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§ O .  Introduction

In [16], D. Quillen determined the complex cobordism ring MU* u s in g  the
form al group  theory . This method seems to be very powerful, but is not appli-
ciable directly for the symplectic case.

However there are som e w orks along this line.
Buhgtaber-Novikov [7] studied  tw o-valued  form al groups and gave some

applications to  the symplectic cobordism ring MSp* .
Gozman [9] and Shim akawa [23] defined the rings j mu and )1ms, using the

total symplectic Pontrjagin class of a certain symplectic vector bundle.
On the o th e r hand, u s in g  the Adams spectral sequence, som e important

results were obtained.
In particular, -( jk ita  [1 4 ]  h a s  s h o w n  th a t  th e H urew icz m ap  induces an

isomorphism

Q(MSN/Torsion).'-4Q(PK0*(MSp)/Torsion)

w here Q () is  the rational indecomposable functor (see § 5).
In th is  paper, w e construct a ring L M S p and a ring homomorphism

0: LMSp ---> MSp * /Torsion

Our L M S p is defined by the several formal power series and the relations
like as the Lazard ring and w e can calculate the image of the compositions of
0 and som e generalized H urew icz m aps. Then the following theorem holds.

Theorem  (see § 5, Theorem  5.7). 0 induces an isomorphism

Q(LMSp/Torsion) Q(MSp * /Torsion) .

(The corresponding result is not true for )IM s p, th a t  is,

Q ( j msp/Torsion) Q(MSp * /Torsion) .)

W e can prove also that the image of the composition

0 Pico
LMSp ----> MSp * /Torsion -->  K O ,/Torsion is  e q u a l to  E K O ..

n o
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T h is  paper is constructed a s  follows
In § 1, w e recall som e notations, especially fo r  th e  oriented theory.
In § 2, we construct some maps between the projective and the quasiprojective

spaces. W e note th a t w e  use  the  Becker-Gottlieb transfer and  the  Becker-Segal
th e o re m . W e  d e te rm in e  a lso  the hom om orphism s induced by these m aps on
th e  ordinary cohomology theory.

In § 3, w e recall som e results in  A dam s [1 ] fo r the  oriented theories.
In § 4, we define the symplectic formal system an d  th e  sy m p lec tic  Lazard

r in g  Lsm p. W e construct also the homomorphism 0 : Lmsp—>MSN/Torsion
and obtain the relation betw een LMSp a n d  j m s ,  in  th e  process constructing O.

In § 5, w e obtain som e basic relations between the generators of LMSp and
prove Okita's type theorem using these results.

§  1 .  Notations

L et C  (resp. H ) be  the  fie ld  of com plex  (resp . quatern ionic) num bers. In
th is  paper, a  vector space over H has th e  righ t sca ler multiplication.

L et C Pn (resp. HPn) be the n-th  complex (resp. symplectic) projective space.
L et X + b e  the disjoint sum  o f  a  space X  an d  a  p o in t fool.
For a  stab le  m ap from  X  to  Y , w e  use the notation such as f  X — * YY.

(s)
W e use  the  sim ilar notations in A dam s [1], Sw itzer [26] and Conner-Floyd

[8 ] fo r  th e  oriented theories.
L et E  be a  complex (resp. symplectic) oriented theory an d  g E (e )e  f 2 n(M(e))

(resp . tE (e )e  f"(M (e ))) a  T h o m  class w here e  is an  n-dim  complex (resp. sym-
plectic) vector bundle and  M(e) is  its  Thom  space.

W e m ay assume th a t  g .  E(e) (resp. tE(E)) is na tura l f o r  bundle m aps, m ulti-
plicative and unitary i. e. T E (n-dim trivial bundle)= 0- 2 n 1 E  k "(S 2 n ) (resp. tE (n-dim

trivial bundle)=a -- " 1  f " ( S " ) )  w here cr : fn -"(E X )--)- E n (X ) i s  a suspension
isomorphism.

Let (resp. e f f )  be  th e  canonical line bundle over CPn (resp. H P ).  R eca ll
th a t  M(C)=CPn+1 ( re sp . M (0)= H P"').

L et i n : C f"--.(C P"', 00 ) (resp. i n  : HPn — (HPn + co)) be  the inclusion and
f * (C P " 1) —, E*(CP 7') (resp. f*(HPn+ 1 ) —■E*(IIPn)) th e  induced homomor-

phism. W e define the euler class xc eE 2 (CP 0 ) (resp. y E  E4( )) fo r  a  complex
(resp. sym plectic) oriented theory E  a s  itTE(ecco) (resp. itt E (eLT)).

L e t k :S 2 =CP 1 C.C.P° (resp. S 4 -= HP 1 H P " )  be the inclusion. Then we can
easily show  tha t our eu ler classes sa tisfy  k*.xE=- a - 2 1 (resp. k*yE=a - 4 1).

So in  the  case  E=H , .x" and  3 ,"  a re  uniquely determined.
F o r th e  definition of the Thom classes in K, K O, M U and MSp theories, we

use  the  same ones in  C onner-F loyd [8]. W e  n o te  th a t  so m e  e u le r  classes in
this paper a re  different from  th e  usual ones in  A d am s [1 ] o r Switzer [26].

F or example, x "= t - '• (1—Cc) where Cc is th e  complex Hopf line bundle over
CP°' a n d  te 7 2(K )  b e  a  g e n e ra to r . W e  h a v e  a lso  

y K 0 _ 1
 —CH e KSp°(HP - )=

K0 4 ( I IP " )  where CH is the symplectic Hopf line bundle. (W e identify KSp°()
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and K a i ( )  by the Bott periodicity.) On the other hand, Switzer [26 ] uses Cc-1
as the euler class of K-theory and CH-1 as that of KO-theory.

One can easily show th at the Conner-Floyd's definition o f x m u  and ymsP
agrees with that by Adams [1 ]  or Switzer [26].

Let j : C P"—  BU (resp. j : H P"— B sp) be the natural inclusion.
Let g e E , n (CP") (resp. E E ,„(H P - ))  be the dual element of (?")n (resp.

(y E )n) and we write j * I3gEE2.(B U) (resp. joA EE4n(B S P)) by igf, (resp.
Let M U (1) T 2 MU (resp. HP"--.  MS p(1) DIUSp) be the canonical

inclusion. We put g= a- 2 i* I3 fz +1 E E2n(MU) (resp. 01+1 G E4n(MSP)).
For brevity, we will often abbreviate E  in the case of E=H .
Throughout the paper the ring of integers is denoted by Z  and the rational

numbers by Q.
If R  is a ring with unit, then the formal power series ring over R  is denoted

by R E.x 11. If f ( x ) =  f  i x i  R [[x ]] where f,E R , then the coefficient of x n  in

f ( x )  is denoted by [f (x )]..
Then the binomial coefficient (

n  

)  is equal to [(1+ x)n]„,.

§ 2. Stable maps

There is a  symplectification map q:C P - - , HP - .
Since q is a fibre bundle whose fibre is S 2, there is a Becker-Gottlieb transfer

t :  1113 7 C P 7 . (See Becker-Gottlieb [5 ] . )  Then the next proposition is clear.
(s)

(See Shimakawa [23], Lemma 1.)

Proposition 2 .1 .  Let x H  a n d  y "  b e  the euler classes as in §1. T hen q*y l i

=— (x") 2 , t*(xll) 2 i - i=0  and t*(xli) 2 i= 2 ( - 1 1 )i  f o r i>0 .

Next we recall the definition of the quasiprojective spaces. (See James [11],
Yokota [27].)

Let F  be C  or H  and S ki the unit sphere in F n .
Let G (C )=U (n ) and Gn,(H )=S P(n ) . T he quasiprojective space Q ( F )  is

defined to be the space of generalized reflections, that is, the image of : S 1
1

1.X
S) — G (F) where 0(u, q) is  the automorphism which leaves y fixed if <u, v>=0
and sends u  to uq.

We may define  Q ( F )  as the space obtained from Skl x S k  by imposing the
equivalence relation (u, g-lqg) (geS ).) and collapsing S 'F' x 1 to a point.

By the second definition, we can easily show that Qn(C)=E(Cl= 1).
Put CPn=Q n (C) and HPn=Q n (H ) .  Clearly, we h ave  a  symplectification map
q: C P"— HP".

We define k n :E 2 (C.1)7,1)—>BU as the composition

E 2 (C.P7
+9=EC ;Pn+1E U ( n + 1 )  - - - > BU

where j ,  in + ,  are the natural inclusions and c is the adjoint map of the equiva-
lence U1.-;',QBU.



Notice that

U (n+ 1) 
CPn--= U(n)X U(1)

bn ,1
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Define in ,4. : CP B U x  Z  by : CFn  C P -  B U  X  {1}land in .+  I {0 0 }
1001—>BUX 101 w here all m aps are the canonical inclusions.

Let B ' :B U x Z 21- -,,Q2 B U  be the Bott periodicity map.

Lemma 2 .2 .  k n : E 2 (CP 1+1 )--■BU is homotopic to the adjoint map of the com-

position CP'÷' BU x Z D2 BU.

Proof . W e define k" : CP 7.:.-4 2 U (n +1 ) by

En ([1.1])(t)(v )=(u, e"')(v ) a n d  17(00)(t)(v)=v.

Clearly /an  i s  an adjoint m ap of the composition

C PI! QU(n+1)----> DU.
U (n + m ) W e define bn

.
m : 

U ( n ) X U ( m )
--. D S U (n+m ) by

(

n r
e i" I n

bn ,m,([A ])(t)= ) e rtinA (  i ) t A (A E  U(n+m )).
e-trtI e i t in

U (2 n )  
U(n)X U(n)

Di

bn, n 
DSU(2n) commutes,

DS U(n+1)

U(2n) 
 U (n )X U (n )  =B U  and the Bott m ap B ' is  the composition

n 

linj b„,„ Xid
B U x Z   D S U x Z =S 2 U -1 2 2 B U

So w e have to  show th a t  1-inL=bn.i.
/ x i  \ / Yi

Let x = 2 be  the  last vector of A U ( n + 1 )  and  y - =  y .2 e C n 4 1 .

\ Y.+1/
Put

/y1

H([A J, s)(t)(y )=
Y2

Ym
e -2imt3. y n + i

if <y , x >=0

and
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H([A ], s)(t)(x )=
e' •  x 2

e 2 i . t  x

\ e 2int(1-s) . x n + ,

Since H([A 1,1)(t)(y)=bn,i([A ])(t)(y), this gives a homotopy Thus (2.2)
holds.

By (2.2), we have the following commutative diagram

 17* ,,(BU)

(2.3) B*

1. *
171* (CP7)

cr2

I7 *(BU) I7*+2(E2BU)

where B  is the adjoint map of the Bott map B'.
As in Switzer [26] (16-23), B* 0.2 (pf(_,)=m•i3g mod decomposable elements.
So we obtain

Proposition 2.4. kcc* a2 g - i =m-Pfni  mod decomposable elements.

Now we construct a  map from HP 3  to C P".
Let z  H n  and z =x -I-jy  where x , y E C 'n . We denote th e  complexification

c : H n  e n  by setting c(z)= xey G C'.
Let q =a+jb e H  where a,b C .  S in ce  S  is  a maximal torus of s, there

is a gGS.1
f f such that g - ',7g S .  If g - lqg=ei'" where —1<t<0, then (gf) - lqgj

=e - ' 1" .  Thus there is a  g E S ir such that g - 1 qg=et 7 t  where
So a  representative element of H Pn can  be taken  a s  (x + jy , e i '" )  where

x , y EC n and 0. t 1.
We define i n : HPn —>CP2 n by the equation

1.[(x+ iy, e"")]=[(xEDY,

Then the following proposition holds.

Proposition 2.5. The following diagram commutes up to homotoPy:

f if in C

Sp (n) U(2n)
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Proof. Clearly, by the definitions, we obtain

1[(u, q)]y=0(u, q)y=y — u(q - 1)<u, y> w h e r e  <u, v>.= R i •vi .

So,
1°Inax+.1Y , e i " a x 'e Y ') -= ,c'EDy'd- (xeDY)(em z e

- 1)<xeay , x 'ey '>

w here x ', y 'E C n . W e also have the following equation

c..1[(x ± jy , ert)](x 'd-jy ')

=x'ey'+(xED.31)(e i ' - 1 )<x e y , x 'e y '>+(-5 ,ED.t)(e - txt-1)<-5IGA  x'ElDy'> .

We define f e [(x - Fjy , ei"t)] by  the equation

foC(x+iY , e i l ")ax /EBY')

-=x 'ey '+ (xey )(e i 'r t ( 2 - ° ) - 1)<xey, x'ey'>

+ ( - - Y E D Ï)(c " - 1 )<- 5 e 2 , x/ey'> .

This gives a  homotopy in.

Clearly the following diagram is commutative :

HP"  C13•"

in+1
HP"+1

p2n+2

w here vertical inclusions are induced by

=  H n EDO H " '  a n d  C 2 n =  2C  n e 0  c Cn+2

We define Ï : 's —.CP.' to be lin  1„ .

Now we determ ine the homomorphisms 4)* , (E  )* . Let MI./  (resp. M'ci) be
the principal S-(resp. SHbundle

sJ, srk HP" - ' (resp. C Pn - 1 ) .

W e regard H (resp. C) as the S . (resp. SHmodule b y  the adjoint action,
and define r2, (resp. rz) to  b e  an associated H (resp. C) bundle of Myi  (resp.
Clearly EH— Pn=M(r71 ) and .L'& 71 =- M(n) w here M (E) is the Thom space  of a
vector bundle E.

Let Q (  )  b e  th e stab ilize  functor lirri S2nSn( ) and j' : Q(11.13 °') — B S p  the

induced map from j: H P °  BS p  using the infinite loop space structure of B S p .
T hen  by  the theorem of Becker-Segal (Becker [4 ], S e g a l [22]), j '  induces an
epimorphism o f th e  cohomology theories corresponding to these infinite loop
sp aces. S o  w e  have a m ap r : ° --. Q (H P °) which satisfies

(2.6) fo r .
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We may reg a rd  r  a s  a  s tab le  map r : E HP-.
(s)

L et E  b e a  sy m p lec tic  oriented theory. F o r  an y  bE H P's the inclusion
ib : {b}->HP* induces M ( i) : S 4 - . M(171 ). Using (2.6) an d  th e  fact that j: H- P -

- S p  gives th e  cell decomposition o f S p , we can easily sh o w  th a t M(ib)*r*yE
=o - 4 1. So r*y EcP 4 (M(71( )) is  a Thom class.

P u t r i i =r*y E E174 (EH- P 0 )=174 (M(111)) and vc=f f (a).

Proposition 2.7. (2-4 )*(r H . y nt)- (_1)M + 1 . 2 x 2 m 1 - 1 = ( - 1 ) m . + 1 . 2 .  0. - 2 x 2m+1 .

Pro o f . Since our Thom  classes are unitary, vc  • x2 7 3 +1 = ( 7 - 2 x 2 M + 1 .

L et D(E) (rssp. S(E)) be th e  disk (resp. sphere) bundle o f  a  vector bundle
: B.

The H*(B)-module structure of I7*(M(E))=H*(D(E), S(E)) is defined by

7 X  id
(D(E), S(E)) — > (D(E), S(E))X (D(E), S(E)) ---> BX (D(E), S(E))

where GI is the diagonal.
Since f q  is given by q' : **-.71 where q' is the bundle map over CP- -  H P - ,

the m odule structure is  compatible, i. e.,

(2-4*-t-i i  • ym)=- (E'er H )• q*y 17L- -.=(2' q*z H )• (-1)m .1c 2777- .

So we have to show that Eq*z-H =-2 .z - c • x .  We have a com m utative diagram

>-.17,(Eu) C*
f l(B U)

fq : b q* Bq*

174 (1:171;c1 — C*
•173(Bsp)> 111(ESP)

L et (z-H )*E1-74 (THP0 0 ) be th e  dual element of z- H . By th e  duality, we may
prove that Eq*a 2 181=-2 .(1 - 11)*. Since j*r*(7H) * =rii by th e  definition o f r g ,  we
have only to prove that j* r* E 4 a 2 /31-= - 2.)21. By th e  above diagram and (2.6),
j * r* E4 * =- Bq* 4 2 7 * . By (2.1) and (2.4), we have

Bq*c*E1*(1 2 131=B q .k . * 0. 2 431=Bq*(2. 132+decomposable elements)= - 2.)21.

Proposition 2.8. (f q )* .(f i)*= • 2 .  So we have

Pro o f . If (E - )*.(ET)* - 2, then the second result follows from (2.7). So
we have to show  that (E -0*.(2'1)*=•2. There is a commutative diagram
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I 4 * 17,.(2f115 - ) I-74.(EF—P1

k . *

Bc*
f l .'4.(BU) 1 3 1 * >  174 ,(BS p)

k .*

) 1'14.(B U) .

A s is well-known Bc * . Bq* = • 2  modulo decomposable elements. Since k . * is
monic, (2.8) is proved.

Proposition 2.9. ym=mz-
H •yni - ' (m> 1).

Pro o f . Let z *GH* (X ) be the dual element of zEH*(X ).
Then 1 3 2 . 4 = . 1 . * ( x 2 ) *  and 72.=j*(y m )*. So B q*132,.=(-1)'•72. by (2.1). We

have also I -4*(vc•x ') * = ( - 1 ) m .2 - ( z - H•y 7 3 - 1 )*. T hen by (2.6), we obtain the
following commutative diagram :

17* (TCP - ) 2 r 17* (24 -113")
.i* r* H ( H .) 11*(BSP)

  

k . *
(co EJ),

  

Bq* —
17*(BU) > H* (BSp)

(4*
 H*(E4K0) ,

where K O is BO-spectrum and c4 : BSp , I 4K 0  the canonical inclusion. Since
k  w * er c x 2m-1, * _) 2m• 13 2.+decomposable elements, we have

Bq* k.,* (rc x 2 m- 1 )*=(-1)m•2m•777,4+decomposable elements.

If r* (1-
H y ') * =a • y n i ,  then .2a  m .

Since c4 * k ills  the decomposable elements and since c4 * 72,,, 0  (See Switzer
[26].), a = m .  Thus (2.9) is proved. D

We put 4=-E-,4 and I=X - '1. Then we have the following
stable maps :

qCP7 --> HP7 CP7 , CP7 --> HP7 ---> CP7 a n d  DHP -  - - >  H P .

Let E  be a  symplectic oriented theory. Then we can regard P*(HP- ) as
ct2

th e  E*(H P - )-module by the suspension isomorphism P*(f H P - )= P*(I 2HP- )---
E* _2( H p .) .

Since r* :H 4 (11P- )—>H4( f l i -P- )  is an isomorphism,

ct2 or*: P4 (HP") ----> E4 (2171 3 0 ) f2(HP00)
is so.
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We denote y E E E 2 (H P - )  to be a 2 r* y E . Then y E •(y E )rm=o- 2 (r*y E •(yE)m) (for
m_0) form a free E* (pt)-base o f  f * (H P - ).

§ 3. Hurewicz homomorphism

L et E  and  F  be th e  spectra o f symplectic oriented theories. Then we have

two symplectic classes in E A M Sp*(HP - ):

y L :H P -  ---> — ›  D A E A Z , D A E A M S p
y E idA idA cm sp

and
y MSP idA cEA id

y R : HP -  - - >  E 4 M S P  - ->  D A D A M S P  - 0  D A E A M S p

where tms, : E°-.MSp and  CE: E ° - .E  a re  th e  u n it maps.
We write y E , y m " fo r  y L , YR. W e can  compare yE, y M E P  b y  the following

lemma. (See Adam s [ 1 ] . )  P u t h E (y E )=. hizo

Lemma 3.1. (A dam s form ula) y m sP=11 E (y E ).

By th e  universality o f M S p  fo r symplectic oriented theories, there is

uF  : M S p ---> F such that uF.(y m s P )=-y F  •

P u t u F *hE (y )= Du F .hEy i +1 E E * (F )E y 1 1 . By (3.1), we have

L em m a 3.2 . y F = u 1 4 -1E ( y E ).

First, we consider the case of E =H . Let y m 8 P = hurH (y 3 f s P )  HA M Spz(HP - ).
We can easily show  the  following propositions by (3.1), (2.7), (2.8) and  (2.9).

Proposition 3 .3 .  In  HA M S p-theory , we have

q*(y m ")'=(h(— x 2 )) 74 a n d  t*(h(—x 2 ))m=2(y m 8 2 ))7

Proposition 3 .4  In  HA M S p-theory , we have

4*(5-1m  sP •(y m s P) 14 )=.
d
d
x  h ( - -x 2 )•(h(— x 2 ) ) '

and

t*( d
d

x  h (— .0 • (h (— .0 ) )=2 9 m E P.(y m E P)m .

Next, we consider the case of E =H A K O . In HA K O A MSp-theory, we have
three euler classes y "  and  ymsP.

By (3.1) and  (3.2), we obtain th e  equation ymsp=hico(uKo.hu(yru)).

We can regard  H ( K O )  a s  th e  subring o f 11* (K )=Q [t, t - 1 ],  where tEl-/JK )
is  th e  generator in  A dam s [1 ]  and  Switzer [ 2 6 ] .  In  fact we h a v e  c* (1-1* (K 0))
=Q [0, 2t 2 , t - 4 ]  where c*  i s  th e  monomorphism induced from complexification
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m ap c : KO , K.
Then u E 0 .1211=2(-1)i •t 2 i/(2 i+ 2) L  (S ee  a ita  [14 ], L em m a 2 .3 ., and recall

tha t ou r yH is different in sign from  his one.)

L em m a 3 .5 . In H A KO A MSp-theory, y" s P = h ie°(—t - 2  • (2. cosh (tA / —  y) —2)).

Put f (x )=. h"(— t - 2  • (• 2 cosh ( tx )-2 ))  and .7(x)-= f ( x ) .  Put also -M Sy  P=

hurH AK ° (y m s P)E H A KO A MSp 2(HP - ). The proofs of the following two proposi-
tions are sim ilar to those of (3.4) and (3.5).

Proposition 3 .3 ' .  In H AKO AMS p-theory,

q*(y ' s P)n =(f(x )) 77' a n d  t*(f(x))m=2(ymsP)i

Proposition 3 . 4 ' .  In  HA KO A MS p-theory,
6,*(9msp.(ymzp))fl-_-.21(x)•(f(x))

and
1* (f(x) . (f (x )))'=.9 3 1 s P .(Y m s P r  .

We denote hurr  : 7 * ( E * (  )  to be the generalized Hurewicz homomorphism.
Since hurE  is induced from  the unit m a p  cE  : E ,  (3.2)-, (3 .4 ) ' g iv e  the

informations for hurE .
These results w ill be used in the following sections.

§ 4. Symplectie  fo rm a l sy stem  and sym plectie Lazard ring

Let R  be a commutative ring w ith  unit and R [[X , X, Y, 17- ] ]  th e formal
power series ring w ith  four variables X, X, Y and F.

D efin ition  4 .1 . A symplectic formal system consists of a formal power series

E(X )= a i • E R E X ]] ,

and formal power series in  R EX , X, Y, Y ] ] / ( E ( X ) — X 2 ,  E(Y )— F 2),

F k (X , X, Y, 17 )=  E bikj. Xi • Y i+  E X. x i- i•  37 . Y "  ,2:,;a0 '

G k (X , X, Y, 37 ) -=  E  c/P'3. (X . X i - 1 • Y j +  • Y' - '. Xj) f o r  k
iZ 1 , . / Z 0

which satisfy

( j ) ( u n i ta r y  relation) bN= d N =1 , 14.1,)0= d 0 = 0  for n #1 ,

(ii) (associative relation)
D(Fi (X, X,Y , Y), G,(X , X,Y ,17 ), Z, 7)-= D(X, X, Fi (Y , Y, Z,G i (Y, Y, Z, 2))

for D= Fi  o r  G 1 ,

(iii) (commutative relation) b.,'3=bj',1, 6,1j=c5,11,
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(iv) (differential relation) cf3= —2 , cfA=c;L;i=0 for n

( v  )  (power relation) F k (X, X, Y, F)=(F,(X , X, Y , F ))"

G k (X, X, Y, F)=G i (X, X, Y, ?)• F k _i (X, X, Y, )7 )
and

( v i )  (square relation) (G,(X, X, Y , P )) 2 =E (F 1(X, X, Y, Y)).

Definition 4 .2 .  Let r= 1E, Fk , G kI  b e  a  symplectic formal system over R.
The associated symplectic ring R r  i s  the subring of R  w hich  is genera ted  by
the elements 8a 1 , 41) 1), 214?;) , c , 4c/f,k3 and 1.

N ow  w e can define the symplectic Lazard ring LMSp as fo llow s. Let S be
Z[a„ Nk3, c ,  cW ] w here a6 , Nk3, W3 and ci;,k,),  are variables, and / the ideal of
relations that appear in ( i ) , —(vi) of (4.1).

T h en  w e  g e t a  universal symplectic form al system  over S / / . W e denote
as th is system  over S// and do LMSp as (SI .I)r univ.runiv 

Then clearly, w e have

Proposition 4.3. u n tv  an d  LM Sp are universal f o r  symplectic formal
systems and their associated symplectic rings.

W e can m ake LMSp in to  a  graded ring as follows.
Let assign the degree —2 to  X, 17  and the degree —4 to  X , Y .  Let assign

also the degree —4 to  E(X ), the degree —4k to  F k (X, X, Y, 17 )  and the degree
—4k+2 to G k (X, X, Y, 17) .  Then all the relations ( j  )--(vi) match these gradings.
So the ideal / is graded and LMSp is  a  graded ring.

We note tha t a6 , N,k3, clr, and c/V:)
., have degrees 4(i-1), 4(i+ j — k), 4(i+ j—k —1)

and 4(i+ j—k), respectively . If a symplectic fo rm a l sy s te m  o v e r  a  positively
graded ring R  satisfies such conditions, th en  w e  say  th a t r is graded.

E x a m p le . An easy computation shows LMSp 0 = Z  generated by 1, LMSp 4

= Z  generated by 4bM and L M S N = Z e Z  generated by 6!?,3 and 2 b a

N ext w e w ant to  construct a  symplectic formal system over H* (M Sp). Put

f(x)=h(—x 2)  and j7 (x )=  21  d
d

x h(— x 2 ) where h(x)= • x i -  as in §3. C learly ,

f (x ) and f(x )E H * (MSp)[[x11.
W e denote the symplectic formal system TH  by setting,

E H (f (x ))= (f(x )) 2FF(f (x ) , f (x ) , f (Y ) ' f (Y ))=- (f(x+Y )) k

and
G r( f ( x ) ,  f(x ), f(y ), f(y ))= f(x+y )•(f(x+y ))k - ' for

T hen  the a ll the properties except (iv) are almost trivial.

Proposition 4 .4 .  In  TH, the differential relation holds.

P roof. Put
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Fi (f(x), .17 (x), .f(Y), f(Y))= f(x

=  E  b '3i ..(f(x )) i - (f(y)Y - F ci,J . Rx) . (f(x )) - 1 . .f(Y) . (f(Y)) i - 1

i,.7ao 

where b " , c "E H * (M S p ). Put y 2 = 0 . Since .7(x)=— x +higher terms and f(x )
- - -x 2 +higher terms and since the unitary relation holds, th e  above equation
becomes

f (x  y )= f(x)• ( f(x))i - 1  • (— y) .

Since y 2 =0, this means

—27(x)=— y - 1  • ( f(x y )—  f(x ))= c , i f(x)•(f(x))t - 1

Since .7 (x )• (f(x )) '= (-1 ) 1 x2 1 - 1 d-higher terms, we have c 1 ,1 = - 2  and c 1=0 for
n#1 inductively. By the commutative relation, c1,„=0 for n # 1 . Thus (4.4) is
proved. E

Then by (4.3), we have a ring homomorphism 6 ':  LMSp—H * (M Sp) such
th a t e“17, i ,=r„ w here 6 is defined by mapping each corresponding coef-
ficients of E(X), F k (X, X , Y, 7) and Gk (X, X , Y, 7).

Proposition 4.5. 8'(8a i ), 6'(4b)), 0 ' (c ) and 8'(4d6) are in Im (hurl ' : MSp *

--H * (MSp)) for all

P ro o f . Since t*((eygsP) 2 ) eMSp*(HP7), th e re  is  a i eMSp *  su ch  th a t
E ai •(ym sP)i=t*((ry m sP)2 ). If we map this equation into (Jr) 7yJ5p)*(HP7), then

we have
E h u r H( a i ) . (y fr/Sp) i_ t *((r 5 MSp)2) _ t *((2.7

( C )) ) = t*(4. E(f(x)))
j O

= E O'(8a,)•(y m s P) ib y  (3.3) and (3.4).

Let m:CP7ACP7--CP7 be the classifying map o f th e  tensor product of
canonical line bundle. Then

(tAt)*m*q*((y m s P) k ) EMSp*(HP7AHP7) -/-z,' MSp*(HP7)0 m s,MSp*(HP7) .

Similary we have the following equations :

(t A t)*m*q*((yMSps) )EMSp*(HP -  A MS p*(HP - )0 31 s p,MS p*(HP - ) ,

(I- A t)*m*4*(.9 m s P • (y m s P) kM S p * ( H P " A  H 1 3 7),, --,MSp*(HP - )O k is p,111Sp*(H13 7)

and

(t A  t
)*MV*(9M S P  (y

 M
)  k) )  MSp*(HPTA HP 00),---MSp*(HP7)0 m s p.MSp*(HP - ).

Then there are J 3 ) , andand alk,ileMSp *  which satisfy

E Plri • (3, ms P) 0 (y m s P).1=(t A t) * 70 9 * ((Y m s P ) k )j20
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E r ok . (5 ,-msp. ( y M S p y - 1 ) 0 ( y M S p )(y MSp , j - 1) =C t  A i rm *q*((y

M S p ) k )

i,j21

and
E  (k ).. (9 msp. ( y 1isp)i-1)0( y msp);= (t A t)* ie r ( 5 ,msp (y afsp)k

And clearly

E (y m s P Y 0(.9 m s P  • (y m s P Y - 1 )= (t A t rm * 4* (5/3" P  • (y m s P ) k - 1 ) •iz1, jgo

W e can  easily  p rove hurH(R ))=0 4 (4b6), hurH(7 = - 0 / ( d )  an d  hurH(3,n)=
0 i(4dg')) by the similar method used to prove hurl (a i ) -= 0/(8a i ), using (3.3) and
(3.4). Thus (4.5) is proved. D

To show 6v(2MV)eIm(hui- H ), we need some preparations.
Let c : HP7--+BU(2)., be the classifying map o f th e  complexification Sp(1)

—.U(2) and q: BU(n) + —>BSp(n) +  th a t of the quaterniozation U (n )- .S p (n ).
Let m :  BU (2)+ A BU (2)+  B U  (4), b e  th e  classifying m ap o f th e  tensor

product.
We abbreviate X+ A X+ A ••• A X+  as X. Then we denote in, : (CP - ) - .(C P - )11-

as the classifying map of the endomorphism p 4 of U(1)xU(1)x U(1)x U(1) defined
by p 4 (a, b, c, d)=(ac, ad, bc, bd).

We denote i n  : U (1)x U (1)x • • • x U (1)-41(n) (resp. j: Sp(1) x Sp(1) x • • • x S p(1)
(n-times) (n-times)

—>Sp(n) as the canonical inclusion.
Then the diagram

C PT A CPT A CP7A C PT_

Bi2 +  A Bi 2+

BU(2) +  A BU(2).,

CPT ACPTA CP.TA C PT_

Bi4 +

BU(4),.ni commutes.

We denote also conj : C./3 7---■CPT as  th e  classifying m ap o f th e  complex
conjugation. Then the diagram

(id Aconj).
CPT.  CPT A CP T.

Bi2+

BU (2) 1. commutes.

If we apply the functor MS p* ( ), then we obtain a commutative diagram
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q* 771*
S P*  (B S PM+) MS p*(BU(4)+) — ,,- AISP*(B U(2)+ A BU (2).0

    

(4.6)

  

(Biz+ A

    

c A c)* 
Al S p*(HPTA HPT)

(q A q)*

AISp*((HP- )!,)2 1 --> AlSp ((CP )— ›-m *P*((CP-)1-) (4 ' AL1 )̀* 3  MS p*(CP- +ACP7)

where 4, -=•(id Acoup°4.
P u t y rp _ 7 rty m s p . Then there is a n  isomorphism

MSP * ((1-1/3 - )1)=M SP*EY IV P , Y fi2f S P  • Y li S P  • A I S P i l  •

A s is well-known, there a re  th e  symplectic Pontrjagin classes 13
1 , P2 , PB and

P 4  such that M Sp*(BSp(4) + )- - MS P*[[Pi, P2 , P3, PO] a n d  (Bi 4 + )*P4 i s  t h e  i-th
elementary symmetric function on A i s P, yY s P, A f s P and yfif s P• (See Switzer [26 ].)

P u t r i =hur H (c Ac)*m*q*Pi  ( i= 1 , 2 , 3 , 4 ) . We denote f3V;) a n d  qk, )  a s  th e
elements o f H * (M S p) which satisfy

Fr(X , X, Y , 11 )-  E  Blk;•Xi• Y i+  E X• 17.• .
' t ,j1 '

L et denote x i E(H A M Sp) 2((CP- )7_0 for 1 z n  a s  1 7 tX  where
x G (H A MS p) 2(CP7) a s  in  § 2. Now we can calculate (q A q)*r

Lemma 4.7.

(i) (q A q)* r i-E 4B .i5 '(f (x i)) i •(f(x2)) 1

(ii) (q A g)* r 2 -=E  6B Bi!) 8.(f(xi)) i . "•(f (x 2)) .1+ 8

— E2C15.Q1- E H (f (x E H (f(x2)) - (f(x o)1+ k (  f ( x  2 ))i+ s -2

and

(iii) ( q  A q)*7 4= E B k l• .;,1,),,,• 13 ;1,)q. (f(xiD i + k + n + P  • (f(x 0) 5 + 1 + 7 '

— E2B 2. 13 C;I,),. E l  1 (ftx 1))• E H (f(x2))
( f ( x  Dyi+ k+n-l-p -2 (f( x 2 ))i-Fs+ra+2-2

+ E C i5•C k l•C W ,),,,•C ;',),•(E ff(f(x i))) 2 .(EH( f (x 2)))2

.(  f ( x  oy+ k  +ni-p -4 .(f ( x 2 ))j+s+ra+q-4

P ro o f .  Put

S i -=(i-th elementary symmetric function on yitr 2
9 , yY sP, y ifsP and y rP )  .

Then we obtain th e  equation

(q A o)*r=-hurE .(4, A 42 )* .mto q*. (Bi 44*  Pi= (4 c A 42)*. Into q*. hurH (Si)

by (4.6).

Then th e  results o f (4.7) follow from an  easy calculation. Since the  case
( i )—(iii) a re  quite similar, we show  the case ( i ) in  detail and om it others.
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(q A q)*1-4 = (ZI, A 4,) * mt(f(x4)±f(x2)d - f(x3) +f(x4)) (by (3.3).)

=(4, A 4,)*(f(x i d- x 2) - kf(x + x4)±f(x2+ x8)+f(x2+ x4))

(by th e  definition o f  m4.)

Since (id  Aconj Aid Aconj) x j = (-1 )i -"x 2 , this equation becomes

(q A q)*r i =(4 A4) * (f (x i+  x 2 )+f (x i-x 4 )+f ( -x 2 +x 2 )+f (x +x 4 ) )

=f ( x 1 +x 2 ) +f ( x 1 - x 2 ) +f ( - x i+x 2 ) +f ( - x i - x 2 ) .

Since f(x)=h(— x 2)-=f(—x) and .77(x)=  2
1

 d
d

 x h (  x 2 )= — )7 (— x), we obtain

(q Ag )* i- 1=2(f(x 1+ x2)+ f(x 1 —  x2))

=2(F lii (f(x1), A x ) ,  f(x2), Ax2))+Fil (f(x i), f(x i), f(x2 ), - - f(x2)))

= E  4B• (f(x4)) i • (Ax2)) .1 .

We have another commutative diagram

MSp*(BSp(2)+) 2 1 , -'  MSp*(BU(2)+) 44-4 MSp*(B U(2)+ A CPT) (CA t)* MSp*(HP.i.'AHP.T.)

(Bi2+)* (Bi2+)* (Bi2+ A id)* (qAq)*

MSp*((HP- g)
i - msp*((cPc

..)1)--n2 -).-‘ MSP* ((CP'Yi ACPT) (4  ̀A  t  q ) )*  MSp*(CPTACP.T)

where m: BU(2) + ACP7--.BU(2) + is  th e  classifying map o f  t h e  tensor product
U (2)xU (1)-4 /(2) a n d  m2:(CP")+—>(CP - ).21. is t h a t  o f  t h e  homomorphism
p2:U(1)XU(1)XU(1)—qI(1)XU(1) defined by p2(a, b, c)=(ac, bc).

Under th e  similar notations in (4.7), we obtain

Lemma 4.9.

(q A q)*.hurH 0(c A 0 *  m*.q*13
2 = E 2B  ).1 • Bis . (f(xiD i + k  • (f (X2D i + 8

-E 2C 1?;•C V 4•E ll(f(x 4 ))•E H ( f(x 2 ))• (f(x iV + k - 2 .( f(x 2 )) / - " - 2 .

Since th e  proof o f (4.9) is quite similar to (4.7), we om it this.
We p u t s2 =hur H a(cAt)*.m*.q*P 2 . Then 7-2 -2 s 2 EIm(hur H )  and

(qAq)*(7-2 - 2s 2 )=. E2 B )•  B V8 - (f(x i))" . ' •(f(x2)) -1' s

d- E2Cp)•Ck ),• E l l (f(x i))•E H (f(x2))•(.f(xi)) 2 .(f(x2)) .1+ '

Since t h e  righ t side o f  t h e  above equation is E 2B irf (f(xi))i•(f(x2))i by the
multiplicative relation and since there a re  elements M E M S p *  satisfying

r 2 - 2s 2 = E hur"(R )• (3, s P )i  • (Yr P )i2 B M  =  hur l l (M E Im (h u r g ) .
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Since 2/3i5= O'(2b)), we have already proved the  following proposition in
the case k=1.

Proposition 4.10. O'(214 2 ) hri (hurH : MSp * - 1 -1* (MSp)) f o r k - 1.

Pro o f . Put X= E BI; ); •xf • Y -= E Ci;l• •  x f - l• and .Fc7-=EH (x i )  for
i= 1  o r  2 .  Then the coefficients of (X ±Y ) 2 ±(X— Y) 2 a n d  those of (X 2 — Y2 )2 a t
x • 4  are in Im (h u e ) by the multiplicative relation, 2.Bi??; Elm (hurH) and (iii) of
(4.7).

Notice that (X + Y)2  k  +(X-  Y)2  k  = E 2B ,21) • x  •x  by the multiplicative rela-
tion . So, if the following lemma holds, then (4.10) can be proved by induction
on k, easily.

Lemma 4.11.

(X ±Y ) 27H-(X—Y ) 2 ne(ideal generated by (X ±Y ) 2 m-F(X—Y) 2 m. (m  <n)

and by (X 2 —Y 2)2) .

Pro o f . Put A =(X-I-Y) 2 a n d  B=(X—Y) 2 . Then we have only to prove that
And-Bn E /,= (idea l generated by An'+Bm (m<n), A B ) . Since An+Bn=(A±B)
(An - 1 + B n - 1 )-  AB(A n - 2 ± B n - 2 )E.1. , this is clear.

hurHOid
Since MSp * OQ H*(M Sp)0Q is a monomorphism where Q  i s  the

fie ld  o f  rational numbers, a n d  since H* (M Sp ) is torsion-free, MSp * /Torsion
h u e

H* (MSp) can be induced and is monic.
So MSp * /Torsion (hurl/ : MSp * —>H* (MSp)). By (4.5) and (4.10), 0 /(LMSp)

CIm (hue). N ow  the  proof of the next theorem is clear.

Theorem 4 .1 2 . T here is a  rin g  homomorphism 19: L M S p  MSp * /Torsion
such that 6r=hur H 00.

We have some remarks.
(1) K. Shimakawa defined j m s p CM Sp * a s  th e  su b rin g  generated by the

coefficients of (cA c)*. m*.q*Pi EMSp * [[y lisP, AfsP]] (fo r i= 1--4 ). (See Shima-
kawa [2311.) His approach was based on N. Ja. Gozman's method. (See Gozman
'[9].) These are closely related to the  theory of 2-valued formal group studied
by V. M. Buh§taber, S. P. Novikov and others. They introduced two functions
01(x, y), e2(x, y)E(M-SP*0Q)[[x, y]] such that

(c A c)*-m*.g*Pi=(1±01(Y1 f s P , Yli s P )+6 12(yif s P , y Ai s P ))2 .

So the coefficients of 2e„ e7+2e2, 2e 1e . a n d  e i a r e  included in  MSP*.
(See also Buhgtaber [6].) Using our (4.5) and (4.10), one can easily proved that
the coefficients of 26 2 a re  in  MSp*.
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(2 )  If we substitute M S p by K O, we have another example of symplectic
formal system :

E(X )=—  X+ —
t2

• X 2 ,
4

t2F k (X , X-, Y, F )= ( X ± Y —  •  X. Y-2 . X  k. 17. - )

and
t2

G k (X , X, Y ,  17 )=(X + t22 (X . Y +  •  X))• (X+ Y — • X. Y -2 . X. k  1I l

for

If we denote L K O as the associated symplectic ring, then there is a  rin g
homomorphism 0 : LKO •—q(0 * /Torsion. One can easily show that

O: L K 0 '.- E K 0 4 5 .iao

§ 5. Calculation in  LM Sp

First, we prove the following theorem.

Theorem 5.1. O'Oici : LMSp0Q—>(11*(MSP))r H O Q  is an isomorphism. So,
0'

LMSp/Torsion—>(11* (M S p ))r, is also an isomorphism.

There are some propositions.
Let r= 1E, Fk , G k }  b e  a  symplectic formal system over R.

Proposition 5 .2 . In  R O Q , E • X 1 -= —

dE
d X

E ( X ) .
iao J a i

Proof. By square relation, we obtain the following equation

(G,(X , X, Y, Y )) 2 = E a i •(F,(X , X , Y , Y)) i

If we put Y=0, then F2 = E a i Yi =O. Then
ig1

(G,(X , X, Y , 37 ))2 = ( X ±  ,, d1!1• Xi • 37 )2 = X 2 +2 i E0 ,6W1. X. Xi. y

=E(X )-1-(2 E dfil. Xi). X. .izo

On the other hand, if 17 2 = Y=0, then we have the following equation :

E a ••(F,(X , X, Y, 17 "))'= E a i • (X— 2 • X. 1")ijal

• = E(X)— (2 i a i • Xi - 1 ). X. V .

Proposition 5 .3 . In R O Q , 2G 1(X , X, Y, 17 )= Y  (  a
a
y   F,(X , X, Y, F ) ) .

Thus (5.2) holds.
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Proof. If  w e  p u t Z=0 on the associative relation

Fi (Fi (X, X, Y, 17 ), Gi (X, X, Y, Z, 2)=F 1(X, X, Fi (Y, 17 , Z, 2), Gi (Y , F, Z, 2))

and compare the coefficient a t  2, then  th e  sim ilar calculations to  those in  th e
proof o f (5.2) deduce th e  following equation

01 . Gi(X, X, Y , )7 )

= — (E V) • 2(i(2j)17-. Yi-1 ) X. Xi - 1 ((E  d  Y s)Y - 1  +2( j —1)Y 2Y) - 2 ))

=  — ( V.); • X (2  f)? .• Y  - 1  -FE W.,. x• X i - 1(  d
d
y  E (Y )P - 1  +2( j-1)E(Y)Yi - 2 )) .

a1 7 d  Since 17 2 =E(Y), 072)=2.17.
dY= E (Y ) . So w e havea7 Y 

E .2? . 1.0 ) •  :Y- . Xi - i ( d
d
y  E (Y)•Y i - H -2(j-1 )E (Y )•Y 1 - 2 )

d=-217  •( E b •  Xi • 
 d  

- (P )+ E  cl!), • X•
d Y

X i - l •  
 d Y  (

7- • 37 1 - 1 ))

_ a=2Y. F i(X  X  Y  Y ).ay " T h u s (5.3) is proved.

If F= 1E, Fk , G k}  i s  a  symplectic form al system  over a  com m utative ring
R ,  th e n  t h e  R-algebra REX, X, Y ,17 1]1(X2 —E(X), F 2 — E (Y ) )  h a s  a  f re e  R-
module base XE•Xn.7vYm, E---0 o r  1, s '= 0  o r  1 and  n,

So, (5.2) and (5.3) can be interpreted as

(4-= j • N = i - i• j•d ,

2 d i 5 =  E  (n +2m —2)• an•c.2 ).f=n+m-2

and

(5.2)' cW1=—(i+1)• a , , , , g i= — i-'•(i+ 1 )•a ,+ , for

L e t R  be a com m utative ring w hich is graded a n d  is connected  and be
a  graded symplectic form al system  over R . L et P  be  th e  augumentation ideal
o f  R  and J  be the intersection

Pn(the subring generated by at , b , c

Proposition 5.4. In  ROQ,

m)an+m-i (mod ./2)

f o r n, rn 1 an d  (n , m )* (1 , 1 ) where N (n , m )eZ .

Proof. W e consider the square relation (G i (X , X,Y , F)) 2 =E(Fi(X, X,Y , Y)).
W e denote the  coefficient at Xs• X n• Yn1 a s  [  n, a, , m ) .  If w e compare the
coefficients a t  X. X. - 1•17  Yin - 1  m odulo J 2,  then w e obtain the following equation

(5.3)'

for
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2(4; ).-1d- dg;.-1)=- EXH-- 37 + ., i g)*(X•
z j

=CE ak•(Fi(X, X , Y,

FAX, X, Y , 17 )H- on+.-1•(Fi(X , X, Y , Y ))' -' 1- (1 , n -1 ,1 , m -1 )

C2,1277L+ N ( n ,  n 2 ) '  a n+771-1 (mod r ) for n, m..1 a n d  (n, rn)*(1, 1)

where N (n, m )=[(F i (X , X, Y  ,F)) 7 1 ÷ m - 1 11, n -1 ,1 , m --1). I f  w e  com pare the coeffi-
c ie n ts  a t  X .? ,  then w e have 2-=cf,il•a 1 . Then ci,= — 1 and (5.4) follows from
the above equations.

Let A  be the subring of R  generated by a i  ( i_ 1 ) .  T hen  under th e  same
hypothesis as  in  (5.4), w e have

Proposition 5 .5 .  J0Q cA 0Q . S o  R rO Q =A 0(2 .

Proof . First, we will prove J0Q c(A±J 2 )0 Q . If we can prove this, then
by an easy induction on degree, we can prove (5.5).

By using the second equation of (5.3)', w e have

2d 1!)=- a i• ci5+1.(21+1)=- —(2/±1). ci5+1 (mod r ) for j 1 .

So we have only to prove that di5E(A-FJ 2 )0Q  by (5.3)'.
If 1 =1, then (5.2)' says that c/i5EAOQ for all i 1. So, w e  assume that

c ,E(A+ j2)®(/ for some k and all
Since —(2k —1)cl )

k (mod J2 ), ci!),E(A+ J 2)0 Q  for all i On the
other hand, dl,'-= '.-2 (g )

k _i-E.01_1) (mod A +P) by (5.4). So 0 )i_i (A+J 2)0Q for
all i 2 .  And w e have g )i_1=(i-1)•10-1=(i-1)• k  • k • bi'21, k  •  d i 2 1 ,  k

for all i 2 by the first equation of (5.3)'.
Thus by induction on k , w e have da(AH- J 2)®Q.

Now we can prove (5.1). L e t T=Q[t2, ts, ••• , tk, •••] and a : T—> LmspoQ
the homomorphism defined by a(t i )=a i  for i 2. Put t i = — 1. W e assign  the
degree 4(1-1) to  ti . Then a  is graded and is  an  epimorphism by (5.5).

We consider the following composition

a 0'
T  ---> L M S pOQ --> (H * (MSp)) 1- • H OQ H*(MSp)0Q

By the definition of r H ,  we have a square relation (.7(x)) 2 = i ;  0 .a(t,)•(f (x ))i

where f (x ) and 7(x ) are  as in  § 4. So, we obtain the  following equation

( E  (-1 )i • i • 12.1 _,• x21 - 1)2= E x " )1  .
121 121 121

Let D=(the ideal generated by {h i }  (i_1)) 2 . If  w e compare the coefficients
at .x2 1 modulo D, then we obtain easily 0'.a(t i ) — (2i- 1)h 1 _1 modulo D for
Thus K.0' oce:T — JI,K(MSP)0(2=QChi, 122, •-• , hk, •••1 is an isomorphism.

Since a and 0 ' are surjective, we can easily conclude that O': LMSp0Q— k
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(H* (MSp))r H O Q  is  an isomorphism.

L et L * , M *  be graded rings which are commutative, unitary and free  as
m odules. Then we denote th e  rational indecomposable module Q (L )  as the
quotient L*1 L* np * where D*  is the ideal of all decomposable elements in  L * 0Q.

If f : L * —>M*  is  a  ring  homomorphism, then it gives the induced homomor-
phism Q (f):Q (L * ) —>Q(M* ).

C)kita [14] has studied Q(MSp* /Torsion) in detail. He determined completely
the image of Q(MSp* /Torsion) in  Q(H* (MSp)) by Q(hurH).

We use the same notation h, E Q(H* (MSp)) for the quotient im age of ht E

H41(MSP). Clearly Q(I1*(MSP)) is generated freely by h,
Then 6kita [14] has proved th e  following theorem. ( S e e  aita [14],

Theorem 1.1, Propositions 4.1, 4.2 and 4.3.)

Theorem 5.6. ((R ita ) Im Q(hurH )  is generated freely  by  2si • ti • hi  f o r  i ..0
where si an d  ti are  integers defined as follows:

f

2 i f  i-=-.0 (mod 2) , i * 2 . 1 f o r  any  j

4 i f  i= 2 i  f o r some j
si =

4 i f  i=1 (mod 2) , i# 2 -1  f o r  any

8 i f  i=2.1- 1  f o r some j ,

{p i f  2i+1 is a pow er of  an odd prim e p

1 otherwise.

We have a commutative diagram

0'
LMSp/Torsion (1/(MS

0

hurl'
MSNITorsion Immsp)

Now we can prove the  following theorem.

Theorem 5.7. Im Q(hurH)=Q((H* (MSp))r H ). S o Q(0): Q(LMSp/Torsion)—>
Q(MSp * /Torsion) is an isomorphism.

Pro o f . Since O': LMSp/Torsion —>(H* (M S p ))r, is an isomorphism, the first
statement deduces the second one. So we have only to determine Q((H* (MSp))r .„).

Let B,,, and C1 ,1 be the elements in  H* (MSp) satisfying

f(x+y)=- i , ; () /31,, • (f(x))i •(f(y)) 3 + i , N i( f ( x ) ) 1 - 1 . f ( y ) - ( f ( y ) ) 1 - i

t i =
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where f, f  are as in § 4. If we_compare the coefficients a t  x 2 n.y 2 m, then we
have

(2n +2m)
(5.8) B n,ni

= h n + . - 1 in Q(14(MSP))
2n

Also, if we compare the coefficients at x 2 n- 1 •y 2 " - ', then we have easily

(2n +2m-2)
(5.9) C n ,  n i

=
1 1 1 - 1 - 7 7 L1 - 2 i n  Q(H* (MSp)) .

2n-1

So, if the following lemma can be proved, then (5.6) deduces the first state-
ment of (5.7).

Let S be a set of integers. Then we denote the greatest common divisor
of all elements in S by GCD(S).

Lemma 5.10.

( ( 2N+2)
(1) GCD I1<n<N+1)

2n —1

7=- 2 (mod 4) i f  AT=- 0 (mod 2) , N*2-I f o r any j
-=4 (mod 8) if N =2 -i f o r some j,

( ( 2N+ 2 )
(2) 4.GCD 10<n<N+1)

2n

J m4 (mod 8) i f  Ar:-=1 (mod 2) , IV* 2 i - 1  f o r any

1 --_--8 (mod 16) i f  N=2i —1 f o r som e j and

(3)
 G CD ((2N +2)

n
 I1 < n < 2 N + 1 )

---2s•p f o r some s i f  2N+1 is a pow er of  an odd prime{

T he proof of (5.10) is  e a sy  but tedious. So, w e prove only the first
statement of (1). The proofs of the rest are quite similar.

We may put N=2a .(26+1) where a, b are positive integers. Then we have
the equation

(2 1)\4 (2b+
=[(1+02a+1(26+1)+212.-1L,[(1-Ft2)2a(261-1)+1]2. i _= 0  ( m o d  2 )

where t is a variable. On the other hand, we have

( 2a+1 (26+1)+2\ (2a+ 1(2b+1)) (2 a + 1(2b+ 1)) (

H -

2 " - 1 ( 2 b + 1 ) )
+2

2 a + 1 ) 2 "-+12a+ 1 2a+1 2 a + '- 1

.13

=2 3f o r  some s otherwise.

2n-1
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If  q is  a n  integer, then we have also

(2a+ 1(2b+1)
= [(1 - Ft)2" " +1) J2q +1=. [(1+2t 2 + 0) 2 a - 1 ( " +1) ]2 q +1-=- 0  (mod 4) .

2 q + 1  )
2

2
 - ''(2 b  + 1 ) + 2 \  2 t 2 a - " ( 2 b  + 1 )

S o
'  (

)  
(mod 4 ) .  Since as is well-known

ml
2a+1+1

(mod 2), th e  result follows. El

(2a44(2b+1)\
2a+'
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