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§0. Introduction

In [16], D. Quillen determined the complex cobordism ring MUy using the
formal group theory. This method seems to be very powerful, but is not appli-
ciable directly for the symplectic case.

However there are some works along this line.

Buhstaber-Novikov [7] studied two-valued formal groups and gave some
applications to the symplectic cobordism ring MSp.

Gozman [9] and Shimakawa [23] defined the rings 4 4y and 1 usp using the
total symplectic Pontrjagin class of a certain symplectic vector bundle.

On the other hand, using the Adams spectral sequence, some important
results were obtained.

In particular, Okita [14] has shown that the Hurewicz map induces an
isomorphism

Q(MSps/Torsion)=Q(PKO«(MSp)/Torsion)

where Q( ) is the rational indecomposable functor (see §5).
In this paper, we construct a ring LMSp and a ring homomorphism

6:LMSp —> MSpy/Torsion.

Our LMSp is defined by the several formal power series and the relations
like as the Lazard ring and we can calculate the image of the compositions of
6 and some generalized Hurewicz maps. Then the following theorem holds.

Theorem (see §5, Theorem 5.7). @ induces an isomorphism

Q(LMS p/Torsion)= Q(MS p4/Torsion) .

(The corresponding result is not true for A usp, that is,
Q(A y s,/ Torsion) & Q(MS ps/Torsion) .)

We can prove also that the image of the composition

[/
LMSp —> MSp«/Torsion ﬂ_xg KOy /Torsion is equal to 22]0 KO,,.
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This paper is constructed as follows:

In §1, we recall some notations, especially for the oriented theory.

In § 2, we construct some maps between the projective and the quasiprojective
spaces. We note that we use the Becker-Gottlieb transfer and the Becker-Segal
theorem. We determine also the homomorphisms induced by these maps on
the ordinary cohomology theory.

In §3, we recall some results in Adams [1] for the oriented theories.

In §4, we define the symplectic formal system and the symplectic Lazard
ring LSMp. We construct also the homomorphism 6 : LMSp— MS ps/Torsion
and obtain the relation between LMSp and A usp in the process constructing 4.

In §5, we obtain some basic relations between the generators of LMSp and
prove Okita’s type theorem using these results.

§1. Notations

Let C (resp. H) be the field of complex (resp. quaternionic) numbers. In
this paper, a vector space over H has the right scaler multiplication.

Let CP™ (resp. HP™) be the n-th complex (resp. symplectic) projective space.

Let X, be the disjoint sum of a space X and a point {co}.

For a stable map from X to Y, we use the notation such as f: X—Y.

(s)

We use the similar notations in Adams [1], Switzer [26] and Conner-Floyd
[8] for the oriented theories.

Let E be a complex (resp. symplectic) oriented theory and & E(S)EE“(M(E))
(resp. tE(é)ebN?“(M(&))) a Thom class where § is an n-dim complex (resp. sym-
plectic) vector bundle and M(§) is its Thom space.

We may assume that T g(§) (resp. tg(§)) is natural for bundle maps, multi-
plicative and unitary i.e. Ix(n-dim trivial bundle)——-a'z"leﬁz"(szn) (resp. tg(n-dim

trivial bundle)za"‘"lef‘"(S“”)) where a:ﬁ”“(ZX):EN"(X) is a suspension
isomorphism.

Let &5 (resp. £H) be the canonical line bundle over CP™ (resp. HP™). Recall
that M(£$)=CP"*! (resp. M(EF)=HP"*"),

Let 7,: CP*—(CP™"!, oo) (resp. i,: HP™—(HP™*!, o)) be the inclusion and
% EX(CP™*)— EX(CP™) (resp. 7k: E*(HP”“)—»E*(HP")) the induced homomor-
phism. We define the euler class x£= E¥CP~) (resp. yE= E4(HP*)) for a complex
(resp. symplectic) oriented theory E as tXT x(ES) (resp. iXtz(EE)).

Let k:S5*=CP'c, CP~ (resp. S*=HP'c, HP>) be the inclusion. Then we can
easily show that our euler classes satisfy k*xF=¢"21 (resp. k*yF=¢"41).

So in the case E=H, x¥ and y¥ are uniquely determined.

For the definition of the Thom classes in K, KO, MU and MS) theories, we
use the same ones in Conner-Floyd [8]. We note that some euler classes in
this paper are different from the usual ones in Adams [1] or Switzer [26].

For example, xX¥=¢"1.(1—{°) where £ is the complex Hopf line bundle over
CP~ and ten,(K) be a generator. We have also y¥°=1-{¥ € KSp*(HP>)=
KO*'(HP>) where (¥ is the symplectic Hopf line bundle. (We identify KSp°( )
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and KO% ) by the Bott periodicity.) On the other hand, Switzer [26] uses {°--1
as the euler class of K-theory and {#—1 as that of KO-theory.

One can easily show that the Conner-Floyd’s definition of x*V and yX5?
agrees with that by Adams [1] or Switzer [26].

Let j:CP>— BU (resp. j: HP>— BSp) be the natural inclusion,

Let BE€E,,(CP™) (resp. pieE (HP™)) be the dual element of (xF)* (resp.
(yF)*) and we write jxpEc E:n(BU) (resp. jxnicEm(BSp)) by B% (resp. pk).

Let i : CP°=MU(1)— X2MU (resp. i : HP*=MS p(1)— 2*MS p) be the canonical
inclusion. We put bE=0"2%BE,1 € Esn(MU) (resp. hEi=o0"*iyn5 € En(MSP)).

For brevity, we will often abbreviate E in the case of E=H,

Throughout the paper the ring of integers is denoted by Z and the rational
numbers by Q.

If Ris aring with unit, then the formal power series ring over R is denoted
by R[[x]]. If f(x)=i2fix"eR[[xI| where f;€R, then the coefficient of x™ in

f(x) is denoted by [f(x)]a.
Then the binomial coefficient (:1) is equal to [(14+x)"*]n.

§2. Stable maps

There is a symplectification map ¢ : CP*— HP>.
Since ¢ is a fibre bundle whose fibre is S?, there is a Becker-Gottlieb transfer
t:HPi’G»CPSE. (See Becker-Gottlieb [5].) Then the next proposition is clear.

(See Shimakawa [23], Lemma 1.)

Proposition 2.1. Let x¥ and y¥ be the euler classes as in §1. Then g*y¥
=—(x")?, t*(xH)¥ =0 and t*(x¥)*=2(—y¥)* for i>0.

Next we recall the definition of the quasiprojective spaces. (See James [11],
Yokota [27].)

Let F be C or H and S} the unit sphere in F",

Let G,(C)=U(n) and G,(H)=Sp(n). The quasiprojective space Q,(F) is
defined to be the space of generalized reflections, that is, the image of ¢ :SEX
Sk— Gn(F) where ¢(u, ¢) is the automorphism which leaves v fixed if <u, v>=0
and sends u to ug.

We may define Q,(F) as the space obtained from SEX S} by imposing the
equivalence relation (u, g)~(ug, g7'qg) (g=S}) and collapsing SEX1 to a point.

By the second definition, we can easily show that Q,(C)=2X(CP%™?).

Put C’\IJ’":Q,,(C) and HNI:”‘:Q,,(H). Clearly, we have a symplectification map
q:CTP”—»Iﬁ’D“.

We define k,:2%CP?)— BU as the composition

~ 2] Z’Z‘n.{.l [4
2¥CP)=23CP"** — YU(n+1) — 33U —> BU

where 7, i,.: are the natural inclusions and ¢ is the adjoint map of the equiva-
lence U3 Q2BU.
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Define 7,,+:CP}— BUXZ by i, +|CP": CP*—CP>— BU X {1}{and i, +| {co} :
{oo} = BU X {0} where all maps are the canonical inclusions.

Let B’: BUXZ=Q?BU be the Bott periodicity map.

Lemma 2.2, k,:3%CP%})— BU is homotopic to the adjoint map of the com-

position CP? % BUx Z B 0°BU.

Proof. We define k,:CP2—QU(n+1) by
EnCuD)(O@)=(u, *)(v) and Eu(c0))v)=v.

Clearly k, is an adjoint map of the composition

cPr - QUM+1) — QU

Un+m)

We define bn,mi m

—QSU(n+m) by

eurt n e-intln _
b, n(LADB)= A , A (AeU(n+m)).
e-int]ﬂ e””],,
Notice that

Uln+1) bn.1

CP = % T = QSU(n+1)
7 (073
U bain
U(n);@(,,) 25U2n) commutes,
U@n)

im U< U =BU and the Bott map B’ is the composition

lim b, » X7d

n

BUXZ QSUXZ=0QU=0*BU .

So we have to show that Z,=b, ..
X1 Y1

Let x= Xs be the last vector of A€U(n+1) and y= V2 eCntl,

Xn+1 Yn+1

Put
Y1
Y2 .
H{[A], s)O(n=| if <y, x>=0
Vn
e—zius,yn+1

and
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ezixt <X,

ezint “Xg

H([A], s)®)(x)=

ezint “Xn
ezint(l—:) “Xns1
Since H([A], 1)(t)(y)=b...([ADE)(y), this gives a homotopy En=b,.. Thus 2.2)
holds. O
By (2.2), we have the following commutative diagram

koc*

M4 ECP=) 4o BU)

23) - B,

A (CP5)—2~ (BUy—— Hy1s(Z*BU)

where B is the adjoint map of the Bott map B’.
As in Switzer [26] (16-23), Byxo*(B52_.)=m- % mod decomposable elements.
So we obtain

Proposition 2.4. keyo®BE_,=m-BE mod decomposable elements.

Now we construct a map from I;P“ to C"\]/”".

Let ze H™ and z=x-+jy where x, yeC". We denote the complexification
c: H*—C®* by setting c(z)=xPy<C?".

Let g=a-+jbeH where a, beC. Since S¢ is a maximal torus of S}k, there
isa geSk such that g 'ggeSt. If g lgg=e'"* where —1<¢<0, then (g/)qgs
=¢~%*!, Thus there is a g Sy such that g lgg=e‘"* where 0=t<1.

So a representative element of HP™ can be taken as (x+7y, ¢'**) where
x, yEC™ and 0=t=1.

We define f,: HP"—CP* by the equation

t(x+7y, e")]1=[(xPy, e**)].
Then the following proposition holds.

Proposition 2.5. The following diagram commutes up to homotopy:

M

~~

Hpr—Ltn  Cpre

(4

Sp(n)

U@n)
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Proof. Clearly, by the definitions, we obtain
L, Qlv=¢(u, gv=v—u(g—1)Xu, v>  where <u, vd=3 &;-v:.

So,
Jelal(x+7y, e"))x'By")=x'Dy’ +(xDy)e* " —1XxDy, x'DBy’>

where x’, y’eC™. We also have the following equation
coil(x+7y, e"H1(x"+jy")
=x'®y' +(xDy) e —1IXxDy, ' By >+ (—3Dx)e " —1IK—IDZ, »'Dy’>.
We define fo[(x+jy, e?**)] by the equation
fol(x+jy, e*9))(x'Dy")
=x'@y +(xDy)e' P —1KxDy, x'Dy">
H(=3Dx) e —1X—5D%, x'By’> .

This gives a homotopy cej=jef,. O

Clearly the following diagram is commutative :

L

~~—

fTpnt_tott | OB

where vertical inclusions are induced by
H=H"®0 —, H*' and C*"=C*"P0 ., C"**.
We define 7 : HP*—CP> to be lim fn.
Now we determine the homomorphisms (Z§)*, (Ff)*. Let M% (resp. M2) be
the principal Sg-(resp. S¢-)bundle
b —> S} —> HP"*  (resp. S{ —> S —> CP™Y).
We regard H (resp. C) as the Sh-(resp. S¢-)module by the adjoint action,

and define 7% (resp. 7&) to be an associated H (resp. C) bundle of M% (resp. M2).

Clearly Zﬁ’":M(rz) and ZC’:PnzM(rz) where M(E) is the Thom space of a
vector bundle E.
Let Q( ) be the stabilize functor lim £°S™( ) and ;’:Q(HP*)—BSp the

induced map from j: HP*— BSp using the infinite loop space structure of BSp.
Then by the theorem of Becker-Segal (Becker [4], Segal [22]), ;' induces an
epimorphism of the cohomology theories corresponding to these infinite loop

spaces. So we have a map r:Z'Iﬁ"”—»Q(HP“) which satisfies

2.6) NS
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We may regard r as a stable map r:ZH}”W HP=,

Let E be a symplectic oriented theory. For any be HP> the inclusion
iy: {b} > HP= induces M(i,):S*—M(r%). Using (2.6) and the fact that j: . HP>
—Sp gives the cell decomposition of Sp, we can easily show that MGy r*y®
=¢~*l. So r* EeE‘(M(rH)) is a Thom class.

Put tg= r* EEH‘(Z’HP”) H4(M(7’H)) and 7c=9(3).
Proposition 2.7. (X§)*(zg:y™)=(—1)"*1-2.7¢- x2™H=(—1)"*1.2. g 2x2™H,

Proof. Since our Thom classes are unitary, z¢:x®™*'=g 2x®™+,

Let D(E) (rssp. S(E)) be the disk (resp. sphere) bundle of a vector bundle
r:E—B.

The H*(B)-module structure of ﬁ*(M(E))zH*(D(E), S(E)) is defined by

4 nXid
(D(E), S(E)) —> (D(E), S(E))X(D(E), S(E)) —> BX(D(E), S(E))

where 4 is the diagonal.
Since ¢ is given by ¢’ :yg— 7% where ¢’ is the bundle map over CP”—»HP
the module structure is compatible, i.e.,

Cg*ru-y™=(2¢*ty) ¢*y™ = ¢ cy) (—1)™x*™ .

So we have to show that Y§*rgy=—2-7¢-x. We have a commutative diagram

(30— o B30y —2 = HBU)

~ ZJT ~ tx ~
H(YHP>) H(XYSp)— H,(BSYp) .

Let (rH)*eﬁ4(ZH?“) be the dual element of z,. By the duality, we may
prove that Xgxo®B,=—2-(ry)*. Since jur«(tg)*=y, by the definition of 7, we
have only to prove that jur42§xo®Bi=—2:%:;. By the above diagram and (2.6),
Jxr«2Gx=Bgxx2jx. By (2.1) and (2.4), we have

Bt 3 j40%B1= Bgsxkwxo®B1= Bgx(2+ f,+decomposable elements)=—2-7,. O

Proposition 2.8. (J§)*-(Zi)*=-2. So we have
i m=2k
2o x™)=
(=1)¥+tezg-y* m=2k+1.

Proof. 1f (X§)*<(Zf)*=-2, then the second result follows from (2.7). So
we have to show that (X§)*-(Zf)*=-2. There is a commutative diagram



138 H. Toda and K. Kozima

2ix >t ~
B3P —=L o [, (SHP)—= > H,.(SCP)

k otk k ook

~ ~ B ~
Hm(BU)LH«;ABSP)—C*—%HM(BU) .

As is well-known BcyxeBgs=+2 modulo decomposable elements. Since k.x is
monic, (2.8) is proved. O

Proposition 2.9. r*y™=mrg-y™! (m=1).

Proof. Let z*€Hy(X) be the dual element of ze H*(X).

Then Bym=7%(x*™)* and pn=7sx(y™*. So BgxBim=(—1"+7n by (2.1). We
have also YGu(zc-x2™ )*=(—1)™2:(zg-y™ *. Then by (2.6), we obtain the
following commutative diagram :

H(3CP) H(SHP) H(HP) H(BSp)
km* <‘°2]~)>k Case

~ BQ* ~ Cyx 1

H.(BU) H(BSp) H«(2*KO) ,

where KO is BO-spectrum and ¢,: BSp—3*KO the canonical inclusion. Since
kox(tex®™ 1)*=2m- Bym-+decomposable elements, we have

Bgsk ws(tex®™ )*=(—1)™-2m- pn-+decomposable elements.

If re(cgy™ D*=a-ym, then jury2ds(tex®™ P =(=1)"2a:nmn.
Since ¢y kills the decomposable elements and since ¢y 7n#0 (See Switzer
[26].), a=m. Thus (2.9) is proved. O

We put ITP'”=Z'“H~P°°, g=2"'G and f=2-'f. Then we have the following
stable maps:
q t qg __ 1 I
CPy —> HP? —> CP?, CP? —> HP? —> CP%? and X?HP>— HP~.
Let E be a symplectic oriented theory. Then we can regard Ex(HP=) as

the E*(HP>)-module by the suspension isomorphism Ex HP°°) E*(ZzHP”)—>
Ex-*(HP~),
Since r*: H{(HP*)— H4Y HP>) is an isomorphism,

otor*: E{HP*) —> E‘(Z’I;}_’“) —> EHP>)
is so.
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We denote yZe E2(HP>) to be o%*yE. Then FE-(yE)m=g%(r*yE-(yE)™) (for
m=0) form a free Ey(pt)-base of E*(HP).

§ 3. Hurewicz homomorphism
Let E and F be the spectra of symplectic oriented theories. Then we have
—
two symplectic classes in EAMSp*(HP*):

yE ~ id Aid Ae
yp: HP® — J'E —> J'ANEANS, 5er

SANEAMS)

and
yHSP ~ idNegNid
yrp: HP? — Y‘MSp —> ZANI°AMSp

S*AEAMSp

where ¢ys,: 2°—>MSp and ¢z: 2°—E are the unit maps.
We write y%, y#5S? for y;, yr. We can compare y%, y*5? by the following
lemma. (See Adams [1].) Put AE(yE)=3 hE(yE)t+,
120

Lemma 3.1. (Adams formula) y¥5?P=h%(yE),

By the universality of MSp for symplectic oriented theories, there is
up:MSp —> F  such that wup(y¥SP)=y7,
Put umhE(y)= g‘aup.h%”‘eE*(F)[[y]]. By (3.1), we have

Lemma 3.2. yF=urhZ(y").

First, we consider the case of E=H. Let y”s"=hur”(y”S”)EHmpz(H—Pw).
We can easily show the following propositions by (3.1), (2.7), (2.8) and (2.9).

Proposition 3.3. In HAMSp-theory, we have
PO =(h(— )" and (=" =2 )"
Proposition 3.4 In HAMSp-theory, we have

gHFMSP (yHSP)m)= —dd?h(—x”)-(h(—xz))’"

and

i+ ddx h(— 29 (h(—x)™) =254 57 (yUS7)m.

Next, we consider the case of E=HAKO. In HAKOAMSp-theory, we have
three euler classes y#, yX° and y¥5?,

By (3.1) and (3.2), we obtain the equation y¥*SP=h%%ugo.h"(yH)).

We can regard Hy«(KQ) as the subring of Hx(K)=Q[t, t*'], where t€ H)(K)
is the generator in Adams [1] and Switzer [26]. In fact we have c«(H«(KO))
=Q[t4, 212, t~*] where ¢4 is the monomorphism induced from complexification
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map ¢: KO—K.

Then ugoeh¥=2(—1)"-122/(2/+2)!. (See Okita [14], Lemma 2.3., and recall
that our y¥ is different in sign from his one.)

Lemma 3.5. In HAKOAMSp-theory, y"*S$P=h%O(—¢t=2.(2-cosh (tv/—3)—2)).

Put f(x)=h%%(—t=%-(-2-cosh(tx)—2)) and f(x):%f’(x). Put also 3%Sp=
o m——
hur?MEO(5MSPye HAKO AMSp*(HP~). The proofs of the following two proposi-
tions are similar to those of (3.4) and (3.5).

Proposition 3.3’. In HAKOAMSp-theory,
g =(f(x)™ and tH(f(x)m=2(yM5P)™,
Proposition 3.4’. In HAKOAMSp-theory,

S (YMSP)™ =2 f(x)- (f(x)™
and

P(f(x)- (flx)))m=FHSp.(yHSPY™

We denote hur®: w4( )—Ex( ) to be the generalized Hurewicz homomorphism.

Since hur® is induced from the unit map ¢z:3°—E, (3.2)~(3.4) give the
informations for hur®.

These results will be used in the following sections.

§4. Symplectic formal system and symplectic Lazard ring

Let R be a commutative ring with unit and R[[X, X, Y, Y]] the formal
power series ring with four variables X, X, ¥ and ¥.

Definition 4.1. A symplectic formal system consists of a formal power series

E(X)=i§ai-XiER[[XJ],
and formal power series in R[[X, X, Y, Y]1/(E(X)— X2, E(Y)—Y?),
FuX, X, Y, )= 3 b®-X0-Y'+ 3 ¢ X- X107 Y1,
1,520 i,j=21

GuX, X, Y, )7')2izzzod{”}-(X'XH-Yj-i—}—’-Yi‘l-Xf) for k=1

1,7
which satisfy
(i) (unitary relation) bR=d{R=1, bL=dLy=0 for n#1,
(ii) (associative relation)
DIF(X, XY, V), G(X, XY, V), 2,2)=DX, X, F\Y,V,Z,2),G\(Y, YV, Z,2))
for D=F, or G,

(iii) (commutative relation) b{)=b{2, c{)=csy,
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(iv) (differential relation) c¢{i=-—2, c¢{h=c{=0 for n#1,
(v) (power relation) Fu(X, X, Y, V)=(F«(X, X, Y, V)*,

Gk(X; X} Yy ?):GX(X) X) Y; ?)'Fk—l(Xy Xy Y, 7)
and

(vi) (square relation) (G.(X, X, Y, P)'=EF(X, X, Y, T)).

Definition 4.2. Let I'={E, F., G} be a symplectic formal system over R.
The associated symplectic ring R is the subring of R which is generated by
the elements 8a;, 4b¥4~1, 2b{*9, ¢{¥, 4d{*) and 1.

Now we can define the symplectic Lazard ring LMSp as follows. Let S be
Z[as, b{®, ¢, d{¥] where a;, b{¥, c{¥ and d{¥) are variables, and I the ideal of
relations that appear in (i)~(vi) of (4.1).

Then we get a universal symplectic formal system over S/I. We denote
I'yniv as this system over S/I and do LMSp as (S/Dr i

Then clearly, we have

Proposition 4.3. [Iy.;, and LMSp are universal for symplectic formal
systems and their associated symplectic rings.

We can make LMS)p into a graded ring as follows.

Let assign the degree —2 to X, ¥ and the degree —4 to X, Y. Let assign
also the degree —4 to E(X), the degree —4k to Fi(X, X, Y, ¥) and the degree
—4k+2t0 Gu(X, X, YV, V). Then all the relations (i )~(vi) match these gradings.
So the ideal I is graded and LMSp is a graded ring.

We note that a;, b§¥}, c{¥; and d{¥; have degrees 4(/—1),4(+j—k), 4G+ j—k—1)
and 4(;+j—k), respectively. If a symplectic formal system over a positively
graded ring R satisfies such conditions, then we say that I" is graded.

Example. An easy computation shows LMSp,=Z generated by 1, LMSp,
=Z generated by 4b{) and LMSp,=Z@PZ generated by c§!} and 2b3.

Next we want to construct a symplectic formal system over Hy (MSp). Put
f(x)=h(—x? and f(x)z%% h(—x?) where h(x)= ghf’-x"“ as in § 3. Clearly,
f(x) and f(x)eH (MSp)[[x]].

We denote the symplectic formal system [y by setting,

EF(fG)=(F(x)*, FE(f(x), f(x), f(3), F=(fx+y)*

and
GE(f(x), f(x), f), FN=Fx+)-(f(x+y)kt for k=1,

Then the all the properties except (iv) are almost trivial,

Proposition 4.4. In Iy, the differential relation holds.
Proof. Put
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FH(f(x), F(x), f(), FoN=Ff(x+)
=i’jzzlobi,,-°(f(x))"-(f(y))’-l-i,szllci.;-f(X)-(f(x))“-f(y)-(f(y))"‘1
where by, ¢i.,€ Hy(MSp). Put y°=0. Since f(x)=—x-+higher terms and f(x)

=—x?+higher terms and since the unitary relation holds, the above equation
becomes

fxt+y)=fx)+ 3 i1 J(x)- (f(x) 1 (— ).
Since y*=0, this means
—2f() ==y (flx+y)—fx)= 3 ci 1 F) - (fx))F1.

Since f(x)-(f(x))*"'=(—1)*x**-'+higher terms, we have ¢;,;=—2 and ¢,,,=0 for
n+1 inductively. By the commutative relation, ¢, ,=0 for n#1. Thus (44) is
proved. O

Then by (4.3), we have a ring homomorphism 6’: LMSp— H(MSp) such
that 04l uniwv=I1% where 6% is defined by mapping each corresponding coef-
ficients of E(X), Fu(X, X, Y, ¥) and G(X, X, Y, 7).

Proposition 4.5. 6/(8a;), 0'(4b{), 6'(c®) and 6'(4d %)) are in Im (hur® : MSp4
— H (MSPp)) for all k=1,

Proof. Since t*(g*3"S?))e MSp*(HP%), there is a,cMSp, such that
%‘,) a;- (y¥SPYi=1*((g*yM5?)?). If we map this equation into (HAMSp)*(HPZ), then
we have
= hur®™(a;)- (¥ SP) =p*((* 5" S2)1) =142 f(x))=1*4- E(f(x)))
-——ig 0’(8a;)- (y" 5Py by (3.3) and (3.4).

Let m:CP2ACP3—CP3 be the classifying map of the tensor product of
canonical line bundle. Then

(E A gH(SPY )y e MS p*(HP3 A HPS) ~ MS p*(HPY)® 5 5. MS p*(HPS) .
Similary we have the following equations:

(E ADYFm*q*(y S7)*) & MS p*(HP= A HP=)~ MS p*(HP=)R 5. MS p*(HP"),
(A MAGH(3YS?- (y¥ 524~ & MSp*(HP= A HPD~ MSp*(HP) @ 5. MSp* HP3)
and
(A By (" SP - (y " SP)+-1) & MS p*(HPE A HP=) = MS p*(HPY) @ 5. MS p*(HP")..
Then there are B{¥, r{¥ and 6% €MSp, which satisfy

3 B (yMSPYQRyM SR = A mEgH(y M),
1,520
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i,%l 7 (FHSP (Y SRY (PSP (yMIPY D) =(T AD*m*g*(y™57)*)
and
mgzoaﬂ’}'(y'”Sp'(yMS”)i°‘)®(yMSp)j=(f AO*¥m¥GH(FH P (yMSP)E-1),

And clearly

> O (pMERYQ(FYSP- (M PN = A AL mAGH(FH P (yMIP)EY)

121,520

We can easily prove hur®(B{F)=0"(4b¥), hurf(r{¥=0'(c{¥)) and hur#(6f)=
0'(4d{¥) by the similar method used to prove hurf(a;)=6'(8a,), using (3.3) and
(34). Thus (45) is proved. O

To show 6'(2b§*)=Im (hur¥), we need some preparations.

Let ¢: HP?— BU(2), be the classifying map of the complexification Sp(l)
—U(2) and ¢: BU(n).— BSp(n)+ that of the quaterniozation U(n)— Sp(n).

Let m: BU(2).ABU (2),— BU (4), be the classifying map of the tensor
product.

We abbreviate X, A X, A -« AX, as X?. Then we denote m, : (CP*)—(CP>)i
as the classifying map of the endomorphism g, of U(1)XU(1)XU(1)XU(1) defined
by wp(a, b, ¢, d)=(ac, ad, bc, bd).

We denote 7, : U)X U)X -+ XUQ)—=U(n) (resp. i : Sp(1)X Spl)X «- X Sp(1)
(n-times) (n-times)

—Sp(n) as the canonical inclusion.
Then the diagram

CP2ACP=ACP2ACP — 2~ CP3ACP3NCPZACPS

BZ.2+/\B1‘2+ Bi4+

BUQ2). ABUQ®), m ~ BU(4), commutes.

We denote also conj: CP?—CP3 as the classifying map of the complex
conjugation. Then the diagram

cPs (idAconj)ed CPEACPS
q Biys
HP: ¢ BUQ2). commutes.

If we apply the functor MSp*( ), then we obtain a commutative diagram
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—~ ¥ —~ m¥ (CACY* ~ '
MSp*(BSp(4),) —= MSp*(BU@)+)—s MSp*(BU (2): ABU (2);) — MSp*(HPT A HFY)

46)  \(Biny (Biu)* (Bivs ABiy)* (@Ag*
o~ —_—~— ¥~ Ac A Ac * o 00
TS (P Lm TEH(CP) )~ ATSHH(CPI—ELEY [ TSpHCP= ACPD)

where 4,=(@d Aconj)ed.
Put y¥SP=g¥y#S?, Then there is an isomorphism

MSpH(HP=)1)=MSp.[[y¥5?, y¥5?, y¥s2, ys71].

As is well-known, there are the symplectic Pontrjagin classes P;, P,, P; and

P, such that m*(BSp(fl),L)—MSp*[[PI, P,, P;, P]] and (Bi,)*P; is the i-th
elementary symmetric function on y¥$?, y¥5? ¥5P and y¥#5?, (See Switzer [26].)

Put ri=hurf(c Ac)*m*q*P; (i=1, 2, 3, 4). We denote B{¥, and C{¥ as the
elements of H«(MSp) which satisfy

FEX, X, Y, D)= 5 B X0Vt 3 CfH XX 7.y,
i 1,

—
Let denote x;€(HAMSp)*(CP*)?) for 1<i<n as n%x where
xe(H//-\TLS/p)z(CP":) as in §2. Now we can calculate (gAg)*r;.

Lemma 4.7,

(1) @AQ*r=Z4B{ (f(x))'-(f(x))
(i) (gAg@r*r.= 2635‘} SBES (fx )R (flxo))*
—22C-Ci- EF(f(x1)) P (f(x2))- (f(x )2 -2 (f(x D)
and
(iii) (gAgr*ry=2 B{}j- Biii Br‘n"m'B“)q'(f(xx))““"“"(f(xz))““:*m’“q
—2 2B B(” Cildm - Cilly E¥(f(x1)) EF(f(x2))
<(f(xy ))“’”’""”'2'(f(-\fz))j‘“s"""”"~2
FZCHC - Ciln - CP0 (EF (f(x )+ (EF (f(x2)))°
C(f(x )RR () e Emrast
Proof. Put
S;=(;-th elementary symmetric functlon on y¥s? USSP y”S" and y¥5?),
Then we obtain the equation ' ‘
(q/\q)*r,—hur” o(A A d)*om*oq¥e(Biyy ) *Pi=(d, N d)*emfoq*e hur™(S;)
' by (4.6).

Then the results of (4.7) fqllow from an easy calculation. Since the case
(i)~(iii) are quite similar, we show the case (i) in detail and omit others.
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GAQ*ri =l NAAYmi(f(x)+f(x)+f(x)+f(xd) by (33).)
=AY (f(x1F 20+ f(x1Fx)+f (% 25)+ f(xe+%4))
(by the definition of m,.)

Since (id AconjAid Aconj)*x;=(—1)*1x;, this equation becomes

(q/\Q)*71=(A/\A)*(f(x1+xs)+f(x1_x4)+f(_x2+xs)+f(x+xa))

zf(xl'l"xz)'l‘f(xl—Xz)+f("'x1+xz)+f(—x1"xz) .

Since f(x)=h(—x%)=f(—x) and f(x)—l—d—h( x%)=—f(—x), we obtain

GAQ*r1=2(f(x1+x2)+ f(x1—x2))
=2FY(f(xy), F(xy), f(xe), ) +FE(f(xy), f(x1), f(x2), —F(x2)))
=34B&-(fx ) (f(xe)) . O

We have another commutative diagram

o~ * ¥ o~ At
TS 5@ -Lo AT BU@ ) AT BUR) ACP)-SAD L iS5+ HPRARPS)

(Bizs)* (Bizs)* (Bize Nid)* (gAg)*

* A *
MSj)*((HP”)Q ELMSP*((CP“).‘.)L MSP*((CP”)+/\CP+)(—(Q))> MSp*(CP3ACPY)

where m: BU2). ANCP3%— BU(2), is the classifying map of the tensor product
U2)xU(1)—-U@) and m,:(CP*)}—(CP~)? is that of the homomorphism
2 UXUDXUQ)—U)XU(1) defined by psla, b, ¢)=(ac, bc).
Under the similar notations in (4.7), we obtain
Lemma 4.9.
(GAQ*ehurfo(c At)*em*eg* Py=3 2B {1+ B{hi- (f(x 1))+ %+ (f(x2))*®
— 2208 C- B () EH(f(xa))- (Flra)** 2 (fxa*e 2.
Since the proof of (4.9) is quite similar to (4.7), we omit this,
We put s,=hurf«(c At)*em*oq*P,. Then r,—2s,&Im (hur?) and
(GAQ*(ra—2s)=2B{ B (f(x )+ (flx))**
+32C-C EF(f(x1)) EF(f(x2))- (fx ) HE2(fx2))+* 72

Since the right side of the above equation is 2B (f(x))(f(x2) by the
multiplicative relation and since there are elements B{¥eMSp, satisfying

ra—28,= 3 hur"(B)-(y¥SP)-(¥7),  2BEy=hur (B €lm (hur).
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Since 2B{®=0'(2b{*;), we have already proved the following proposition in
the case k=1.

Proposition 4.10. 6’'2b3*)elm (hur? : MSpy— Ho(MSP)) for k=1.

Proof. Put X=B{-xi-x}, Y=2C{-%,- x4 %,- x4t and xi=E¥(x,) for
=1 or 2. Then the coefficients of (X+Y)?4+(X—Y)? and those of (X*—Y?)? at
xtexj are in Im (hur®) by the multiplicative relation, 2B{%eIm (hur?) and (iii) of
4.7).

Notice that (X+Y)**4+(X—Y)2¢ =3 2B{?.xt.x} by the multiplicative rela-
tion. So, if the following lemma holds, then (4.10) can be proved by induction
on k, easily.

Lemma 4.11.

(X+Y)y*H(X-Y)*"<(ideal generated by (X+Y )" +(X—Y)2™ (m<n)
and by (X?—Y?)?),

Proof Put A=(X+Y)? and B=(X—Y)% Then we have only to prove that
A"—I—B” I,=(ideal generated by A™+B™ (m<n), AB). Since A"+B"=(A+B)
(A4 Bm- l) AB(A™*+B™?%e],, this is clear. O
S hur® '

Since MSp.QQ Hy(MSp)RQ is a monomorphism where Q is the
field of ratlonal numbers and since H,(MSp) is torsion-free, MSp*/Torsmn

hur¥®
—> Hy(MSp) can be induced and is monic.

So MSps/Torsion=Im (hur? : MSp.— Ho(MSp)). By (4.5) and (4.10), 6’(L MSp)
ClIm (hur®). Now the proof of the next theorem is clear.

Theorem 4.12. There is a ring homomorphism @ : LMSp— MSps/Torsion
such that 0’=hur¥-40.

We have some remarks.

(1) K. Shimakawa defined /TMS,,CMSp* as the subring generated by the
coefficients of (cAc)*em*oq*P;e MSp[[y¥5?, y¥5P]] (for i=1~4). (See Shima-
kawa [23].) His approach was based on N. Ja. Gozman’s method. (See Gozman
[9]) These are closely related to the theory of 2-valued formal group studied
by V.M. Buhstaber, S.P. Novikov and others. They introduced two functions
O.:(x, y), Oux, y)E(MSp+Q@Q)[[x, y1] such that

1—|—Z(C/\c)*°m*°q*P =(140,(y¥5?, y¥5P)+O,(y¥52, y¥SP))2,

So the coefficients of 260,, O3+20,, 20,0, and O} are included in MSp,.
(See also Buhstaber [6].) Using our (4.5) and (4.10), one can easily proved that
the coefficients of 20, are in MSpy.
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(2) If we substitute MSp by KO, we have another example of symplectic
formal system :

2
E(X):—X+fT-X2,

- _ 2 — k
FuX, X Y, Y)=<X+Y~——2—-X-Y—2-X- ?)
and
2 2 -
CuX, XY, 7)=(X+7——t—-(X.Y+Y-X))-(X+Y—t—.X.Y—z-X- 7)" '
2 2
for k=1.

If we denote LKO as the associated symplectic ring, then there is a ring
homomorphism 6 : LKO— KQOy/Torsion. One can easily show that

0: LKO= 3 KO.;.
Jjao

§5. Calculation in LMSp

First, we prove the following theorem.

Theorem 5.1. 60'Qid : LMSpRQ—(Hye(MSP))r,QQ is an isomorphism. So,

i}
LMSp/Torsion—(Hy(MSp))r,, is also an isomorphism.

There are some propositions.
Let '={E, Fs, G,} be a symplectic formal system over R.

Proposition 5.2. 'n RQQ, iZz)odff’i'X"z—g}li-a,--Xi‘»l:—T;—iXE(X).

Proof. By square relation, we obtain the following equation
(G(X, X, Y, 7))2=i§ a;-(F(X, X, Y, 7).
If we put Y=0, then 72:i§z_}lai-Y‘=0. Then
(G«(X, X, Y, }_’))2:(X+i§d,‘}’i-X"~}_’)2=X2+21§d1‘}’i-)?~){‘-)7
=E(X)+(2i§d,‘}’i-Xi)-)?-}7.
On the other hand, if ¥?=Y =0, then we have the following equation :
§10i~(F1(X, XY, 7))i=i§ a; (X—2-X-7)

=E(X)—(2§i-ai-Xi“)-X~7. Thus (5.2) holds. O

Proposition 5.3. In RQQ, 2G.(X, X, 7, Y):)".(aiYF,(X, X v, )7)).
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Proof. 1f we put'Z=0 on the associative relation
FI(FI(Xy X) Yy 7)’ Gl(Xy Xy },; ?); Zy Z—):Fl(Xy Xy FI(Y: Y; Z’ Z_)’ Gl(Yy 71 Zy Z—))

and compare the coefficient at Z, then the similar calculations to those in the
proof of (5.2) deduce the following equation

cl(,l)l'Gl(X) X} Y: }7)
= —(Sbey XN Y+ S ety X X (S A YOV 7742~ DF Y 7))

d
ay

= —(E bl(}}. Xi(Zj)Y. Yj—l+2 le’l}. X. Xi—l( E(Y)Y]_l+2(]_l)E(Y)Yj_2)> .

d

_ _ _ Y
: 2 N_92. . =
Since Y?*=E() Y?)=2.Y Vv = ay E(Y). So we have

0
’W(
d
dY

Db} X027 - Y+ S efty X X B Y- 42— DE(Y)-Y9-2)

_ovp d o i 4 i
—2Y'(Zb§,‘}'x"W—(Yj)-FEC%.‘}'X'Xi "W’(Y'Y’ 1))
=2Y. 8aY F(X X Y, 7). Thus (5.3) is proved. O

If '={E, F,, G} is a symplectic formal system over a commutative ring
R, then the R-algebra R[[X, X, Y, Y11/(X*—E(X), Y?—E(Y)) has a free R-
module base X¢- X*-YY™ e=0or 1, =0 or 1 and n, m=0.

So, (5.2) and (5.3) can be interpreted as

(5.3 diy=7-bi=i"t+j-dj},
2= % (n+2m—2)-ancfy  for j=1
and
5.2y d=—G+1) asn, di=—i"(+1) i, for izl.

Let R be a commutative ring which is graded and is connected and I be
a graded symplectic formal system over R. Let P be the augumentation ideal
of R and J be the intersection

PN\(the subring generated by a;, b{"), c{¥), di*)).

Proposition 5.4. In RKQ,
eV =—2(dPn-1+dP ) +Nn, m)arim-, (mod J?)
for n, m=1 and (n, m)#(1, 1) where N(n, m)eZ.
Proof. We consider the square relation (Gy(X, X,Y,V))’=E(F(X, X,Y, 7).

We denote the coefficient at X- X*.¥*.Y™ as [ Je.n.er.m). 1f we compare the
coefficients at X-X»'.¥.¥Y™ ! modulo J? then we obtain the following equation
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2dPm 1t dW A 1)51:(-’?4‘}7"’1,J_Eg ail- (X Xi- 1Y’+Y Y X)) n-11 m-1,

:[Elai’(Fx(X, X, Y, Y))?:Ilgx,n—1.1.m—1)

E[al'Fl(X; X: Y: }7)+an+m-1'(F1(X: X} Y) ?))n+m-1](l.n-1,1.m—1)
=a; ¢Pn+Nn, m)ragem-1 (mod J?) for n, m=1 and (n, m)#(, 1)

where N(n, m)=[(F\(X, X, Y, ¥Y)**™ ] n-,u.m-1. If we compare the coeffi-
cients at X-¥, then we hav‘e 2=c{}+d;. Then a,=—1 and (5.4) follows from
the above equations. O '

Let A be the subring of R generated by a; (/=1). Then under the same
hypothesis as in (5.4), we have

Proposition 5.5. JRQCARQ. So RrRQ=ARAQ.

Proof. First, we will prove JQQC(A+/5)XQ. If we can prove this, then
by an easy induction on degree, we can prove (5.5).
By using the second equation of (5.3), we have

24f= a1 ¢ @AD=—@j+D e (mod J)  for s21.

So we have only to prove that d{e(A+/)QQ by (5.3).

If j=1, then (5.2)’ says that d{’ € ARQ for all /=1. So, we assume that
d-1€(A4+75)RQ for some k=2 and all i=1.

Since 2d{H-1=—Qk—1)c{) (mod J?), cihe(A+7HQQ for all i=1. On the
other hand, ¢{=—2(dM-1+df8-;1) (mod A+J?) by (5.4). So d-,€(A+]HQRQ for
all 722, And we have d{V_,=G—1)-b{-1=E—1)- k- k-bP, v =G—1) k2 d®
for all 7=2 by the first equation of (5.3)’.

Thus by induction on k, we have d{Je(A4+/HRQ. O

Now we can prove (5.1). Let T=Q[t,, ts, ***, ts, -] and a: T — LMSpQRQ
the homomorphism defined by a(t;)=a; for i=2. Put t,=—1. We assign the
degree 4(—1) to t;. Then « is graded and is an epimorphism by (5.5).

We consider the following composition

4

o K
T —> LMSpQ@Q —> (Hx(MSp))r ,RQ —— Hx(MSp)RQ .
By the definition of Iy, we have a square relation (f(x))zzgl‘, 0 calt:) (f(x))
where f(x) and f(x) are as in §4. So, we obtain the following equation
(Z(=Didehyoy- 22712 =30 ca(ts) (D (=1 ho x2)E,
iz21 121 iz1
Let D=(the ideal generated by {h;} (G=1))’.. If we compare the coefficients
at x®* modulo D, then we obtain easily 0’«a(t =—(2/—1)h;-, modulo D for :=2.

Thus ke0’a:T— H(MSp)QRQ=Q[h,, hs, -+, hy, --+] is an isomorphism.
Since a and @’ are surjective, we can easily conclude that 8’: LMSpQRQ—
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(HMSP)r,QQ is an isomorphism. O

Let Ly, My be graded rings which are commutative, unitary and free as
modules. Then we denote the rational indecomposable module Q(Ly) as the
quotient Ly/L«N\ Dy where Dy is the ideal of all decomposable elements in L.QQ.

If f: Ly— M, is a ring homomorphism, then it gives the induced homomor-
phism Q(f): Q(L+)— Q(Mx).

Okita [14] has studied Q(MSp«/Torsion) in detail. He determined completely
the image of Q(MSp4/Torsion) in Q(H«(MSp)) by Q(hur®).

We use the same notation h;€ Q(Hy«(MSp)) for the quotient image of h;
H,;(MSp). Clearly Q(H«(MSp)) is generated freely by h; (0=i).

Then Okita [14] has proved the following theorem. (See Okita [14],
Theorem 1.1, Propositions 4.1, 4.2 and 4.3.)

Theorem 5.6. (Okita) Im Q(hur¥) is generated freely by 2%-t;-hy for i=0
where s; and t; are integers defined as follows:

4  if =2/ for some j
S;=
14 if i=1 (mod2), i#2—1 for any j
8 if i=2'—1 for some j,

{2 if i=0 (mod2), i+2 for any j

{p if 2i+1 s a power of an odd prime p
ti=
1 otherwise .

We have a commutative diagram

0[
LMS p/Torsion ————— (H«(MSp))ry
[
H
MSp«/Torsion Hy(MSp)

Now we can prove the following theorem.

Theorem 5.7. Im Q(hur”)zQ((H*(MSp))pH). So Q(8): Q(LMSp/Torsion)—
Q(MSps/Torsion) is an isomorphism.

Proof. Since 6’ : LMSp/Torsion—(Hx(MSp))r, is an isomorphism, the first
statement deduces the second one. So we have only to determine Q((Hx(MSp))r ).
Let B;,; and C;,; be the elements in Hy(MSp) satisfying

flx -I-y)=i§0 Bi,r(f(JC))i'(f(y))’-i—i,sz)1 Ci 5 F(0)- (Fx) 2 F() - (f(3)) 2
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where f, f are as in §4. If we_compare the coefficients at x*"-y®™ then we
have

2n+2m
(5-8) n m:(

2n

Also, if we compare the coefficients at x*"~'-y*™~%, then we have easily

)hn+m-1 in Q(Hx(MSp)). .

2n+2m—2
(6.9) Cn,m:—(

)hn-l-m.-z in Q(H«(MSp)).
2n—1

So, if the following lemma can be proved, then (5.6) deduces the first state-

ment of (5.7).
Let S be a set of integers. Then we denote the greatest common divisor

of all elements in S by GCD(S).

Lemma 5.10.
2N+2
1) GCD |[1<n<N+1
2n—1
{EZ (mod4) if N=0 (mod2), N=+2/ for any j
=4 (mod8) if N=2/ for some j,

2N+2
(2) 4-GCD<(2 )l0<n<N+1>
n

{54 (mod8) if N=1 (mod2), N=#2'—1 for any j
=8 (mod 16) if N=2/—1 for some j and

2N+2
3 GCD(( )ll<n<2N+l)
n

{223-1) for some s if 2N+1 is a power of an odd prime p

=2° for some s otherwise.

The proof of (5.10) is easy but tedious. So, we prove only the first
statement of (1). The proofs of the rest are quite similar.
We may put N=2¢-(2b+1) where a, b are positive integers. Then we have

the equation
20+1(2b+1)
=[(L4perierrnse],  =[(14£2)2 @+, ;=0 (mod 2)
2n—1

where ¢ is a variable. On the other hand, we have

2““(2b+l)+2) 2‘“‘1(2b+l)) 2(2““(21)4‘1))+<2‘”1(2b+1))
+ .
( 9a+11] Qa+11] 9a+1_1

2a+1
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If ¢ is an integer, then we have also

20+1(2b+1)
( :[(1+t)2a+1(zb+1)]2q+15[(1+2t2+t4)za—1<2b+1>]2q+150 (mod 4) ]
2q+1
a+1 a+1 a+1
So, 2 Z(Efl_l_l__ll)_l_z_)EZ 2 2(3f1+1)) (mod 4). Since as is well-known 2 z(azfl—i_l))

=1 (mod 2), the result follows. 0O
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