The symplectic Lazard ring

By
Hirosi Toda and Kazumoto Kozima

(Received Dec. 8, 1980)

§ 0. Introduction

In [16], D. Quillen determined the complex cobordism ring $M U_{*}$ using the formal group theory. This method seems to be very powerful, but is not appliciable directly for the symplectic case.

However there are some works along this line.
Buhštaber-Novikov [7] studied two-valued formal groups and gave some applications to the symplectic cobordism ring $M S p_{*}$.

Gozman [9] and Shimakawa [23] defined the rings $\tilde{\Lambda}_{M U}$ and $\tilde{\Lambda}_{M S p}$ using the total symplectic Pontrjagin class of a certain symplectic vector bundle.

On the other hand, using the Adams spectral sequence, some important results were obtained.

In particular, O$k i t a$ [14] has shown that the Hurewicz map induces an isomorphism

$$
Q\left(M S p_{*} / \text { Torsion }\right) \cong Q\left(P K O_{*}(M S p) / \text { Torsion }\right)
$$

where $Q()$ is the rational indecomposable functor (see $\S 5$).
In this paper, we construct a ring $L M S p$ and a ring homomorphism

$$
\theta: L M S p \longrightarrow M S p_{*} / \text { Torsion }
$$

Our $L M S p$ is defined by the several formal power series and the relations like as the Lazard ring and we can calculate the image of the compositions of θ and some generalized Hurewicz maps. Then the following theorem holds.

Theorem (see §5, Theorem 5.7). θ induces an isomorphism

$$
Q(L M S p / \text { Torsion }) \cong Q\left(M S p_{*} / \text { Torsion }\right) .
$$

(The corresponding result is not true for $\tilde{\Lambda}_{M S p}$, that is,

$$
\left.Q\left(\tilde{\Lambda}_{M S p} / \text { Torsion }\right) \cong Q\left(M S p_{*} / \text { Torsion }\right) .\right)
$$

We can prove also that the image of the composition

$$
L M S p \xrightarrow{\theta} M S p_{*} / \text { Torsion } \xrightarrow{\mu_{K O}} K O_{*} / \text { Torsion } \quad \text { is equal to } \sum_{n \neq 0} K O_{4 n}
$$

This paper is constructed as follows:
In $\S 1$, we recall some notations, especially for the oriented theory.
In $\S 2$, we construct some maps between the projective and the quasiprojective spaces. We note that we use the Becker-Gottlieb transfer and the Becker-Segal theorem. We determine also the homomorphisms induced by these maps on the ordinary cohomology theory.

In §3, we recall some results in Adams [1] for the oriented theories.
In §4, we define the symplectic formal system and the symplectic Lazard ring $L S M p$. We construct also the homomorphism $\theta: L M S p \rightarrow M S p_{*} /$ Torsion and obtain the relation between $L M S p$ and $\tilde{\Lambda}_{M S p}$ in the process constructing θ.

In §5, we obtain some basic relations between the generators of $L M S p$ and prove O Oita's type theorem using these results.

§ 1. Notations

Let \boldsymbol{C} (resp. \boldsymbol{H}) be the field of complex (resp. quaternionic) numbers. In this paper, a vector space over \boldsymbol{H} has the right scaler multiplication.

Let $\boldsymbol{C} P^{n}$ (resp. $\boldsymbol{H} P^{n}$) be the n-th complex (resp. symplectic) projective space.
Let X_{+}be the disjoint sum of a space X and a point $\{\infty\}$.
For a stable map from X to Y, we use the notation such as $f: X \underset{(s)}{\longrightarrow} Y$.
We use the similar notations in Adams [1], Switzer [26] and Conner-Floyd [8] for the oriented theories.

Let E be a complex (resp. symplectic) oriented theory and $\mathscr{I}_{E}(\xi) \in \tilde{E}^{2 n}(M(\xi))$ (resp. $t_{E}(\xi) \in \tilde{E}^{4 n}(M(\xi))$) a Thom class where ξ is an n-dim complex (resp. symplectic) vector bundle and $M(\xi)$ is its Thom space.

We may assume that $\mathscr{T}_{E}(\xi)$ (resp. $t_{E}(\xi)$) is natural for bundle maps, multiplicative and unitary i. e. $\Im_{E}\left(n\right.$-dim trivial bundle) $=\sigma^{-2 n} 1 \in \tilde{E}^{2 n}\left(S^{2 n}\right)$ (resp. $t_{E}(n-\operatorname{dim}$ trivial bundle) $=\sigma^{-4 n} 1 \in \tilde{E}^{4 n}\left(S^{4 n}\right)$) where $\sigma: \tilde{E}^{n+1}(\Sigma X) \xrightarrow{\cong} \tilde{E}^{n}(X)$ is a suspension isomorphism.

Let ξ_{n}^{C} (resp. $\xi_{n}^{\boldsymbol{H}}$) be the canonical line bundle over $\boldsymbol{C} P^{n}$ (resp. $\boldsymbol{H} P^{n}$). Recall that $M\left(\xi_{n}^{C}\right)=\boldsymbol{C} P^{n+1}\left(\right.$ resp. $\left.M\left(\xi_{n}^{H}\right)=\boldsymbol{H} P^{n+1}\right)$.

Let $i_{n}: \boldsymbol{C} P^{n} \rightarrow\left(\boldsymbol{C} \boldsymbol{P}^{n+1}, \infty\right)$ (resp. $i_{n}: \boldsymbol{H} P^{n} \rightarrow\left(\boldsymbol{H} P^{n+1}, \infty\right)$) be the inclusion and $i_{n}^{*}: \tilde{E}^{*}\left(\boldsymbol{C} P^{n+1}\right) \rightarrow E^{*}\left(\boldsymbol{C} P^{n}\right)\left(\right.$ resp. $\left.i_{n}^{*}: \tilde{E}^{*}\left(\boldsymbol{H} P^{n+1}\right) \rightarrow E^{*}\left(\boldsymbol{H} P^{n}\right)\right)$ the induced homomorphism. We define the euler class $x^{E} \in E^{2}\left(\boldsymbol{C} P^{\infty}\right)$ (resp. $y^{E} \in E^{4}\left(\boldsymbol{H} P^{\infty}\right)$) for a complex (resp. symplectic) oriented theory E as $i_{\infty}^{*} \mathscr{I}_{E}\left(\xi_{\infty}^{C}\right)$ (resp. $i_{\infty}^{*} t_{E}\left(\xi_{\infty}^{H}\right)$).

Let $k: S^{2}=\boldsymbol{C} P^{1} \hookrightarrow \boldsymbol{C} P^{\infty}$ (resp. $S^{4}=\boldsymbol{H} P^{1} \hookrightarrow \boldsymbol{H} P^{\infty}$) be the inclusion. Then we can easily show that our euler classes satisfy $k^{*} x^{E}=\sigma^{-2} 1$ (resp. $k^{*} y^{E}=\sigma^{-4} 1$).

So in the case $E=H, x^{H}$ and y^{H} are uniquely determined.
For the definition of the Thom classes in $K, K O, M U$ and $M S p$ theories, we use the same ones in Conner-Floyd [8]. We note that some euler classes in this paper are different from the usual ones in Adams [1] or Switzer [26].

For example, $x^{K}=t^{-1} \cdot\left(1-\zeta^{c}\right)$ where ζ^{c} is the complex Hopf line bundle over $\boldsymbol{C} P^{\infty}$ and $t \in \pi_{2}(K)$ be a generator. We have also $y^{K O}=1-\zeta^{H} \in K S p^{0}\left(\boldsymbol{H} P^{\infty}\right)=$ $K O^{4}\left(\boldsymbol{H} P^{\infty}\right)$ where ζ^{H} is the symplectic Hopf line bundle. (We identify $K S p^{0}()$
and $K O^{4}()$ by the Bott periodicity.) On the other hand, Switzer [26] uses $\zeta^{c}-1$ as the euler class of K-theory and $\zeta^{H}-1$ as that of $K O$-theory.

One can easily show that the Conner-Floyd's definition of $x^{M U}$ and $y^{M S p}$ agrees with that by Adams [1] or Switzer [26].

Let $j: C P^{\infty} \rightarrow B U$ (resp. $j: H P^{\infty} \rightarrow B S$ p) be the natural inclusion.
Let $\beta_{n}^{E} \in E_{2 n}\left(\boldsymbol{C} P^{\infty}\right)$ (resp. $\eta_{n}^{E} \in E_{4 n}\left(\boldsymbol{H} P^{\infty}\right)$) be the dual element of ($\left.x^{F}\right)^{n}$ (resp. $\left(y^{E}\right)^{n}$) and we write $j_{*} \beta_{n}^{E} \in E_{2 n}(B U)$ (resp. $j_{*} \eta_{n}^{E} \in E_{4 n}(B S p)$) by β_{n}^{E} (resp. η_{n}^{E}).

Let $i: \boldsymbol{C} P^{\infty} \cong M U(1) \rightarrow \Sigma^{2} M U$ (resp. $i: \boldsymbol{H} P^{\infty} \cong M S p(1) \rightarrow \Sigma^{4} M S p$) be the canonical inclusion. We put $b_{n}^{E}=\sigma^{-2} i_{*} \beta_{n+1}^{E} \in E_{2 n}(M U)$ (resp. $h_{n}^{E}=\sigma^{-4} i_{*} \eta_{n+1}^{E} \in E_{4 n}(M S p)$).

For brevity, we will often abbreviate E in the case of $E=H$.
Throughout the paper the ring of integers is denoted by Z and the rational numbers by \boldsymbol{Q}.

If R is a ring with unit, then the formal power series ring over R is denoted by $R[[x]]$. If $f(x)=\sum_{i} f_{i} x^{i} \in R[[x]]$ where $f_{i} \in R$, then the coefficient of x^{n} in $f(x)$ is denoted by $[f(x)]_{n}$.

Then the binomial coefficient $\binom{n}{m}$ is equal to $\left[(1+x)^{n}\right]_{m}$.

§ 2. Stable maps

There is a symplectification map $q: \boldsymbol{C} P^{\infty} \rightarrow \boldsymbol{H} P^{\infty}$.
Since q is a fibre bundle whose fibre is S^{2}, there is a Becker-Gottlieb transfer $t: \boldsymbol{H} P_{+}^{\infty} \underset{(s)}{\longrightarrow} \boldsymbol{C} P_{+}^{\infty}$. (See Becker-Gottlieb [5].) Then the next proposition is clear. (See Shimakawa [23], Lemma 1.)

Proposition 2.1. Let x^{H} and y^{H} be the euler classes as in §1. Then $q^{*} y^{H}$ $=-\left(x^{H}\right)^{2}, t^{*}\left(x^{H}\right)^{2 i-1}=0$ and $t^{*}\left(x^{H}\right)^{2 i}=2\left(-y^{H}\right)^{i}$ for $i>0$.

Next we recall the definition of the quasiprojective spaces. (See James [11], Yokota [27].)

Let \boldsymbol{F} be \boldsymbol{C} or \boldsymbol{H} and $S_{\boldsymbol{F}}^{n}$ the unit sphere in \boldsymbol{F}^{n}.
Let $G_{n}(\boldsymbol{C})=U(n)$ and $G_{n}(\boldsymbol{H})=S p(n)$. The quasiprojective space $Q_{n}(\boldsymbol{F})$ is defined to be the space of generalized reflections, that is, the image of $\phi: S_{F}^{n} \times$ $S_{\boldsymbol{F}}^{1} \rightarrow G_{n}(\boldsymbol{F})$ where $\phi(u, q)$ is the automorphism which leaves v fixed if $\langle u, v\rangle=0$ and sends u to $u q$.

We may define $Q_{n}(\boldsymbol{F})$ as the space obtained from $S_{F}^{n} \times S_{F}^{1}$ by imposing the equivalence relation (u, q) $\sim\left(u g, g^{-1} q g\right.$) ($g \in S_{F}^{l}$) and collapsing $S_{F}^{n} \times 1$ to a point.

By the second definition, we can easily show that $Q_{n}(\boldsymbol{C})=\Sigma\left(\boldsymbol{C} P_{+}^{n-1}\right)$.
Put $\widetilde{\boldsymbol{C P}}{ }^{n}=Q_{n}(\boldsymbol{C})$ and $\widetilde{\boldsymbol{H} P^{n}}=Q_{n}(\boldsymbol{H})$. Clearly, we have a symplectification map $\tilde{q}: \widetilde{\boldsymbol{C} P^{\infty}} \rightarrow \widetilde{\boldsymbol{H} P^{\infty}}$.

We define $k_{n}: \Sigma^{2}\left(\boldsymbol{C} P_{+}^{n}\right) \rightarrow B U$ as the composition

$$
\Sigma^{2}\left(\boldsymbol{C} P_{+}^{n}\right)=\Sigma \widetilde{\boldsymbol{C P}}{ }^{n+1} \xrightarrow{\Sigma \tilde{j}} \Sigma U(n+1) \xrightarrow{\Sigma i_{n+1}} \Sigma U \xrightarrow{\iota} B U
$$

where \tilde{j}, i_{n+1} are the natural inclusions and ι is the adjoint map of the equivalence $U \leadsto \Omega B U$.

Define $i_{n,+}: \boldsymbol{C} P_{+}^{n} \rightarrow B U \times \boldsymbol{Z}$ by $i_{n,+} \mid \boldsymbol{C} P^{n}: \boldsymbol{C} P^{n} \rightarrow \boldsymbol{C} P^{\infty} \rightarrow B U \times\{1\}$ and $i_{n,+} \mid\{\infty\}:$ $\{\infty\} \rightarrow B U \times\{0\}$ where all maps are the canonical inclusions.

Let $B^{\prime}: B U \times Z \simeq \Omega^{2} B U$ be the Bott periodicity map.
Lemma 2.2. $k_{n}: \Sigma^{2}\left(\boldsymbol{C} P_{+}^{n}\right) \rightarrow B U$ is homotopic to the adjoint map of the composition $\boldsymbol{C P} P_{+}^{n} \xrightarrow{i_{n,+}} B U \times Z \xrightarrow{B^{\prime}} \Omega^{2} B U$.

Proof. We define $\tilde{k}_{n}: \boldsymbol{C} P_{+}^{n} \rightarrow \Omega U(n+1)$ by

$$
\tilde{k}_{n}([u])(t)(v)=\left(u, e^{2 i \pi t}\right)(v) \text { and } \tilde{k}_{n}(\infty)(t)(v)=v .
$$

Clearly k_{n} is an adjoint map of the composition

$$
C P_{+}^{n} \xrightarrow{\tilde{k}_{n}} \Omega U(n+1) \longrightarrow \Omega U .
$$

We define $b_{n, m}: \frac{U(n+m)}{U(n) \times U(m)} \rightarrow \Omega S U(n+m)$ by

$$
b_{n, m}([A])(t)=\left(\begin{array}{cc}
e^{i \pi t} I_{n} & \\
& \\
& e^{-i \pi t} I_{n}
\end{array}\right) A\left(\begin{array}{cc}
e^{-i \pi t} I_{n} & \\
& \\
& e^{i \pi t} I_{n}
\end{array}\right) t \bar{A} \quad(A \in U(n+m)) .
$$

Notice that

$$
\boldsymbol{C} P^{n}=\frac{U(n+1)}{U(n) \times U(1)} \xrightarrow{\downarrow_{n, 1}} \Omega S U(n+1)
$$

$\lim _{n} \frac{U(2 n)}{U(n) \times U(n)}=B U$ and the Bott map B^{\prime} is the composition

$$
B U \times \boldsymbol{Z} \xrightarrow{\frac{\lim b_{n, n} \times i d}{}} \Omega S U \times \boldsymbol{Z}=\Omega U \cong \Omega^{2} B U .
$$

So we have to show that $\tilde{k}_{n} \cong b_{n, 1}$.
Let $x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n+1}\end{array}\right)$ be the last vector of $A \in U(n+1)$ and $y=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n+1}\end{array}\right) \in C^{n+1}$.
Put

$$
H([A], s)(t)(y)=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots \\
y_{n} \\
e^{-2 i \pi t s} \cdot y_{n+1}
\end{array}\right) \quad \text { if }\langle y, x\rangle=0
$$

and

$$
H([A], s)(t)(x)=\left(\begin{array}{l}
e^{2 i \pi t} \cdot x_{1} \\
e^{2 i \pi t} \cdot x_{2} \\
\vdots \\
e^{2 i \pi t} \cdot x_{n} \\
e^{2 i \pi t(1-s)} \cdot x_{n+1}
\end{array}\right)
$$

Since $H([A], 1)(t)(y)=b_{n, 1}([A])(t)(y)$, this gives a homotopy $\tilde{k}_{n} \cong b_{n, 1}$. Thus (2.2) holds.

By (2.2), we have the following commutative diagram

where B is the adjoint map of the Bott map B^{\prime}.
As in Switzer [26] (16-23), $B_{*} \sigma^{2}\left(\beta_{m-1}^{H}\right)=m \cdot \beta_{m}^{H} \bmod$ decomposable elements.
So we obtain
Proposition 2.4. $k_{\infty *} \sigma^{2} \beta_{m-1}^{H}=m \cdot \beta_{m}^{H}$ mod decomposable elements.
Now we construct a map from $\widetilde{\boldsymbol{H} P^{n}}$ to $\widetilde{\boldsymbol{C P}}{ }^{2 n}$.
Let $z \in \boldsymbol{H}^{n}$ and $z=x+j y$ where $x, y \in \boldsymbol{C}^{n}$. We denote the complexification $c: \boldsymbol{H}^{n} \rightarrow \boldsymbol{C}^{2 n}$ by setting $c(z)=x \oplus y \in \boldsymbol{C}^{2 n}$.

Let $q=a+j b \in H$ where $a, b \in \boldsymbol{C}$. Since $S_{\boldsymbol{c}}^{1}$ is a maximal torus of $S_{\boldsymbol{H}}^{1}$, there is a $g \in S_{H}^{1}$ such that $g^{-1} q g \in S_{c}^{1}$. If $g^{-1} q g=e^{i \pi t}$ where $-1<t<0$, then $(g j)^{-1} q g j$ $=e^{-i \pi t}$. Thus there is a $g \in S_{H}^{1}$ such that $g^{-1} q g=e^{i \pi t}$ where $0 \leqq t \leqq 1$.

So a representative element of $\widetilde{\boldsymbol{H} P^{n}}$ can be taken as $\left(x+j y, e^{i \pi t}\right)$ where $x, y \in C^{n}$ and $0 \leqq t \leqq 1$.

We define $\tilde{t}_{n}: \widetilde{\boldsymbol{H} P^{n}} \rightarrow \widetilde{\boldsymbol{C} P}{ }^{2 n}$ by the equation

$$
\tilde{t}_{n}\left[\left(x+j y, e^{i \pi t}\right)\right]=\left[\left(x \oplus y, e^{2 \pi t}\right)\right] .
$$

Then the following proposition holds.
Proposition 2.5. The following diagram commutes up to homotopy:

Proof. Clearly, by the definitions, we obtain

$$
\tilde{j}[(u, q)] v=\phi(u, q) v=v-u(q-1)\langle u, v\rangle \quad \text { where }\langle u, v\rangle=\sum_{i=1}^{n} \bar{u}_{i} \cdot v_{i} .
$$

So,

$$
\tilde{j}^{\circ} \tilde{t}_{n}\left[\left(x+j y, e^{i \pi t}\right)\right]\left(x^{\prime} \oplus y^{\prime}\right)=x^{\prime} \oplus y^{\prime}+(x \oplus y)\left(e^{2 i \pi t}-1\right)\left\langle x \oplus y, x^{\prime} \oplus y^{\prime}\right\rangle
$$

where $x^{\prime}, y^{\prime} \in \boldsymbol{C}^{n}$. We also have the following equation

$$
\begin{aligned}
& c \circ \tilde{j}\left[\left(x+j y, e^{i \pi t}\right)\right]\left(x^{\prime}+j y^{\prime}\right) \\
= & x^{\prime} \oplus y^{\prime}+(x \oplus y)\left(e^{i \pi t}-1\right)\left\langle x \oplus y, x^{\prime} \oplus y^{\prime}\right\rangle+(-\bar{y} \oplus \bar{x})\left(e^{-i \pi t}-1\right)\left\langle-\bar{y} \oplus \bar{x}, x^{\prime} \oplus y^{\prime}\right\rangle .
\end{aligned}
$$

We define $f_{\theta}\left[\left(x+j y, e^{i \pi t}\right)\right]$ by the equation

$$
\begin{aligned}
& f_{\theta}\left[\left(x+j y, e^{i \pi t}\right)\right]\left(x^{\prime} \oplus y^{\prime}\right) \\
= & x^{\prime} \oplus y^{\prime}+(x \oplus y)\left(e^{i \pi t(2-\theta)}-1\right)\left\langle x \oplus y, x^{\prime} \oplus y^{\prime}\right\rangle \\
& +(-\bar{y} \oplus \bar{x})\left(e^{-i \pi t \theta}-1\right)\left\langle-\bar{y} \oplus \bar{x}, x^{\prime} \oplus y^{\prime}\right\rangle .
\end{aligned}
$$

This gives a homotopy $c \circ \tilde{j} \cong \tilde{j} \circ \tilde{t}_{n}$.
Clearly the following diagram is commutative:

where vertical inclusions are induced by

$$
\boldsymbol{H}^{n}=\boldsymbol{H}^{n} \oplus 0 \hookrightarrow \boldsymbol{H}^{n+1} \quad \text { and } \quad \boldsymbol{C}^{2 n}=\boldsymbol{C}^{2 n} \oplus 0 \hookrightarrow \boldsymbol{C}^{n+2} .
$$

We define $\tilde{t}: \widetilde{\boldsymbol{H} P^{\infty}} \rightarrow \widetilde{\boldsymbol{C} P^{\infty}}$ to be $\frac{\lim }{n} \tilde{t}_{n}$.
Now we determine the homomorphisms $(\Sigma \tilde{q})^{*},(\Sigma \tilde{f})^{*}$. Let M_{B}^{n} (resp. M_{c}^{n}) be the principal S_{H}^{\prime}-(resp. S_{C}^{\dagger}-)bundle

$$
\left.S_{\boldsymbol{H}}^{1} \longrightarrow S_{\boldsymbol{H}}^{n} \longrightarrow \boldsymbol{H} P^{n-1} \quad \text { (resp. } S_{c}^{1} \longrightarrow S_{c}^{n} \longrightarrow \boldsymbol{C} P^{n-1}\right)
$$

We regard \boldsymbol{H} (resp. \boldsymbol{C}) as the $S_{H^{\prime}}^{1}$-(resp. S_{C}^{1}-)module by the adjoint action, and define $\gamma_{\boldsymbol{H}}^{n}$ (resp. γ_{c}^{n}) to be an associated \boldsymbol{H} (resp. \boldsymbol{C}) bundle of $M_{\boldsymbol{H}}^{n}$ (resp. M_{c}^{n}). Clearly $\Sigma \widetilde{\boldsymbol{H P}}^{n}=M\left(\gamma_{\boldsymbol{B}}^{n}\right)$ and $\Sigma \widetilde{\boldsymbol{C P}}{ }^{n}=M\left(\gamma_{\boldsymbol{c}}^{n}\right)$ where $M(E)$ is the Thom space of a vector bundle E.

Let $\boldsymbol{Q}()$ be the stabilize functor $\frac{\lim }{n} \Omega^{n} S^{n}()$ and $j^{\prime}: \boldsymbol{Q}\left(\boldsymbol{H} P^{\infty}\right) \rightarrow B S p$ the induced map from $j: \boldsymbol{H} P^{\infty} \rightarrow B S p$ using the infinite loop space structure of $B S p$. Then by the theorem of Becker-Segal (Becker [4], Segal [22]), j^{\prime} induces an epimorphism of the cohomology theories corresponding to these infinite loop spaces. So we have a map $r: \Sigma \widetilde{\boldsymbol{H} P^{\infty}} \boldsymbol{\rightarrow} \boldsymbol{Q}\left(\boldsymbol{H} P^{\infty}\right)$ which satisfies

$$
\begin{equation*}
\circ \Sigma \tilde{j} \cong j^{\prime} \circ r . \tag{2.6}
\end{equation*}
$$

We may regard r as a stable map $r: \Sigma \widetilde{\boldsymbol{H} P^{\infty}} \underset{(s)}{\longrightarrow} \boldsymbol{H} P^{\infty}$.
Let E be a symplectic oriented theory. For any $b \in \boldsymbol{H} P^{\infty}$ the inclusion $i_{b}:\{b\} \rightarrow \boldsymbol{H} P^{\infty}$ induces $M\left(i_{b}\right): S^{4} \rightarrow M\left(\gamma_{\boldsymbol{H}}^{\infty}\right)$. Using (2.6) and the fact that $\tilde{j}: \widetilde{\boldsymbol{H} P^{\infty}}$ $\rightarrow S p$ gives the cell decomposition of $S p$, we can easily show that $M\left(i_{b}\right)^{*} r^{*} y^{E}$ $=\sigma^{-4} 1$. So $r^{*} y^{E} \in \tilde{E}^{4}\left(M\left(\gamma_{H}^{\infty}\right)\right)$ is a Thom class.

Put $\tau_{H}=r^{*} y^{E} \in \widetilde{H}^{4}\left(\Sigma \widetilde{H P^{\infty}}\right)=\widetilde{H}^{4}\left(M\left(\gamma_{\boldsymbol{H}}^{\infty}\right)\right)$ and $\tau_{C}=\mathscr{T}\left(\gamma_{c}^{\infty}\right)$.
Proposition 2.7. $(\Sigma \tilde{q})^{*}\left(\tau_{H} \cdot y^{m}\right)=(-1)^{m+1} \cdot 2 \cdot \tau_{C} \cdot x^{2 m+1}=(-1)^{m+1} \cdot 2 \cdot \sigma^{-2} x^{2 m+1}$.
Proof. Since our Thom classes are unitary, $\tau_{c} \cdot x^{2 m+1}=\sigma^{-2} x^{2 m+1}$.
Let $D(E)$ (rssp. $S(E)$) be the disk (resp. sphere) bundle of a vector bundle $\pi: E \rightarrow B$.

The $H^{*}(B)$-module structure of $\tilde{H}^{*}(M(E))=H^{*}(D(E), S(E))$ is defined by

$$
(D(E), S(E)) \xrightarrow{\Delta}(D(E), S(E)) \times(D(E), S(E)) \xrightarrow{\pi \times i d} B \times(D(E), S(E))
$$

where Δ is the diagonal.
Since $\Sigma \tilde{q}$ is given by $q^{\prime}: \gamma_{c}^{\infty} \rightarrow \gamma_{\boldsymbol{H}}^{\infty}$ where q^{\prime} is the bundle map over $\boldsymbol{C} P^{\infty} \xrightarrow{q} \boldsymbol{H} P^{\infty}$, the module structure is compatible, i.e.,

$$
\left(\Sigma \tilde{q}^{*} \tau_{H} \cdot y^{m}\right)=\left(\Sigma \tilde{q}^{*} \tau_{H}\right) \cdot q^{*} y^{m}=\left(\Sigma \tilde{q}^{*} \tau_{H}\right) \cdot(-1)^{m} x^{2 m}
$$

So we have to show that $\Sigma \tilde{q}^{*} \tau_{H}=-2 \cdot \tau_{C} \cdot x$. We have a commutative diagram

Let $\left(\tau_{H}\right)^{*} \in \widetilde{H}_{4}\left(\Sigma \widetilde{\boldsymbol{H}}{ }^{\infty}\right)$ be the dual element of τ_{H}. By the duality, we may prove that $\Sigma \tilde{q}_{*} \sigma^{2} \beta_{1}=-2 \cdot\left(\tau_{H}\right)^{*}$. Since $j_{*} r_{*}\left(\tau_{H}\right)^{*}=\eta_{1}$ by the definition of τ_{H}, we have only to prove that $j_{*} r_{*} \Sigma \tilde{q}_{*} \sigma^{2} \beta_{1}=-2 \cdot \eta_{1}$. By the above diagram and (2.6), $j_{*} r_{*} \Sigma \tilde{q}_{*}=B q_{* * *} \Sigma \tilde{j}_{*}$. By (2.1) and (2.4), we have
$B q_{*{ }^{\ell} *} \Sigma \tilde{j}_{*} \sigma^{2} \beta_{1}=B q_{*} k_{\infty *} \sigma^{2} \beta_{1}=B q_{*}\left(2 \cdot \beta_{2}+\right.$ decomposable elements $)=-2 \cdot \eta_{1}$.
Proposition 2.8. $(\Sigma \tilde{q})^{*} \circ(\Sigma \tilde{t})^{*}=\cdot 2$. So we have

$$
\Sigma i^{*}\left(\tau_{c} \cdot x^{m}\right)= \begin{cases}0 & m=2 k \\ (-1)^{k+1} \cdot \tau_{H} \cdot y^{k} & m=2 k+1 .\end{cases}
$$

Proof. If $(\Sigma \tilde{q})^{*} \cdot(\Sigma \tilde{t})^{*}=\cdot 2$, then the second result follows from (2.7). So we have to show that $(\Sigma \tilde{q})^{*} \circ(\Sigma \tilde{t})^{*}=\cdot 2$. There is a commutative diagram

As is well-known $B c_{*}{ }^{\circ} B q_{*}=\cdot 2$ modulo decomposable elements. Since $k_{\infty *}$ is monic, (2.8) is proved.

Proposition 2.9. $\quad r^{*} y^{m}=m \tau_{H} \cdot y^{m-1}(m \geqq 1)$.
Proof. Let $z^{*} \in H_{*}(X)$ be the dual element of $z \in H^{*}(X)$.
Then $\beta_{2 m}=j_{*}\left(x^{2 m}\right)^{*}$ and $\eta_{m}=j_{*}\left(y^{m}\right)^{*}$. So $B q_{*} \beta_{2 m}=(-1)^{m} \cdot \eta_{m}$ by (2.1). We have also $\sum \tilde{q}_{*}\left(\tau_{c} \cdot x^{2 m-1}\right)^{*}=(-1)^{m} \cdot 2 \cdot\left(\tau_{H} \cdot y^{m-1}\right)^{*}$. Then by (2.6), we obtain the following commutative diagram:

where $K O$ is $B O$-spectrum and $\iota_{4}: B S p \rightarrow \Sigma^{4} K O$ the canonical inclusion. Since $k_{\infty *}\left(\tau_{c} x^{2 m-1}\right)^{*}=2 m \cdot \beta_{2 m}+$ decomposable elements, we have

$$
B q_{*} k_{\infty *}\left(\tau_{c} x^{2 m-1}\right)^{*}=(-1)^{m} \cdot 2 m \cdot \eta_{m}+\text { decomposable elements. }
$$

If $r_{*}\left(\tau_{H} y^{m-1}\right)^{*}=\alpha \cdot y_{m}$, then $j_{*} r_{*} \sum \tilde{q}_{*}\left(\tau_{C} x^{2 m-1}\right)^{*}=(-1)^{m} \cdot 2 \alpha \cdot \eta_{m}$.
Since $\iota_{4 *}$ kills the decomposable elements and since $c_{4} * \eta_{m} \neq 0$ (See Switzer [26].), $\alpha=m$. Thus (2.9) is proved.

We put $\overline{\boldsymbol{H} P^{\infty}}=\Sigma^{-1} \widetilde{\boldsymbol{H}}{ }^{\infty}, \bar{q}=\Sigma^{-1} \tilde{q}$ and $\bar{t}=\Sigma^{-1} \tilde{t}$. Then we have the following stable maps:
$\boldsymbol{C} P_{+}^{\infty} \xrightarrow{q} \boldsymbol{H} P_{+}^{\infty} \xrightarrow{t} \boldsymbol{C} P_{+}^{\infty}, \quad \boldsymbol{C} P_{+}^{\infty} \xrightarrow{\bar{q}} \overline{\boldsymbol{H} P_{+}^{\infty}} \xrightarrow{\bar{t}} \boldsymbol{C} P_{+}^{\infty} \quad$ and $\quad \Sigma^{2} \overline{\boldsymbol{H} P^{\infty}} \xrightarrow{r} \boldsymbol{H} P^{\infty}$.
Let E be a symplectic oriented theory. Then we can regard $\tilde{E}^{*}\left(\overline{\boldsymbol{H P}}^{\infty}\right)$ as the $E^{*}\left(\boldsymbol{H} P^{\infty}\right)$-module by the suspension isomorphism $\tilde{E}^{*}\left(\Sigma \widetilde{\boldsymbol{H}} P^{\infty}\right)=\tilde{E}^{*}\left(\Sigma^{2} \overline{\boldsymbol{H} P^{\infty}}\right) \xrightarrow{\sigma^{2}}$ $\tilde{E}^{*-2}\left(\overline{\boldsymbol{H} P^{\infty}}\right)$.

Since $r^{*}: H^{4}\left(\boldsymbol{H} P^{\infty}\right) \rightarrow H^{4}\left(\Sigma \widetilde{\boldsymbol{H} P^{\infty}}\right)$ is an isomorphism,

$$
\sigma^{2} \circ r^{*}: \tilde{E}^{4}\left(\boldsymbol{H} P^{\infty}\right) \longrightarrow \tilde{E}^{4}\left(\Sigma \widetilde{\boldsymbol{H} P^{\infty}}\right) \longrightarrow \tilde{E}^{2}\left(\overline{\boldsymbol{H} P^{\infty}}\right)
$$

is so.

We denote $\bar{y}^{E} \in \tilde{E}^{2}\left(\overline{\boldsymbol{H P}^{\infty}}\right)$ to be $\sigma^{2} r^{*} y^{E}$. Then $\bar{y}^{E} \cdot\left(y^{E}\right)^{m}=\sigma^{2}\left(r^{*} y^{E} \cdot\left(y^{E}\right)^{m}\right)$ (for $m \geqq 0)$ form a free $E_{*}(p t)$-base of $\tilde{E}^{*}\left(\overline{\boldsymbol{H P}}^{\infty}\right)$.

§ 3. Hurewicz homomorphism

Let E and F be the spectra of symplectic oriented theories. Then we have two symplectic classes in $\overparen{E \wedge M S} p^{*}\left(\boldsymbol{H} P^{\infty}\right)$:

$$
y_{L}: \boldsymbol{H} P^{\infty} \xrightarrow{y^{E}} \Sigma^{4} E \xrightarrow{\sim} \Sigma^{4} \wedge E \wedge \Sigma_{0} \xrightarrow{i d \wedge i d \wedge \iota_{M S p}} \Sigma^{4} \wedge E \wedge M S p
$$

and

$$
y_{R}: H P^{\infty} \xrightarrow{y^{M S p}} \Sigma^{4} M S p \xrightarrow{\sim} \Sigma^{4} \wedge \Sigma^{0} \wedge M S p \xrightarrow{i d \wedge \iota_{E} \wedge i d} \Sigma^{4} \wedge E \wedge M S p
$$

where $\iota_{M S p}: \Sigma^{0} \rightarrow M S p$ and $\iota_{E}: \Sigma^{0} \rightarrow E$ are the unit maps.
We write $y^{E}, y^{M S p}$ for y_{L}, y_{R}. We can compare $y^{E}, y^{M S p}$ by the following lemma. (See Adams [1].) Put $h^{E}\left(y^{E}\right)=\sum_{i \geq 0} h_{i}^{E}\left(y^{E}\right)^{i+1}$.

Lemma 3.1. (Adams formula) $y^{M S p}=h^{E}\left(y^{E}\right)$.
By the universality of $M S p$ for symplectic oriented theories, there is

$$
u_{F}: M S p \longrightarrow F \quad \text { such that } \quad u_{F} \cdot\left(y^{M S p}\right)=y^{F} .
$$

Put $u_{F} \cdot h^{E}(y)=\sum_{i \geq 0} u_{F} \cdot h_{i}^{E} y^{i+1} \in E_{*}(F)[[y]]$. By (3.1), we have
Lemma 3.2. $y^{F}=u_{F} \cdot h^{E}\left(y^{E}\right)$.
First, we consider the case of $E=H$. Let $\bar{y}^{M S p}=h u r^{H}\left(\bar{y}^{M S p}\right) \in \overparen{H \wedge M S} p^{2}\left(\overline{\boldsymbol{H P}^{\infty}}\right)$. We can easily show the following propositions by (3.1), (2.7), (2.8) and (2.9).

Proposition 3.3. In $H \wedge M S p-t h e o r y$, we have

$$
q^{*}\left(y^{M S p}\right)^{m}=\left(h\left(-x^{2}\right)\right)^{m} \quad \text { and } \quad t^{*}\left(h\left(-x^{2}\right)\right)^{m}=2\left(y^{M S p}\right)^{m} .
$$

Proposition 3.4 In $H \wedge M S p$-theory, we have

$$
\bar{q}^{*}\left(\bar{y}^{M s_{p}} \cdot\left(y^{u s_{p} p}\right)^{m}\right)=\frac{d}{d x} h\left(-x^{2}\right) \cdot\left(h\left(-x^{2}\right)\right)^{m}
$$

and

$$
\bar{t}^{*}\left(\frac{d}{d x} h\left(-x^{2}\right) \cdot\left(h\left(-x^{2}\right)\right)^{m}\right)=2 \bar{y}^{M S p} \cdot\left(y^{M S p}\right)^{m} .
$$

Next, we consider the case of $E=H \wedge K O$. In $H \wedge K O \wedge M S p$-theory, we have three euler classes $y^{H}, y^{K O}$ and $y^{M S p}$.

By (3.1) and (3.2), we obtain the equation $y^{M S^{p}}=h^{K O}\left(u_{K O} \cdot h^{H}\left(y^{H}\right)\right)$.
We can regard $H_{*}(K O)$ as the subring of $H_{*}(K)=\boldsymbol{Q}\left[t, t^{-1}\right]$, where $t \in H_{2}(K)$ is the generator in Adams [1] and Switzer [26]. In fact we have $c_{*}\left(H_{*}(K O)\right)$ $=\boldsymbol{Q}\left[t^{4}, 2 t^{2}, t^{-4}\right]$ where c_{*} is the monomorphism induced from complexification
$\operatorname{map} c: K O \rightarrow K$.
 that our y^{H} is different in sign from his one.)

Lemma 3.5. In $H \wedge K O \wedge M S p-t h e o r y, y^{M S p}=h^{K O}\left(-t^{-2} \cdot(2 \cdot \cosh (t \sqrt{-y})-2)\right)$.

Put $f(x)=h^{K O}\left(-t^{-2} \cdot(\cdot 2 \cdot \cosh (t x)-2)\right)$ and $\bar{f}(x)=\frac{1}{2} f^{\prime}(x)$. Put also $\bar{y}^{M S_{p}}=$ $h u r^{H \wedge K O}\left(\overline{\boldsymbol{y}}^{M S p}\right) \in \widehat{H \wedge K O \wedge M S p^{2}}\left(\overline{\boldsymbol{H} P^{\infty}}\right)$. The proofs of the following two propositions are similar to those of (3.4) and (3.5).

Proposition 3.3'. In $H \wedge K O \wedge M S p$-theory,

$$
q^{*}\left(y^{M S p}\right)^{m}=(f(x))^{m} \quad \text { and } \quad t^{*}(f(x))^{m}=2\left(y^{M S p}\right)^{m}
$$

Proposition 3.4'. In $H \wedge K O \wedge M S p$-theory,

$$
\bar{q}^{*}\left(\bar{y}^{M S p} \cdot\left(y^{M S p}\right)\right)^{m}=2 \bar{f}(x) \cdot(f(x))^{m}
$$

and

$$
\bar{t}^{*}(\bar{f}(x) \cdot(f(x)))^{m}=\bar{y}^{M S p} \cdot\left(y^{M S p}\right)^{m}
$$

We denote $\operatorname{hur}^{E}: \pi_{*}() \rightarrow E_{*}()$ to be the generalized Hurewicz homomorphism.
Since $h u r^{E}$ is induced from the unit map $\iota_{E}: \Sigma^{0} \rightarrow E$, (3.2) $\sim(3.4)^{\prime}$ give the informations for $h u r^{E}$.

These results will be used in the following sections.

§4. Symplectic formal system and symplectic Lazard ring

Let R be a commutative ring with unit and $R[[X, \bar{X}, Y, \bar{Y}]]$ the formal power series ring with four variables X, \bar{X}, Y and \bar{Y}.

Definition 4.1. A symplectic formal system consists of a formal power series

$$
E(X)=\sum_{i \geq 1} a_{i} \cdot X^{i} \in R[[X]]
$$

and formal power series in $R[[X, \bar{X}, Y, \bar{Y}]] /\left(E(X)-\bar{X}^{2}, E(Y)-\bar{Y}^{2}\right)$,

$$
\begin{aligned}
& F_{k}(X, \bar{X}, Y, \bar{Y})=\sum_{i, j \geq 0} b_{i, j}^{(k)} \cdot X^{i} \cdot Y^{j}+\sum_{i, j \geq 1} c_{i, j}^{(k)} \cdot \bar{X} \cdot X^{i-1} \cdot \bar{Y} \cdot Y^{j-1}, \\
& G_{k}(X, \bar{X}, Y, \bar{Y})=\sum_{i \geqq 1, j \geq 0} d_{i, j}^{(k)} \cdot\left(\bar{X} \cdot X^{i-1} \cdot Y^{j}+\bar{Y} \cdot Y^{i-1} \cdot X^{j}\right) \quad \text { for } \quad \dot{k} \geqq 1
\end{aligned}
$$

which satisfy
(i) (unitary relation) $b_{1,0}^{(1)}=d_{1,0}^{(1)}=1, \quad b_{n, 0}^{(1)}=d_{n, 0}^{(1)}=0$ for $n \neq 1$,
(ii) (associative relation)
$D\left(F_{1}(X, \bar{X}, Y, \bar{Y}), G_{1}(X, \bar{X}, Y, \bar{Y}), Z, \bar{Z}\right)=D\left(X, \bar{X}, F_{1}(Y, \bar{Y}, Z, \bar{Z}), G_{1}(Y, \bar{Y}, Z, \bar{Z})\right)$ for $D=F_{1}$ or G_{1},
(iii) (commutative relation) $b_{i, j}^{(1)}=b_{j, i}^{(1)}, \quad c_{i, j}^{(1)}=c_{j, i}^{(1)}$,
(iv) (differential relation) $c_{1,1}^{(1)}=-2, c_{1, n}^{(1)}=c_{n, 1}^{(1)}=0$ for $n \neq 1$,
(v) (power relation) $F_{k}(X, \bar{X}, Y, \bar{Y})=\left(F_{1}(X, \bar{X}, Y, \bar{Y})\right)^{k}$,

$$
G_{k}(X, \bar{X}, Y, \bar{Y})=G_{1}(X, \bar{X}, Y, \bar{Y}) \cdot F_{k-1}(X, \bar{X}, Y, \bar{Y})
$$

and
(vi) (square relation) $\left(G_{1}(X, \bar{X}, Y, \bar{Y})\right)^{2}=E\left(F_{1}(X, \bar{X}, Y, \bar{Y})\right)$.

Definition 4.2. Let $\Gamma=\left\{E, F_{k}, G_{k}\right\}$ be a symplectic formal system over R. The associated symplectic ring R_{Γ} is the subring of R which is generated by the elements $8 a_{i}, 4 b_{i, j}^{(2 k-1)}, 2 b_{i, j}^{(2 k)}, c_{i, j}^{(k)}, 4 d_{i, j}^{(k)}$ and 1 .

Now we can define the symplectic Lazard ring $L M S p$ as follows. Let S be $Z\left[a_{i}, b_{i, j}^{(k)}, c_{i, j}^{(k)}, d_{i, j}^{(k)}\right]$ where $a_{i}, b_{i, j}^{(k)}, c_{i, j}^{(k)}$ and $d_{i, j}^{(k)}$ are variables, and I the ideal of relations that appear in (i) $\sim(\mathrm{vi})$ of (4.1).

Then we get a universal symplectic formal system over S / I. We denote $\Gamma_{u n i v}$ as this system over S / I and do $L M S p$ as $(S / I)_{\Gamma_{u n i v}}$.

Then clearly, we have
Proposition 4.3. $\Gamma_{u n i v}$ and $L M S p$ are universal for symplectic formal systems and their associated symplectic rings.

We can make $L M S p$ into a graded ring as follows.
Let assign the degree -2 to \bar{X}, \bar{Y} and the degree -4 to X, Y. Let assign also the degree -4 to $E(X)$, the degree $-4 k$ to $F_{k}(X, \bar{X}, Y, \bar{Y})$ and the degree $-4 k+2$ to $G_{k}(X, \bar{X}, Y, \bar{Y})$. Then all the relations (i) $\sim(v i)$ match these gradings. So the ideal I is graded and $L M S p$ is a graded ring.

We note that $a_{i}, b_{i, j}^{(k)}, c_{i, j}^{(k)}$ and $d_{i, j}^{(k)}$ have degrees $4(i-1), 4(i+j-k), 4(i+j-k-1)$ and $4(i+j-k)$, respectively. If a symplectic formal system over a positively graded ring R satisfies such conditions, then we say that Γ is graded.

Example. An easy computation shows $L M S p_{0}=\boldsymbol{Z}$ generated by 1, $L M S p_{4}$ $=\boldsymbol{Z}$ generated by $4 b_{1,1}^{(1)}$ and $L M S p_{8}=\boldsymbol{Z} \oplus \boldsymbol{Z}$ generated by $c_{3,3}^{(1)}$ and $2 b_{2,2}^{(2)}$.

Next we want to construct a symplectic formal system over $H_{*}(M S p)$. Put $f(x)=h\left(-x^{2}\right)$ and $\bar{f}(x)=\frac{1}{2} \frac{d}{d x} h\left(-x^{2}\right)$ where $h(x)=\sum_{i \geq 0} h_{i}^{H} \cdot x^{i+1}$ as in §3. Clearly, $f(x)$ and $\bar{f}(x) \in H_{*}(M S p)[[x]]$.

We denote the symplectic formal system Γ_{H} by setting,

$$
E^{H}(f(x))=(\bar{f}(x))^{2}, \quad F_{k}^{H}(f(x), \bar{f}(x), f(y), \bar{f}(y))=(f(x+y))^{k}
$$

and

$$
G_{k}^{H}(f(x), \bar{f}(x), f(y), \bar{f}(y))=\bar{f}(x+y) \cdot(f(x+y))^{k-1} \quad \text { for } k \geqq 1 .
$$

Then the all the properties except (iv) are almost trivial.
Proposition 4.4. In Γ_{H}, the differential relation holds.
Proof. Put

$$
\begin{aligned}
& F_{1}^{H}(f(x), \bar{f}(x), f(y), \bar{f}(y))=f(x+y) \\
= & \sum_{i, j \geq 0} b_{i, j} \cdot(f(x))^{i} \cdot(f(y))^{j}+\sum_{i, j \geq 1} c_{i, j} \cdot \bar{f}(x) \cdot(f(x))^{i-1} \cdot \bar{f}(y) \cdot(f(y))^{j-1}
\end{aligned}
$$

where $b_{i, j}, c_{i, j} \in H_{*}(M S p)$. Put $y^{2}=0$. Since $\bar{f}(x)=-x+$ higher terms and $f(x)$ $=-x^{2}+$ higher terms and since the unitary relation holds, the above equation becomes

$$
f(x+y)=f(x)+\sum_{i \geq 1} c_{i, 1} \cdot \bar{f}(x) \cdot(f(x))^{i-1} \cdot(-y) .
$$

Since $y^{2}=0$, this means

$$
-2 \bar{f}(x)=-y^{-1} \cdot(f(x+y)-f(x))=\sum_{i \geq 1} c_{i, 1} \cdot \bar{f}(x) \cdot(f(x))^{i-1}
$$

Since $\bar{f}(x) \cdot(f(x))^{i-1}=(-1)^{i} x^{2 i-1}+$ higher terms, we have $c_{1,1}=-2$ and $c_{n, 1}=0$ for $n \neq 1$ inductively. By the commutative relation, $c_{1, n}=0$ for $n \neq 1$. Thus (4.4) is proved.

Then by (4.3), we have a ring homomorphism $\theta^{\prime}: L M S p \rightarrow H_{*}(M S p)$ such that $\theta_{*}^{\prime} \Gamma_{u n i v}=\Gamma_{H}$ where θ_{*}^{\prime} is defined by mapping each corresponding coefficients of $E(X), F_{k}(X, \bar{X}, Y, \bar{Y})$ and $G_{k}(X, \bar{X}, Y, \bar{Y})$.

Proposition 4.5. $\theta^{\prime}\left(8 a_{i}\right), \theta^{\prime}\left(4 b_{i, j}^{(k)}\right), \theta^{\prime}\left(c_{i, j}^{(k)}\right)$ and $\theta^{\prime}\left(4 d_{i, j}^{(k)}\right)$ are in $\operatorname{Im}\left(h u r^{H}: M S p_{*}\right.$ $\left.\rightarrow H_{*}(M S p)\right)$ for all $k \geqq 1$.

Proof. Since $t^{*}\left(\left(\bar{q}^{*} \bar{y}^{M S p}\right)^{2}\right) \in \widetilde{M S p^{*}}\left(\boldsymbol{H} P_{+}^{\infty}\right)$, there is $\alpha_{i} \in M S p_{*}$ such that $\sum_{i=0} \alpha_{i} \cdot\left(y^{M S p}\right)^{i}=t^{*}\left(\left(\bar{q}^{*} \bar{y}^{M S p}\right)^{2}\right)$. If we map this equation into $(\overparen{H \wedge M S} p)^{*}\left(\boldsymbol{H} P_{+}^{\infty}\right)$, then we have

$$
\begin{aligned}
\sum_{i \geq 0} h u r^{H}\left(\alpha_{i}\right) \cdot\left(y^{M S p}\right)^{i} & =t^{*}\left(\left(\bar{q}^{*} \bar{y}^{M S p}\right)^{2}\right)=t^{*}\left((2 \bar{f}(x))^{2}\right)=t^{*}(4 \cdot E(f(x))) \\
& =\sum_{i \geq 0} \theta^{\prime}\left(8 a_{i}\right) \cdot\left(y^{M S p}\right)^{i} \quad \text { by (3.3) and (3.4). }
\end{aligned}
$$

Let $m: \boldsymbol{C} P_{+}^{\infty} \wedge \boldsymbol{C} P_{+}^{\infty} \rightarrow \boldsymbol{C} P_{+}^{\infty}$ be the classifying map of the tensor product of canonical line bundle. Then

$$
(t \wedge t)^{*} m^{*} q^{*}\left(\left(y^{M S p}\right)^{k}\right) \in \widetilde{M S p^{*}}\left(\boldsymbol{H} P_{+}^{\infty} \wedge \boldsymbol{H} P_{+}^{\infty}\right) \approx \widetilde{M S p^{*}}\left(\boldsymbol{H} P_{+}^{\infty}\right) \otimes_{M S p} \widetilde{M S p^{*}}\left(\boldsymbol{H} P_{+}^{\infty}\right) .
$$

Similary we have the following equations:

$$
\begin{gathered}
(\bar{t} \wedge \bar{t})^{*} m^{*} q^{*}\left(\left(y^{M S p}\right)^{k}\right) \in \widetilde{M S p^{*}}\left(\overline{\boldsymbol{H} P^{\infty}} \wedge{\left.\overline{\boldsymbol{H} P^{\infty}}\right) \approx \widetilde{M S p^{*}}\left(\overline{\boldsymbol{H} P^{\infty}}\right) \otimes_{M S p \cdot} \widetilde{M S p^{*}}\left(\overline{\boldsymbol{H} P^{\infty}}\right)}^{(\bar{t} \wedge t)^{*} m^{*} \bar{q}^{*}\left(\bar{y}^{M S p} \cdot\left(y^{M S p}\right)^{k-1}\right) \in \widetilde{M S p^{*}}\left(\overline{\boldsymbol{H} P^{\infty}} \wedge \boldsymbol{H} P_{+}^{\infty}\right) \approx \widetilde{M S p^{*}}\left(\overline{\boldsymbol{H P} P^{\infty}}\right) \otimes_{M S p \cdot} . \widetilde{M S p^{*}}\left(\boldsymbol{H} P_{+}^{\infty}\right)}\right.
\end{gathered}
$$

and
$(t \wedge \bar{t})^{*} m^{*} \bar{q}^{*}\left(\bar{y}^{M S p} \cdot\left(y^{M S p}\right)^{k-1}\right) \in \widetilde{M S p^{*}}\left(\boldsymbol{H} P_{+}^{\infty} \wedge \overline{\boldsymbol{H P}} \bar{m}^{\infty}\right) \approx \widetilde{M S p^{*}}\left(\boldsymbol{H} P_{+}^{\infty}\right) \otimes_{M S p .} \widetilde{M S p^{*}}\left(\overline{\boldsymbol{H P}}{ }^{\infty}\right)$.
Then there are $\beta_{i, j}^{(k), ~} \gamma_{i, j}^{(k)}$ and $\delta_{i,{ }_{2}}^{(k) \in M S} p_{*}$ which satisfy

$$
\sum_{i, j \geq 0} \beta_{i, j}^{(k)} \cdot\left(y^{M S p}\right)^{i} \otimes\left(y^{M S p}\right)^{j}=(t \wedge t)^{*} m^{*} q^{*}\left(\left(y^{M S p}\right)^{k}\right),
$$

$$
\sum_{i, j \geq 1} \gamma_{i, j}^{\left.(k) \cdot\left(\bar{y}^{M S p} \cdot\left(y^{M S p}\right)^{i-1}\right) \otimes\left(\bar{y}^{M S p} \cdot\left(y^{M S p}\right)^{j-1}\right)=(\bar{t} \wedge \bar{t})^{*} m^{*} q^{*}\left(\left(y^{M S p}\right)^{k}\right)\right) .}
$$

and

$$
\left.\sum_{i \geq 1, j \geq 0} \delta_{i, j}^{k}\right) \cdot\left(\bar{y}^{M S p} \cdot\left(y^{M S p}\right)^{i-1}\right) \otimes\left(y^{M S p}\right)^{j}=(\bar{t} \wedge t)^{*} m^{*} \bar{q}^{*}\left(\bar{y}^{M S p} \cdot\left(y^{M S p}\right)^{k-1}\right) .
$$

And clearly

$$
\sum_{i \geq 1, j \geq 0} \delta_{i, j}^{(k)} \cdot\left(y^{M S p}\right)^{j} \otimes\left(\bar{y}^{M S_{p}} \cdot\left(y^{M S_{p}}\right)^{i-1}\right)=(t \wedge \bar{t})^{*} m^{*} \bar{q}^{*}\left(\bar{y}^{M S p} \cdot\left(y^{M S_{p}}\right)^{k-1}\right)
$$

We can easily prove $h u r^{H}\left(\beta_{i, j}^{(k)}\right)=\theta^{\prime}\left(4 b_{i, j}^{(k)}\right), h u r^{H}\left(\gamma_{i, j}^{(k)}=\theta^{\prime}\left(c_{i, j}^{(k)}\right)\right.$ and $h u r^{H}\left(\delta_{i, j}^{(k)}\right)=$ $\theta^{\prime}\left(4 d_{i, j}^{(k)}\right)$ by the similar method used to prove $\operatorname{hur}^{H}\left(\alpha_{i}\right)=\theta^{\prime}\left(8 a_{i}\right)$, using (3.3) and (3.4). Thus (4.5) is proved.

To show $\theta^{\prime}\left(2 b_{i, j}^{(2 k)}\right) \in \operatorname{Im}\left(h u r^{H}\right)$, we need some preparations.
Let $c: H P_{+}^{\infty} \rightarrow B U(2)_{+}$be the classifying map of the complexification $S p(1)$ $\rightarrow U(2)$ and $q: B U(n)_{+} \rightarrow B S p(n)_{+}$that of the quaterniozation $U(n) \rightarrow S p(n)$.

Let $m: B U(2)_{+} \wedge B U(2)_{+} \rightarrow B U(4)_{+}$be the classifying map of the tensor product.

We abbreviate $X_{+} \wedge X_{+} \wedge \cdots \wedge X_{+}$as X_{+}^{n}. Then we denote $m_{4}:\left(\boldsymbol{C} P^{\infty}\right) \rightarrow\left(\boldsymbol{C} P^{\infty}\right)_{+}^{4}$ as the classifying map of the endomorphism μ_{4} of $U(1) \times U(1) \times U(1) \times U(1)$ defined by $\mu_{4}(a, b, c, d)=(a c, a d, b c, b d)$.
 $\rightarrow S p(n)$ as the canonical inclusion.

Then the diagram

commutes.

We denote also conj: $\boldsymbol{C} P_{+}^{\infty} \rightarrow \boldsymbol{C} P_{+}^{\infty}$ as the classifying map of the complex conjugation. Then the diagram

commutes.
If we apply the functor $\widetilde{M S p^{*}(), \text { then we obtain a commutative diagram }}$

where $\Delta_{c}=(i d \wedge$ conj $) \cdot \Delta$.
Put $y_{i}^{M S p}=\pi_{i}^{*} y^{M S p}$. Then there is an isomorphism

$$
\widetilde{M S p^{*}}\left(\left(\boldsymbol{H} P^{\infty}\right)_{+}^{4}\right)=M S p_{*}\left[\left[y_{1}^{M S p}, y_{2}^{M S p}, y_{3}^{M S p}, y_{4}^{M S p}\right]\right] .
$$

As is well-known, there are the symplectic Pontrjagin classes P_{1}, P_{2}, P_{3} and P_{4} such that $\widetilde{M S p^{*}}\left(B S p(4)_{+}\right)=M S p_{*}\left[\left[P_{1}, P_{2}, P_{3}, P_{4}\right]\right]$ and $\left(B i_{4+}\right) * P_{i}$ is the i-th elementary symmetric function on $y_{1}^{M S p}, y_{2}^{M S p}, y_{3}^{M S p}$ and $y_{4}^{M S p}$. (See Switzer [26].)

Put $r_{i}=h u r^{H}(c \wedge c)^{*} m^{*} q^{*} P_{i}(i=1,2,3,4)$. We denote $B_{i, j}^{(k)}$ and $C_{i, j}^{(k)}$ as the elements of $H_{*}(M S p)$ which satisfy

$$
F_{k}^{H}(X, \bar{X}, Y, \bar{Y})=\sum_{i, j \geq 0} B_{i, j}^{(k)} \cdot X^{i} \cdot Y^{j}+\sum_{i, j \geq 1} C_{i, j}^{(k)} \cdot \bar{X} \cdot X^{i-1} \cdot \bar{Y} \cdot Y^{j-1} .
$$

Let denote $x_{i} \in(\overparen{H \wedge M S} p)^{2}\left(\left(\boldsymbol{C} P^{\infty}\right)_{+}^{n}\right)$ for $1 \leqq i \leqq n$ as $\pi_{i}^{*} x$ where $x \in(\overparen{H \wedge M S p})^{2}\left(\boldsymbol{C} P_{+}^{\infty}\right)$ as in $\S 2$. Now we can calculate $(q \wedge q)^{*} r_{i}$.

Lemma 4.7.

(i) $(q \wedge q)^{*} r_{1}=\Sigma 4 B_{i, i}^{(1)} \cdot\left(f\left(x_{1}\right)\right)^{i} \cdot\left(f\left(x_{2}\right)\right)^{j}$,
(ii) $(q \wedge q)^{*} r_{2}=\Sigma 6 B_{i, j}^{(1)}: B_{k, 8}^{(1)} \cdot\left(f\left(x_{1}\right)\right)^{i+k} \cdot\left(f\left(x_{2}\right)\right)^{j+s}$

$$
-\Sigma 2 C_{i, j}^{(1)} \cdot C_{k, s}^{(1)} \cdot E^{H}\left(f\left(x_{1}\right)\right) \cdot E^{H}\left(f\left(x_{2}\right)\right) \cdot\left(f\left(x_{1}\right)\right)^{i+k-2} \cdot\left(f\left(x_{2}\right)\right)^{j+s-2}
$$

and
(iii) $(q \wedge q)^{*} r_{4}=\Sigma B_{i, j}^{(1)} \cdot B_{k, 4}^{(1)} \cdot B_{n, m}^{(1)} \cdot B_{p, q}^{(1)} \cdot\left(f\left(x_{1}\right)\right)^{i+k+n+p} \cdot\left(f\left(x_{2}\right)\right)^{j+s+m+q}$

$$
\begin{aligned}
& -\Sigma 2 B_{i, j}^{(1)} \cdot \dot{B}_{k, s}^{(1)} \cdot C_{n, m}^{(1)} \cdot C_{p, q}^{(1),} \cdot E^{H}\left(f\left(x_{1}\right)\right) \cdot E^{H}\left(f\left(x_{2}\right)\right) \\
& \cdot\left(f\left(x_{1}\right)\right)^{i+k+n+p-2} \cdot\left(f\left(x_{2}\right)\right)^{j+s+m+q-2} \\
& +\Sigma C_{i, j}^{(1)} \cdot C_{k, 8}^{(1)} \cdot C_{n, m}^{(1)} \cdot C_{p, q}^{(1)} \cdot\left(E^{H}\left(f\left(x_{1}\right)\right)\right)^{2} \cdot\left(E^{H}\left(f\left(x_{2}\right)\right)\right)^{2} \\
& \cdot\left(f\left(x_{1}\right)\right)^{i+k+n+p-4} \cdot\left(f\left(x_{2}\right)\right)^{j+s+m+q-4} \cdot
\end{aligned}
$$

Proof. Put
$S_{i}=\left(i\right.$-th elementary symmetric function on $y_{1}^{M S p}, y_{2}^{M S p}, y_{3}^{M S p}$ and $\left.y_{4}^{M S p}\right)$. Then we obtain the equation

$$
\begin{equation*}
(q \wedge q)^{*} r_{i}=h u r^{H} \circ\left(\Delta_{c} \wedge \Delta_{c}\right)^{*} \circ m_{4}^{*} \circ q^{*} \circ\left(B i_{4+}\right)^{*} P_{i}=\left(\Delta_{c} \wedge \Delta_{c}\right)^{*} \circ m_{4}^{*} \circ q^{*} \circ h u r^{H}\left(S_{i}\right) \tag{4.6}
\end{equation*}
$$

Then the results of (4.7) follow from an easy calculation. Since the case (i) \sim (iii) are quite similar, we show the case (i) in detail and omit others.

$$
\begin{aligned}
(q \wedge q)^{*} r_{1} & =\left(\Delta_{c} \wedge \Delta_{c}\right)^{*} m_{4}^{*}\left(f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right) . \quad \text { (by } \\
& =\left(\Delta_{c} \wedge \Delta_{c}\right)^{*}\left(f\left(x_{1}+x_{3}\right)+f\left(x_{1}+x_{4}\right)+f\left(x_{2}+x_{3}\right)+f\left(x_{2}+x_{4}\right)\right)
\end{aligned}
$$

(by the definition of m_{4}.)
Since $(i d \wedge \operatorname{conj} \wedge i d \wedge \operatorname{conj})^{*} x_{i}=(-1)^{i+1} x_{i}$, this equation becomes

$$
\begin{aligned}
(q \wedge q)^{*} r_{1} & =(\Delta \wedge \Delta)^{*}\left(f\left(x_{1}+x_{3}\right)+f\left(x_{1}-x_{4}\right)+f\left(-x_{2}+x_{3}\right)+f\left(x+x_{4}\right)\right) \\
& =f\left(x_{1}+x_{2}\right)+f\left(x_{1}-x_{2}\right)+f\left(-x_{1}+x_{2}\right)+f\left(-x_{1}-x_{2}\right) .
\end{aligned}
$$

Since $f(x)=h\left(-x^{2}\right)=f(-x)$ and $\bar{f}(x)=\frac{1}{2} \frac{d}{d x} h\left(-x^{2}\right)=-\bar{f}(-x)$, we obtain

$$
\begin{aligned}
& (q \wedge q)^{*} r_{1}=2\left(f\left(x_{1}+x_{2}\right)+f\left(x_{1}-x_{2}\right)\right) \\
& \quad=2\left(F_{1}^{H}\left(f\left(x_{1}\right), \bar{f}\left(x_{1}\right), f\left(x_{2}\right), \bar{f}\left(x_{2}\right)\right)+F_{1}^{H}\left(f\left(x_{1}\right), \bar{f}\left(x_{1}\right), f\left(x_{2}\right),-\bar{f}\left(x_{2}\right)\right)\right) \\
& \quad=\Sigma 4 B_{i, j}^{(1)} \cdot\left(f\left(x_{1}\right)\right)^{i} \cdot\left(f\left(x_{2}\right)\right)^{j} .
\end{aligned}
$$

We have another commutative diagram

where $m: B U(2)_{+} \wedge C P_{+}^{\infty} \rightarrow B U(2)_{+}$is the classifying map of the tensor product $U(2) \times U(1) \rightarrow U(2)$ and $m_{2}:\left(\boldsymbol{C} P^{\infty}\right)_{+}^{3} \rightarrow\left(\boldsymbol{C} P^{\infty}\right)_{+}^{2}$ is that of the homomorphism $\mu_{2}: U(1) \times U(1) \times U(1) \rightarrow U(1) \times U(1)$ defined by $\mu_{2}(a, b, c)=(a c, b c)$.

Under the similar notations in (4.7), we obtain

Lemma 4.9.

$$
\begin{aligned}
&(q \wedge q)^{*} \circ h u r^{H} \circ(c \wedge t)^{*} \circ m^{*} \circ q^{*} P_{2}=\Sigma 2 B_{i, j}^{(1)} \cdot B_{k, s}^{(1)} \cdot\left(f\left(x_{1}\right)\right)^{i+k} \cdot\left(f\left(x_{2}\right)\right)^{j+s} \\
&-\Sigma 2 C_{i, j}^{(1)} \cdot C_{k, s}^{(1)} \cdot E^{H}\left(f\left(x_{1}\right)\right) \cdot E^{H}\left(f\left(x_{2}\right)\right) \cdot\left(f\left(x_{1}\right)\right)^{i+k-2} \cdot\left(f\left(x_{2}\right)\right)^{j+s-2} .
\end{aligned}
$$

Since the proof of (4.9) is quite similar to (4.7), we omit this.
We put $s_{2}=h u r^{H} \circ(c \wedge t)^{*} \circ m^{*} \circ q^{*} P_{2}$. Then $r_{2}-2 s_{2} \in \operatorname{Im}\left(h u r^{H}\right)$ and

$$
\begin{aligned}
& \quad(q \wedge q)^{*}\left(r_{2}-2 s_{2}\right)=\Sigma 2 B_{i, j}^{(1)} \cdot B_{k, s}^{(1)} \cdot\left(f\left(x_{1}\right)\right)^{i+k} \cdot\left(f\left(x_{2}\right)\right)^{j+s} \\
& +\Sigma 2 C_{i, j}^{(1)} \cdot C_{k, s}^{(1)} \cdot E^{H}\left(f\left(x_{1}\right)\right) \cdot E^{H}\left(f\left(x_{2}\right)\right) \cdot\left(f\left(x_{1}\right)\right)^{i+k-2} \cdot\left(f\left(x_{2}\right)\right)^{j+s-2} .
\end{aligned}
$$

Since the right side of the above equation is $\Sigma 2 B_{i, j}^{(2)} \cdot\left(f\left(x_{1}\right)\right)^{i} \cdot\left(f\left(x_{2}\right)\right)^{j}$ by the multiplicative relation and since there are elements $\beta_{i, j}^{(2)} \in M S p_{*}$ satisfying $r_{2}-2 s_{2}=\Sigma h u r^{H}\left(\beta_{i, j}^{(2)}\right) \cdot\left(y_{1}^{M S p}\right)^{i} \cdot\left(y_{2}^{M S p}\right)^{j}, \quad 2 B_{i, j}^{(2)}=h u r^{H}\left(\beta_{i, j}^{(2)}\right) \in \operatorname{Im}\left(h u r^{H}\right)$.

Since $2 B_{i, j}^{(2)}=\theta^{\prime}\left(2 b_{i, j}^{(2)}\right)$, we have already proved the following proposition in the case $k=1$.

Proposition 4.10. $\theta^{\prime}\left(2 b_{i, j}^{(2 k)}\right) \in \operatorname{Im}\left(h u r^{H}: M S p_{*} \rightarrow H_{*}(M S p)\right)$ for $k \geqq 1$.
Proof. Put $X=\Sigma B_{i, j}^{(1)} \cdot x_{1}^{i} \cdot x_{2}^{j}, Y=\Sigma C_{i, i}^{(1)} \cdot \bar{x}_{1} \cdot x_{1}^{i-1} \cdot \bar{x}_{2} \cdot x_{2}^{j-1}$ and $\bar{x}_{i}^{2}=E^{H}\left(x_{i}\right)$ for $i=1$ or 2 . Then the coefficients of $(X+Y)^{2}+(X-Y)^{2}$ and those of $\left(X^{2}-Y^{2}\right)^{2}$ at $x_{1}^{i} \cdot x_{2}^{j}$ are in $\operatorname{Im}\left(h u r^{H}\right)$ by the multiplicative relation, $2 B_{i, j}^{(2)} \in \operatorname{Im}\left(h u r^{H}\right)$ and (iii) of (4.7).

Notice that $(X+Y)^{2 k}+(X-Y)^{2 k}=\Sigma 2 B_{i, j}^{(2 k)} \cdot x_{1}^{i} \cdot x_{2}^{j}$ by the multiplicative relation. So, if the following lemma holds, then (4.10) can be proved by induction on k, easily.

Lemma 4.11.

$$
\begin{gathered}
(X+Y)^{2 n}+(X-Y)^{2 n} \in\left(\text { ideal generated by }(X+Y)^{2 m}+(X-Y)^{2 m} \quad(m<n)\right. \\
\left.\quad \text { and by }\left(X^{2}-Y^{2}\right)^{2}\right) .
\end{gathered}
$$

Proof. Put $A=(X+Y)^{2}$ and $B=(X-Y)^{2}$. Then we have only to prove that $A^{n}+B^{n} \in I_{n}=\left(\right.$ ideal generated by $\left.A^{m}+B^{m}(m<n), A B\right)$. Since $A^{n}+B^{n}=(A+B)$ $\left(A^{n-1}+B^{n-1}\right)-A B\left(A^{n-2}+B^{n-2}\right) \in I_{n}$, this is clear.

Since ${ }^{\text {hur }}{ }^{H} \otimes i d$
Since $M S p_{*} \otimes \boldsymbol{Q} \xrightarrow{ } H_{*}(M S p) \otimes \boldsymbol{Q}$ is a monomorphism where \boldsymbol{Q} is the field of rational numbers, and since $H_{*}(M S p)$ is torsion-free, $M S p_{*} /$ Torsion hur H $\longrightarrow H_{*}(M S p)$ can be induced and is monic.

So $M S p_{*} /$ Torsion $\cong \operatorname{Im}\left(h u r^{H}: M S p_{*} \rightarrow H_{*}(M S p)\right)$. By (4.5) and (4.10), $\theta^{\prime}(L M S p)$ $\subset \operatorname{Im}\left(h u r^{H}\right)$. Now the proof of the next theorem is clear.

Theorem 4.12. There is a ring homomorphism $\theta: L M S p \rightarrow M S p_{*} /$ Torsion such that $\theta^{\prime}=h u r^{H} \circ \theta$.

We have some remarks.
(1) K. Shimakawa defined $\tilde{\Lambda}_{M S p} \subset M S p_{*}$ as the subring generated by the coefficients of $(c \wedge c)^{*} \circ m^{*} \circ q^{*} P_{i} \in M S p_{*}\left[\left[y_{1}^{M S p}, y_{2}^{M S p}\right]\right]$ (for $i=1 \sim 4$). (See Shimakawa [23].) His approach was based on N. Ja. Gozman's method. (See Gozman [9].) These are closely related to the theory of 2-valued formal group studied by V. M. Buhštaber, S. P. Novikov and others. They introduced two functions $\Theta_{1}(x, y), \Theta_{2}(x, y) \in\left(M S p_{*} \otimes \boldsymbol{Q}\right)[[x, y]]$ such that

$$
1+\sum_{i=1}^{4}(c \wedge c)^{*} \circ m^{*} \circ q^{*} P_{i}=\left(1+\Theta_{1}\left(y_{1}^{M S p}, y_{2}^{M S p}\right)+\Theta_{2}\left(y_{1}^{M S_{p}}, y_{2}^{M S p}\right)\right)^{2} .
$$

So the coefficients of $2 \Theta_{1}, \Theta_{1}^{2}+2 \Theta_{2}, 2 \Theta_{1} \Theta_{2}$ and Θ_{2}^{2} are included in $M S p_{*}$. (See also Buhštaber [6].) Using our (4.5) and (4.10), one can easily proved that the coefficients of $2 \Theta_{2}$ are in $M S p_{*}$.
(2) If we substitute $M S p$ by $K O$, we have another example of symplectic formal system:

$$
\begin{aligned}
& E(X)=-X+\frac{t^{2}}{4} \cdot X^{2} \\
& F_{k}(X, \bar{X}, Y, \bar{Y})=\left(X+Y-\frac{t^{2}}{2} \cdot X \cdot Y-2 \cdot \bar{X} \cdot \bar{Y}\right)^{k}
\end{aligned}
$$

and
$G_{k}(X, \bar{X}, Y, \bar{Y})=\left(\bar{X}+\bar{Y}-\frac{t^{2}}{2} \cdot(\bar{X} \cdot Y+\bar{Y} \cdot X)\right) \cdot\left(X+Y-\frac{t^{2}}{2} \cdot X \cdot Y-2 \cdot \bar{X} \cdot \bar{Y}\right)^{k-1}$

$$
\text { for } k \geqq 1 \text {. }
$$

If we denote $L K O$ as the associated symplectic ring, then there is a ring homomorphism $\theta: L K O \rightarrow K O_{*} /$ Torsion. One can easily show that

$$
\theta: L K O \cong \sum_{j \geq 0} K O_{4 j}
$$

§ 5. Calculation in L MSp

First, we prove the following theorem.
Theorem 5.1. $\quad \theta^{\prime} \otimes i d: L M S p \otimes \boldsymbol{Q} \rightarrow\left(H_{*}(M S p)\right)_{\Gamma_{H}} \otimes \boldsymbol{Q}$ is an isomorphism. So, $L M S p /$ Torsion $\rightarrow\left(H_{*}(M S p)\right)_{\Gamma_{H}}$ is also an isomorphism.

There are some propositions.
Let $\Gamma=\left\{E, F_{k}, G_{k}\right\}$ be a symplectic formal system over R.
Proposition 5.2. In $R \otimes \boldsymbol{Q}, \sum_{i \geq 0} d_{1, i}^{(1)} \cdot X^{i}=-\sum_{i \geq 1} i \cdot a_{i} \cdot X^{i-1}=-\frac{d}{d X} E(X)$.
Proof. By square relation, we obtain the following equation

$$
\left(G_{1}(X, \bar{X}, Y, \bar{Y})\right)^{2}=\sum_{i=1} a_{i} \cdot\left(F_{1}(X, \bar{X}, Y, \bar{Y})\right)^{i} .
$$

If we put $Y=0$, then $\bar{Y}^{2}=\sum_{i \geq 1} a_{i} \cdot Y^{i}=0$. Then

$$
\begin{aligned}
\left(G_{1}(X, \bar{X}, Y, \bar{Y})\right)^{2} & =\left(\bar{X}+\sum_{i \geq 0} d_{1, i}^{(1)} \cdot X^{i} \cdot \bar{Y}\right)^{2}=\bar{X}^{2}+2 \sum_{i \geq 0} d_{1, i}^{(1)} \cdot \bar{X} \cdot X^{i} \cdot \bar{Y} \\
& =E(X)+\left(2 \sum_{i \geq 0} d_{1, i}^{(1)} \cdot X^{i}\right) \cdot \bar{X} \cdot \bar{Y}
\end{aligned}
$$

On the other hand, if $\bar{Y}^{2}=Y=0$, then we have the following equation:

$$
\sum_{i \geq 1} a_{i} \cdot\left(F_{1}(X, \bar{X}, Y, \bar{Y})\right)^{i}=\sum_{i \geq 1} a_{i} \cdot(X-2 \cdot \bar{X} \cdot \bar{Y})^{i}
$$

$$
=E(X)-\left(2 \sum_{i \geq 1} i \cdot a_{i} \cdot X^{i-1}\right) \cdot \bar{X} \cdot \bar{Y} . \quad \text { Thus (5.2) holds. }
$$

Proposition 5.3. In $R \otimes \boldsymbol{Q}, 2 G_{1}(X, \bar{X}, Y, \bar{Y})=\bar{Y} \cdot\left(\frac{\partial}{\partial Y} F_{1}(X, \bar{X}, Y, \bar{Y})\right)$.

Proof. If we put $Z=0$ on the associative relation

$$
F_{1}\left(F_{1}(X, \bar{X}, Y, \bar{Y}), G_{1}(X, \bar{X}, Y, \bar{Y}), Z, \bar{Z}\right)=F_{1}\left(X, \bar{X}, F_{1}(Y, \bar{Y}, Z, \bar{Z}), G_{1}(Y, \bar{Y}, Z, \bar{Z})\right)
$$

and compare the coefficient at \bar{Z}, then the similar calculations to those in the proof of (5.2) deduce the following equation

$$
\begin{aligned}
& c_{1,1}^{(1)} \cdot G_{1}(X, \bar{X}, Y, \bar{Y}) \\
= & -\left(\Sigma b_{i, j}^{(1)} \cdot X^{i}(2 j) \bar{Y} \cdot Y^{j-1}+\Sigma c_{i, j}^{(1)} \cdot \bar{X} \cdot X^{i-1}\left(\left(\Sigma d_{1, s}^{(1)} \cdot Y^{s}\right) Y^{j-1}+2(j-1) \bar{Y}^{2} Y^{j-2}\right)\right) \\
= & -\left(\sum b_{i, j}^{(1)} \cdot X^{i}(2 j) \bar{Y} \cdot Y^{j-1}+\Sigma c_{i, j}^{(1)} \cdot \bar{X} \cdot X^{i-1}\left(\frac{d}{d Y} E(Y) Y^{j-1}+2(j-1) E(Y) Y^{j-2}\right)\right) .
\end{aligned}
$$

Since $\bar{Y}^{2}=E(Y), \frac{\partial}{\partial \bar{Y}}\left(\bar{Y}^{2}\right)=2 \cdot \bar{Y} \cdot \frac{\bar{Y}}{Y}=\frac{d}{d Y} E(Y)$. So we have

$$
\begin{aligned}
& \Sigma b_{i, j}^{(1)} \cdot X^{i} \cdot 2 \bar{Y} \cdot j \cdot Y^{j-1}+\Sigma c_{i, j}^{(1)} \cdot \bar{X} \cdot X^{i-1}\left(\frac{d}{d Y} E(Y) \cdot Y^{j-1}+2(j-1) E(Y) \cdot Y^{j-2}\right) \\
= & 2 \bar{Y} \cdot\left(\Sigma b_{i, j}^{(1)} \cdot X^{i} \cdot \frac{d}{d Y}\left(Y^{j}\right)+\Sigma c_{i, j}^{(1)} \cdot \bar{X} \cdot X^{i-1} \cdot \frac{d}{d Y}\left(\bar{Y} \cdot Y^{j-1}\right)\right) \\
= & 2 \bar{Y} \cdot \frac{\partial}{\partial Y} F_{1}(X, \bar{X}, Y, \bar{Y}) . \quad \text { Thus (5.3) is proved. }
\end{aligned}
$$

If $\Gamma=\left\{E, F_{k}, G_{k}\right\}$ is a symplectic formal system over a commutative ring R, then the R-algebra $R[[X, \bar{X}, Y, \bar{Y}]] /\left(\bar{X}^{2}-E(X), \bar{Y}^{2}-E(Y)\right)$ has a free R module base $\bar{X}^{s} \cdot X^{n} \cdot \bar{Y}^{s^{\prime}} Y^{m}, \varepsilon=0$ or $1, \varepsilon^{\prime}=0$ or 1 and $n, m \geqq 0$.

So, (5.2) and (5.3) can be interpreted as

$$
\begin{align*}
& d_{i, j}^{(1)}=j \cdot b_{i, j}^{(1)}=i^{-1} \cdot j \cdot d_{j, i}^{(1)}, \tag{5.3}\\
& 2 d_{i, j}^{(1)}=\sum_{j=n+m-2}(n+2 m-2) \cdot a_{n} \cdot c_{i, m}^{(1)} \quad \text { for } \quad j \geqq 1
\end{align*}
$$

and

$$
\begin{equation*}
d_{1, i}^{(1)}=-(i+1) \cdot a_{i+1}, \quad d_{i, 1}^{(1)}=-i^{-1} \cdot(i+1) \cdot a_{i+1} \quad \text { for } \quad i \geqq 1 . \tag{5.2}
\end{equation*}
$$

Let R be a commutative ring which is graded and is connected and Γ be a graded symplectic formal system over R. Let P be the augumentation ideal of R and J be the intersection
$P \cap$ (the subring generated by $\left.a_{i}, b_{i, j}^{(1)}, c_{i, j}^{(1)}, d_{i, j}^{(1)}\right)$.
Proposition 5.4. In $R \otimes \boldsymbol{Q}$,

$$
c_{n, m}^{(1)} \equiv-2\left(d_{n, m-1}^{(1)}+d_{m, n-1}^{(1)}\right)+N(n, m) a_{n+m-1} \quad\left(\bmod J^{2}\right)
$$

for $n, m \geqq 1$ and $(n, m) \neq(1,1)$ where $N(n, m) \in \boldsymbol{Z}$.
Proof. We consider the square relation $\left(G_{1}(X, \bar{X}, Y, \bar{Y})\right)^{2}=E\left(F_{1}(X, \bar{X}, Y, \bar{Y})\right)$. We denote the coefficient at $\bar{X}^{\varepsilon} \cdot X^{n} \cdot \bar{Y}^{s^{\prime}} \cdot Y^{m}$ as []$_{\left(\varepsilon, n, \varepsilon^{\prime}, m\right)}$. If we compare the coefficients at $\bar{X} \cdot X^{n-1} \cdot \bar{Y} \cdot Y^{m-1}$ modulo J^{2}, then we obtain the following equation

$$
\begin{aligned}
& 2\left(d_{n, m-1}^{(1)}+d_{m, n-1}^{(1)}\right) \equiv\left[\left(\bar{X}+\bar{Y}+\sum_{i, j 21} d_{i, j}^{(1)} \cdot\left(\bar{X} \cdot X^{i-1} Y^{j}+\bar{Y} \cdot Y^{i-1} X^{j}\right)\right)^{2}\right]_{(1, n-1,1, m-1)}, \\
= & {\left[\sum_{i, 1} a_{i} \cdot\left(F_{1}(X, \bar{X}, Y, \bar{Y})\right)^{i}\right]_{(1, n-1,1, m-1)} } \\
\equiv & {\left[a_{1} \cdot F_{1}(X, \bar{X}, Y, \bar{Y})+a_{n+m-1} \cdot\left(F_{1}(X, \bar{X}, Y, \bar{Y})\right)^{n+m-1}\right]_{(1, n-1,1, m-1)} } \\
\equiv & a_{1} \cdot c_{n, m}^{(1)}+N(n, m) \cdot a_{n+m-1} \quad\left(\bmod J^{2}\right) \quad \text { for } n, m \geqq 1 \quad \text { and } \quad(n, m) \neq(1,1)
\end{aligned}
$$

where $N(n, m)=\left[\left(F_{1}(X, \bar{X}, Y, \bar{Y})\right)^{n+m-1}\right]_{(1, n-1,1, m-1)}$. If we compare the coefficients at $\bar{X} \cdot \bar{Y}$, then we have $2=c_{1,1}^{(1)} \cdot a_{1}$. Then $a_{1}=-1$ and (5.4) follows from the above equations.

Let A be the subring of R generated by $a_{i}(i \geqq 1)$. Then under the same hypothesis as in (5.4), we have

Proposition 5.5. $J \otimes \boldsymbol{Q} \subset A \otimes \boldsymbol{Q}$. So $R_{\Gamma} \otimes \boldsymbol{Q}=A \otimes \boldsymbol{Q}$.
Proof. First, we will prove $J \otimes \boldsymbol{Q} \subset\left(A+J^{2}\right) \otimes \boldsymbol{Q}$. If we can prove this, then by an easy induction on degree, we can prove (5.5).

By using the second equation of (5.3)', we have

$$
2 d_{i, j}^{(1)} \equiv a_{1} \cdot c_{i, j+1}^{(1)} \cdot(2 j+1) \equiv-(2 j+1) \cdot c_{i, j+1}^{(1)} \quad\left(\bmod J^{2}\right) \quad \text { for } \quad j \geqq 1 .
$$

So we have only to prove that $d_{i, j}^{(1)} \in\left(A+J^{2}\right) \otimes \boldsymbol{Q}$ by (5.3)'.
If $j=1$, then (5.2)' says that $d_{i, j}^{(1)} \in A \otimes \boldsymbol{Q}$ for all $i \geqq 1$. So, we assume that $d_{i, k-1}^{(1)} \in\left(A+J^{2}\right) \otimes \boldsymbol{Q}$ for some $k \geqq 2$ and all $i \geqq 1$.

Since $2 d_{i, k-1}^{(1)} \equiv-(2 k-1) c_{i, k}^{(1)}\left(\bmod J^{2}\right), c_{i, k}^{(1)} \in\left(A+J^{2}\right) \otimes \boldsymbol{Q}$ for all $i \geqq 1$. On the other hand, $c_{i, k}^{(1)} \equiv-2\left(d_{i, k-1}^{(1)}+d_{k, i-1}^{(1)}\right)\left(\bmod A+J^{2}\right)$ by (5.4). So $d_{k, i-1}^{(1)} \in\left(A+J^{2}\right) \otimes \boldsymbol{Q}$ for all $i \geqq 2$. And we have $d_{k, i-1}^{(1)}=(i-1) \cdot b_{k, i-1}^{(1)}=(i-1) \cdot k^{-1} \cdot k \cdot b_{i-1, k}^{(1)}=(i-1) \cdot k^{-1} \cdot d_{i-1, k}^{(1)}$ for all $i \geqq 2$ by the first equation of (5.3)'.

Thus by induction on k, we have $d_{i, j}^{(1)} \in\left(A+J^{2}\right) \otimes \boldsymbol{Q}$.
Now we can prove (5.1). Let $T=\boldsymbol{Q}\left[t_{2}, t_{3}, \cdots, t_{k}, \cdots\right]$ and $\alpha: T \rightarrow L M S p \otimes \boldsymbol{Q}$ the homomorphism defined by $\alpha\left(t_{i}\right)=a_{i}$ for $i \geqq 2$. Put $t_{1}=-1$. We assign the degree $4(i-1)$ to t_{i}. Then α is graded and is an epimorphism by (5.5).

We consider the following composition

$$
T \xrightarrow{\alpha} L M S p \otimes \boldsymbol{Q} \xrightarrow{\theta^{\prime}}\left(H_{*}(M S p)\right)_{\Gamma_{H}} \otimes \boldsymbol{Q} \subset^{\kappa} H_{*}(M S p) \otimes \boldsymbol{Q} .
$$

By the definition of Γ_{H}, we have a square relation $(\bar{f}(x))^{2}={ }_{i<1} \theta \circ \alpha\left(t_{i}\right) \cdot(f(x))^{i}$ where $f(x)$ and $\bar{f}(x)$ are as in $\S 4$. So, we obtain the following equation

$$
\left(\sum_{i \geq 1}(-1)^{i} \cdot i \cdot h_{i-1} \cdot x^{2 i-1}\right)^{2}=\sum_{i \geq 1} \theta^{\prime} \circ \alpha\left(t_{i}\right) \cdot\left(\sum_{i \geq 1}(-1)^{j} h_{j-1} \cdot x^{2 j}\right)^{i} .
$$

Let $D=\left(\text { the ideal generated by }\left\{h_{i}\right\}(i \geqq 1)\right)^{2}$. If we compare the coefficients at $x^{2 i}$ modulo D, then we obtain easily $\theta^{\prime} \circ \alpha\left(t_{i}\right) \equiv-(2 i-1) h_{i-1}$ modulo D for $i \geqq 2$. Thus $\kappa^{\circ} \theta^{\prime} \circ \alpha: T \rightarrow H_{*}(M S p) \otimes \boldsymbol{Q}=\boldsymbol{Q}\left[h_{1}, h_{2}, \cdots, h_{k}, \cdots\right]$ is an isomorphism.

Since α and θ^{\prime} are surjective, we can easily conclude that $\theta^{\prime}: L M S p \otimes \boldsymbol{Q} \rightarrow$
$\left(H_{*}(M S p)\right)_{\Gamma_{H}} \otimes \boldsymbol{Q}$ is an isomorphism.
Let L_{*}, M_{*} be graded rings which are commutative, unitary and free as modules. Then we denote the rational indecomposable module $Q\left(L_{*}\right)$ as the quotient $L_{*} / L_{*} \cap D_{*}$ where D_{*} is the ideal of all decomposable elements in $L_{*} \otimes \boldsymbol{Q}$.

If $f: L_{*} \rightarrow M_{*}$ is a ring homomorphism, then it gives the induced homomorphism $Q(f): Q\left(L_{*}\right) \rightarrow Q\left(M_{*}\right)$.

O$k i t a[14]$ has studied $Q\left(M S p_{*} /\right.$ Torsion $)$ in detail. He determined completely the image of $Q\left(M S p_{*} /\right.$ Torsion $)$ in $Q\left(H_{*}(M S p)\right)$ by $Q\left(h u r^{H}\right)$.

We use the same notation $h_{i} \in Q\left(H_{*}(M S p)\right)$ for the quotient image of $h_{i} \in$ $H_{4 i}(M S p)$. Clearly $Q\left(H_{*}(M S p)\right)$ is generated freely by $h_{i}(0 \leqq i)$.

Then Ōkita [14] has proved the following theorem. (See Ōkita [14], Theorem 1.1, Propositions 4.1, 4.2 and 4.3.)

Theorem 5.6. (Ōkita) $\operatorname{Im} Q\left(h u r^{H}\right)$ is generated freely by $2^{s_{i}} \cdot t_{i} \cdot h_{i}$ for $i \geqq 0$ where s_{i} and t_{i} are integers defined as follows:

$$
\begin{aligned}
& s_{i}= \begin{cases}2 & \text { if } i \equiv 0(\bmod 2), \quad i \neq 2^{j} \text { for any } j \\
4 & \text { if } i=2^{j} \text { for some } j \\
4 & \text { if } i \equiv 1(\bmod 2), i \neq 2^{j}-1 \text { for any } j \\
8 & \text { if } i=2^{j}-1 \text { for some } j,\end{cases} \\
& t_{i}= \begin{cases}p & \text { if } 2 i+1 \text { is a power of an odd prime } p \\
1 & \text { otherwise } .\end{cases}
\end{aligned}
$$

We have a commutative diagram

Now we can prove the following theorem.
Theorem 5.7. Im $Q\left(h u r^{H}\right)=Q\left(\left(H_{*}(M S p)\right)_{\Gamma_{H}}\right)$. So $Q(\theta): Q(L M S p /$ Torsion $) \rightarrow$ $Q\left(M S p_{*} /\right.$ Torsion $)$ is an isomorphism.

Proof. Since $\theta^{\prime}: L M S p /$ Torsion $\rightarrow\left(H_{*}(M S p)\right)_{\Gamma_{H}}$ is an isomorphism, the first statement deduces the second one. So we have only to determine $Q\left(\left(H_{*}(M S p)\right)_{\Gamma_{H}}\right)$.

Let $B_{i, j}$ and $C_{i, j}$ be the elements in $H_{*}(M S p)$ satisfying

$$
f(x+y)=\sum_{i, j \geq 0} B_{i, j} \cdot(f(x))^{i} \cdot(f(y))^{j}+\sum_{i, j \geq 1} C_{i, j} \cdot \bar{f}(x) \cdot(f(x))^{i-1} \cdot \bar{f}(y) \cdot(f(y))^{j-1}
$$

where f, \bar{f} are as in §4. If we compare the coefficients at $x^{2 n} \cdot y^{2 m}$, then we have

$$
\begin{equation*}
B_{n, m}=\binom{2 n+2 m}{2 n} h_{n+m-1} \quad \text { in } \quad Q\left(H_{*}(M S p)\right) . \tag{5.8}
\end{equation*}
$$

Also, if we compare the coefficients at $x^{2 n-1} \cdot y^{2 m-1}$, then we have easily

$$
\begin{equation*}
C_{n, m}=-\binom{2 n+2 m-2}{2 n-1} h_{n+m-2} \quad \text { in } \quad Q\left(H_{*}(M S p)\right) \tag{5.9}
\end{equation*}
$$

So, if the following lemma can be proved, then (5.6) deduces the first statement of (5.7).

Let S be a set of integers. Then we denote the greatest common divisor of all elements in S by $\operatorname{GCD}(S)$.

Lemma 5.10.
(1) $\quad \operatorname{GCD}\left(\left.\binom{2 N+2}{2 n-1} \right\rvert\, 1<n<N+1\right)$

$$
\begin{cases}\equiv 2(\bmod 4) & \text { if } N \equiv 0(\bmod 2), \quad N \neq 2^{j} \text { for any } j \\ \equiv 4(\bmod 8) & \text { if } N=2^{j} \text { for some } j,\end{cases}
$$

(2) $4 \cdot \operatorname{GCD}\left(\left.\binom{2 N+2}{2 n} \right\rvert\, 0<n<N+1\right)$

$$
\begin{cases}\equiv 4(\bmod 8) & \text { if } N \equiv 1(\bmod 2), \quad N \neq 2^{j}-1 \text { for any } j \\ \equiv 8(\bmod 16) & \text { if } N=2^{j}-1 \text { for some } j \text { and }\end{cases}
$$

(3) $\operatorname{GCD}\left(\left.\binom{2 N+2}{n} \right\rvert\, 1<n<2 N+1\right)$

$$
\begin{cases}=2^{s} \cdot p & \text { for some } s \text { if } 2 N+1 \text { is a power of an odd prime } p \\ =2^{s} & \text { for some } s \text { otherwise. }\end{cases}
$$

The proof of (5.10) is easy but tedious. So, we prove only the first statement of (1). The proofs of the rest are quite similar.

We may put $N=2^{a} \cdot(2 b+1)$ where a, b are positive integers. Then we have the equation

$$
\binom{2^{a+1}(2 b+1)}{2 n-1}=\left[(1+t)^{2 a+1}(2 b+1)+2\right]_{2 n-1} \equiv\left[\left(1+t^{2}\right)^{2 a(2 b+1)+1}\right]_{2 n-1} \equiv 0 \quad(\bmod 2)
$$

where t is a variable. On the other hand, we have

$$
\binom{2^{a+1}(2 b+1)+2}{2^{a+1}+1}=\binom{2^{a+1}(2 b+1)}{2^{a+1}+1}+2\binom{2^{a+1}(2 b+1)}{2^{a+1}}+\binom{2^{a+1}(2 b+1)}{2^{a+1}-1} .
$$

If q is an integer, then we have also

So, $\binom{2^{a+1}(2 b+1)+2}{2^{a+1}+1} \equiv 2\binom{2^{a+1}(2 b+1)}{2^{a+1}}(\bmod 4)$. Since as is well-known $\binom{2^{a+1}(2 b+1)}{2^{a+1}}$ $\equiv 1(\bmod 2)$, the result follows.

Department of Mathematics, Kyoto University

References

[1] J.F. Adams, Stable homotopy and generalized homology, Univ. of Chicago, Chicago (1970).
[2] J.F. Adams, A.S. Harris and R.M. Switzer, Hopf algebras of cooparations for real and complex K-theory, Proc. London Math. Soc. (3), 23 (1971), 385-408.
[3] S. Araki, Typical formal groups in complex cobordism and K-theory, Lectures in Math. 6, Kyoto Univ. (1973).
[4] J.C. Becker, Characteristic classes and K-theory, Lecture Notes in Math. 428 (1978), 132-143.
[5] J.C. Becker and D.H. Gottlieb, The transfer map and fibre bundles, Topology, 14 (1975), 1-13.
[6] V.M. Buhštaber, Topological applications of the theory of two-valued formal groups, Izv. Akad. Nauk SSSR Ser. Mat., 42 (1978), (Math. USSR Izv., 12 (1978), 125-177).
[7] V.M. Buhštaber and S.P. Novikov, Formal groups, power systems and Adams operators, Mat. Sb., 84 (1971), 81-118 (Math., USSR Sb., 13 (1971), 80-116).
[8] P.E. Conner and E.E. Floyd, The relation of cobordism to K-theory, Lecture Notes in Math. 28, Spriger Verlag.
[9] N.Ja. Gozman, On the image of self-conjugate cobordism ring in the complex and unoriented cobordism rings, Dokl. Akad. Nauk SSSR, 216 (1974) (Soviet Math. Dokl., 15 (1974), 953-956).
[10] A. Hattori, Integral characteristic numbers for weakly almost complex manifolds, Topology, 5 (1966), 259-280.
[11] I. M. James, The topology of Stiefel manifolds, London Math. Soc. Lecture note series 24 (1976).
[12] M. Lazard, Sur les groupes de Lie formels à un paramètre, Bull. Soc. Math. France, 83 (1955), 251-274.
[13] S.P. Novikov, The methods of algebraic topology from the viewpoint of cobordism theories, Izv. Akad. Nauk SSSR, Ser. Mat., 31 (1967), 855-951 (Math. USSR Izv., 1 (1967), 827-913).
[14] R. $\overline{\text { O}}$ kita, On the MSp Hattori-Stong problem, Osaka J. Math., 13 (1976), 547-566.
[15] D. Quillen, On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc., 75 (1969), 1293-1298.
[16] D. Quillen, Elementary proofs of some results of cobordism theory using Steenrod oparations, Advances in Math., 7 (1971), 29-56.
[17] N. Ray, A note on the symplectic bordism ring, Bull. London Math. Soc., 3 (1971), 159-162.
[18] N. Ray, Indecomposables in Tors MSp ${ }_{*}$, Topology, 10 (1971), 261-270.
[19] N. Ray, Realizing symplectic bordism classes, Proc. Camb. Phil. Soc., 71 (1972), 301-305.
[20] D. M. Segal, Divisibility conditions on characteristic numbers of stably symplectic manifolds, Proc. Amer. Math. Soc., 27 (1971), 411-415.
[21] D. M. Segal, Halving the Milnor manifolds and some conjecture of Ray, Proc. Amer. Math. Soc., 39 (1973), 625-628.
[22] G.B. Segal, The stable homotopy of complex projective space, Quart. J. Math. Oxford Ser., 24 (1973), 1-5.
[23] K. Shimakawa, Remarks on the coefficient ring of quaternionic oriented cohomology theories, RIMS, Kyoto Univ., 12 (1976), 241-254.
[24] R.E. Stong, Relations among characteristic number I, Topology, 4 (1965), 267-281.
[25] R.E. Stong, Some remarks on symplectic cobordism, Ann. of Math., 86 (1967), 425-433.
[26] R. M. Switzer, Algebraic topology-homotopy and homology, Springer Verlag (1975).
[27] I. Yokota, On the cellular decompositions of unitary groups, J. Inst. Poly. Osaka City Univ., 7 (1956), 39-49.
[28] I. Yokota, On the homology of classical Lie groups, J. Inst. Poly. Osaka, City Univ., 8 (1957), 93-120.

