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1. Introduction

Caianiello's equation is known as mathematical neuron m odel. In  1961, L. D.
Harmon found a n  unusual and  unsuspected phenomenon between the amplitude
o f  th e  in p u t  p u lse s  a n d  th e  firing in  experimental studies with his transister
neuron m o d e l. J. Nagumo and  S . Sato  [1 ] started m athem atical investigation
o f  th is  m o d e l. They studied th e  dynamics o f th e  periodic attractor and sug-
gested that this complicated relationship between them takes the form of Cantor
function. Mainly we will give some new results concerning th e  dynamics which
is not th e  periodic attractor. In  this section Caianiello's equation is reduced to
a  discontinuous piecewise-linear equation. W e distinguish two cases, which we
shall treat one in  section 2 an d  th e  other in section 3.

We assume tha t the m agnitude of the input stim ulus i s  co n stan t an d  that
th e  neuron is forgetting past firing with exponential r a t e .  Under these assump-
tions Caianiello's equation takes th e  form :

Xn+1=1[A — a xn-r
b r

(a>0, b>1),

where 1[x] is  the Heaviside function. T h e  v a lu e  x n re p re se n ts  t h e  s ta te  of
th e  n eu ro n  a t th e  in s ta n t  n : x n = 0  represents t h e  resting sta te  a n d  x n =1
represents th e  exciting sta te . Constant A is the magnitude of the input stimulus
and  0  is  th e  threshold value.

A - 0 n X - n - rL e ttin g  y n = l + ,  we obtainab r=o br

w h e re  f (x , P, c)=

Y n-Ei=f(Y ., P, e)
P(x— c)+1 if x <c

t  p(x —c) if

1 A -0   (
1 

119= -
1) 

c=1— 
 a b ) '  a n d xn+i= l [ y  n —  Ci .

We assume tha t 0<c<1 because th e  neuron always ex c ite s  o r re s ts  fo r  large
instan t n according to c <0 o r  c >1 respectively.

In  th e  following we will investigate th e  dynamics o f  a  discontinuous pie-
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cewise-linear function f (x )= f (x , p, c) on the parameter plane (43, c)E(0, 1)x (0, 1).
f (x )  maps the right open unit interval /= [0 , 1 )  into itself. I t is  su ffic ien t to
examine f ( x )  only on I, because the iterated point of the initial value out of
I  must fall into I  after some iterations by f .  The next lemma obviously fol-
lows and the proofs are omitted.

Lemma 1 .1 .  ( 1 )  The graph of f n (x )  consists of right open segments. Each
segment has the saine slope pn.

(2) ID f (1)D f 2 (I)D••• and p  is an one to one map fo r  n .1 .
(3) Assume that c E r ( I )  f o r  som e 7.1 - 0  and that righ t open  in terv al J

dose not contain any of the following n +1  points:

f - 1 (c ) , [ 2 (0, , f ( c )

as interior points of J. T h e n  f ' : f ( J )  is a homeomorphism  f o r  k=1, 2, •••
n+1.

Divide 1 = [0 , 1 ) into two subintervals 1 0 = [0 , c )  and P = ic ,  1). First we
give some definitions. For x E l,  let A (x ) be the formal symbol P  if x  belongs
to P ,  where j = 0  or 1 .  We call A (x ) the address of x .  By the itinerary I (x )
we mean the sequence of addresses :

(A (x ), A (f (x )), A (f 2 (x)), ••.)

of the successive image of x .  For each symbol P  we define the sign E (P)=j
and s.(x )=E(A (fn - i(x ))) for By the sign itinerary E (I( X )) we mean the
sequence of signs :

(s1(x ), 62(x ), so(x), • • • )

To investigate the dynamics of f (x )  for the parameters (p, c)E(0, 1)x (0, 1),
we deal with Case A and Case B  separately as follows.

Case A: There exists some integer N > 1  such that cEInt f i ( I )  for i= 0 ,
1, ••• , N - 1  and cE Int

Case B :  For any integer n.>_1, Int f n (I).

2 .  Dynamics in case A

In this section we describe the dynamics in Case A. We will call this case
a periodic case, which is justified by the following theorem.

Theorem 2 .1 .  For any  x E I  the itinerary  1 (x )  has period N +1 , w here N
is given in the definition of Case A.

Pro o f . Since c EInt P(I) , there exists the inverse image of c for f 1 ,  where
i=0, 1, ••• , N - 1 .  We use the abbreviation c_ i  instead of f 1 (c) for N o t e
th a t N  points {co , c-1, ••• , c-N.Fi}  are all distinct and non-zero. Divide I  into
N + 1  right open subintervals by these N  points and denote I , 12, ••• By
Lemma 1.1, f  is homeomorphic on each subinterval I. Assume that c_J EInt f ( I i )
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f o r  som e 0. j. N - 1  and S ince  c_i _,EInt /,, w e  have j+1 =N .
However, r (c _ i _i ) EInt f N (/ ,)  since f N  is  homeomorphic o n  /,, so  ceIntfN(/).
T his is  a  con trad ic tion . H ence  each  f ( L )  m u s t  be contained by som e subin-
terval / k . O n the  o ther hand w e can show  that each subinterval m ust contain
some f ( / ) .  S o w e have f ( i i )c i,, ( 0  f o r  i=1, 2, ••• , N +1 , where 7  is a permuta-
tio n . A lso  w e  have 1 = I d  an d  7ri#Id  fo r j=1, 2, ,  N .  Moreover we can

•••
show that ir=a  w h e re  a =

(1  2  N + 1
2  3  ... ), 1 p5N, (p, N+1)=1, a n d  p  is  the

number of 1 ./ . . N+1 such that
Finally, fo r an y  x G/, th e  sequence (x , f N + 1 ( x ) ,  f 2 ( N + 1 ) (x), •-•) is monotonous

and  the  itinerary /(x) has period N+1.

3 .  Dynamics in Case B

In  th is  section we describe th e  dynamics in C ase B . W e will call th is case
a  singular c a s e .  It w ill be justified by th e  Theorem 3.5 below.

Lemma 3 . 1 .  For any
(1) 0<f .(1)<p(0)<1
(2) letting j n =[ f n(1), P(0 )) , then cif /1cl J g =95 i f  p * q , cE c l J„, and I1(I

_ pn-i (1 _ p)

(3 ) f ( I ) = I — J k .

Pro o f . W e shall prove by an induction on n . It is trivial for n=1. Assume
th a t (1), (2) and  (3) hold fo r  n = k .  By th e  property (3) f k ( n  consists of k +1
components. Since f  is  homeomorphic on J . ,  f o r  i=1, 2, ••• , k , (1), (2) a n d  (3)
hold fo r  n = k +1.

Theorem 3 .2 .  f  has no periodic points and the itinerary  I (x )  is not periodic
f or any  x E I.

Pro o f . Assume th a t f  h as a  periodic point P  w ith  p e r io d  N .  By Lemma
3.1, f n (0 )  a n d  fn(1) a re  not periodic fo r a n y  n 1 .  S o  P  is neither fn(0) nor
f '(1). A s s u m e  th a t PEInt J,, fo r  s o m e  n 1 ,  th e n  fN(P)EInt L, + N .  T h is  is  a
contradiction. Hence PE cl Jn  a n d  PeInt f n ( I )  fo r a n y  n 1. B y th e  property

E I J = 1, fo r an y  s >0, there  exists JN  s u c h  th a t  ljN—PI <e. N ow  w e can

take th e  neighborhood U  o f P  su c h  th a t {U, f (U), ••• , f N - 1 (U)}  are disjoint one
another since P e I n t r ( I ) .  L et U l a n d  Ur  b e  t h e  le f t  a n d  r ig h t  h a lf  of the
neighborhood U  o f P  respec tive ly . A nd take small J  a n d  Jg such  tha t Jp c U t ,
L cU r , and p < q .  Since f N  is  a  linear function o n  U  w ith  positive  slope, we
h av e  fn(x )E Ur  f o r  a n y  n 1  a n d  x E t/ L. However, f " ( .1 , ) = - J , •  T h is  is  a
contradiction. Hence f  h a s  no  periodic points.

N e x t assum e t h a t  t h e  itin e ra ry  I ( x )  h a s  p e r io d  N  fo r  som e x I .  L e t
L i =[inf fN m +i(x), sup f N m+J(x)) f o r  j=0, 1, , N - 1 .  E a c h  L i  h a s  positive

M 2 0 77t20
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measure since f  has no  periodic p o in ts . By assumption, we h a v e  L „c I°  o r  L ,
c P  fo r each j. Since f  is homeomorphic on each L ,, we have f (L i )c L i+ ,  for
j=0, 1, •-• , N - 2  and f (L N _DCL o . Hence f N (L i )C L ;  a n d  f m  is homeomorphic
on  each L .  Note that Lo, LI, ••• , L N -1 a re  d is jo in t since f  has no periodic
points. L e t  no=min InIf'(0)G L oI. Then we h av e  Jn o +kNCLo for any k 1.

By Lemma 3.1, there exists a n  interval / * = [1 " + N (0 ), f  n°+2 N(1)) which lies bet-
ween J n ,o + N  and 7Z0-1-2N• However J(1 J* =q 5  for any n1, and this contradicts

CO

to E  J„I =-1. T h is  completes th e  proof.n=1

Now we define L (n)= inf — fn (x )1  for n1. Obviously we h a v e  L (j)>0ser
for 3=1, 2, •••, N  an d  L(N+1)=0 in  th e  periodic c a se . A n d  we have  the  fol-
lowing lemma in  th e  singular case.

Lemma 3.3. L (n )> 0  fo r  any  n>= 1.

Pro o f . Assume that L (M )-=0 for some Then there exists an interval
I=[a, 6 )  such that f m  is homeomorphic on Ï  and fm(x) — , b  a s  x b — .  Thus
th e  sequence { f '( x ) }  k 1 is monotone increasing for any x E L  This show s the
e x is te n c e  o f  a  p o in t  x o e I  such that th e  itinerary I(x o )  has period M .  This
contradicts to Theorem 3.2.

Lemma 3.4. For any  n O  there ex ists a set of non-negative integer 0'1, .12,

••• .in+11 such  that c_,,E Int K i  f o r  i=1, 2, ••• , n + 1 ,  w here K ,, K2, K.+1
are n +1  components of fn(I).

Pro o f . Assume that there exists a  positive  integer M  a n d  a  right open
interval K , which is one of the  components of fm (I), such that c_ i cE Int K  for
any j ( ) .  By Lemma 3.1, we have K =[f P(0), f 0 (1)) where OL<p, q M a n d  p
* q .  Also f i  is homeomorphic on K  and f j ( K )  lie s  between J p + ,  a n d  f v _i  f o r
a n y  j1 .  T hen, for any x EL, and y G f q ,  we have

I P (x )— P (Y ) I G I Jp+i I + I fq+i I ± IP(K) I
=- Y(1.41+141±1K1).

In  the  case  of p > q ,  by Lemma 3.3, we h a v e  L (p — q )> 0 .  So there exists a
positive integer j o such that

min{ 1.4+./ IP (x ) - 130011 < L ( P
4 f o r  any j> J o

Then we have

L ( p - o =  i n f
 z — fP - q(z) I I  P (Y ) — f P ' ' ( Y )  I

I f i (Y) — f i (x ) I + I f i (x ) — fP - q+I (Y) I

However f i(x )EL .,.. ;  a n d  fP - g+J(y)eirp + i ,  so t h e  last expression is less than
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L ( P — q )

• 
T his i s  a contradiction. S im ilarly  w e ge t the sam e result in the

2 
case of p< q .

CO

Let A .= n cl f  " (I). This is  an f-invarient Cantor set b y  L e m m a  3.1 and
71= 1

has null Lebesque m e a su re . Note th a t  A  is  the closure of the orbit of c for
Moreover the next theorem follows.

Theorem 3 .5 . For any  x eA , A  is  the co-limit set of x .  R em ark  that the
co-limit set of x  is  the closure of the orbit of x  for f .

Pro o f . F ix  n ..1 and let mo= I h I. By Lemma 3.4, there  ex ists a positive
integer M  such that each component of f n  (I) contains some point of fc, c_1, •••,
c_m l. Also, for a n y  x  A , there  ex ists a positive integer N >M  satisfying the
following properties :

(1) IX— C-NI< m
2

°

(2) there  exists an open interval U N  s u c h  th a t  x  U N ,  c-N UN, c-,EE UN
for j=0, 1, ••• , N -1 .
Then fk  is  homeomorphic on U N  for k =1, 2, ••• , N .  Therefore w e have

I f k (X ) -C -N + k l< p lx - c _ N t < m °
2

This inequality shows th a t tw o  points f k(X )  and c_ N + k  m u s t  be contained by
same component of f " (I). Hence each component of f l'(I) contains som e point
of {x, f(x), ••• , f N (x )} . This completes the proof. E l

W e call A  a Cantor attractor.

4. Farey fractions

This section describes Farey fractions and some of their properties without
proofs. Farey fractions are closely related to the distribution of the periodic
cases on the param eter plane (p, 1 ) x ( 0 ,  1 ) .

Definition 4.1. The set of Farey fractions of o rd e r  n 1 , denoted F„, is
the set of reduced fractions in the interval [0, 1] with denominater n.

0 1Examples. F,:  T y  T

0 1 1F,. 1 2' 1

0  1 1 2 1
1 3 : l ' 3' 2 ' 3 ' 1

0  1 1 1 2 3 1
F4

1 4 ' 3 ' 2 ' 3 ' 4 '1
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I f  —

a  
< -- consecutive in  som e F, then they satisfy the unimodular relation

b d
bc— ad=1. Conversely, if four non-negative integers a, b, c, d  satisfy bc—ad

a=1, then a n d are  consecutive terms in  Fn, only for

max (b,

By these properties, the next special induction we call Farey induction. A  pro-
position which is defined for all reduced fractions in the interval [0 , 1 ] is true
if  w e check the following two properties. We denote this proposition by P.

(1) Both P(0) and P(1) are true.

(2) P( a + c  )  is true under assuming that both P(—a  )  and P ( - ) are true,
b+d d

where bc— ad=1 and —
a  

'  -c-- G[0, 1].b d

5 .  Distribution of periodic cases and singular cases on the parameter
plane

First, fix the value of 48 w (0, 1). We will investigate the two orbits which
start from  0 and 1, and these orbits may be regarded as the sequences of func-
tions of variable c. This idea is analogous to the investigation of the orbit of
a  critical point of one dimensional endomorphism.

Let
X x— c)+1 if x <c

f (x , c)=--

p(x—c) if x ..c

And define Fn (c) and G ( c )  inductively as follows.

Fi (c)=1— pc , Fn+i(c)=f(F.(c), c),

Gi(c)= 13(1 -  - c) , G.+1(c)=f(G.(c), c) .

Lemma 5 .1 .  ( 1 )  Fn (c) (resp. G n (c)) is a piecewise-linear function and each
An+1_ p

segment of Fn (c) (resp. G n (c)) has the same slope " fo r any n_1.1— p
( 2 )  P is a discontinuity point of Fn (c) (resp. G n (c)) i f  and only i f  there

exists —1 such that P is a fixed point of Fm (c)(resp. G m (c)) for any n -2.

Proof. We shall prove by an induction on n .  It is  trivial for n = 2 . Assume
that (1) and (2) hold fo r n = k .  By definition,

„ I /3 (Fh(c) - - c)+ 1i f  Fk (c)<c
Fk+it.c)=

/3(Fk(c)
—c) if F k (c) c

So F k , i (c) is obviously a  piecewise-linear function and the slope equals to

13(
jelk+213_p
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If F (c ) is continuous at co a n d  co is not a  fixed p o in t o f  F k (c ) , then co i s  a
continuity poin t of Pk-Fi(c). Therefore, if  P  is a  discontinuity point of Fk+i(c),
then P  is a  discontinuity point or fixed point of F k (c). Hence, there exists

such that P  is a  fixed point of Fm (c). Conversely, le t  P  b e  a primitive
fixed point of F m (C) f o r  some 1 m k .  Then P  is a  discontinuity point of
Fm + I (c). By the  following Lemma 5.2, we conclude that P is also a discontinuity
point of Fk + i(c). Similarly we get the same results for Gn (c).

Lemma 5 .2 .  Let P  be a  discontinuity po in t o f F n (c). Then P  is also a
discontinuity point of F,,,(c).

Proof. By definition, we have  F.+1(P±)--= P(F.(P±) — P )± 5 ± where 6., =0
or 1. Assume that F„(P± )* F(P— ) and F.+I(P+)=Fn +I(P — ). Then we have

13(F.(P+)— F.(P— ))=5_-3+.

However Fn (P-E) Fn (P— ) implies 3+ # 3 _ . Therefore we have

p  F n(P+) —  F.(P— )I =1. Hence I Fn(P+) — F.,(P— )I >1 .

This is a contradiction since Fn (P ± )E [0 , 1 ]. 0

Lemma 5 .3 .  For any

F(0+)= Pn - 1 , G,L(04- )== Pn  F„(1— )=1—  ian a n d  Gn(1—)=1—P-1.

Proof. We shall prove by an  induction  on  n. Since F,(c)=1—  Pc, it l is
trivial for n = 1 . Assume that Fk (o+ )--pk -i. By definition, Fk , i (c)=18(Fk(c)—
c) for small c > 0 . Then Pk +1(0+)=PFk (0+)=P k . Similarly we can get other
formulas.

The itinerary of x  was defined in section 1 as follows.

I(x )=.(A (x ), A (f (x )), A( f '(x )), ••.).

This may be regarded as the  sequence of functions of c. So we write

I(x , c)=(A (x ), A( f (x , c)), A( f 2 (x , c)), ••.).

Definition 5.4.

I(x , c-±)-=(A (x), lim  A( f (x , e)), lim A( f 2 (x , e)), ••.).

Each limit certainly exists because of the piecewise-linearity. In particular,

1(0, c ± )=(/° , lim A (F,(e)), lim A (F2(e)), ••.)
e-c± e-c±

and
1(1, c -± )=( /° , lim A(Gi(E)), lim A(G2(e)), ...),E-c± e-c±

where we define exceptionally that A (1)=I°.
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Lemma 5.5. A  discontinuity point of  G (c ) (resp . F„(c )) i s  a  continuity
point of Fm (c) (resp. G.(c)) fo r  any

Pro o f . Assume that e  is  a  fixed point of both G (c )  and  F„,(c). Then we
have fn(1)=e and fm,(0)=.e .  Therefore 0  is a  periodic point and fn(fin - n(0))=-e.
Since fn  is an one to one map on [0, 1], we obtain fm - n(0)=1. T h is  is a  con-
tradiction. 0

T h e  next lemma easily follows from th e  results in  sec tio n s  2  a n d  3 , and
th e  proofs a re  omitted.

L em m a 5 .6 .  ( 1 )  In the singular case, /(0)=/(1).
(2) In the periodic case A (P (0 ))=A (P (1 )) f o r  j=1 , 2, ••• , N - 1  an d  cE

[ f N (1), r ( 0 ) ] .  A lso I(0) has period N+1 and I(1) has saine period without the
f irst term.

Lemma 5 .7 .  ( 1 )  I f  e is  a primitive f ixed p o in t o f Gn (c ), then 1 (0, e— )=
I(1, e—). And these have period n+1.

(2) I f  72 is  a primitive fixed point of F n (c ), then I(0, 72-1-)=I(1, 72+). And
these have period n+1 without the f irst term.

(3) Fin(e—)—G.(e—)=Fm(77+) — G.(77+)= 13 711 '— 131n fo r  any  m>= 1.

Pro o f . Let e  be a prim itive fixed point of Gn (c). Then e  i s  a  continuity
point of G (c ) fo r j=1, 2, ••• , n and of F (c )  fo r  a n y  j1 .  S in c e  fn(1)=e, we
can show that eGInt p(/) for j=1, 2, • •• , n-1 and $EInt f n (1). Therefore this
is  th e  periodic case with period n + 1 . Obviously we h a v e  lim A(G n (c ))= I ' and

urn A ( G . + 1 ( c ) ) = P .  A ls o  w e  h a v e  lirn Gn+i+i(c) -= F(C) f o r  an y  j . 1. Thus

lim A(G+1+,(0)=A(F5(e)). Similarly we obtain lirn A(G,(c))=A(G.7(e)) f o r  j=

1, 2 , . .• ,  n -1  and lim A(F,(c))=- A(F,(e)) fo r a n y  f 1 .  This means that 1(0, e—)

= 1(0, e). Hence we obtain that 1 (0, e—)=I(1, e—) and these have period n+1 by
Lemma 5.6. Since F m (C )  a n d  G7n (e—) have same address fo r  any rrt l ,  we
can sh o w  inductively that F,n (e—)—G n i (e—)=pnl - '— pm% Similarly we get the
same results for a  prim itive fixed point of Fn(c).

T h e  following theorem gives the distribution of the periodic cases.

Theorem 5 .8 .  For any reduced fraction —
n  

(0, 1), there ex ists a closed in-
inserv al 4 ( 71)=E a, Cl satisf y ing the following properties.

(1) a  (resp. e) i s  a  primitive fixed point of G 1(c) (resp. Fn_i(c)).

(2) For any  cE 4 ( 7 1 ) ,  the periodic case is valid w ith period n.

( 3 )  F o r  an y  cEInt Z1C-r—i
n ), Gn-i(c)<c<Fn_i(c)

,and
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rz-1
E s(A(F,(c)))=n—m .

( 4 )  Let .1 - < —s  be consecutive in the set of Farey f ractions o f  some order.p r
T h e n  lirn A(F 1 (c))=1im A(F,(c)) fo r  j= 1 , 2 , ••• , p+ r-2 , where

z i ( lp ) , [a ,  Ç ]  a n d  4 (f  )= [r  (3 ].

Pro o f . W e shall prove by F a re y  induction defined in  section 4. Let

AT
°
 )=(--co, 0] and zIG " )=[1, co). And define 4 ) = [ 1 +

13
13 , 1 +

1
 p w h e re

(2), (3) and (4) hold.
1+48 i r e s  1ie p .  1 + is  a unique fixed point of Gi(c)(resp. F i (c ) ) .  Obviously (1),

Assume that (1), (2), (3) and (4) hold for both LI( )  and

4( where I.< —s
 

are consecutive in th the set of Farey fractions of somep r q+ sorder. Now we must define a  closed interval 4( 
 p  + r  

)  and show that (1), (2),
q+ s (3) and (4) hold for 4 (  
p + r  

). Let 4 ( - - ) = - [cr, ei and 4(1 -)= [r, 3 ]  where a

< e < r < 3 .  By Lemma 5.7, 1 (0, e + )  has period p  without th e  first term  and
1(0, r - )  has period r. By the property (4) and Lemma 5.7, both F (c ) and G (c )
have no fixed points in  (e, r) for 3=1, 2, ••• , p-Er —2. Hence both Fp+ r _i(c) and
Gp+r-i(c) are continuous in (e, r). Using the periodic property,

lim A(Fp+r-i(c))=1im A(F r _1 (c))=1im A(Fr _1 (c ))= P
c-÷F c-r-

and
lim A(Fp + r _1 (c))=1im A(F p _1 (c))=1im A(F p _i (c))= P.
c-br- c - e+

Also Gp+ r _i (c ) has same properties by Lemma 5.7. Thus we conclude that

e<Gp+r-i(e+)<Fp+r-1(e+) a n d  Gp+r-i(r-)<Fp+r-i(r-)<r .

Hence Fp+r-i(c) (resP. Gp+,--i(c)) has a unique fixed point C (resp. A) in  (e, 7')

where e < <  <  r . Now we define 4 (  q + s  ) = [2, C] to  satisfy  (1). For anyp + r
c e 4 ( q+s )  w e can  show th a t c E In tE ( /)  for 1 = 1 , 2 , •-• , p+ r-2  and cEEp
Int fP+r -1 (/). So this is the periodic case with period p + r .  Since is  a  con-
tinuity point of F i (c ) for 1 =1, 2, ••• , p -1 , w e  have

p -2

E C(A(F(e -1- ))) =
J=1

r-1
(Similarly we have E c(A (F ,(r— )))=r— s. Hence, for c Int 4  q + s

i=1 p + r ) '

p +r-1 p +r-1
E  e(A (F,(c)))=1im  E  s(A(F,(c)))
J=1 c-e+ 1=1



164 M . Hata

p -2 r -1
= E E(A(F,(E+)))+1im s(A(Fp_1(c)))+1im s(A(F p (c )))+  E a(A(F,(r — )))

.7=1 c-e+ .1=1

=p+r — q— s .

q+  ss
Finally we consider 4

p -F r
(  g ± s )  an

+ r rd  4 ( s )  where < are consecu-
r  ' p

tive  in  the  se t o f F a rey  frac tio n s o f some order. By Lemma 5.7, 1 (0, C±) has
period p-E r without th e  first t e r m . Therefore we obtain

lim A(F.,(c))=1im A(P;(c))=1im A(F,(c)) f o r  j=  1, 2, ••• , p+r —2
c-c+ c-.7 - c-.E+

lim A(Fp+,-_1(c))=-1°
c-c+

lirn A(Fp + ,_ 1(c))=1im A(Fp_ 1 (c))=1im A(F5 _1(c ))= P
c-e+

lim A(Fp + r (c))=- P
c-c+

lim A(Fp + r (c))=1im A(Fp (c))=1im A(Fp (c))-=P •
c-e+

Moreover we have
lirn A(Fp+r-Fi(c))= 11.m A(F.2(c))
C-c+ c-c+

lim A(Fp+,+,(0)=1im A(Fp + 5 (c))=1im A(Fp + ,(c))=1im A(P,(c))
c-e+

for j=1, 2 , ••• , r - 2 . S im ilarly  w e get t h e  sam e resu lts for LIM  and
4 (  q+  s 

p + r  J •

T h is  proof shows that 40 .
- )n4(—

s \- 0 i f  q - f - . Moreover we can corn-
p r p r

pu te  the  sum of 4 (-9  over all reduced fractions in (0, 1).

Theorem 5.9.

o< (ql p)<1
(p,q)=1

zi (1 ) =1

P ro o f. By Lemma 5.7, we have Fp_i(c)— Gp-i(c)=- 13P- 1 (1 —(3) for

Hence 4 ( =(  1 - 1 3   ) 2 1-19
1329 .  For fixed p - 2, there a re  0(p) reduced frac-p p P

tions with denominator p  in (0, 1), where 0(p) is th e  E u le r 's  function. There-
fore we have

o<(q/p)<1
(P,4)=1

) =-(1— P  ) 2 0 ( p )
PP

le P = 2  1 —  PP

This Lam bert series is equal to 1.
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L et 2' be th e  remainder set ; (0, 1)— U  ZI(4 i s  t h e  s e t  removed
o < (q 1 p )< 1 p(p,q)=1

countable s e t  from C antor se t and  has null Lebesque measure. T h e  following
theorem gives the distribution of the singular cases.

Theorem 5 .1 0 .  The singular case is valid fo r  any  cGT .

Pro o f . We use  the  same nota tions as in  the  proof o f Theorem 5.8. Then
we have

G (c )<F (c )<c  o r  c<G ; (c)<F; (c)

fo r cE(e, r) and  j=1, 2, •-• , p+r —2. Hence, fo r any .7* - 1, we have

G•(c)<F; ( c ) <c  o r  c<G ; (c)<F; (c)

fo r any c E E .  T h is  is th e  singular case.

T h e  coordinates o f  each 4 ( 9- )  will be computed in  section 7.

6. Average firing rate

In  this section  w e w ill define a  number called th e  a v e ra g e  firing rate,
which is analogous to the  ro tation number o f  a  homeomorphism o f th e  circle.

F irst o f  a ll ,  we define this number in  th e  periodic c a s e .  Throughout this
section, fix the  va lue  o f pE(0, 1).

Definition 6 . 1 .  T h e  following value p(x , c) we call the average firing rate.

1  N
p (X , C )= 1 1 M E si ( x )  w here sj (x )=s(A (f i - '(x, c))) .

N— .0 IV  j= 1

In  the  periodic case, by th e  periodicity, this limit certainly exists. And the
next lemma easily follows from Theorem 2.1.

Lemma 6 .2 .  I f  cGLI( 1--n ) ,  then we have p(x , c)=p(0, c) fo r  any  x E[O, 1).

Now we investigate th e  sign itinerary o f 0 . So we write
N

p(c)=p(0, c)=11m — . E s(A (F; (c))) a n d  {si } = fe ; (0)}.
N-0. IV  j= i

Theorem 6 .3 .  p(c)=1— n
ii fo r  a n y  c E  (

7
)  .

Pro o f . By th e  property (3) o f Theorem 5.8, we have
n-1
E E(A(F,(c)))=n—m ..J=1

Hence, by th e  periodicity,

1  n n—mp(c)=—  E s(A (F; (c)))= .n
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Now we will sh o w  th e  ex is ten ce  o f  th e  lim it  p (c ) i n  t h e  singular case.
We need following lemmas.

Lemma 6 . 4 .  Let 16,1, {77,} and {CJ} b e  the sign itineraries for cE4(-q-p ),

ZIC - )  and 4( 1 4 - s )  respectively, where .1 < -s-  are consecutive in  th e  set ofp ± r p r
Farey fractions of som e order. T hen ri,=C ;  for j=1 , 2, ••• r and e,=C r + . ; for
j= 1 ,  2 ,  • • ,  p.

Pro o f . L et LI( ) = [ a ,  e l  and  Z I(f)= [r , 6 ] .  Then {e,} has period p  and

1(0 , e + )  has same period without th e  first te rm . A n d  they satisfy th e  follow-
ing relations.

•6,= lim s(A(F2 _1(c))) f o r  j=1 , 2, ••• , p - i ,
c-e+

s p = 1 ,  a n d  lim s(A(Fp _1(c)))=0 .
c-e+

Sim ilarly {72. }  and 1 (0, r-) have period r ,  and

77i =  lim  e(A(F; _i (c))) fo r any
c-r -

Also we have

Ci =lim s(A(Ff ,(c ))) f o r  j= 1 , 2 , ••• , p + r .
c-e+

Hence

e(A(F5 _1(c)))=1im s(A(Fi_1(c)))=72i f o r  j= 1 , 2 , ••• , r ,

Cr+j
=11111

 S (A (F r+ j- i (C ) ) ) - 7 2r+j - l i j = Ej
c-F+

and Cr+ p = e p = 1 .  T h is  completes th e  proo f. D

Lemma 6 . 5 .  For any  c e 4 (-61-p ) ,  we have

f o r  j=1 , 2 , •••

J = 1 . [ P  - q - 1 - (P  - 0 1  PR1
 —  .7]] for

Pro o f . W e shall prove by F arey  in d u c tio n . F o r  a n y  j 1 , ei = 1  f o r  cE
0 1

)  a n d  s , = 0  f o r  c e 4 ( - f ) .  Assume th a t it  h o ld s  f o r  ZI(1 )  and

Using th e  same notations as in  Lemma 6.4, w e have

Ci =72; =1[W(r, s, j)] f o r  j= 1 , 2 , ••• , r

where we define

W(r, s, j)=r— s-1— (r—s)jd-r[(1--; s
7 ) j ] .

L et (r— s)j=ur+v where Then W (r, s, j)=r— s— l— v. Also, using
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the unimodular relation, we have

(p— q)j-=pu+-177(Pv+1) •

Then we have

w(P+r, q+s, j)—(1+ 11,)wo-, s,

If W(r, s, j)..1, then W (p+r,q+s , j)> 1 (1+2p)>o, since 154. r. If W(r, s, j)

— 1, then W (p+r, q+s, j)5 - 1. Finally, if W(r, s, j)=-0, then W (p+r, q+s, j)
1

= —
r

(1 - - j+ p ).  If r > + 1 ,  then j=p +1 , since (r— s)(p+1)---- r— s — 1 mod r. So

anyway, we have W (p+r, q+s, j)._0 . Hence we have

Ci =1[W(p+r, q+s, j)] f o r  j=1, 2, ••• , r .

Similarly we obtain the  same formula for j=r+1, ••• ,r+p.

Lemma 6.6. For any  ce 4 (-9
1-) ) ,  we have

p fo r  a n y  n 1

Pro o f . We use the notation W (p, q, j) defined in  the  proof o f  Lemma 6.5.

For an y n  1 , w e have 05, [(1— -q- ) n ]  — [(1— -9(n-1)] 5_1. If  R1— -q--) - =

R1 — 1 )( n 1 )] +  1, then

w (p , q, n)>p—q-1—(p—q)n-F(p—q)(n-1)=-1.

Therefore W (p, q, n ) is  no t negative  because it m u st b e  a n  integer. If

R1 — [(1 — (n —1)] , then

W(p, q, n)<p — q- 1— (p — q)n+(p — q)(n - 1) -= - 1.

Hence we obtain

[(1— i.)rd— [(1- 1 ,
p )(n-1)]=1[W(p, q, n)J= .

r.For any irrational number a E (0, 1), we can choose two numbers 
q

  and
P,1

qn n
S  in  the  se t o f Farey fractions with order n so that  a n d  S

na r e  t h e
rn P. r„

best lower and upper approximate values of a respectively. Thus we obtain the
qn sn  

1 Pn r,,
sequences of a.

Corresponding these Farey approximation sequences, there exists a unique

, which we call Farey approximationapproximation sequences of a ;
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parameter value c X w h ic h  lie s  betw een 4 ( q n  )  and J ( )  for any
p. r .

Conversely, fo r  a  given cE E , a  num ber which is approxim ated by corres-
ponding reduced frac tio n s  m u st b e  ir ra tio n a l. So there exists an  one to  one
correspondence between I  and irrational numbers in  (0, 1).

T h e  following theorem shows that this irrational num ber determ ined by a
given c E I  is equal to  the average firing r a t e  in  t h e  s ing u la r case. S o  th is
guarantees the  existence of the  lim it p(c) in  th e  singular case.

Theorem 6 . 7 .  For any cEE, we have e ,= [a m ] fo r  any w here a
.1=1

is  an irrational number corresponding to c.

Pro o f . L et { q n  ,   be  F a re y  approximation sequences. A n d  le t  {7) 7 }

a n d  {CI)} be th e  sign itineraries fo r c E 4 ( q n  )  and J ( s n  )  respectively. A s-
P n r n

9. 9 . 1
s u m e  that < a  <  . T h e n  a . Therefore

P. pn+rn p. P .(p .+ ro
in , [  n .

e, Eri,
.

=  . 1 m] m=  
TL

= [a m ] for =1, 2, ••• , p 7, - 1 .
,= , ,= i p.

Sim ilarly w e obtain th e  sam e  fo rm u la s  fo r  m=1, 2, ••• , 7- 7, - 1  in the case
q .-k s„  < a < s nwhere . Hence i  e ,= [a m ] f o r  m =1, 2, ••• , min (pn, r . ) -1 .
P. - kr. r . 1-1

So w e obtain th e  desired results by passing n  to infinity. 0

T h e  next theorems easily follow from Theorem 6.3 and Theorem 6.7.

Theorem 6 . 8 .  If p (c ) Q, then the periodic case is va lid . If p (c ) Q , then
the singular case is valid.

Theorem 6.9. p(c) is  a continuous monotone decreasing function of c.

In  the  periodic case, p(x, c) is independent o f  x  by L em m a 6 .2 .  A n d  this
is  tru e  fo r the  singular case b y  th e  following theorem.

Theorem 6 .1 0 .  In the singular case, for any (x , c)E [0 , 1)X (0, 1), there exists
the lim it p(x, c) in the definition 6.1. Moreover we have p(x, c)= p(c).

Pro o f . F irs t o f  a ll, a ssu m e  t h a t  x Ecl Jn,= [  fn (1), f n (0)] f o r  some
Then, by Lemma 3.1, we have A( f k(x))= A( f " ( 0 ) )  fo r a n y  k 0. H e n c e  p(x , c)
= p(c). N e x t assum e t h a t  x -= c ,  f o r  s o m e  n 0 .  S in c e  A (f (x ) )= A (c k - . )=
A( f ' ' ( 0 ) )  fo r  le w e h a v e  also p (x , c )=  p (c ). F in a lly  assum e t h a t  x  A
— {Cm } m _ .  F or a n y  k 1 , th e re  e x is ts  a positive in teger nk such that A( f i (x))
=A(fnk+j - 1 (0)) for 1 =0, 1 , ••• , k — 1 . Hence, by Theorem 6.7,

1 k. 1 k1
— E E(A(P -1 (x))) = Te

-
 , ; . E. k +J= --k-([a(n k+ k)i —  Can k1)k .J=1

Therefore w e have
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1 1  k 1
—  —  E s(A (P - 1 (x )))5a+ —

k
.

k k J=1

T h is  completes th e  p r o o f .  D

7. Conjugacy problem

W e say  tha t f  is topologically conjugate to g if g=hofoh - ' for some homeo-
morphism h .  If f(x , c )  is topologically conjugate to f(x , e, A), then obviously,
p(p, c)=p(e, A) where p(p, c) is the average firing rate of f(0, j3, c). Conversely
assume th a t  p(p, c)= p(e, A). T h en  can  w e  co n c lu d e  th a t f(x , P , c ) is topologi-
cally conjugate to f(x, e, A )?  T h e  fo llow ing theorem  answ ers th is question in
th e  singular case.

Theorem 7.1. I f  p(p, c)= p(e, A) EE Q, then f (x , p, c) is topologically conjugate
to f(x, e, A).

Pro o f . W e  sh a ll constract a  homeomorphism h(x). A ssum e t h a t  43<e.
F irst of a ll, w e define h (x ) a t  x=in(1, jS, c) fo r a n y  n a s  follows.

1— e 
h(fn(1))= E e771mai

( 0 )< f  n  ( 0 )

Next define h (x ) on Jn=[ f n (1) , f'1(0)) a s  follows.
,tn -1(1 e )

h (x )= p n (1 _  4 8 ) ( x  f n (1 )) + h( f n (1 )) f o r  xEJ..-1 

Finally  ex tend  h(x) continuously fo r  a ll x 111. T hen  h (x ) is  a  continuous
s tr ic t ly  m onotone increasing function. A l s o  w e  h a v e  h (0 )= 0  a n d  h(1)=
1—e Eeni=1. L et g(x)=hofoh - '(x). Obviously g (x )  h a s  a  u n iq u e  discon-

n i

tinuity point h (c ) .  A ssum e t h a t  c< fP (1 )< f g (1 ). T h e n  h(c)< h fP(1)< h °p (1).
Hence

k
g  12 o p(1)—  goh1f (l)  _  h o f 0 +1(1)— h  f ' ( l ) P  + 1 (0)<f kk (10) <I q+ 1 (0 )  

hof0 (1)—hofP(1) hofq(1)—hofP(1) E e k
JP (0)<I k  /'o f (o)

since f  i s  homeomorphism o n  [fP(1), P(1)]. S im ila rly  w e  o b ta in  th e  same
result in  the  case  where fP(1)<fq(1)<c.

N ext, fo r  x E Int Jr,,

goh(x) — gohofP(1) h o f (x ) — hofP+1(1) e ( f ( x ) — f9 -1- 1(1))

h(x)—hofP(1) h ( x ) —  h  f P ( 1 )  / 9 ( x —fP(1))

B y these  p rop e rtie s , w e  can  con c lu d e  th a t g (x )= f(x , e , h (c )). Therefore we
have 2)=p(e, h(c))€EQ. Now th e  parameter value c a t w h ic h  the average
f ir in g  r a t e  is irra tional is determ ined uniquely  fo r  a  g iven C . H ence 2=h(c).
T h is  completes th e  proof.
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In this theorem, we have

 

1—e2= h(c)=

Hence we have

By Theorem 6.7 the  next theorem easily follows.

Theorem 7.2. The singular case w ith  the av erag e  f irin g  rate  a EE Q is

valid if and only i f  c=1
1-13)2

 [ a m ]p n i .
43 m = 2

Now we can compute the  coordinates of each closed interval J ( - 9--)= [a , e ]

defined in  section 6 . Fix the value of 13  (0 , 1 ) .  By Theorem 6.9, we have

a-=1—lim( 1 7, 13 ) 2 [ r  kji3 k

n - • 0 0 p k=2

e=1 - 11M ( 1—P ) 2 D  la 3 k

P k=2

where V 1  a n d  Is1  a re  irrational upper and lower approximation sequences of

1— -'1 • respectively. Cumputing these limits, we obtain the  following theorem

Theorem 7.3. Let 4 (-9 -= [a , C l. T h e n

p-i(i__,8) 1  (  —
13  )2 [ ( 1 - 1 - 0 ia=1— (p q) prp p i 8 p

C= a-F (
 1 _ P )2

 P Pp i 18  •

We say that f  is topologically semi-conjugate to g  i f  hof=goh fo r  some
continuous monotone onto map h .  We shall prove that f(x, c )  in the singular
case is topologically semi-conjugate to R oi , where R «  is  a  rigid  rotation on the
circle a n d  a  is not only the rotation number of R «  b u t  also the average firing
rate of f(x, c). Moreover, for a  given f(x , 13, c )  in  t h e  singular case, the
rigid rotation R «  which is topologically semi-conjugate to f(x, e) is uniquely
determined. The next lemma was proved in  Theorem 2.1.

Lemma 7 .4 .  In the periodic case with period N+1, f(x, 13, c) is regarded as
a permutation r = o-N+1 - Q  o n  th e  subinterv als: II, I l , • • •  y I N+ 1 where
(1 2 ••• N+1)

and Q is  the number o f 1 .1. N-P1 such that I J CP.\ 2 3 ••• 1

Lemma 7 .5 .  For c E A SI T ) ,  the following correspondence

a=
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C: fi(0) 4—+ {(1— ) j } f o r  j=0, 1, ••• , p— i

is an order isomorphism.

Pro o f . By Theorem 5.8, for c E 4 9 ,  the  periodic case with period p  is

valid and
P
E c(A(F; (c)))=p—q .
.1=1

Therefore the  number of 0 . j . . p - 1  such that P (0 )E P  is  q. S o , by Lemma
7.4, f  is regarded as a permutation 7r= o -P- q. This completes the  proof.

Lemma 7.6 . For ce X , the following correspondence

C: lajl f o r  j ?= „0

is an order isomorphism, where a  is  the average f iring rate of  f (x ,  p ,  c).

Pro o f . Let {   }
'

be Farey approximation sequences of a .  Assume
p n  rn

n qn-l-sn th a t  q   <a< . Then
pn P n + r n

1  
Pn(Pn+rn) 2Pn

for p=0, 1, • • , [ 1  So,

CI: l a b — *  pq :  1. } f o r  j=0, 1, ••• , [  P
2

7'

is an order isom orphism . Now note t h a t  q n < s n  a r e  consecutive in  th e
pn r7?,

set of Farey fractions of order n .  Let 4 ( q n )= E a n , en] and G1( s n  )=Irn, an].
p n rn

Then, for any c1 , c2E (an, 3n),

C2: F(c1) 4- *  F,(c2) f o r  j=0, 1, ••• min (Pn, r 11) - 1

is an order isomorphism. So, for c a f ,  we obtain that

C3 : P(0)4— , fa jl f o r  j=0, 1, ••• , min ( [  P211 [ î ] )] )

is also an  order isom orphism . Similarly we obtain the same result in the case

where  qn + Sn  < a < s n  .  We obtain the  desired result by passing n to in-
Pn+rn rn

finity. C7
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Theorem 7 .7 .  F o r  c GE , f (x , j3 , c )  is topologically  sem i-conjugate to Ra,
w here a  i s  the av erage f iring rate of f(x , 13, c). .Moreover the rigid rotation
R a  i s  uniquely determined.

Pro o f . W e shall constract a  continuous monotone increasing onto map h(x)
such  tha t h. f = R a . h .  L et J= [fn (1 ) , fn (0 )) . F ir s t  o f  a l l ,  define  h(x)=- {an}
for an y  x E A .  S o  h(x) is  constant on each Jn . N ext, fo r  x E A , define

h(x h (  J „ ) )

w h ere  {J.,}  is  a monotone decreasing sequence o f  in te rv a ls  w h ich  converges
to  x .  T h e n  {h( N I  is  a lso  monotone decreasing by Lemma 7.6 and  the  limit
certainly exists. S im ilarly  w e define h(x—) by a monotone increasing sequence
o f intervals which converges to  x .  Since a  i s  a n  irrational num ber, {an} is
d e n se  in  [0 ,  1 1  H en ce  w e  have h(x +)=h(x—) fo r a n y  x E  Â . So, fo r  xeA ,
define

h(x)=h(x+)-=h(x—) .

T h e n  h(0)=h(0+)=0, h(1)-=h(1—)=1 a n d  h (x ) i s  a  continuous monotone in-
creasing onto m ap o n  [0, 1].

N o w  h. f( J )= h(.1.+1)=-  {a(n+1)} and Ra.h(J72)=Ra( {an})= {a(n+1)} since
R (0)=  {an} . So w e have h. f= - R a oh on each Jr,. Also there uniquely exists
x o E A  such  tha t h(x 0)=1—a since 1—a is never equal to {am} for m 1 .  T h e n
w e  h a v e  lim  Ra h(X)=O a n d  lim  R a oh(x)=1. Let { J , }  < {./m,} be monotone

increasing and decreasing sequences o f in te rva ls w hich  converge to  x 0 respec-
tiv e ly . T h e n  w e  have

lim h. )= 0  a n d  lim h. f (J 7, 0=1 .

Therefore ho f(x) h a s  a  u n iq u e  discontinuity point x o. Hence x o = c .  Finally
by  th e  continuity property, fo r any  x E [0, 1 ] ,

 w e  have  h. f(x)=R a .h(x).
Assume th a t  H .f(x )= R rH (x ) f o r  som e continuous m onotone increasing

onto m ap H (x ) .  T hen  H. f(1)=Rp(1)-=p and  Hof(0)=R p(0)= P . Hence we have
H (x)=P fo r  x E L . A ls o  w e  c a n  show th a t H(Jrn )=  {pn} for n 1 .  S o  p must
be  an  irrational num ber since H(x) is continuous. T herefore  w e obta in  H(c)=
1— p. A nd c< J , is equivalent to  {p(pd-4)} <p. H ence p = a .  T h is  completes
th e  p roo f. D

Rem ark that th e  function h(x) gives an one to one correspondence between
Cantor attractor A and I= I—  fan1 1.
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