>(W) separates points of W and the inclusion: W<, M(W) is an open map. We
will call these surfaces of “class G”, for short.

Theorem 3.1. Let W be any Riemann surface of class G, and let E be the
closed subset of (W) such that W—E is connected. Suppose that there is a point
2o such that zo€W—FE and fll(z)II=\flle for all fe H*(W). Then, we have SSE.

Remark. Fisher [3] first established the above theorem. After this,
Gamelin [5] gave a new proof as a corollary of his abstract Runge’s theorem.
We will localize all the difficulties into a local disk to prove the theorem.

Proof. We will define a subset £ of M(W) by
E={gemW): If@I=Iflz  for all feH=(W)}.

Then, by assumption, we have ze k.

Suppose that ERS. Then we see WaZ and WNE+#¢. Let p be any
boundary point of W—E such that peW and peE—E. Since z,€£ and z,&
W —E, these points exist. Let U(>p) be any local disk with UNE=¢. By the
condition on W, UCIM(W) is open. Denote by A the uniform closure of H*(W)|E.
A is a function algebra on E and the maximal ideal space of A coincides with
E together with the topology. Note that £20U and UNE is open in E. If
dUNE=¢, then by Shilov’s theorem on idempotents, ENU is a peak set for A.
Hence ENU contains an extreme point for A. But every extreme point for A
belongs to E. This is a contradiction, because UNE=¢. Thus we see dUNE # 4.
Further we may assume, without loss of generality, that there is a function
feH>(W) whose first derivative does not vanish at p, and that *f=f |U gives
a conformal map from U onto the unit disk.

Next, we clain | g()| =l gllavnz for all teENU and g€ A. 1If |glovne<llglluns
holds for some g of A, by Rossi’s theorem on local peak sets, we have a peak

set in ENU. By the same argument as above, this implies that ENU contains

an extreme point for A, a contradiction. Hence we have |g(®)|=|glsvnz for all
te ENU and g€ A, in particular, for all ge H*(W). From this it follows |ge°
2@ [ =l ge*f ey ovniy for all ze*f(UNE). Since the algebra H*(W)-(*f~(2))
(zed) on the unit disk 4 contains all polynomials on the complex plane, there
is a representing measure for every ze*f(Ef\U) supported on *f(Ef‘\aU) with
respect to polynomials. This is absurd, for a representing measure on the unit
circle is unique, i.e. only a Poisson’s kernel.

Corollary 3.2. Under the same mnotations as above, if W—E is not con-
nected, then the component of W—E to which the point z, belongs is contained in E.

Corollary 3.3. Let dv be any complex representing measure for peW sup-
ported on M(W) such that W—supp(dv) is connected with pesupp(dv). Then
S Ssupp (dv).



Dirichlet problem on the Shilov boundary 187

Proof. Set E=8upp(dv). Then for all fe H(W), |f(p)|z,gfdvlélldvll-llfllgg,

so that, [f*(p)|Z||dv|-|f*|e. Taking the n-th roots and letting n—oo, we
obtain |[f(p)|=|fle. This yields peE—E. By Theorem 3.1, we conclude
supp(dv)=2S.

Corollary 3.4. Let du be any measure supported on S. We denote by M(du)
the maximal ideal space of L=(du). Let p be the canonical map from M(du)
into S such that g(g)=5(p(q)) for all g€ Cr(S). Suppose that there exists a com-
plex representing measure dv for peW supported on M(du). Then we have
o {supp (du)} =S.

Proof. Set E=p{supp(dw)}. Then we have [f(p)|=|flg for all feH(W).
Thus we see peE—E, hence SSE, i.e. S=E.

Corollary 3.5. The Ahlfors function of a Riemann surface of class G is
unique and has a unit modulus on the Shilov boundary.

4. The subspace D(*)

We will consider the subspace D(*) of HB(W). Namely the linear subspace
of bounded harmonic functions whose harmonic conjugates are single-valued on
W. (Gamelin and Lumer [7])

Theorem 4.1. Every usD(*) can be viewed as a continuous function on
MW) with u=a=u on M(W).

Proof. (We have some hints in [7]) For any ueD(*), set f,=exp {#(u-+i*u)}
(teR) and f=f, where *u denotes the harmonic conjugates of u=D(*). Note
that f, is an invertible element of H*(W) with [f.|=|f|° on W. Since |f.| is
a continuous and positive function on WSM(W), we can identify u with log]|f]|
on W, i.e. |f,|=exp(tu) on W. Using the Arens-Singer's measure for any point
in M(W) whose support is contained in SCW, we have ¢-log|f|=Ilog|f.| on
M(W). Namely, u=log|f| is well defined on M(W). For any h+i*heH(W)
with A=<u on S, the inequality : |exp{(h—u)+i(*h—*u)} | =1 holds. This implies
h=u on M(W), so that, u=u on M(W). We verify u(g)=u(q) for any g=M(W).
We may assume, without loss of generality, that u(¢)=0 and f.,(g)=1. Set
Q.=(f.—1)/t for every positive . Then Re Q,=(exp [tu]—1)/t and (exp [tu]—1)/t
tends to u uniformly as t—0. Therefore, we can take positive numbers p(z)
such that p(t)—0 as t—0 and Re Q;=u-+p(t). From Re Q.=Re H*(W), it follows
—p()=Re Qug)—p()=u(g) and u(g)=u(g). Letting t—0, we have i(g)=u(g)=0.

Thus t=u on M(W). In particular (—\;):—u, i.e. u=u=a on M(W).

Theorem 4.2. Let W be any Riemann surface of class G. Then for every
g€Cx(S), there exist u and v in (D*) such that g=sup(u, v) on S.
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Remark. The idea of considering an extremal problem to prove the theorem,
is indebted to Gamelin [4].

Proof. Set G=g+|gll+1. Choose an arbitrary p= W and fix it throughout.
We will consider the following extremal problem: Maximize w(p) in F=
{weD®): —G=w=G on S}. Since F is a normal family in HB(W), there is a
function h in D(*) which is the bounded limit of the sequence in F and satisfies

w(p)<h(p) for all weF. From (—G)Sw=GC on W for all wek, it follows

(—~G)<h=G on W. This implpies =G on 3, W, so that, on S. Thus we have
the extremal function heF. Consider the linear functional: wG*—w(p) on
the subspace {wG=':weD(*)} of Cp(S). Clearly, it is continuous, therefore we
have the measure du which is the normpreserving extension of the functional
onto Cg(S). G™'du is a complex representing measure for p with respect to
H>(W). Hence, by Corollary 3.3, we obtain supp(du)=S. From the identities:

h(p)zShG“duzlldull, and by |hG <1, it follows |AG~!|=1 a.e. with respect

to du, so that, |hG'|=1, i.e. |h|=G on S, because of h|S, G&Cr(S). Thus
we concluce G=sup{h, —h} on S. If we set u=h—|gl|l—1 and v=—h—|gl—1,
then g=sup{u, v} on S.

Corollary 4.3. The Choquet boundary 0.W of a Riemann surface W of class
G is closed.

Theorem 4.4. (Gamelin [4]) The Choquet boundary of a Riemann surface
of class G is extremely disconnected.

Proof. (cf.[4]) Let U and V be any nonempty open subset of d,W=S with
V=S—U. We will prove U is an open set. Let f be a function on S defined by
f|Z7=2 and f|V=1. Then, we have fIS:f, for f is upper semicontinuous. We
consider the extremal problem: Maximize w(p) in F={weD*): —f=Sw|S=<f}.
The samd argument as in Theorem 4.2. is valid, and hence we have an extremal
function heF such that A(p)=w(p) for all weF. Let du be any measure whose
closed support coincides with S, and let M(du) be the maximal ideal space of
L>=(du). Further, by p we will denote the canonical map from M(du) onto S.
Since the Gelfand transform is a lattice isomorphism, we see f=2 on e ')
and f=1 on p~(V). From —f=<w|S<f (weF), it follows —f<w=f. Observe
that for any weD(*) 2|%-7-!|=|w|. Hence the linear functional on {@-f-':
we D(*)} defined by w-f-'—w(p) is continuous. Note that the unit ball of this
subspace is just {#-f':weF}. Let dv be the norm preserving extension of
the functional onto Cr(M(du)). Then, F-dv is a complex representing measure
for p. Together with Corollary. 3.3, this implies p{supp(dv)} =S. From the

identities: h(p)={i-F-1dv={(h+p)F-*dv=1dv], it follows |%|=7 on STD(dv), i.e.

hopv—hopzf on supp(dv). This yields hV—h=2 on U and h\v—h=1 on V.
Consequently, we conclude that S{|h|>1} coincides with U.
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Finally, we will see that the bounded plane domain which is constructed
by Gamelin [4] carries many singular harmonic measures for any point of the
domain.

Proposition 4.5. Let W be any bounded plane domain satisfying the follow-
ing conditions.

1) A(W) is pointwise boundedly dense in H*(W), where A(W) is the algebra
of continuous functions on W, each of which is analytic on W.

2) Harmonic measure dA¥(zeW) has a positive mass on a F,-set 0A° of
nonpeak points on oW relative to A(W).

3) oW consists of essential boundary points for H>(W).
Then a singular harmonic measure for any point of W is not unique.

Proof. Let E, and E, be disjoint closed subsets of 0A° with AY(E,;)>0
(=0, 1), and let ~» be the continuous function on dW such that 0=h =<1 and
h|E;=7 (j=0, 1). We will denote by Z the coordinate function of the complex
plane, and by Z the Gelfand transform of Z into COR(W)).

We will see U(h+Z|S, z)<ghdll"(zeW) and U({1—h}-Z1S, z)<S{1—h}d2?’
(zeW), ie. —U(—h»ZIS, z)>Shd22". Then by Corollary 2.4, we have that a

singular harmonic measure for any point of W is not unique.

By assumption (1), there exists an isometric algebra homomorphism 7 : H*(W)
— L=(dA¥). (See Davie [2]). From assumption (3), it follows that there is a dis-
tinguished homomorphism ¢; on a fiber VA ~1(g) for every nonpeak point g=oW. ([6])
Then for each fe H*(W) the functions E;= p— f(p;) on E; (=0, 1) coincide with
#(f) on E; (=0, 1) a. e. with respect to dA¥. Set F={u=Re H*(W): u<h-Z|S}.
Since hoZzh(q) on Z"(q) for all gedW, we have lim u(z)<h(q) for every

21

weF. This implies v}ﬁq{ﬁhdﬂ?—ﬂ@}: lim {Shdxy—gn(u)dzy}go for all

WSzeq
gE0W, except for the subset of logarithmic capacity 0 of 0W. Hence, we have
h=r(u) a.e. with respect to dA¥. Let & be the lattice theoretic supremum of
the diredted family: {z(u.)V - Va(u,):u;€F(1<j<n)} with respect to da¥.
Then, there is a sequence {z(u7)V---Vz(u™)} (meN) such that z(uT)V - Va(ul)

converges increasingly to £ in L'(dA¥) as m tends to co. This yields gkdl?’=

U(h-Z|S, z). Obviously, h=Fk a.e. with respect to di¥. Furthermore, we claim
h>Fk on E, a.e. with respect to dA¥. Suppose E,{k=1} has a positive mass.
Then, #(u?)--Va(u™) 1 on E,{k=1}. Combining this with u?=uT(p, on E;,
we conclude that there exist a point pE, and a sequence {u,} CF such that
u.(ps)/1 as n—oo. Set fp,=exp{u,—1+i*u,}. Then, fo(neN) satisfy ||zl =1
and |fa.(ps)]|—1 as n—co. This implies that |f.(¢g)|—1 for all points of the
part which contains p;. In particular, |fz(gs)|—1 for any g E,, so that, u,(gs)—1
for any ¢g=E, This is a contradiction, since sup{un.(x): xEZ"(q)}éO for
YgeE, Thus we have h>Fk on E, a.e. with respect to diY¥. Consegently, we
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obtain ghd2?>gkd2§"=U(hoZ S, z). Replacing h with 1—h, we have —U(—h
A z)>ghd,2§".

We can contruct a singular harmonic measure Q(z, )dv with respect to
A(W), and further we can assume that dv is the maximal element under the
order <. Then, dv has a full measure on a Gssubset of peak points of oW,
namely the Choquet boundary for A(W). The example constructed by Gamelin
[4] is the bounded plane domain which satisfies (1), (3) and the stronger version
(2) of (2) in Proposition 4.5, i.e. (2’): The harmonic measure has no mass on
the Choquet boundary for A(W). In this situation, the harmonic measure and
the maximal singular harmonic measure are mutdally singular. The general
treatment of those measures can be found in [9].
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