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O . Introduction

L et W  be a  R ie m a n n  su r fa c e  a n d  le t  11- (W ) b e th e  B a n a c h  algebra of
bounded analytic functions on W  endowed with the uniform norm. The maximal
ideal space and the Choquet boundary o f 11"(W) will be denoted by all(W ) and
aew, respectively.

K  will s ta n d  fo r  a  se t o f  continuous linear forms on H°°(W ) w it h  L II =
L (1 )= 1 . we will, of course, consider surfaces which admit nonconstant bounded
analytic functions. In  this situation, we can identify 9)1(W ) with a  subset o f K,
i .  e .  th e  s e t  o f  a l l  multiplicative linear forms in  K .  It is known that K  is a
weak* compact convex se t  in  th e  dual o f H "(W ). T h e  purpose o f this paper is
to investigate th e  order re la tion  between th e  harmonic measures o n  relatively
com pac t subdom ains o f W  and  the  representing measures supported o n  th e
Shilov boundary S .  F o r every point p  of W , we can characterize a  represent
in g  measure d v  o n  S  having a  p o s i t iv e  kernel Q (z , ) w ith  a  parameter
z E W as follows. Q(z, )dv is a  representing measure fo r z , an d  furthermore for

all gEC R (S), ) d v  is a  bounded harmonic function on W  which can be

continuously extended to wuaew and coincides with g on aew. In other words,
the Dirichlet problem fo r gE C R (S ) is always solvable in th is  sense , w e  s h a l l
call th e  measure dv "a  singular harmonic measure fo r  p".

G am elin [4] has shown that aew i s  a  closed a n d  extremely disconnected
subset of 9N(W), whenever W  is a plane dom ain. In the latter half of this paper,
we shall discuss th e  results in  [4 ]  from real analytic point of view, under the
following situation ;  namely we suppose that W  is a  R iem ann  surface  whose
p o in ts  can be separated by  H 0 0 ( W )  and  the  inc lusion  W c_,U (W ) is  an open
m a p .  I n  th is  process, we find that th e  singular harmonic measure fo r every
point of W  is not unique in general.

w e fo llow  t h e  useful te rm in o lo g ie s  in  G a m e lin  [4 ] , A lfse n  [1 ] , a n d
Schaefer [8]. Further, comments o n  n o ta tio n s  may be omitted if  they seem
self-explanatory.
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1. The State space

we will denote by CR (T ) the  linear space o f  real valued finite continuous
functions on a compact Hausdorff space T , and by M(T) the linear space of real
valued finite regular Borel measures supported on T .  In  th e  sequel, we shall
often write a  finite regular Borel measure on some compact space as a "measure"
sim ply. Let K  be the  set defined in  the preceding section which is endowed
w ith  th e  weak* topology. Throughout this paper K  will be called "the state
space of H"(W )", because K  is identical with the  state space of Re 11- (W ), the
linear space o f  real parts of functions in  II - (W ) . K  is  a compact convex set,
and every element of Re 11- (W ) is viewed a s  a  continuous affine function on K.
Further K  contains the maximal ideal space of H°°(W ) as a compact subset of K.
The Shilov boundary of K  coincides with that of 9)1(W), the  same is also valid
for the Choluet boundary.

Let f  be an  arbitrary real valued bounded function o n  a  se t  containing S.
The lower envelope f  of f  is defined by 1=sup{u : u E Re II - (W ) and u I f  IS}
where u  S  denotes the restriction of u  to S .  Similarly, th e  upper envelope f
of f  is defined a s  a  function : i n f  :  u  E  Re 1-/"(W ) u I S_ - f j  .

Note that f=--(— ) , and 111v is a  continuous subnarmonic function o n  W
under the analytic structure on W.

Let P  be the set of all continuous convex functions on K .  Each f E P  can
be uniformly approximated from below o n  K  b y  a  function :  sup tu k : u k
Re1 -1- (W ) l k  n }  .  Hence f _ . f  holds for all f E P ,  and f I W  is also a continuous
subharmonic function o n  W . Since P  forms a  convex cone in  CR(K), it defines
an  order on M (K ). This order relation (Choquet's order relation) will be denoted

by namely d w < dv < = >  fdu  fdv  for all f e P .  (See Alfsen [11)

Theorem 1 .1 .  L e t Wk (1:<_k __-<n) be sublinear functionals on CR (S )  such that
grk(f) is negative for negative f E C R (S ) . Assume that a positive measure dvEM (S)
satisfies

f d v Wk(f fo r  any fECR(S) •

Then fo r each k there exists a positive measure dv k w ith  dv= dv k
k = 1

which satisfies fclvk_5..T. k (f ) fo r  all f E C R (S).

Sketch of the proof. (For details, see A lfse n  [1 1 )  L et 0  be th e  sublinear
functional on C R (S )", th e  Cartesian product o f  n-copies of CR (S ), defined by

0'(f 1, • ,  fn)=-- T k ( f k ) .  Let L  be a linear form on the diagonal set {(f, , f ): f

ECR(S)}  defined by L (f , • • • , f ) = .ç f dv . Then, we have Hence by Hahn-

Banach's extension theorem there exists the  linear form Î on CR (S)" such that
and I ,  on the diagonal set. Setting' k ( f ) = ( O ,  . , 0, f ,  0, . , 0), we
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have  a  desired functional, (1 k. n).

F o r later applications, we need th e  following theorem.

Theorem 1 .2 .  L et dv and d u  be positive measures o f  M (K ) . Suppose that

fdu_fcly , f o r  a ll positive f E P .  Then, there exists a positive measure dw of

M (K) such that du-<dw and dw=hdv f o r hEL - (dv) with

P ro o f. L e t Q be a  convex subset o f CR(K) such that Q = -1 ,qE P :qd u ll.

Denote by C and U the positive cone and the open unit ball of Lh(dv) respectively.
Then the open convex se t  U —C is  disjoint from th e  convex s e t  Q  i n  L 1

R (dv).
To see this, suppose Q n(u-C)D q. Then,

1- qdu...5(0Vq)du 5_. (0Vq)dv

where OV q denotes sup {0, O .  O n  th e  other h a n d , from  q EU —C we obtain

. (0Vq)dv<1. T h is  is  a  con trad ic tion . Hence we have Qn(u-C)= 95.
By th e  separation theorem, there exists a  continuous linear form 1r a n d  a

constant c such that Yr(Q) c and c>  1 1 ( f ) f o r  all fEU — C . Since —CgU—C, V
is  p o sitiv e . W e may assum e W(r)=1, where r=1/11du 11. Since Q—{-c} form s a
convex cone, we obtain inf [W(Q— {z-} )1= 0 .  Therefore,

0= inf [W(Q— {r} ) ] > c —  ?F(r)=c_1,

so that, W(7)=.1c>_ W(U —C). In  particular, ¶ (U )1 ,  i. e . II Tli_<1. Let
hEL - (d v ) b e  t h e  function which corresponds t o  T. Then, O h 1  a n d

hdv=11du 11. F inally  f o r  a n y  f E P  t h e  function ( f+ +1)/(f+11f11+ 1 )du

belongs to Q .  H ence we obtain (f-1-11f11+ 1 )h d v /(f+ 1 1 f1 1 + 1 )d u  1 , so that,

..(/  ̀+11f II + 1 )h d v _ ( f +  + 1 ) d u ,  e. fh d v 1 fd u . Tnus dw = hdv is  a  desired

measure.

2. Singular harmonic measures

In  this section, we will consider Riemann surfaces which admit nonconstant
bounded analytic functions, i. e. W  0  A B .  (N ote that t h e  separation axiom is
not assumed f o r  110 0 (W ) . )  L e t  D  be any relatively compact subdomain of W.
21?, will denote th e  harmonic measure supported on aD with center p ED. Since
•the  canonical inclusion Wc.71(W) is continuous, D  is also relatively compact in
E(W), even when this inclusion is not in jec tive . So 2/23 is well defined in  9)2(W),
and  w e use  the  same notation for this measure.

Definition 2 .1 .  W e call a positive measure dv on  K  " a  singular harmonic
measure fo r  pEw " if st" 1:)p(dv)gS and dv} d4 , fo r every D  which contains p.
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Note that every singular harmonic measure dv fo r pEW  is  a  representing

measure fo r p, because hdv_>_ h d n =  h (p ) hold fo r  a ll h o f Re 1-1- (W )C

{Pn .

Theorem 2.2. T here  ex ists  a  singular harm onic m easure fo r  every  point
p W .

P ro o f .  For any f C R (S ), U (f, z ) denotes th e  least harmonic m ajorant of
W . T h e  functional CR (S)D f—>—U(— f, p ) is th e  sublinear functional such that

—U(— f , p) is negative fo r negative fG C R (S), a n d  —U(— u S ,  P )= u (P ) f o r  all
u E Re I-1- (W ) .  B y  Hahn-Banach's extension theorem , there exists a positive

measure dv supported on  S  such that p )  f o r  all fE C R ( S ) .  We

verify that dv is  a  singular harmonic measure fo r  p. F ro m g h ."- for a ll g c P ,
U(g1S, z)_>_g(z) fo llow s. T h is  yields

—gd21),?_=. U ( g  S , )dn= — U(g

i. e. gdv_)g-d2Ç, where D denotes any relatively compact subdomain o f W . Thus

dv is  a  singular harmonic measure fo r p.

Corollary 2.3. A positive m easure dv supported on S is  a singular harmonic

measure fo r p E w  if and only  if çgdv U(g, p) holds fo r  ev ery  g c C R (S).

P ro o f .  It is sufficient to prove th e  necessity . L et dv be any singular har-

monic measure f o r  p. B y  t h e  definition, we have , fdv - . . f.d2'f, fo r all f c P ,

where D  denotes any relatively compact subdomain o f  W . T h is  yie ld s 11-dv .

supD {1 fd2q . By an argum ent of the lattice theoretic supremum, for an arbitrary

21), and any gc C R (S ) there exists a n  increasing sequence IN  o f  P  such that

Je. . ,4 a n d  ./̀ „d4,—>1b- d2r,), as n — 00. T h is  yields 1gdv?.= l k d 2 .  Consequently,

we obtain

gdvsup d2 : D cW I= U (g , p).

Corollary 2 . 4 .  A  singular harm onic measular fo r  p  is  unique if and only i f
U (f, , p ) = - U ( - f ,  p) hold  f or all f cC R (S).

P ro o f . T h e  necessity is the  d irect consequence o f  th e  method employed in
Theorem 2.2. F o r th e  sufficiency, le t f  be any element o f CR (S ) .  Then for an

arbitrary singular harmonic measure dv fo r  p ,  —U(—f, p) fdv. U (f, p) holds,

i. e. U (f, p )= Ç fd v . Consequently we obtain th e  uniqueness.
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Theorem 2 .5 .  There exists a  singular harmonic measure f o r  every point
pEw which enjoys the Jensen's inequality:

.çloglfldv loglf(p)1 , f E H- (W) .

P ro o f. L e t  J  a n d  j  be fam ilies o f  functions o n  FIR(W ) defined by 1=

ai log : ai?•=0, f i E l- -1- (W)(1_i_-_-n)}, and  j= luYu`‘ ••• vu n  : u

respectively. Every element o f J  attains its maximum on S , t h e  sam e is also
valid for J. F o r  any gE C R (S), is  th e  function defined by h=sup {h j :
on S}. j W  i s  th e  lower envelope o f th e  subharmonic functions o n  W .  Hence
it  h a s  t h e  least harmonic m ajorant V (g, z ). Clearly C R (S) p )  is
a  sublinear functional on  CR (S ) such that —V(—g, p) is  n egative  f o r  negative
a EC R ( S )  a n d  —V(—u, p)=u(p) f o r  a l l  u E Re H "(W ). B y Hahn-Banach's ex-
tension theorem, there exists a positive measure d u  supported o n  S  such that

—V(—g, p)_>_.gdu holds fo r every g  o f CR ( S ) .  Since J  contains Re I-P(W ), we

have fo r a ll g E P .  T h is  yields .fgdu>_ .çgd2f,„ i .e .  du}d2Y„ where D is

any relatively compact subdomain o f W . Thus du is a singular harmonic measure
f o r  p. N ext, w e  verify  t h e  Jensen's inequality f o r  d u .  B y  t h e  fact that
(— n)V loglfl belongs to j  and  is continuous on S  (n EN ) f o r  every  f E 1 -10 (W),

it fo llow s (—n)Vlog f n)Vlogif I , p i .  Combining this with  V a  n)

V log f(p)1, we see .f(—n)V log f f(p)1. Letting n --> co, we

obtain the Jensen's inequality : du _z_log f(p) 1, where f  is  a n y  e le m e n t of

11- (W).

Remark. B y th e  same method, we can construct directly a  measure which
enjoys Arens-Singer's equality.

From now on, w e w ill set about the construction of the positive kernel for
Dirichlet in tegral. For th is aim , we need several lmmas.

Lemma 2 .6 .  Let T  be any extremely disconnected compact Hausdorff  space
and let dv  be the positive normal measure on T  with the closed support : .311:){dv}
= T . T h en , fo r any f E L - (dv ), there exists a  continuous f uunction gEC R (T)
such that g  coincides with f  a. e .  with respect to d v .  In particular, we can
identify the maximal ideal space o f L - (dv) with T , including the topology.

Definition 2 .7 .  Let T  be any extremely disconnected compact Hausdorff space

and let dv  be the positive measure on T  such that .fhdv=sup { ' fd v  :fe F }  where

F denotes any upper bound directed family o f CR (T ) with the supremum h mC R (T).
Then, dv  is a normal measure on T.
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By an elementary argument, we can see the  above lemma. Hence, we omit
the proof.

Let HB(W) be the  Banach space of all bounded harmonic functions o n  W
endowed with th e  sup-norm topology. It is known that HB(W) is an  order
complete Banach lattice under the canonical order, i. e. f g (=> f(z) g(z) f o r  all
z G W . The state space of HB(W) contains the points of W as the point evalua-
tions valuations on HB(W ). The Choquet boundary aeHB of the state space is
a  closed and extremely disconnected subset of the state space under the weak*
topology. By th e  fac t HB(W)I a e l/B -=C R (aeH B), w e see  th a t a  representing
measure d r ,  for any z E W  supported o n  ae H B  is  unique, where the term "a
representing measure fo r  z " signify a  positive  measure which represents the
point evaluation at z. For {dr,} (zEW), we need some informations.

Lemma 2.8. { d z - z }(zEW) are normal measures on  ae l lB  an d  are mutually
absolutely bounded continuous.

Pro o f . For the normality of any dr,, let F H B (W ) be any upper bounded
directed family with the supremum h .  T hen , w e  h a v e  h(z)=sup{f(z): fEF}.

Therefore, ' lidz-, =sup : f E F ) holds. B y  D e f .  2 .7 , we conclude dz-, is

normal.
From the  Harnack's inequality for positive harmonic functions, we see that

for any z and x of W, there exists a positive constant c=c(z, x) such that cf(z)

_>_f(x)?_c - 1  f(z) for every positive f EHB(W). This yields c.çgd7.- z _ gdz

for every nonnegative gEC R (ae l/B). Consequently, we have c - l_dr.r /dr,

Corollary 2 .9 .  The closed support of any  d r, coincides with U M .

Pro o f . For any fEHB(W ) and x EW, we hove I f(x)I =  f {drx /dr,} dr,

sup {1 f(p) : p u (d r  ,)}  . Hence, (dr,) ( a,HB) is the minimal boundary,
i. e. dvz )=a e HB.

Combining Lemma 2.6 with Lemma. 2.8, we have the following.

Corollary 2 .1 0 . For any  zEW, the maximal ideal space o f  L - (dr,) can be
identified with a,HB, including the topology.

Lemma 2 .1 1 . Choose any p  TV and f ix  it in the sequel. Set dr z /d-cp = P (z , )
(zeW ) and dr=-7,. T hen w e can regard P(z, q) as a  continuous function on
W xa,H B. Furthermore, fo r  every qEa e HB, P(z, q) is a positive harmonic func-
tions on W.

Proof. By Corollary 2.10, we can regard P(z, q) a s  a  continuous function
on aeHB for every z E W . Let p(z, x) be the  Harnack's function, i. e.

p(z, x)=inf Ic : c>= 12(z)lh(x), h(x)/h(z) for vh EHP(W)}
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where HP(W ) denotes th e  fam ily o f a l l  positive harmonic functions on W.

Then, we see that fo r every nonnegative gECR(aeHB ), p(z , x )1gP(z ,

gP(x, )dr_- _p(z ,x )g -P(z , )dz-. This yields p(z,x) - './3 (z , ).<.P(x , )_p(z ,x )P(z , )

on aeH B . In particular, p(p , x) for every x E W . Since p(z, x)
tends to  1  a s  x—>zEW, w e  have P ( z ,  )— P(x , )1 I-0 , as x —>z. Thus we
obtain that P(z, q) is continuous on W X M M .  Further, by th e  a-compactness
o f W, P(z , q) i s  a  measurable function on the a-algebra generated by (W)x
m eHB) w h e re  (W) a n d  (aeHB) denote the a-algebra of Borel sets of W and
aeHB, respectively. Let D  be any relatively compact subdomain of W, and let

g  be any elem ent o f  CR (ael/B). T h en  w e  see  th a t -& P ( x ,  )d id 2 (x )=

4P(x, )d2P(x)}dz--= .f g P(z , )dr, so  that, P(x , )d2P=-P(z , ) a. e. with respect

to dr, because a  representing measure for z E W supported on aeH B  i s  unique.

B y  the elementary argument, w e can see that P(x , q)d2(x ) is continuous on

aeH.B. Therefore we conclude P(x, q)d2P=P(z, q) on aeH B , i . e .  P(z , q) i s  a

harmonic function on W for every qEa eHB.

Theorem. 2.12. For any  p W  and any  singular harm onic m easure dv f or
p, there exists a positive kernel Q (z , ) o f  L - (dv) with a parameter zEW  satisfy-
ing the following conditions.

1) Foo every zEW , Q(z , )dv  is a singular harmonic measure f o r z.

2) For every  hEL - (dv ), hQ(z , )dv  is  a  bounded harmonic function o n  W

with hQ(z, )dv 5_11h11.

3 )  For every gEC R (S ), gQ(z , )dv  can be continuously extended to aew and

coincides with g  on  aew. In  particular gQ(z, )dv =11g11 holds.

Pro o f . Let 95 be a  map defined on the power set P(aeH B ) o f aeH B  into

ael-IB such that 95(E)EE for every nonempty E  of P(aeH B ). Let [ i kt o 0 4 ] be

the family of all decompositions of aeHB into finite disjoint closed-open sets with

C)
1

0 k=ael -/B, (Le  { 0k}  (1 k _ n )  are disjoint closed-open se ts .) We define an
k=

order on [ { 0 4 ]  such that {  O k }  { 0 <=> every k  is contained in some
k=1 k=1 j=1

O . Under this order, the above family is directed upward. For an y  { C k }
k=1

se t dr k=  dr I 0 k k n ) .  Then the functionals CR(S) —U(—g, )ds- k

k__. n) are sublinear functionals on CR (S) which are negative fo r negotive gE
CR (S ) . By Corollary 2.3, for any singular harmonic measure dv for p, we have

1
) d r - =  — U( — g, P) 1 . g.d v . By Theorem 1.1, there

k=
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is  a positive decomposition h k dv=dv of dv such that every hkdv { hk 1, - (dP)}k=1

i s  p o sitiv e , a n d  fo r  every gEC R (S), )d.rk ghkdv (11e - n). Set

Pk(z)=P(z, Ø(0k)) (1 From the Harnack's inequality for P(z, q) it follows

p(p, Pk(z)h k 5_9(P, z). Thus we have the  family {APk (z)h k }  which is

uniformly bounded fo r every z EW, a n d  is directed upward under t h e  order

induced from [IC) 04]. We denote by E z (zEW ) th e  weak* compact subset :
k=1

f f  L " ( d V )  11f11.--p(p, 4) o f  L - (dv). By Tihonov's theorem, th e  d ire c t product
space 11E, is  compact under the direct product topology. We can regard everywp

P k (Z )h  k  a s  a n  element o f  H E ,. S ince { Pk(z)hk} is directed upward, it
k=1 W z k=1
forms a  filter base. Hence i n  n E 1 , it  h a s  a  c luste r po in t {qz } (z E W ). Set

Waz

Q (z , )=q , (z W ).  Then fo r every zE W p(P, z) - 1 Q(z, z )  a. e. with
respect to dv. From IIP (z , )— P(x, )II'5{P(z, x) - 1

} p(P, z ), it follows

P k (Z )h P k (X )h k Ip(z, x) - 11 p(P, z) (1)
k=1 k=1

so that II Q (z, ) — Q (x , )115 Ip(z, x)-11 p(P, z ). In  particular we see that Q (x , )
is norm convergent to Q (z , ) i f  x  tends to z .  L et 9J1(dv) be the m axim al ideal
space o f  L - (dv). By k we will denote th e  Gelfand transform of gE L,- (dv) into
C(9N(dv)). Since th e  Gelfand transform o f  L"(dv) i s  a n  isometric algebra iso-
morphism, we have :

11C1(z, ) — C2-(x, {P (z, x)-1 } p(p, z) (2)

T h is  yields that '0(z, q) is a  continuous function on W x9J1(dv). Further it is a
measurable function o n  a  a-algebra generated by (W)X,g(93,1(dv)), w h ere  (W)
a n d  (9)7(dv)) denoted the a-algebras of B orel sets of W and  71(dv), respectively.
W e claim  that (7)(z, q) i s  a  p o s it iv e  harmonic function f o r  every qE9J1(dv).
L et D be a  relatively compact subdomain o f W, a n d  le t  {E . }yL, be any decom-
position o f  aD into finite disjo in t Bair sets, whose diameters a re  less than a
given positive number 3 with some metric o n  W . By inequalities (1) a n d  (2),
fo r  any positive number s, if  we take 3 sufficiently small, we have the  follow-

ing inequalities fo r all members o f [I Pk(z)hk}] and  0".( z ,  ) (zED ):

P k(Z j ) 11 4 2 12(E  j ) —  P  kW h  k
j = 1  k=1 k=1

and

)dzIP(x)—i C)(z i , ) A ( E ) , (3)

where z.; (1 j m ) denote any, b u t  fixed, p o in t  o f  E i . From this we have

' Q(z) , ) 2 ( E 5 )— Q(z, )
J= 1

so that, C)(zi , )2 (E 1)— (z, ) E. With the

< E
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inequality (3 ), th is  y ie ld s  rC (x , )d 2 f (x )-0 (z , )  2 s . Letting s we have

V2 ( x ,  ) d 1 ( x ) = ( z ,  ) .  Thus Cj(z, q) is actually a  p o s it iv e  harmonic function

on W fo r every qE9)1(dv). L et dr, be the positive measure on 9)1(dv) which cor-

responds to dv, i.e. d i,' satisfies k. , --clz)= .çg dy fo r every gE L "(dv ). F o r  an y  gG

L"(dv) we h a v e  -0 (x , )d i id e  ( x ) = g - P ( x ,  )d2P(x)Idi4 0 ( x ,  Thus

)dz)=. gQ (z , )dv  is a  harmonic function on W  fo r every g E L"(dv).

Next, we verify that Q (z , )dv  is a  singular harmonic measure f o r  zE W.
Clearly Q(z , )dv  is a positive measure supported o n  S .  F o r any gE C R (S), we

have .ÇU(g, )dz- k

Now, tf(g,
k=1

and  the  family [

see lim
k=1

k dv. T h is  yields U (g , )pk(z)cirk g{ A pk (z )hk } dv .

)Pk(z)drk= U(g, )P(z , 0(0 k ))dz-  holds fo r every gECR(S),
k = 1  O k

{
C) 04] a re  directed upward under th e  order Hence we
k=1

)Pk(z)drk -- U ( g , z ) .  T h is  implies U(g, z g Q (z , )dv . By Co-

rollary 2.3, we conclude Q(z , )dv  is a  singular harmonic measure fo r z E W . In

particu lar, Q (z , )dv is a  probability measure on  S , so that, ,g- Q (z, )dvi --11g11
holds fo r every gEL"(dv).

Finally we investigate the boundary value of the Dirichlet integral : .çgQ (z , )dv

fo r any gEC R (S ) .  Since Q (z , )dv  is a  singular harmonic measure f o r  z ,  we

have inequalities : z ) .4 ( z ) .  Furthermore, g
and t  are  upper a n d  lower semicontinuous function o n  K , respectively, and

coincide with g  o n  aew . Consequently, we conclude that .f gQ (z , )dv  can be

extended continuously to wua ew and coincides with g  o n  aew . I n  particular

we h a v e  gQ (z , )dv  =Le fo r all gEC R ( S ) .  Finally, note that Q(p, )=1.

Using th e  cone f ,  function g  a n d  V (g, z ) we obtain sim ilar results for
Jensen's measure.

Theorem 2 .1 3 .  Let du be any singular harmonic measure fo r a n  arbitrary
point of W , constructed in Theorem 2.5. Then there is a positive kernel R (z , )
of L ( d u )  satisfying the following conditions.

1) For every z E W , R (z , )  du is a singular harmonic measure fo r  z  which
satisfies the Jensen's inequality.

2) For every gEC R (S ) , g R (z , )d u  is  a  bounded harmonic function on W

which can be extended continuously to wuaew and furthermore gR(z,

Theorem 2 .1 4 .  Let dw  be any positive measure compactly supprted o n  W
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and let d v  be any  singular harm onic m easure for a point of W. Suppose dw

satisfies .f gdw __S•gdv  fo r  all positive g E P .  Then, there exists a positive measure

d u  such that 0. du/dv1 and dw-<du. In case that ds is a  m easure w hich is
absolutely continuous with respect to dw . T hen there ex ists a measure dt which

is absolutely continuous with respect to dv  such that II dt- 11. 144 and .f g d t=g d s

fo r  all gEll"(W ).

Pro o f . T h e  first assertion is  a  special case of Theorem  1.2. For the latter
ha lf of assertion, ta k e  he L '(dw ) such  tha t d s =h d w . W e define functions ill;
and  17,7, (nEN) by

{ h  i f  n — l.h <al (n E N )I  — h  i f  n-1_- _— h<n
h 7+,= a n d  hT,=

0  otherwise. 0  otherwise.

T hen  w e  have .f g [lin ]h ;Ld w  .çgdw _ gdv  fo r a ll positive g E P .  By Theorem

1.2, there  existive measures fd v  (n e N ) such  tha t h,ldw f d v .  From Ih dwM
= MfdvM, it follows II EAdv — E f (Mh;idwiI+hT,dwM)=Ilhdw11=Ildsli. Thus
dt=E(f7t — f  )dv  is  a  desired measure.

Corollary 2.15. Let D  be any relatively  compact subdomain o f W and let 1:12
be the harmonic measure supported on D .  Suppose dw  is absolutely continuous
w ith respect to d2. Then, there exists a measure du which is absolutely continuous

w ith respect to dv , and satisfies f u rth e r, g d w H • gdu hold f o r  all

g  H " (W ) . (See [9].)

Characterizing th e  u n it disk LI by m eans o f  th e  order relation of measures,
w e w ill finish th is  section.

Theorem 2.16. Let W  be any open Riemann surface which admits nonconstant
bounded analytic functions. Then the following assertions are equivalent.

1) For ev ery  gEC R (S), 2g. is harm onic on W.
2) Every representing measure for a point of W supported on S is a singular

harmonic measure.
3) There exists a point p of W  such that fo r  any representing m easure dv

f o r  p  supported on  S ,  and  for arbitrary  point z EW , there is a representing
measure d u , with Ildu z ldvil<00.

4) There exists a function fEH"(W ) such that 11f11 1 and J — f (W ) i s  an
A B -negligible set, m oreover, every  elem ent of H °(W ) can be represented by a
power series of f .

5) 1-1- (W) 1S is a logmodular algebra.

P ro o f .  ( 1 )  (2) => (3) is  o b v io u s . For (3) => (5), choose any g E CR( S). By
Hahn-Banach's extension theorem , there is a  representing measure dv for peW
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supported on  S  such that gdv= k (P) . Let 1u be t h e  sequence of Re h'(W )

such that u (p) — (p )  and u,i g  o n  S .  Then u n —g. i n  L l(dv), so that, u„—>g
in Ll(du,), where du, denotes th e  representing measure fo r z E W with Ilduzidv11

< 0 0 . From a  chain o f  inequalities .fg-du,_1(z) un(z)= undu„ it follows

lim u n (z)=k(z) for any z W. Thus w e see that 041 converges to u n ifo rm ly
on an y  co m p ac t se t o f  W . S e t un =Ref,,(f„EH"(W )) and F„=ex P f .1 . Here,
we may assume lim F-=F(G H - (W )). Note that F  is a n  invertible element of

(W ) . Since log I Frd =u„ on W, we have log I Fl = ',g. on W . Since g  and k are
upper and lower semicontinuous, respectively and coincide with g  o n  a,W, we
h a v e  log Fl = g  on aew. Consequently, we conclude log I Fl -=g o n  S .  Because
aew=s.

(5).>(4) : We denote by *H"(W ) t h e  *weak closure of H 0 0 ( W )  i n  L - (dv),
where dv is the unique representing measure fo r  an  arbitrary point of W . Note
that every point of W is canonically contained in  th e  m a x im a l ideal space of

*11- (W ) . F or any gE*H"(W ), )du is a  bounded analytic function o n  W

w ith  .ÇgQ(z , )dv  - _11gril where Q (z , )dv denotes the singular harmonic measure

for z .  T h is  implies that all points of W belong to th e  same Gleason p a r t  *TY
f o r  *I100(W). By Ho ffman's theorem o n  logmodular algebras, there is a n  h E
*11- (W ) with h(p)=0 such that h :*W  is a  b ijec tion  and  g . is analytic
on 4  fo r  e v e r y  g e * H "(W ). In  particu lar, g  can be represented by a power
series o f h  o n  * W . S e t  hiW =--f . Then f G H - (W ) a n d  th e  analytic function
f oh - 1 (Z )  on 4 coincides with Z  on the  open  se t h(W ). Hence we have h= f  on
*W, so that f  represents every geH "(W ) b y  it s  p o w er series o n  W .  Since
g.f  fgEH°°(f(W ))1 belongs to TP(W ), gof.1 - 1 = g  m ust be extended analytically
to J, i . e. 4 —f(W) is a n  AB-negligible s e t .  (4).>(1) is almost obvious, because
11- (W )pg-4gof - 1 H- (J)  is a n  isometric algebra isomorphism.

Corollary 2 .1 7 .  L e t  W  be any open R iem ann surf ace f or which 11- (W)
separates the points on W . Then W  is essentially a unit disk, i f  and only if  W
satisfies one of  the conditions in Theorem 2.16.

Rem ark. Using th e  same method, we can construct a  singular harmonic
measure with respec t to every closed subalgebra o f  I-Pe(W ) with a  u n it . In
p a rticu la r, fo r any bounded p lan e  domain there exists a  singular harmonic
measure supported o n  t h e  topological boundary o f th e  d o m a in . In  general it
does not coincide with th e  harmonic measure. We will discuss t h e  details in
Section 4.

3 .  Supports of measures

Here we a re  mainly interested in  the  pland domains. O ur methods o f  th e
proofs, however, a r e  also valid fo r  a  little m ore general surface W such that
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1-?(W ) separates points of W and  the  inclusion : Wc+M(W) is  an  o p en  m ap . We
w ill call these surfaces of "class G ", for short.

Theorem 3.1. Let W be any Riemann surface of class G, and let E  be the
closed subset o f 9i1(W) such that W—E is connected. Suppose that there is a point
zo such that zo EW—E and fIl( 2 . 0)11 -11fIlE for a ll f E ll - (W ).  Then, we have

R e m a r k .  F ish e r  [3 ] f irs t e s tab lish ed  t h e  a b o v e  th e o re m . A fte r  th is ,
Gamelin [5] gave  a  n e w  p ro o f  a s  a  corollary o f his abstract Runge's theorem.
W e will localize all th e  difficulties into a local d isk  to  prove th e  theorem.

P ro o f. W e will define a  subset Ê o f FIN(W) by

t=  E (W ) 11.f(4 )1 i IlflIE fo r a l l  f  e ll - (W)} .

Then, by assumption, we have zc P.
Suppose th a t E I S .  T h e n  w e  se e  FV. ,Z Ê  a n d  w nP#0. L e t  p  be  any

boundary point of W—Ê such  tha t p W  and  pER — E . Since zo EÊ and  zo
W—E, these po in ts  ex ist. L e t U(2 p) be  any  local d isk  w ith  0(1E= 0 . B y the
condition on W, UcE(W) is o p en . Denote by A the uniform closure of II - (W)IE.
A  is  a  function algebra o n  E  and the m axim al ideal space o f  A  coincides with
Ê  to g e th e r  w ith  t h e  topo logy . Note th a t  Plau an d  U n Ê  is  open in P .  If
aUnP= 0, then by Shilov's theorem on idempotents, Pnu is  a  peak se t fo r  A.
Hence Pnu contains a n  extrem e point for A .  B ut every extrem e point for A
belongs to E .  This is a contradiction, because OnE=0. Thus we see 5unP*0.
Further w e m ay assume, w ithout loss o f  g e n e ra lity , th a t  th e re  is  a  function_
fE H "(W ) w hose first derivative does not vanish at p, and  th a t  * f= f IU  gives
a  conformal map from 0  onto the  un it disk.

N ext, w e clain Ig(t)IL<IIgIlaunp for all tE Ê nU  and g E A .  If lIgllarni, <
holds fo r some g  o f A , by Rossi's theorem on local peak sets, w e  h a v e  a  peak

se t in  P n u . B y th e  same argum ent as above, this implies that ÊnU  contains
an extreme point for A, a  contrad ic tion . Hence we have g (t)I g(&nk f o r  all
tEPnu a n d  g E A , in  particular, for a ll gEH "(W ). F ro m  th is  it  fo llo w s g.
f*f - 1 (z)11-11go*f- 1 11. f  (aun) for all z E * f(U n Ê ). Since the algebra H00 (W ).(*f - 1 (z))
(z 4) on  the  un it disk 4 contains all polynomials o n  th e  complex p lane , there
i s  a  representing measure fo r every zE *f(P n U ) supported o n  *f(Ê ( - aU) with
respect to  polynom ials. T h is  is  absurd , for a  representing measure on the unit
circle is unique, i. e. only a  Poisson's kernel.

Corollary 3.2. Under the same notations as above, i f  W—E is not con-
nected, then the component of W—E to which the point zo belongs is contained in Ê.

Corollary 3.3. Let dv be any complex representing measure fo r  p E W  sup-
ported on 937(W) such that W—giiF:1(dv) is connected with pEgiTp- p- (dv). Then
Sgs717-)p(dv).
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P ro o f. S et E=st-  .13,p(dy). Then for all f 11 - ( W), I f (P)I = fdy -511dv11.11fIlEr

so that, IP(P)1-11cIv11 . 11.f"11E. T aking t h e  n-th roots a n d  le ttin g  n-+00, we
obtain If (P) 11flin. T h is  y ie ld s p e :8 — E . By Theorem  3.1, we conclude
sTiFp (dy) S.

Corollary 3.4. Let du be any measure supported on S . We denote by 91t(du)
the maximal ideal space o f  L - (d u ). Let p  be the canonical map from 9R(du)
into S such that g(q)=k(p(q)) fo r  all g CR (S ) .  Suppose that there exists a com-
plex representing measure dv f o r  p 1 4 / - supported on  931(du). Then we have
p (du)} =S.

P ro o f. S et E= p {supp (du)} . Then we h a v e  I f(P)I E  for all f H "(W ).
Thus we see pEP— E, hence SEE, i. e. S=E .

Corollary 3.5. The Ahlfors function of a Riemann surface of class G  is
unique and has a unit modulus on the Shilov boundary.

4. The subspace D(*)

We will consider th e  subspace D(*) o f H B (W ). Namely the linear subspace
of bounded harmonic functions whose harmonic conjugates a re  single-valued on
W . (G am elin and Lumer [7])

Theorem 4.1. Every u D (*) can be viewed as a continuous function on
FIR(W) with u=û=ù on 3J1(W).

Proof. (We have some hints in  [7 ] )  F or any u ED(*), set ft=exp {t(u +i*u)}
(t E  R) a n d  f = f i  w here *u denotes th e  harmonic conjugates o f  u E D(*). Note
th a t f t  i s  a n  invertible element of H°°(W) with If t I= If It o n  W . Since If t I is
a continuous and positive function o n  17-V g  W ),  we can identify u  w ith log If
o n  yv- , . e . I f  =exp(tu) o n  W. Using the  Arens-Singer's measure for any point
in  Til(W) whose support is contained i n  S cW , w e  h a v e  t•log f l= lo g  f t I on
1- (W ) .  Namely, u =log f  is well defined on TZ(W). F or any h±i*hEI-1 - ( W)

with on S, the inequality : exp l(h -u )-k i(*h -*u )}11  ho ld s. T h is  implies
h u on 917(W), so that, on 9R(W). We verify it(q)=u(q) for any qeM(W).
We may assum e, w ithout loss o f  generality , that u(q)=0 a n d  f t (q )= 1 . Set
Qt=(ft - 1 )/t for every positive t. Then Re IQ, (exp [tu ]-1 )/ t and (exp [tu ]-1 )/t
tends to u uniformly a s  t->0. Therefore, we can take positive num bers p(t)
such that p(t)—q) a s  t->0 and Re Qt _u+p(t). From Re Qt Re H- (W), it follows
-p(t)=Re Q t (q )- p (t) ù (q ) and it(q )_u(q). Letting t-4), w e have ù(q)=u(q)=O.

Thus it= u on 912(W). In  particular (-u )=  -u ,  i . e .  u = û = û  o n  914W).

Theorem 4.2. Let W be any Riemann surface of class G. Then f o r  every
geC R (S), there exist u and v j  (D*) such that g=sup(u, y) on S.



188 C. Matsuoka

Remark. The idea of considering an extremal problem to prove the theorem,
is indebted to Gamelin [4].

Pro o f . Set G=g+11,g1+1. Choose an arbitrary p G  W and fix it throughout.
We will consider the following extrem al problem : Maximize w (p) in  F=
{w E D(*) : — on S} . S ince F is a normal family in HB(W), there is a
function h in D(*) which is the bounded limit of the sequence in F and satisfies

w (p)_h (p ) fo r a l l  wOEF. From (—\ /G)_ on W for a ll w EF, it follows
\./

( - G ) 0-  on W. This implpies h—G on ae w, so that, on S .  Thus we have
th e  extrem al function h E F .  Consider the linear functional :  wG - ' —>w(p) on
the subspace {wG - 1 : wED(*)} of  CR (S ).  Clearly, it is continuous, therefore we
have the measure du which is the normpreserving extension of the functional
onto CR (S). G - ldu i s  a  complex representing measure for p with respect to
H- (W ). Hence, by Corollary 3.3, we obtain (du)=-S . From the identities :

h(p)=12G - 1 -du=11 du II, and by II hG - 1 11-_-1, it follows I hG 1 I=1  a. e. with respect

to du, so that, I h G- 1 I =1, i.e . h  - =  G  on S, because of h  S, GEC R (S). Thu:
we concluce G =sup {h, —h} o n  S . If we set u = — 1  and v= —h— II —1,
then g=sup fu, v1 on S.

Corollary 4 .3 .  The Choquet boundary ae W of a Riemann surface W of class
G is closed.

Theorem 4.4. (Gamelin [ 4 ] )  The Choquet boundary of a Rieniann surface
of  class G is extremely disconnected.

Pro o f . (cf.[4]) Let U  and V be any nonempty open subset of ac w=s with
V = S -0 .  We will prove U is an open set. Let f  be a  function on S defined by
f 10=2 and f  = 1 .  Then, we have !IS= f ,  for f  is upper semicontinuous. We
consider the extremal problem : Maximize w(p) in F = -{w E D (* ) : - - fw iS f } .
The samd argument as in Theorem 4.2. is  valid, and hence we have an extremal
function h E F such that h(p) w(p) for all w ŒF. Let du be any measure whose
closed support coincides with S, and let 9J1(du) be the maximal ideal space of
L " (d u ).  Further, by p we will denote the canonical map from 93I1(du) onto S.
Since the Gelfand transform is a  lattice isomorphism, we see 1 = 2  on  p - 1 (U)
and 1 = 1  on p- i (V ) .  From —f - w iS f (w E F ), it follows Observe
that for any w ED(*) 21117•1- 1 11.- II an. Hence the linear functional o n  112).1- ' :
w  D(*)1 defined by iv w(p) is continuous. Note that the unit ball of this
subspace is just {27).1- ' : w . Let dv be th e  norm preserving extension of
the functional onto CR(9R(du)). Then, 7 - 1 dv is  a  complex representing measure
fo r p. Together with Corollary. 3.3, this implies p (dv)1 = S .  From the

identities :  h(p)— 7 - 1dv=(h p)Pciv=  'Idyll, it follows I =.7 on (dv), i.e .

hopV—h.p=1 on suppi (dv). This yields hV—h=2 on U  and h V —h = 1  on V.
Consequently, we conclude that S {I h  >1 } coincides with U.
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Finally , w e w ill see  that the bounded plane dom ain w hich is constructed
b y  Gamelin [4 ] carries many singular harmonic measures for an y  point of the
domain.

Proposition 4.5. L et W  be any bounded plane domain satisfying the follow-
ing  conditions.

1) A (W ) is pointwise boundedly dense in 11- (W ), w here A (W ) is the algebra
o f  continuous functions on W , each of  which is analy tic on W .

2) Harmonic measure d2T(ze W) h as  a  positiv e  m ass on a Fe -set ailc of
nonpeak points on aW relative to A(W).

3 )  aW consists o f  essential boundary points for 11- (W).
Then a singular harmonic measure f o r any  point of  W  is not unique.

Pro o f . Let E o an d  E ,  b e  disjoint closed  subsets of a Ac w ith  2T(E.,) >0
(1=0, 1), an d  le t h  b e  the continuous function on aW  such that 0 h 1 and
hlE i = j (j=0 , 1). W e w ill denote by Z  the coordinate function of the complex
plane, and b y  2  the Gelfand transform  of Z  in to  C(M(W))

W e w ill see U  (h  2  , z )<I1 d 2 1: (z E W )  and U({1 — /1} 2 ts, z )< {1 —12} d2T

(zEW ), i.e. — U(— h.21S, z) 4 z d ,1 1, v. Then by C orollary 2.4, w e  have t h a t  a

singular harmonic measure for an y  point of W is  n o t unique.
By assumption (1), there exists an isometric algebra homomorphism : 11- (W)

—■1,- (d21v ). (See Davie [2 ]). From assumption (3), it fo llow s tha t there  is  a dis-
tinguished homomorphism qa on a fiber 2 '(q )  for every nonpeak point q E a' . ([6])
T hen  for each f 11°°(W ) the functions E 5 9 p— > f(p 3)  on E .; ( j=0 , 1) coincide with
7r(f) on E 5 (j=0, 1) a. e. w ith respect to  d2T. Set F= {u Re 11- (W ): u h.21s} .
S ince  h o 2 =h (q ) on  2 - 1 (q) for a l l  gEaW , w e h av e  lim  u(z):_h(q) for every

WDz-.q

U E F .  T his im p lie s  lim -Tid2T—u (z)}--= u n i {hd2T4r(u)d2141 _ 0  for all
WDz-.q

g E a W ,  except for the subset of logarithmic capacity 0 of W. H e n c e , w e  have
h_.7r(u) a. e. w ith  respect to  d2T. Let k  be the lattice theoretic supremum of
the diredted family :  { 7 (u  ov • • • v,r(u): u, E F (1 n ) }  w ith  respect t o  d2T.
Then, th e re  is  a  sequence {7(u

converges increasingly to k  in  L'(d2T) as m tends t o  c o .  This yields S' kdr,F=

U (h.21s, z). O b v io u sly , h  k  a. e. w ith  respect to d2T. Furthermore, we claim
h >k  on E , a. e. w ith  respect to  d 4 '.  Suppose E i  {k =1 } h a s  a positive mass.
Then, 7r(ur)v •••vn-(uT)/1 on E  {le =1} . Combining this with u = uT(p5) on E 1,
w e conclude that there exist a point p E E ,  and a sequence f u  C F  such  tha t
un(Ps)/1 as n—> c o .  Set f .=expfun— l-Fi*unl . Then, f i,(n E /V) satisfy Ilf.11 1
and If.(Pa)1 — >1 as n —> c o .  This im plies that If n(9)1 - 4  fo r a l l  points of the
part which contains p a.  In particular, If n(q a)I -4 1 for any q  E  o , so that, u.(qa) — *1
fo r a n y  q  E o. T his i s  a contradiction, since sup fu n (x ): x 2 '(q )} 0 fo r
vgeE o.  T h u s w e  have h >h  on E l a . e. w ith  respect to  d21v. Conseqently, we

7,n)v •  v  7 r(u rsa )}  (m  E  N ) such that 7 L (U r) V ••• V 7 C (U r )
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o b ta in  l'i d e  >k d 2 1;v=U (h .2 1 S , z ) . Replacing h  w ith 1—h, w e  h a v e  —U(—h

. 2IS , z ) 41d21v.

We can contruct a  singular harmonic measure (2(z , )dv w ith  respec t to
A (W ), a n d  fu rth er w e can  assume that dv is  the m axim al element under the
order -< . Then, dv has a  fu ll measure o n  a  Ge-subset o f  peak  p o in ts  o f  a W,
namely th e  Choquet boundary for A (W ). T h e  example constructed by Gamelin
[4] is the bounded plane domain which satisfies (1), (3) an d  th e  stronger version
(2 ') o f (2) in Proposition 4.5, i. e. (2') : T h e  harmonic measure has no mass on
th e  Choquet boundary for A (W ). In  this situa tion , the  harmonic measure and
th e  m ax im a l singular harmonic measure a r e  mutdally s in g u la r . T h e  general
treatment o f those measures can be found in  [9].
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