On an operator U_{x} acting on the space of Hilbert cusp forms

By
Hiroshi Salto

(Received Dec. 17, 1982)

§0. Introduction

In a previous paper [8], we introduced an operator U_{χ} acting on the space of cusp forms of one variable for a Dirichlet character χ satisfying a condition, and showed that U_{x} 's satify $U_{x} U_{x^{\prime}}=U_{x x^{\prime}}$. By means of U_{x}, we defined a decomposition of the space of cusp forms into subspaces stable under Hecke operators, and gave trace formulas of Hecke operators on each subspace. The purpose of this paper is to generalize this result to the case of Hilbert cusp forms over a totally real algebraic number field F. In [9], we have given such a formula in a special case without proof, and discussed a numerical example in the case where $F=\boldsymbol{Q}(\sqrt{5})$. A trace formula in a general case will be given in $\S 2$.

Notation. Let $\boldsymbol{Z}, \boldsymbol{Q}, \boldsymbol{R}$, and \boldsymbol{C} denote the ring of national integers, the field of rational numbers, the field of real numbers, and the field of complex numbers. Let \boldsymbol{H} denote the Hamilton quaternion algebra over \boldsymbol{R}. For an associative algebra R, let $M_{r}(R)$ denote the ring of r by r matrices with coefficients in R. For an associative algebra R with a unit, we denote by R^{\times}the group of invertible elements.

§ 1. Operator $\boldsymbol{U}_{\boldsymbol{x}}$

Let F be a totally real algebraic number field of degree g, and \mathfrak{v} the ring of integers of F. For a place v of F, let F_{v} denote the completion of F at v and for a finite place $v=\mathfrak{p}$, let $\mathfrak{o}_{\mathfrak{p}}$ denote the ring of integers in $F_{\mathfrak{p}}$. Let F_{A} denote the adele ring of F and F_{∞} (resp. F_{f}) the infinite part (resp. the finite part) of F_{A}. Then $F_{\infty} \simeq \boldsymbol{R}^{g}$. Let D be a quaternion algebra over F with the discriminant d. For infinite places v_{1}, \ldots, v_{g} of F, we assume D is unramified at v_{1}, \ldots, v_{r} and ramified at v_{r+1}, \ldots, v_{g}. The multiplicative group D^{\times}can be seen the \boldsymbol{Q} rational points of an algebraic group G over \boldsymbol{Q}. Let G_{A} denote the adelization of G and G_{∞} (resp. G_{f}) the infinite part (resp. the finite part) of G_{A}. Then, there is an isomorphism

$$
G_{\infty} \simeq G L_{2}(R)^{r} \times H^{\times g-r} .
$$

We fix a maximal order \mathfrak{D} of D, and for an integral ideal \mathfrak{n} of F prime \mathfrak{d}, we define a compact subgroup $K(\mathfrak{r})$ of G_{A}. For infinite places, put $K_{v_{i}}=S O(2, R)$ or \boldsymbol{H}^{1} according as $1 \leq i \leq r$ or $r+1 \leq i \leq g$, where \boldsymbol{H}^{1} is the group of all elements in \boldsymbol{H} of reduced norm 1. For $\mathfrak{p} \mid \mathfrak{d}$, let $K_{\mathfrak{p}}=\mathfrak{D}_{\mathfrak{p}}^{\times}$, where $\mathfrak{D}_{\mathfrak{p}}=\mathfrak{D} \otimes_{\boldsymbol{o}_{\mathfrak{p}}}$. For $\mathfrak{p} \nmid \mathfrak{d}$, we fix an isomorphism of $D_{\mathfrak{p}}=D \otimes_{F} F_{\mathfrak{p}}$ to $M_{2}\left(F_{\mathfrak{p}}\right)$ in such a way as $\mathfrak{D}_{\mathfrak{p}}$ is isomorphic to $M_{2}\left(\mathfrak{o}_{\mathfrak{p}}\right)$, and for $\mathfrak{p} \nmid \mathfrak{n d}$, put $K_{\mathfrak{p}}=\mathfrak{D}_{\mathfrak{p}}^{\times}$. For $\mathfrak{p} \mid \mathfrak{n}$, put

$$
K_{\mathfrak{p}}=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2}\left(\mathfrak{a}_{\mathfrak{p}}\right) \right\rvert\, c \in \mathfrak{n o}_{\mathfrak{p}}\right\}
$$

and $K(\mathfrak{n})=\prod_{v} K_{v}$. Let ω be an idele class character of F of finite order such that the conductor of ω divides π. For each v_{i}, we fix a positive integer $k_{i} \geq 2$, and set $k=$ $\left(k_{1}, \ldots, k_{g}\right)$. For ω and k, we define a representation ρ of $K(\mathfrak{r})$. For a finite place $\mathfrak{p} \nmid \mathfrak{n}$, we take as $\rho_{\mathfrak{p}}$ the trivial representation, and for $\mathfrak{p} \mid \mathfrak{n}$, we define

$$
\rho_{\mathfrak{p}}\left(x_{\mathfrak{p}}\right)=\omega_{\mathfrak{p}}(d) \quad \text { for } \quad x_{\mathfrak{p}}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in K_{\mathfrak{p}}
$$

where $\omega_{\mathfrak{p}}$ is the \mathfrak{p}-component of ω. For an infinite place $v=v_{i}, 1 \leq i \leq r$, put

$$
\rho_{v}\left(\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\right)=e^{k_{i} \theta \sqrt{ }-1}
$$

and for $v=v_{i}, r+1 \leq i \leq g$, let ρ_{v} be the composite of the embedding of \boldsymbol{H}^{1} into $S L_{2}(C)$ and the $\left(k_{i}-2\right)$-th symmetric tensor representation. Here we assume $\rho_{v}(-1)=\omega_{v}(-1)$ for infinite places. We define ρ as the tensor product representation $\underset{v}{\otimes} \rho_{v}$ and denote by V the representation space of ρ. We consider V as row vectors and $K(\mathfrak{n})$ acts on V from the right. Now for \mathfrak{n}, ω, and k, we define the space of cusp forms $S(\mathfrak{n}, \omega, k)$. Namely, except when $r=0, \omega$ is unramified and $k=$ $(2,2, \ldots, 2), S(\mathfrak{n}, \omega, k)$ is the space of bounded continuous V-valued functions f on G_{A} satisfying the following conditions:
(i) $f(\gamma x)=f(x)$ for $\gamma \in G_{\boldsymbol{Q}}$.
(ii) $f(z x k)=\omega(z) f(x) \rho(k)$ for $z \in Z_{A}$ (the center of $\left.G_{A}\right)$ and $k \in K(\mathfrak{r t)}$.
(iii) For $v=v_{i}, 1 \leq i \leq r$, as a function of $x_{v} \in G_{v}, f\left(x x_{v}\right)$ is of C^{∞}-class and satisfies

$$
\begin{equation*}
X_{v} f=0, \tag{1.1}
\end{equation*}
$$

where G_{v} is the v-component of G_{A}, hence $G_{v} \simeq G L_{2}(R)$ and X_{v} is the element of the complex Lie algebra of G_{v} given by $\left[\begin{array}{cc}1 & -\sqrt{-1} \\ -\sqrt{-1} & -1\end{array}\right]$.
(iv) If $r=g$, and $\mathfrak{D}=\mathfrak{o}, f$ satisfies

$$
\int_{F \backslash F_{A}} f\left(\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right] g\right) d x=0
$$

When $r=0, \omega$ is unramified and $k=(2,2, \ldots, 2)$, we denote by $M(\mathfrak{n}, \omega)$ the space of continuous functions on $G_{\boldsymbol{A}}$ satisfying the above conditions. For a charactes λ of $F_{A}^{\times} / F^{\times}$which is trivial on $\prod_{p} \mathfrak{o}_{\mathfrak{p}}^{\times}$and satisfies $\lambda^{2}=\omega$, let $f_{\lambda}(x)=\lambda(N(x))$, where N is the reduced norm of D. Then f_{λ} is contained in $M(\mathrm{n}, \omega)$. Let M_{o} denote the subspace spanned by f_{λ}. We define $S(\mathfrak{n}, \omega, k)$ as the orthogonal complement of M_{o} in $M(n, \omega)$.

For each finite prime \mathfrak{p}, we fix a prime element ϖ_{p} of F_{p}. Let $\operatorname{ord}_{\mathfrak{p}}$ denote the additive valuation of F_{p} normalized by $\operatorname{ord}_{\mathfrak{p}}\left(\varpi_{\mathfrak{p}}\right)=1$. Let \mathfrak{a} be an integral ideal of F prime to n. The Hecke operator $T(\mathfrak{a})$ on $S(n, \omega, k)$ is defined as follows. For $\mathfrak{p} \mid \mathfrak{a}$, put

$$
\Xi_{\mathfrak{p}}(\mathfrak{a})=\left\{x \in \mathfrak{D}_{\mathfrak{p}} \mid \operatorname{ord}_{\mathfrak{p}}(N x)=\operatorname{ord}_{\mathfrak{p}}(\mathfrak{a})\right\}
$$

and $\Xi(\mathfrak{a})=\prod_{p \mid a} \Xi_{\mathfrak{p}}(\mathfrak{a}) \times \prod_{p \neq \mathfrak{a}} K_{p}\left(\subset G_{f}\right)$. Define a function $F_{\mathfrak{a}}$ on G_{f} with the support $\Xi(\mathfrak{a})$ by

$$
F_{\mathfrak{a}}(x)=\prod_{\mathfrak{p} \mid n} \rho_{\mathfrak{p}}\left(x_{\mathfrak{p}}\right)^{-1} \quad \text { for } \quad x=\left(x_{\mathfrak{p}}\right) \in \Xi(\mathfrak{a})
$$

Then for $f \in S(\mathfrak{r}, \omega, k)$, we put

$$
(T(\mathfrak{a}) f))(x)=\int_{G_{f}} f(x y) F_{\mathfrak{a}}(y) d y
$$

where $d y$ is the Haar measure on G_{f} normalized by $\int_{K_{f}} d y=1$ for $K_{f}=K(\mathfrak{n}) \cap G_{f}$. It is known that the operators $T(\mathfrak{a})$ commute with each other and that there exists a basis of $S(\mathfrak{n}, \omega, k)$ consisting of common eigen functions for all $T(\mathfrak{a})$. For a prime divisor \mathfrak{p} of \mathfrak{n} such that $\rho_{\mathfrak{p}}$ is the trivial character, we can define an operator $W(\mathfrak{p})$ by

$$
(W(\mathfrak{p}) f)(x)=\int_{G_{f}} f(x y) F_{W(\mathfrak{p})}(y) d y
$$

Here $\quad \Xi_{\mathfrak{p}}(W(\mathfrak{p}))=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M_{2}\left(\mathfrak{o}_{\mathfrak{p}}\right) \right\rvert\, a, \quad d \in \mathfrak{n o}_{\mathfrak{p}}, \quad \operatorname{ord}_{\mathfrak{p}}(c)=\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n}), \quad \operatorname{ord}_{\mathfrak{p}}(b)=0\right\}$ and $F_{W(\mathfrak{p})}$ is a function on G_{f} with the support $\Xi(W(\mathfrak{p}))=\prod_{q \neq p} K_{q} \times \Xi_{p}(W(\mathfrak{p}))$ which is given by

$$
F_{w(\mathfrak{p})}(x)=\prod_{\substack{\mathfrak{q} \mid \mathfrak{n} \\ \mathfrak{q} \neq \mathfrak{q}}} \rho_{\mathfrak{q}}\left(x_{\mathfrak{q}}\right)^{-1} \quad \text { for } \quad x \in \Xi(W(\mathfrak{p}))
$$

Let $\chi=\prod_{\mathfrak{p} \mid \mathrm{n}} \chi_{\mathfrak{p}}$ be a character of $\prod_{\mathfrak{p} \mid и} F_{\mathcal{p}}^{\times}$satisfying for each $\mathfrak{p} \mid \mathfrak{f}(\chi)$ the condition

$$
\left\{\begin{array}{l}
\operatorname{ord}_{\mathfrak{p}}\left(f\left(\chi_{\mathfrak{p}}\right)\right)+\operatorname{ord}_{\mathfrak{p}}\left(\mathfrak{f}\left(\omega_{\mathfrak{p}}\right)\right)<\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n}) \tag{1.2}\\
2 \operatorname{ord}_{\mathfrak{p}}\left(\mathfrak{f}\left(\chi_{\mathfrak{p}}\right)\right)<\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n})
\end{array}\right.
$$

Here $\mathfrak{f}\left({ }^{*}\right)$ denotes the conductor of the character *. For such a character χ, we will define an operator U_{χ}. Let $v=\operatorname{ord}_{\mathfrak{p}}(\mathfrak{r})$ and $\mu=\operatorname{ord}_{\mathfrak{p}}\left(\mathfrak{f}\left(\chi_{\mathfrak{p}}\right)\right.$), and for $\mathfrak{p} \mid \mathfrak{f}(\chi)$ put

$$
\begin{align*}
\Xi_{p}\left(\chi_{p}\right)=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2}\left(\mathfrak{o}_{\mathfrak{p}}\right) \right\rvert\, \operatorname{ord}_{\mathfrak{p}}(a)=\operatorname{ord}_{p}(d)=v+2 \mu\right. \tag{1.3}\\
\left.\qquad \operatorname{ord}_{\mathfrak{p}}(c)=2 v+\mu, \operatorname{ord}_{\mathfrak{p}}(b)=v+\mu\right\}
\end{align*}
$$

Then $\Xi_{p}\left(\chi_{p}\right)$ is a disjoint union of a finite number of K_{p}-double cosets. Put $\Xi(\chi)=$ $\prod_{p \mid f(x)} \Xi_{p}\left(\chi_{p}\right) \times \prod_{p \nmid f(x)} K_{p}$. For $\mathfrak{p} \mid \mathfrak{f}(\chi)$, define a function $f_{\mathfrak{p}, \chi_{p}}$ on D_{p}^{\times}by

$$
\begin{equation*}
f_{p, \chi_{p}}\left(x_{p}\right)=\bar{\rho}_{p}\left(-d / w_{p}^{v+2 \mu}\right) \bar{\chi}_{p}\left(-b c / w_{p}^{3 v+2 \mu}\right) \chi_{p}\left(N x / \sigma_{p}^{2 v+4 \mu}\right) \tag{1.4}
\end{equation*}
$$

for $x_{p}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Xi_{p}\left(\chi_{p}\right)$ and $f_{p, \chi_{p}}\left(\chi_{p}\right)=0$ for $x_{p} \notin \Xi_{p}\left(\chi_{p}\right)$. Then $f_{p, \chi_{p}}$ satisfies

$$
f_{p, x_{p}}\left(k_{p} x_{p}\right)=f_{p, x_{p}}\left(x_{\mathrm{p}} k_{\mathrm{p}}\right)=\bar{\rho}_{\mathrm{p}}\left(k_{\mathrm{p}}\right) f_{\mathrm{p}, x_{\mathrm{p}}}\left(x_{\mathrm{p}}\right), \quad \text { for } \quad k_{\mathrm{p}} \in K_{\mathrm{p}} .
$$

For $x \in \Xi(\chi)$, put

$$
F_{\chi}(x)=\prod_{p \mid f(x)} f_{p, x p}\left(x_{p}\right) \prod_{\substack{p \nmid n \\ p \nmid f(x)}} \rho_{p}\left(x_{p}\right)^{-1}
$$

and $F_{\chi}(x)=0$ for $x \notin \Xi(\chi)$. Let $\psi_{\mathfrak{p}}$ be an additive character of F_{p} such that $\psi_{p} \mid \mathfrak{o}_{\mathfrak{p}}=1$ and $\psi_{\mathfrak{p}} \mid \mathfrak{p}^{-1} \neq 1$. For a character λ of $F_{\mathfrak{p}}^{\times}$of conductor \mathfrak{p}^{μ}, put

$$
G(\lambda)=\sum_{i \in(0 / \mathfrak{p} \mu) \times} \lambda(i) \psi_{\mathfrak{p}}\left(i w_{\mathfrak{p}}^{-\mu}\right)
$$

In this notation, we define for $f \in S(\mathfrak{n}, \omega, k)$

$$
\left(U_{\chi} f\right)(x)=\prod_{p \mid f(x)} \frac{\bar{\omega}_{p}\left(-\sigma_{p}^{v_{p}+2 \mu_{p}}\right) \bar{\chi}_{p}\left(\Phi_{p}^{v p}\right)}{G\left(\bar{\chi}_{p}\right)^{2}} \prod_{\substack{p \mid n \\ p \nmid(x)}} \bar{\chi}_{p}\left(\Phi^{v_{p} p} \int_{G_{j}} f(x y) F_{\chi}(y) d y,\right.
$$

where $v_{\mathfrak{p}}=\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n})$ and $\mu_{\mathfrak{p}}=\operatorname{ord}_{\mathfrak{p}}\left(\mathfrak{f}\left(\chi_{\mathfrak{p}}\right)\right)$. For the trivial character χ_{o}, we define $U_{x_{0}}=$ the identity. Among the operators $T(\mathfrak{a}), W(\mathfrak{p})$, and U_{x}, the following relations hold.

Proposition 1.1 Let \mathfrak{a} be an integral ideal of F prime to \mathfrak{n} and \mathfrak{p} a prime ideal such that $\mathfrak{p} \mid \mathfrak{n}$ and $\rho_{\mathfrak{p}}=i d$. . Then we have
i) $T(\mathfrak{a}) W(\mathfrak{p})=W(\mathfrak{p}) T(\mathfrak{a})$.
ii) $\quad U_{\chi} T(\mathfrak{a})=T(\mathfrak{a}) U_{\chi}$.
iii) $U_{\chi} W(\mathfrak{p})=W(\mathfrak{p}) U_{\chi}$ if $(\mathfrak{f}(\chi), \mathfrak{p})=1$.
iv) $U_{\chi} U_{\chi^{\prime}}=U_{\chi \chi^{\prime}}$ if $\left(\mathfrak{f}(\chi), \mathfrak{f}\left(\chi^{\prime}\right)\right)=1$.

These properties can be verified easily and the proof will be omitted. On M_{0}, the operators $T(\mathfrak{a}), W(\mathfrak{p})$, and U_{x} can be defined by the same formula as above, and the action of them can be easily described.

Proposition 1.2. Let $f_{\lambda}=\lambda \circ N$ for an unramified character λ such that $\lambda^{2}=\omega$. Then we have
i) $\quad T(\mathfrak{a}) f_{\lambda}=\omega(\mathfrak{a}) \operatorname{vol}(\Xi(\mathfrak{a})) f_{\lambda}$
ii) $W(\mathfrak{p}) f_{\lambda}=\omega\left(\mathfrak{p}^{v_{p}}\right) f_{\lambda}$
iii) $\quad U_{\chi} f_{\lambda}=0$ for a ramified character χ of $\prod_{\hat{p} \mid n} F_{\hat{\gamma}}^{\times}$satisfying (1.2)

Our next task is to determine the eigenvalue of U_{χ} and to prove the property iv) in Prop. 1.1 for χ, χ^{\prime} in the case where $f(\chi)$ is not prime to $f\left(\chi^{\prime}\right)$. For this purpose, we may restrict ourselves to the case $f(\chi)$ is a power of a prime ideal \mathfrak{p}. Let $L_{0}^{2}\left(G_{\boldsymbol{Q}} \backslash\right.$
$\left.G_{A}, \omega\right)$ be the space of square integrable functions on $G_{\boldsymbol{Q}} \backslash G_{A}$ satisfying the condition ii) in (1.1) and v) if $r=g$ and $\mathfrak{D}=\mathfrak{0} . \quad G_{A}$ acts on $L_{0}^{2}\left(G_{Q} \backslash G_{A}, \omega\right)$ as right translations and it is known that $L_{0}^{2}\left(G_{\boldsymbol{Q}} \backslash G_{A}, \omega\right)$ decomposes into a discrete direct sum of irreducible subspaces $V(\pi)$ with the multiplicities 1 , and that the representation π on $V(\pi)$ decomposes into a tensor product $\otimes \pi_{v}$ of the admissible irreducible representations π_{v} of G_{v}. Each component of the functions in $S(n, \omega, k)$ is contained in $L_{0}^{2}\left(G_{Q} \backslash G_{A}, \omega\right)$. Let $\bar{S}(n, \omega, k)$ be the space spanned by such functions. Then, there exists a finite number of $\pi_{i}=\otimes \pi_{i, v}$ such that $V\left(\pi_{i}\right) \cap \bar{S}(n, \omega, k) \neq 0$ and $\bar{S}(\mathfrak{n}, \omega$, k) is contained in $\oplus V\left(\pi_{i}\right)$. For each $\mathfrak{p} \nmid \mathfrak{n}$, the subspace $V\left(\pi_{i, p}, K_{\mathfrak{p}}\right)$ of functions in $V\left(\pi_{i, p}\right)$ fixed by $K_{\mathfrak{p}}$ is one-dimensional. When $\mathfrak{p} \mid \boldsymbol{n}$, let $V\left(\pi_{i, p}, K_{\mathfrak{p}}\right)=\left\{w \in V\left(\pi_{i, p}\right) \mid\right.$ $\pi_{i, p}(k) w=\rho_{\mathrm{p}}(k) w$ for $\left.k \in K_{\mathfrak{p}}\right\}$, then $V\left(\pi_{i, p}, K_{\mathfrak{p}}\right)$ is a finite dimensional subspace of $V\left(\pi_{i, p}\right)$. For $v=v_{j}, 1 \leq j \leq r, \pi_{i, v}$ is isomorphic to the discrete series representation $\sigma\left(\mu_{1}, \mu_{2}\right)$ with $\mu_{1}=\left|\left.\right|^{\left(k_{j}-2\right) / 2}, \mu_{2}=| |^{-\left(k_{j}-2\right) / 2} \operatorname{sgn}^{k_{j}-2}\right.$, where $| \mid$ denotes the absolute value of \boldsymbol{R}, and there exists a non-zero vector w_{j} such that $\pi_{i, v}\left(X_{v}\right) w_{j}=0$, which is determined uniquely up to non-zero constants. For $v=v_{j}, r+1 \leq j \leq g, \pi_{i, v}$ is isomorphic to the representation

$$
x \longmapsto N(x)^{-\left(k_{j}-2\right) / 2} \rho_{k_{j}-2}(x) .
$$

with the $\left(k_{j}-2\right)$-th symmetric tensor representation $\rho_{k_{j}-2}$. If we choose suitably unit vectors $w_{i, p}$ in $V\left(\pi_{i, p}, K_{p}\right)$ for $\mathfrak{p} \nmid \mathfrak{r t}$, then we see

$$
\bar{S}(\mathfrak{n}, \omega, k)=\oplus_{i} \underset{\mathfrak{p} \mid n}{\otimes} w_{i, p} \underset{p \mid n}{\otimes} V\left(\pi_{i, p}, K_{\mathfrak{p}}\right){\underset{1 \leq j \leq r}{ } \otimes w_{j} \otimes_{r+1 \leq j \leq g}}_{\otimes} V\left(\pi_{i, v_{j}}\right)
$$

For $r+1 \leq j \leq r$, choose an isomorphism of $V\left(\pi_{i, v_{j}}\right)$ to $C^{k_{j}-1}$ in such a way as $\pi_{v_{j}}(x) w=w \rho_{v_{j}}(x)$ for $x \in \boldsymbol{H}^{1}$, which is determined uniquely up to non-zero scalars, then each $w \in \underset{i}{\oplus} \underset{p \mid n}{\oplus} V\left(\pi_{i, p}, K_{\mathfrak{p}}\right)$ corresponds to an element $f_{w} \in S(\mathfrak{n}, \omega, k)$. $\quad f_{w}$ is a common eigen function for all $T(\mathfrak{a})$, and every common eigen function for all $T(\mathfrak{a})$ can be obtained in this way. For each $p \mid n$, let $S^{p}(n, \omega, k)$ be the subspace of $S(\mathfrak{n}, \omega, k)$ spanned by f_{w} for $w \in \underset{p \mid n}{\otimes} V\left(\pi_{i, p}, K_{\mathfrak{p}}\right)$ such that $\operatorname{dim} V\left(\pi_{i, p}, K_{\mathfrak{p}}\right)=1$, and $S^{0}(\mathfrak{n}, \omega, k)=\underset{\mathfrak{p} \mid \mathrm{n}}{ } S^{\mathfrak{p}}(\mathfrak{n}, \omega, k)$.

Now, as in Lemma 2.2 of [8], it is easy to see
Proposition 1.3. Let $\chi_{\mathfrak{p}}$ be a character of $F_{\mathfrak{p}}^{\times}$satisfying (1.2), and $\Xi_{p}\left(\chi_{\mathfrak{p}}\right)$ the subset of $G_{\mathfrak{p}}$ defined by (1.3). Then

$$
\Xi_{\mathfrak{p}}\left(\chi_{\mathfrak{p}}\right)=\underset{i, j \in(\sigma / \mathfrak{p}, \mu) \times}{\cup}\left[\begin{array}{cc}
0 & -1 \\
\sigma^{v} & 0
\end{array}\right]\left[\begin{array}{cc}
\sigma^{\mu} & i \\
0 & \pi^{v}
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
\pi^{v} & 0
\end{array}\right]\left[\begin{array}{cc}
\sigma^{\mu} & j \\
0 & \pi^{\mu}
\end{array}\right] K_{\mathfrak{p}}
$$

is a disjoint union, where $\mu=\operatorname{ord}_{\mathfrak{p}}\left(\mathrm{f}\left(\chi_{\mathfrak{p}}\right)\right), \nu=\operatorname{ord}_{\mathfrak{p}}(\mathrm{tr})$, and $m=\boldsymbol{m}_{\mathfrak{p}}$.
Put

$$
\alpha_{i j}^{\mu}=\left[\begin{array}{cr}
0 & -1 \tag{1.5}\\
\sigma^{v} & 0
\end{array}\right]\left[\begin{array}{cc}
\sigma^{\mu} & i \\
0 & \Phi^{\mu}
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
\Phi^{v} & 0
\end{array}\right]\left[\begin{array}{cc}
\Phi^{\mu} & j \\
0 & \varpi^{\mu}
\end{array}\right], m=\sigma_{p},
$$

and let $\bar{\alpha}_{i j}^{\mu}$ be an element of G_{A} such that all v-components other than \mathfrak{p} is 1 and the \mathfrak{p}-component is $\alpha_{i j}^{\mu}$. Then.

$$
\left(U_{\chi} f\right)(x)=\frac{\bar{\omega}\left(-\omega^{v+2 \mu}\right) \bar{\chi}\left(\Phi^{v}\right)}{G(\bar{\chi})^{2}} \sum_{i, j} \bar{\chi}(i j) f\left(x \bar{\alpha}_{i j}^{\mu}\right) .
$$

For $w \in V\left(\pi_{i},{ }_{p}\right)$, define

$$
U_{\chi, p} w=\frac{\bar{\omega}\left(-\varpi^{v+2 \mu}\right) \bar{\chi}\left(\varpi^{v}\right)}{G(\bar{\chi})^{2}} \sum_{i, j} \bar{\chi}(i j) \pi_{i, p}\left(\alpha_{i j}^{\mu}\right) w .
$$

If f corresponds to $\otimes w_{q} \in \underset{q}{\otimes} \mid n\left(\pi_{i, q}, K_{q}\right)$ in the sense stated above, then $U_{\chi} f$ corresponds to $\left(U_{\chi, p} w_{p}\right) \otimes\left(\underset{p}{\otimes \neq q} \underset{q}{\otimes} w_{q}\right)$.

For an irreducible admissible representation π of $G L_{2}\left(F_{p}\right)$ and a additive character ψ_{p}, a factor $\varepsilon\left(s, \pi, \psi_{p}\right)$ was defined in [7]. We take ψ_{p} as before and put $\varepsilon\left(\pi, \psi_{p}\right)=\varepsilon\left(1 / 2, \pi, \psi_{p}\right)$.

Theorem 1.4. Let $f \in S(\mathfrak{n}, \omega, k)$ be a common eigen function for all Hecke operators. Let p be a prime divisor of n and χ a ramified character of F_{p}^{\times}which satisfies (1.2). Let $\pi_{\mathfrak{p}}$ be the irreducible admissible representation of $G L_{2}\left(F_{\mathfrak{p}}\right)$ which is determined by f in the sense explained above. If $f \in S_{p}(n, \omega, k)$, then

$$
\begin{equation*}
U_{\chi} f=\varepsilon\left(\pi_{p} \otimes \chi^{-1}, \psi_{p}\right) / \varepsilon\left(\pi_{p}, \psi_{p}\right) f \tag{1.6}
\end{equation*}
$$

If f is not contained in $S^{\mathfrak{p}}(\mathfrak{r}, \omega, k)$, then

$$
U_{\chi} f=0
$$

Proof. Set $V=V\left(\pi_{\mathfrak{p}}\right), \pi=\pi_{\mathfrak{p}}$, and $\pi=\pi_{\mathfrak{p}}$. For a non-negative integer n, put

$$
G_{n}=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G L_{2}\left(\mathfrak{o}_{p}\right) \right\rvert\, c \in \varpi^{n} \mathfrak{o}_{p}\right\}
$$

and

$$
V^{n}=\left\{w \in V \left\lvert\, \pi\left(\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]\right) w=\omega_{p}(d) w \quad\right. \text { for }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G_{n}\right\} .
$$

Let N be the smallest integer such that $V^{N} \neq\{0\}$, then it is known (c.f. [1], [2]) that $\operatorname{dim} V^{N}=1$ and for $n \geq N$, it holds

$$
V^{n}=\sum_{i=0}^{n-N} \pi\left(\left[\begin{array}{cc}
1 & 0 \\
0 & \pi^{i}
\end{array}\right]\right) V_{N} \quad(\text { direct sum }) .
$$

It is enough to show $U_{\chi, \mathfrak{p}} w=0$ for $w \in V\left(\pi, K_{\mathfrak{p}}\right)=V\left(K_{\mathfrak{p}}\right)$, when $N<v$, and

$$
U_{\chi, p} w=\left(\varepsilon\left(\pi \otimes \chi^{-1}, \psi_{p}\right) / \varepsilon\left(\pi, \psi_{p}\right)\right) w
$$

for $w \in V\left(K_{\mathfrak{p}}\right)$ when $N=v$. Here $v=\operatorname{ord}_{\mathfrak{p}}(\mathfrak{t})$.
For $w \in V$, put

$$
R_{\chi} w=\sum_{a \in(0 / \mathfrak{p}) \times} \bar{\chi}(a) \pi\left(\left[\begin{array}{cc}
w^{\mu} & a \\
0 & \varpi^{\mu}
\end{array}\right]\right) w
$$

then

$$
U_{\chi, \mathfrak{p}} w=C \pi\left(\left[\begin{array}{cr}
0 & -1 \\
\varpi^{v} & 0
\end{array}\right]\right) R_{\chi} \pi\left(\left[\begin{array}{cr}
0 & -1 \\
\varpi^{v} & 0
\end{array}\right]\right) R_{\chi} w
$$

with $C=\frac{\bar{\omega}_{p}\left(-w^{v+2 \mu}\right) \bar{\chi}\left(w^{v}\right)}{G(\bar{\chi})^{2}}$. Let w_{o} be a non-zero element of V_{N}. First assume $N<v$. Then the space $V\left(K_{p}\right)$ is spanned by w_{o}, and $w_{i}=\pi\left(\left[\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{m}^{i}\end{array}\right]\right) w_{o}$ for $1 \leq i \leq$ $v-N+1$. For $i \geq 1$, we see

$$
\begin{aligned}
R_{\chi} w_{i} & =\sum_{a \in\left(0 / p^{\mu}\right) \times} \bar{\chi}(a) \pi\left(\left[\begin{array}{cc}
\sigma^{\mu} & a \\
0 & w^{\mu}
\end{array}\right]\right) \pi\left(\left[\begin{array}{cc}
1 & 0 \\
0 & \sigma^{i}
\end{array}\right]\right) w_{o} \\
& =\pi\left(\left[\begin{array}{cc}
1 & 0 \\
0 & \sigma^{i}
\end{array}\right]\right)\left(\sum_{a} \bar{\chi}(a) \pi\left(\left[\begin{array}{cc}
w^{\mu} & a \sigma^{i} \\
0 & \sigma^{\mu}
\end{array}\right]\right) w_{o} .\right.
\end{aligned}
$$

If $\quad \mathrm{a} \equiv a^{\prime} \bmod \mathfrak{p}^{\mu-i}$, then $\pi\left(\left[\begin{array}{cc}w^{\mu} & a \varpi^{i} \\ 0 & w^{\mu}\end{array}\right]\right) w_{o}=\pi\left(\left[\begin{array}{cc}w^{\mu} & a^{\prime} w^{i} \\ 0 & w^{\mu}\end{array}\right]\right) w_{o}$. Since $f(\chi)=\mathfrak{p}^{\mu}$, we have $R_{\chi} w_{i}=0$ for $i \geq 1$. For w_{o}, put

$$
w^{\prime}=\pi\left(\left[\begin{array}{lr}
0 & -1 \\
\sigma^{v-1} & 0
\end{array}\right]\right) R_{x} w_{o}
$$

then $\pi\left(\left[\begin{array}{cc}0 & -1 \\ w^{v} & 0\end{array}\right]\right) R_{\chi} w_{o}=\pi\left(\left[\begin{array}{ll}1 & 0 \\ 0 & \varpi\end{array}\right]\right) w^{\prime}$. We show $\pi\left(\left[\begin{array}{cc}1 & a \\ 0 & 1\end{array}\right]\right) w^{\prime}=w^{\prime}$ for all $a \in \mathfrak{o}_{p}$. Then the assertion on w_{o} follows by the same argument as above. We note

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & -1 \\
\varpi^{v-1} & 0
\end{array}\right]\left[\begin{array}{cc}
1 & i / \varpi^{\mu} \\
0 & 1
\end{array}\right]} \\
& =\left[\begin{array}{ll}
0 & 1 \\
\varpi^{v-1} & 0
\end{array}\right]\left[\begin{array}{cc}
1 & i / \varpi^{\mu} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1+a i \varpi^{v-\mu-1} & i^{2} a \varpi^{v-2 \mu-1} \\
-a \varpi^{v-1} & 1-a i \varpi^{v-\mu-1}
\end{array}\right] .
\end{aligned}
$$

Since $N<v$ and $\operatorname{ord}_{\mathfrak{p}}\left(\mathrm{f}\left(\omega_{\mathfrak{p}}\right)\right)+\mu \leq \nu-1$, we obtain $\pi\left(\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]\right) w^{\prime}=w^{\prime}$ for $a \in \mathfrak{o}_{\mathfrak{p}}$.
Next assume $N=v$. We take as $V(\pi)$ the Kirillov model of π for the additive character ψ_{p}. Let φ_{o} be a non zero element in V^{N}. First we show that the support of φ_{o} is contained in \mathfrak{o}_{p}^{x}. Since $\left(\pi\left(\left[\begin{array}{cc}1 & a \\ 0 & 1\end{array}\right]\right) \varphi_{o}\right)(t)=\psi_{p}(a t) \varphi_{o}(t)=\varphi_{o}(t)$ for all a in \mathfrak{v}_{p}, the support of φ_{o} is contained in $\mathfrak{o}_{\mathfrak{p}}$. If the support of φ_{o} is contained in \mathfrak{p}, then we see $\pi\left(\left[\begin{array}{ll}1 & 0 \\ 0 & \sigma^{-1}\end{array}\right]\right) \varphi_{o} \in V^{N-1}$. This contradicts the assumption $V^{N-1}=\{0\}$. Since
$\left(\pi\left(\left[\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right]\right) \varphi_{o}\right)(t)=\varphi_{o}(a t)=\varphi_{o}(t)$ for $a \in \mathfrak{v}_{p}, \varphi_{o}(1) \neq 0$. For characters α, β of $\mathfrak{v}_{p}^{\times}$such that $\alpha \beta=\omega_{p}$ on $\mathfrak{v}_{\mathrm{p}}^{\times}$and a non-negative integer n, put

$$
V_{\alpha, \beta}^{n}=\left\{\varphi \in V \left\lvert\, \pi\left(\left[\begin{array}{ll}
a & b \tag{1.7}\\
c & d
\end{array}\right]\right) \varphi=\beta(\operatorname{det} x) \alpha / \beta(a) \varphi\right. \text { for } x=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G_{n}\right\} .
$$

Then $V_{1, \omega_{p}}^{n}=V^{n}$, and we have
Lemma 1.5. Let α, β be characters of $\mathfrak{v}_{\mathfrak{p}}^{\times}$such that $\alpha \beta=\omega_{\mathfrak{p}}$ on $\mathfrak{o}_{\mathfrak{p}}^{\times}$and $\operatorname{ord}_{\mathfrak{p}}$ $\mathfrak{f}(\alpha \mid \beta) \leq n$ for a positive integer n. Then, one has
i) $\pi\left(\left[\begin{array}{cc}0 & -1 \\ \sigma^{n} & 0\end{array}\right]\right)$ induces an isomorphism of $V_{\alpha, \beta}^{n}$ onto $V_{\beta, \alpha}^{n}$.
ii) If a character λ of $\mathfrak{v}_{\mathfrak{p}}^{\times}$satisfies $2 \operatorname{ord}_{\mathfrak{p}}(f(\lambda)) \leq n$ and $\operatorname{ord}_{\mathfrak{p}}(f(\lambda))+\operatorname{ord}_{\mathfrak{p}}$ $(\tilde{f}(\alpha / \beta)) \leq n$, then for $\varphi \in V_{\alpha, \beta}^{n} R_{\lambda}(\varphi)$ is contained in $V_{\alpha \lambda, \beta \bar{\lambda}}^{n}$.

Proof. (i) Since $\pi\left(\left[\begin{array}{ll}0 & -1 \\ m^{\prime \prime} & 0\end{array}\right]\right)^{2}$ is a scalar, it is enough to show that $\pi\left(\left[\begin{array}{cc}0 & -1 \\ w^{n} & 0\end{array}\right]\right) \varphi \in V_{\beta, \alpha}^{n}$ for $\varphi \in V_{\alpha, \beta}^{n}$. For $x=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in G_{n}$, we see

$$
\begin{aligned}
\pi\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) \pi\left(\left[\begin{array}{rr}
0 & -1 \\
\Phi^{n} & 0
\end{array}\right]\right) \varphi & =\pi\left(\left[\begin{array}{cc}
0 & -1 \\
\Phi^{n} & 0
\end{array}\right]\right) \pi\left(\left[\begin{array}{cc}
d & -c \boldsymbol{m}^{-n} \\
-b \pi^{n} & a
\end{array}\right]\right) \varphi \\
& =\beta(\operatorname{det} x) \alpha / \beta(d) \pi\left(\left[\begin{array}{cc}
0 & -1 \\
\sigma^{n} & 0
\end{array}\right]\right) \varphi \\
& =\beta(\operatorname{det} x) \alpha / \beta(\operatorname{det} x) \beta / \alpha(a) \pi\left(\left[\begin{array}{cc}
0 & -1 \\
\sigma^{n} & 0
\end{array}\right]\right) \varphi \\
& =\alpha(\operatorname{det} x) \beta / \alpha(a) \pi\left(\left[\begin{array}{cc}
0 & -1 \\
\pi^{n} & 0
\end{array}\right]\right) \varphi
\end{aligned}
$$

(ii) To show $R_{\chi}(\varphi) \in V_{\alpha \lambda, \beta \lambda}^{\prime \prime}$, it is enough to verify the condition in (1.7) for $x=$ $\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right]$ with $a, d \in \mathfrak{v}_{p}^{\times}, b \in \mathfrak{v}_{p}^{\times}, c \in \mathfrak{p}^{n} \boldsymbol{o}_{p}$. We show this only $\mathrm{fo}_{\mathbf{r}}$ $\left[\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right]$. The other cases can be shown similarly. For $\left[\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right]$ we see

$$
\left[\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right]\left[\begin{array}{cc}
1 & i / \pi^{\mu} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & i / \sigma^{\mu} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1-c i \pi^{-\mu} & -c i^{2} \sigma^{-2 \mu} \\
c & 1+c i \pi^{-\mu}
\end{array}\right]
$$

where $\mu=\operatorname{ord}_{\mathfrak{p}}\left(\mathfrak{f}(\lambda)\right.$.) Since $\operatorname{ord}_{\mathfrak{p}}(\mathfrak{f}(\lambda))+\operatorname{ord}_{\mathfrak{p}}(\mathfrak{f}(\alpha / \beta)) \leq n, \alpha / \beta\left(1-\operatorname{cim}^{-\mu}\right)=1$, and our assertion follows from this.

We return to the proof of the theorem. Let λ be a non-trivial character such that $\operatorname{ord}_{\mathfrak{p}}(\mathfrak{f}(\lambda))=1$. Then we have $R_{\lambda} \varphi_{o} \in V_{\lambda, \lambda}^{N}, \omega_{p}$ and $R_{\lambda} R_{\lambda} \varphi_{o} \in V_{1, \omega \mathfrak{p}}^{N}$. Hence $R_{\lambda} R_{\lambda} \varphi_{o}$ is a constant multiple $c \varphi_{o}$ of φ_{o}. Here c is different from zero, because

$$
\begin{aligned}
\left(R_{\lambda} R_{\lambda} \varphi_{o}\right)(1) & =\omega_{p}\left(\sigma^{2}\right) \sum_{i, j \in(0 / p) \times} \lambda(i) \lambda(j) \psi_{p}\left((i+j) m^{-1}\right) \varphi_{o}(1) \\
& =\omega_{p}\left(\sigma^{2}\right) \lambda(-1) N p \varphi_{o}(1),
\end{aligned}
$$

Put $\varphi_{\lambda}=R_{\lambda} \varphi$, then φ_{λ} satisfies

$$
\pi\left(\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]\right) \varphi_{\lambda}=\varphi_{i}
$$

for $a \in \mathfrak{v}_{p}$. Hence the support of φ_{λ} is contained in v_{p}. For $t \in \varpi^{\prime} v_{p}^{x}, l \geq 0$, we have

$$
\varphi_{o}(t)=\omega_{p}(\pi) \sum_{i \in(0 / p) \times} \bar{\lambda}(i) \psi_{p}\left(i t \pi^{-1}\right) \varphi_{\lambda}(t) .
$$

But we know $\sum_{i \in(\mathbb{R} / \mathfrak{p}) \times} \bar{\lambda}(i) \psi_{p}\left(i t \pi^{-1}\right)=0$ only if $l=0$, hence the support of φ_{n} is contained in $\mathfrak{v}_{\mathrm{p}}^{\star}$. By Lemma 1.5, we have $U_{\chi} \varphi_{o} \in V^{N}$ and $U_{x} \varphi_{o}=\alpha \varphi_{o}$ with a constant α. Let us determine α. Let $\varphi \in V_{\alpha, \beta}^{N}$, then the support of φ is containted in $\mathfrak{o}_{\mathfrak{p}}$, and in the same way as above, we see the support of $R_{\chi} \varphi$ is contained in $\mathfrak{v}_{\mathfrak{p}}^{\times}$and for $t \in \mathfrak{0}_{\mathfrak{p}}^{\boldsymbol{x}}$

$$
\left(R_{\chi} \varphi\right)(t)=\omega_{p}\left(\pi^{\mu}\right) G(\bar{\chi}) \chi(t) \varphi(t) .
$$

Applying this to φ_{o} and $\pi\left(\left[\begin{array}{cc}0 & -1 \\ w^{v} & 0\end{array}\right]\right) R_{x} \varphi_{o}$, we obtain

$$
\begin{aligned}
& \bar{\chi}\left(\sigma^{v}\right) \chi(t) \pi\left(\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\right)\left(\varphi_{o} \chi\left(\sigma^{v} t\right)\right) \\
& \quad=\alpha \pi\left(\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\right)\left(\varphi_{o}\left(\sigma^{v} t\right)\right)
\end{aligned}
$$

We note that in our case $L(s, \pi)=L(s, \pi \otimes \chi)=1$. By the property of $\varepsilon\left(s, \pi_{p}\right.$, $\left.\psi_{p}\right)$ (cf. Godement [5]), we see

$$
\begin{aligned}
I= & \bar{\chi}\left(\nabla^{v}\right) \int_{F_{p}^{\times}} \pi\left(\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\right)\left(\varphi_{o} \chi\left(\pi^{v} t\right)\right) \chi(t) \omega_{p}^{-1}(t)|t|^{1 / 2-s} d^{\times} t \\
& =\bar{\chi}\left(\pi^{v}\right) \varepsilon\left(s, \pi \otimes \chi^{-1}, \psi_{p}\right) \int_{F_{p}^{\times}} \varphi_{o} \chi\left(\pi^{v} t\right) \chi^{-1}(t)|t|^{s-1 / 2} d^{\times} t \\
& =\varepsilon\left(s, \pi \otimes \chi^{-1}, \psi_{p}\right) \int_{F_{p}^{\times}} \varphi_{o}\left(\pi^{v} t\right)|t|^{s-1 / 2} d^{\times} t,
\end{aligned}
$$

where $\left|\mid\right.$ is the absolute value of $F_{\mathfrak{p}}$ such that $d(a x)=|a| d x$ for the Haar measure $d x$ of F_{p}. On the other hand, we have

$$
\begin{aligned}
I & =\alpha \int_{F_{\mathfrak{p}}^{\times}} \pi\left(\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\right)\left(\varphi_{o}\left(\pi^{v} t\right)\right) \omega_{\mathfrak{p}}^{-1}(t)|t|^{1 / 2-s} d^{\times} t \\
& =\alpha \varepsilon\left(s, \pi, \psi_{\mathfrak{p}}\right) \int_{F_{\mathfrak{p}}^{\times}} \varphi_{o}\left(\sigma^{\vee} t\right)|t|^{s-1 / 2} d^{\times} t .
\end{aligned}
$$

Obviously $\int_{F_{\hat{p}}^{\times}} \varphi_{o}\left(\sigma^{v} t\right)|t|^{2 s-1} d^{\times} t \neq 0$, we obtain

$$
\begin{aligned}
\alpha & =\varepsilon\left(s, \pi \otimes \chi^{-1}, \psi_{p}\right) / \varepsilon\left(s, \pi, \psi_{p}\right) \\
& =\varepsilon\left(1 / 2, \pi \otimes \chi^{-1}, \psi_{p}\right) / \varepsilon\left(1 / 2, \pi, \psi_{p}\right) .
\end{aligned}
$$

This completes the proof.
We note the formula in Th. 1.4. holds also for unramified characters χ.
Theorem 1.6. Let χ, χ^{\prime} be characters of $F_{\mathfrak{p}}^{\times}$satisfying (1.2). If $\operatorname{ord}_{p} \mathfrak{f}(\chi) \leq$ $v / 3, \operatorname{ord}_{\mathfrak{p}} \mathfrak{f}\left(\chi^{\prime}\right) \leq v / 3$, and $\operatorname{ord}_{\mathfrak{p}} \mathfrak{f}\left(\omega_{p}\right) \leq v / 3$ for $v=\operatorname{ord}_{\mathfrak{p}}(\mathfrak{r})$, then one has for $f \in S^{\mathfrak{p}}(\mathfrak{n}$, ω, k)

$$
U_{\chi} U_{x^{\prime}} f=U_{\chi x^{\prime}} f
$$

Furthermore if ρ_{p} is trivial, then one has

$$
U_{\chi} W(\rho) f=W(\rho) U_{\chi} f,
$$

for $f \in S^{\natural}(\mathfrak{r}, \omega, k)$.
Proof. Let $\pi=m_{p}$. It is enough to show these equalities for $U_{\chi, p}, U_{\chi^{\prime}, p}$ and φ_{o} in the proof of Th. 1.4. Let $\mu=\operatorname{ord}_{\mathfrak{p}}(\mathfrak{f}(\chi))$ and $\mu^{\prime}=\operatorname{ord}_{\mathfrak{p}}{ }^{\prime \prime}\left(\mathfrak{f}\left(\chi^{\prime}\right)\right.$)) If $\mu=0$; or $\mu^{\prime}=0$, then the assertion holds obviously. Assume $\mu, \mu^{\prime} \geq 1$ in the following. The following can be verified as Lemma 8 in Shimura [11].

Lemma 1.7. i) If $\mu>\mu^{\prime} \geq 1$, then

$$
G(\chi) G\left(\chi^{\prime}\right)=G\left(\chi \chi^{\prime}\right) \sum_{i \in\left(0 / p^{\mu^{\prime}}\right) \times} \chi\left(1-\pi^{\mu-\mu^{\prime}} i\right) \chi^{\prime}(i) .
$$

ii) If $\mu=\mu^{\prime} \geq 1$ and $\operatorname{ord}_{p} \mathfrak{f}\left(\chi \chi^{\prime}\right)=\mu$, then

$$
G(\chi) G\left(\chi^{\prime}\right)=G\left(\chi \chi^{\prime}\right)\left(\sum_{i \in\left(0 / p^{\mu}\right)^{\times x}} \sum_{i \neq 1 \mathrm{modp}} \chi(1-i) \chi^{\prime}(i)\right)
$$

iii) If $\chi^{\prime}=\bar{\chi}$ and $\mu \geq 1$, then

$$
G(\chi) G(\bar{\chi})=\chi(-1) N \mathfrak{p}^{\mu} .
$$

We divide the proof into three cases.
Case I. $\mu \neq \mu^{\prime}$. We may assume $\mu>\mu^{\prime}$. Let $\alpha_{i j}^{\mu}$ and $\alpha_{i j}^{\mu^{\prime}}$ be as in (1.5). Put

$$
\alpha_{i j}^{\mu} \alpha_{i j}^{\mu^{\prime}}=-\pi^{v+2 \mu^{\prime}}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right],
$$

then we see by the condition on μ, μ^{\prime}

$$
\begin{array}{ll}
A \equiv-\sigma^{v+2 \mu}+i_{o} j_{o} \nabla^{2 v} \bmod \mathfrak{p}^{2} & B \equiv-i_{o} \nabla^{v+\mu} \bmod \mathfrak{p}^{v+2 \mu} \\
C \equiv j_{o} \nabla^{2 v+\mu} \bmod \mathfrak{p}^{2 v+2 \mu} & D \equiv-\nabla^{v+2 \mu} \bmod \mathfrak{p}^{2 v}
\end{array}
$$

where $i_{o}=i+w^{\mu-\mu^{\prime}} i^{\prime}, j_{o}=j+w^{\mu-\mu^{\prime}} j^{\prime}$. From this, it follows that $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right] \in \Xi_{p}(\chi)$,

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left(\alpha_{i_{o} j_{o}}^{\mu}\right)^{-1}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in K_{\mathfrak{p}} \text {, and } a \equiv d \equiv 1 \bmod \mathfrak{p}^{v-2 \mu} \text {. Hence we have }} \\
& U_{\chi, p} U_{\chi^{\prime} p} \varphi_{o}= \\
& \frac{\bar{\omega}_{p}\left(-\Phi^{v+2 \mu}\right) \overline{\chi \chi}\left(\varpi^{v}\right)}{\left(G(\bar{\chi}) G\left(\bar{\chi}^{\prime}\right)\right)^{2}} \sum_{i_{0}, j \in\left(0 / p^{\mu}\right)^{\prime} i^{\prime}, j^{\prime} \in\left(0 / p^{\mu}\right) \times} \bar{\chi}\left(\left(i_{o}-\varpi^{\left.\left.\mu-\mu^{\prime} i^{\prime}\right)\left(j_{o}-\varpi^{\mu-\mu^{\prime}} j^{\prime}\right)\right)}\right.\right. \\
& \bar{\chi}\left(i^{\prime} j^{\prime}\right) \pi\left(\alpha_{i_{o} j_{o}}^{\mu}\right) \varphi_{o} \\
& =\frac{\bar{\omega}_{p}\left(-\Phi^{v+2 \mu}\right) \overline{\chi \chi} \bar{\chi}^{\prime}\left(\Phi^{v}\right)}{\left(G(\bar{\chi}) G\left(\bar{\chi}^{\prime}\right)\right)^{2}}\left(\sum_{i^{\prime} \in\left(\overline{o / p} \mu^{\prime}\right)^{\times}} \chi\left(1-\Phi^{\mu-\mu^{\prime}} i\right) \chi^{\prime}\left(i^{\prime}\right)\right)^{2} \\
& \sum_{i_{o}, j_{o} \in\left(0 / p^{\mu}\right)^{x}} \overline{\chi \chi^{\prime}}\left(i_{o} j_{o}\right) \pi\left(\alpha_{i_{o} j_{o}}^{\mu}\right) \varphi_{o} \\
& =U_{x x^{\prime}, p} \varphi_{o}
\end{aligned}
$$

Case II. $\mu=\mu^{\prime}$ and $\mathfrak{f}\left(\chi \chi^{\prime}\right)=p^{\mu}$. In the same way as in Case I, we have

$$
U_{\chi, p} U_{\chi^{\prime}, p} \varphi_{o}=U_{\chi x^{\prime}, p} \varphi_{o}+\frac{\bar{\omega}_{p}\left(-\varpi^{v+2 \mu}\right) \overline{\bar{\chi}} \bar{\chi}^{\prime}\left(\varpi^{v}\right)}{\left(G(\bar{\chi}) G\left(\bar{\chi}^{\prime}\right)\right)^{2}} \frac{\left(S_{1}+S_{2}+S_{3}\right), ~}{\text { a }}
$$

where
and $S_{2}\left(\right.$ resp. $\left.S_{3}\right)$ is a sum of the terms of the same form as in S_{1} extended over $j_{0} \in$ $\mathfrak{p} / p^{\mu}, i_{o}, i^{\prime}, i^{\prime} \in\left(\mathfrak{o} / p^{\mu}\right)^{x}, i_{o} \not \equiv i^{\prime} \bmod p\left(\operatorname{resp} . i_{o}, j_{o} \in \mathfrak{p} / p^{\mu}, i^{\prime}, j^{\prime} \in\left(\mathfrak{o} / p^{\mu}\right)^{\times}\right)$. We will show $S_{1}=S_{2}=S_{3}=0$. We consider

$$
\begin{aligned}
& \Phi(t)=\sum_{\substack{j, \in \mathcal{P} / p^{\mu} \times \\
j^{\prime} \in\left(0 / p^{\mu}\right)^{\times}}} \bar{\chi}\left(j_{o}-j^{\prime}\right)\left(\pi\left(\left[\begin{array}{cc}
\pi^{\mu} & j_{o} \\
0 & m^{\mu}
\end{array}\right]\right) \varphi\right)(t) \\
& =\omega_{p}\left(\varpi^{\mu}\right) \sum_{j_{o}, j^{\prime}} \bar{\chi}\left(j_{o}-j^{\prime}\right) \psi_{p}\left(j_{o} t \sigma^{-\mu}\right) \varphi_{o}(t) .
\end{aligned}
$$

Since $\operatorname{supp}\left(\varphi_{\rho}\right) \subset \mathfrak{v}_{p}^{\times}, \Phi(t)=0$ if $t \notin \mathbf{v}_{p}^{\times}$and for $t \in \mathfrak{v}_{p}^{\times}$,

$$
\begin{aligned}
\Phi(t) & =\omega_{\nu}\left(\varpi^{\mu}\right) \sum_{j_{a}, j^{\prime}} \bar{\chi}\left(j_{,} t^{-1}-j^{\prime}\right) \psi_{p}\left(j_{o} \nabla^{-\mu}\right) \varphi_{o}(t) \\
& =0 .
\end{aligned}
$$

From this, it follows that $S_{2}=S_{3}=0$. For S_{1}, let us consider

If we show that the support of $\pi\left(\left[\begin{array}{cc}0 & -1 \\ \sigma^{v} & 0\end{array}\right]\right) R_{\chi x^{\prime}} \varphi_{o}$ is contained in v_{p}^{\times}, then the asser-
tion $S_{1}=0$ follows in the same way as above. Since $\pi\left(\left[\begin{array}{cc}0 & -1 \\ \sigma^{v} & 0\end{array}\right]\right) R_{\alpha x^{\prime}} \cdot \varphi_{o} \in V_{\bar{x}^{\prime \prime}}^{N_{p}} \omega_{p}, x^{\prime \prime}$ for $\chi^{\prime \prime}=\chi \chi^{\prime}$, it is enough to show $V_{\hat{\chi}^{\prime \prime}\left(\omega_{p}, \chi^{\prime \prime}\right.}^{N}=\boldsymbol{C} \varphi_{o} \omega_{\mathrm{p}} \chi^{\prime \prime}$. By Lemma 1.5, dim $V_{\bar{x}^{\prime \prime} \omega p, x^{\prime \prime}}^{N}=1$, and $R_{\overline{x x^{\prime}}} R_{\omega_{p} p} \varphi_{o}$ is contained in this space. Since $R_{\overline{x x^{\prime}}} R_{\omega_{p}} \varphi_{o}=c \varphi_{o} \omega_{p} \bar{\chi}^{\prime \prime}$ with a non-zero constant c, our assertion follows from this.

Case III. $\mu=\mu^{\prime}$ and $\operatorname{ord}_{p}(\mathfrak{f}(\gamma))>\operatorname{ord}_{p}\left(\mathfrak{f}\left(\chi \chi^{\prime}\right)\right)$. Put $\chi^{\prime \prime}=\chi \chi^{\prime}$, then $\chi^{\prime}=\bar{\chi} \chi^{\prime \prime}$. If we show $U_{\chi, \nu} U_{\bar{\chi}, \nu}=i d$., then the general case follows from

$$
U_{x, p} U_{x^{\prime}, p}=U_{x, p} U_{\tilde{x}, p} U_{x^{\prime \prime}, p}=U_{x^{\prime \prime}, p} .
$$

In the same way as in Case II, we have

$$
U_{\chi, p} U_{\tilde{\chi}, p} \varphi_{o}=\frac{\bar{\omega}_{p}\left(-\pi^{v+2 \mu}\right)}{(G(\bar{\chi}) G(\chi))^{2}}\left(S_{1}+S_{2}+S_{3}+S_{4}\right),
$$

where

$$
S_{1}=\sum_{\substack{i_{o}, j_{o}, i^{\prime}, j^{\prime} \in\left(o^{\prime} / \mathfrak{p} \mu\right) \times \\ i_{o} \neq i^{\prime}, j_{o} \neq j^{\prime} \bmod \mathfrak{p}}} \chi\left(i_{o}-i^{\prime}\right) \chi\left(j_{o}-j^{\prime}\right) \bar{\chi}\left(i^{\prime}\right) \bar{\chi}\left(j^{\prime}\right) \pi\left(\alpha_{i_{o} j_{o}}^{\mu}\right) \varphi_{o},
$$

and S_{2} (resp. S_{3}, S_{4}) is a sum of the terms of the same form as in S_{1} extended over $i_{o}, i^{\prime}, j^{\prime} \in\left(\mathfrak{o} / \mathfrak{p}^{\mu}\right)^{x}, \quad j_{o} \in \mathfrak{p} / \mathfrak{p}^{\mu}, \quad i_{o} \neq i^{\prime} \bmod \mathfrak{p} \quad\left(\right.$ resp. $j_{o}, i^{\prime}, j^{\prime} \in\left(\mathfrak{o} / \mathfrak{p}^{\mu}\right)^{x}, \quad i_{o} \in \mathfrak{p} / \mathfrak{p}^{\mu}, \quad j_{o} \not \equiv$ $j^{\prime} \bmod \mathfrak{p}$ for $S_{3}, i^{\prime}, j^{\prime} \in\left(\mathfrak{o} / \mathfrak{p}^{\mu}\right)^{x}, i_{o}, j_{o} \in \mathfrak{p} / \mathfrak{p}^{\mu}$ for $\left.S_{4}\right)$. First assume $\mu=1$. Since $\sum_{i \in(0 / \mathfrak{p}) \times} \psi_{p}(i / m)=-1$, we have

$$
\begin{aligned}
S_{1} & =\left(\sum_{\substack{i \in(o /)^{\prime} \times \\
i \neq 1 \bmod p}} \chi(1-i) \bar{\chi}(i)\right)^{2} \sum_{i_{o}, j_{o} \in(0 / p) \times} \pi\left(\alpha_{i_{o} j_{o}}^{1}\right) \varphi_{o} \\
& =\omega_{p}\left(-\pi^{v+2 \mu}\right) \varphi_{o} .
\end{aligned}
$$

In the same way, we see

$$
\begin{aligned}
& S_{2}=S_{3}=\omega_{p}\left(-\pi^{v+2 \mu}\right)(N p-1) \varphi_{n} \\
& S_{4}=\omega_{p}\left(-\pi^{v+2 \mu}\right)(N p-1)^{2} \varphi_{v} .
\end{aligned}
$$

From this, we conclude $U_{\chi, p} U_{\bar{x}, p}=i d l$. For $\mu \geq 2$, using $\sum_{u \in(0 / p / \mu)} \psi_{p}\left(u \pi^{-v}\right)=0$, we can show $U_{\gamma, p} U_{\bar{x}, p}=i d$. in a similar way, and we omit the details. The second assertion is obvious, since φ_{o} is an eigen function of $W(p)$ and U_{γ}.

§ 2. Trace formula

Let $\Xi_{\mathfrak{p}}$ be an open compact subset of D_{p}^{\times}, which is right and left K_{p}-invariant, and put $\Xi_{f}=\Pi \Gamma \Xi_{p}$. For almost all p, we take $\Xi_{p}=K_{p}$. Let f_{p} be a function on Ξ_{p} such that

$$
f_{p}(k x)=f_{p}(x k)=\bar{\rho}_{p}(k) f_{p}(x)
$$

for $x \in \Xi_{\mathrm{p}}$ and $k \in K_{\mathrm{p}}$. We extend this function on $D_{\mathrm{p}}^{\mathrm{x}}$ in such a way as

$$
f_{p}(z x)=\bar{\omega}_{p}(z) f_{p}(x)
$$

for $z x \in Z_{p} \Xi_{p}$ and $f_{p}(x)=0$ for $x \notin Z_{p} \Xi_{p}$. Put $\boldsymbol{F}_{f}(x)=\prod_{p} f_{p}\left(x_{p}\right)$ for $x \in G_{f}$. Then \boldsymbol{F}_{f} satisfies

$$
\boldsymbol{F}_{f}(z x)=\bar{\omega}_{f}(z) \boldsymbol{F}_{f}(x)
$$

for $z \in Z_{f}$, and $\operatorname{supp}\left(F_{f}\right)$ is compact modulo Z_{f}. For a function f on G_{A} such that $f(z x)=\omega_{f}(z) f(x)$ for $z \in Z_{f}$, put

$$
\left(T\left(\boldsymbol{F}_{f}\right) f\right)(x)=\int_{Z_{f} \backslash G_{f}} f(x y) F_{f}(y) d y .
$$

We take the measure on Z_{f} so that $d z_{f}=\Pi d z_{p}$ with $\int_{0_{p}} d z_{\mathfrak{p}}=1$. Then $T\left(\boldsymbol{F}_{f}\right)$ defines a linear transformation on $S(n, \omega, k)$ or $M(n, \omega)$ in the case where $r=0, \omega$ is unramified, and $k=(2, \ldots, 2)$. In the rest of this section, we assume $D \not \approx M_{2}(Q)$, since the case of $M_{2}(\boldsymbol{Q})$ was treated in [8]. For D, let D^{\prime} be a quaternion algebra over F which satisfies $D_{\mathfrak{p}} \simeq D_{\mathfrak{p}}^{\prime}$ for all finite primes \mathfrak{p}, and

$$
D^{\prime} \otimes_{Q} R \simeq H^{g} \text { or } D^{\prime} \otimes_{Q} R \simeq M_{2}(R) \times H^{g-1}
$$

according as $[F: Q]=g$ is even or odd. There exists such a quaternion algebra. By a result of Jacquet and Langlands [7], there exists an isomorphism of $S(n, \omega, k)$ onto $S^{\prime}(\mathfrak{n}, \omega, \kappa)$ as $T(\mathfrak{n}), W(\mathfrak{p}), U_{x}$-modules, where $S^{\prime}(\mathfrak{n}, \omega, \kappa)$ is the space of automorphic forms defined in (1.1) for D^{\prime}. Hence we may take D^{\prime} instead of D, and we may assume G_{A} / Z_{A} is compact, since $D \neq M_{2}(Q)$.

Let π be the representation

$$
x \longmapsto N(x)^{(k-2) / 2} \rho_{k-2}(x)
$$

of \boldsymbol{H}^{\times}, and V the space on which \boldsymbol{H}^{\times}acts unitarily. Take a unit vector u in V and put

$$
f_{k}(x)=-(k-1) \overline{(\pi(x) u, u)} \quad \text { for } \quad x \in \boldsymbol{H}^{\times} .
$$

For the ramified infinite place v_{i}, we put $f_{v_{i}}=f_{k_{i}}$. We choose measures on \boldsymbol{H}^{\times}and $G L_{2}(\boldsymbol{R})$ as in $\S 15$ of [7]. On the center $Z_{v} \simeq \boldsymbol{R}^{\times}$, we take the measure $\frac{d t}{t}$. For a infinite place v at which D is unramified, we take for f_{v} a C^{∞}-function on $G_{v}=$ $G L_{2}(\boldsymbol{R})$ with the compact support modulo Z_{v} which satisfies $f_{v}(z x)=\omega_{v}^{-1}(z) f_{v}(x)$ for $z \in Z_{v}$ and $x \in G_{v}$ and has matching orbital integrals as f_{k} for $k=k_{v}$ (c.f. §8 of [4]). Then, for a hyperbolic element γ

$$
\int_{L^{\times} G_{v}} f_{v}\left(x^{-1} \gamma x\right) d x=0
$$

where L^{\times}is the centralizer of γ. Let $L \subset M_{2}(\boldsymbol{R})$ and $L^{\prime} \subset \boldsymbol{H}$ be the isomorphic quadratic extensions of F. If there exists an isomorphism of L onto L^{\prime} which sends γ to γ^{\prime}, then

$$
\begin{aligned}
& \operatorname{vol}\left(F_{v}^{\times} \backslash L_{v}^{\times}\right) \int_{L_{v}^{\times} \backslash G_{v}} f_{v}\left(x^{-1} \gamma x\right) d \dot{x} \\
& \quad=\operatorname{vol}\left(F_{v}^{\times} \backslash L_{v}^{\times}\right) \int_{L^{\prime}{ }_{v}^{\times} \backslash \boldsymbol{H}^{\times}} f_{k}\left(x^{\prime-1} \gamma x^{\prime}\right) d \dot{x}^{\prime} \\
& \quad=\Phi(\gamma, k),
\end{aligned}
$$

where $-\boldsymbol{\Phi}(\gamma, k)=\frac{\zeta^{k-1}-\eta^{k-1}}{\zeta-\eta}(\operatorname{det} \gamma)^{-\frac{k-2}{2}}$ with the characteristic roots ζ and η of
γ. By Plancherel formula, we have $f_{v}(1)=f_{k}(1)$. On the other hand, we have $\operatorname{tr} \pi\left(f_{k}\right)=-1$ and $\operatorname{tr} \pi^{\prime}\left(f_{v}\right)=1$ for the corresponding discrete series representation π^{\prime} of $G L_{2}(\boldsymbol{R})$, which is described in $\S 14$ of [7]. For one dimensional representation π_{χ} with $\chi^{2}=\omega_{v}=1, \pi_{\chi}\left(f_{k}\right)=1$ for $k=2$ and $\pi_{\chi}\left(f_{k}\right)=0$ otherwise.

Let \boldsymbol{F} be a function on G_{A} defined by

$$
\boldsymbol{F}(x)=\boldsymbol{F}_{\infty}\left(x_{\infty}\right) \boldsymbol{F}_{f}\left(x_{f}\right)=\left(\prod_{v \text { infinitc }} f_{v}\left(x_{v}\right)\right) \boldsymbol{F}_{f}\left(x_{f}\right)
$$

then \boldsymbol{F} satisfies $\boldsymbol{F}(z x)=\omega(z)^{-1} \boldsymbol{F}(x)$ and has the compact support modulo Z_{A}. For \boldsymbol{F}, consider an operator on $L_{0}^{2}\left(G_{\boldsymbol{Q}} \backslash G_{A},{ }^{(\omega)}\right.$) defined by

$$
(T(\boldsymbol{F}) f)(x)=\int_{Z_{A} \mid G_{A}} f(x y) \boldsymbol{F}(y) d y .
$$

When ω is unramified and $k=(2, \ldots, 2)$, put $M_{o}=\underset{\chi^{2}=\omega, \text {, unramified }}{\oplus} \chi \circ N$. By the relation between $S(\mathfrak{n}, \omega, k)$ and $\bar{S}(\mathfrak{n}, \omega, k)$, we see

$$
\begin{equation*}
\operatorname{tr} T(\boldsymbol{F})=\operatorname{tr} T\left(\boldsymbol{F}_{f}\right) \mid S(\mathfrak{n}, \omega, k)\left(+\operatorname{tr} T\left(\boldsymbol{F}_{f}\right) \mid M_{o}\right), \tag{2.1}
\end{equation*}
$$

where $\operatorname{tr} T\left(F_{f}\right) \mid V$ is the trace of $T\left(F_{f}\right)$ on V and $\operatorname{tr} T\left(F_{f}\right) \mid M_{o}$ is added when ω is unramified and $k=(2, \ldots, 2)$. For $\operatorname{tr} T(F)$, we have (c.f. [4])

$$
\operatorname{tr} T(\boldsymbol{F})=\int_{\tilde{G}_{\boldsymbol{Q}} \mid \tilde{G}_{\boldsymbol{A}}} \sum_{\gamma \in \boldsymbol{G}_{\boldsymbol{Q}} / Z} \boldsymbol{F}\left(x^{-1} \gamma x\right) d \dot{x},
$$

for $\widetilde{G}=G / Z$, and

$$
\begin{array}{r}
\operatorname{tr} T(\boldsymbol{F})=\operatorname{vol}\left(G_{\boldsymbol{Q}} \backslash G_{A}\right) \boldsymbol{F}(1)+\sum_{L} \frac{1}{2} \operatorname{vol}\left(F_{A}^{\times} L^{\times} \backslash L_{A}^{\times}\right) \sum_{\xi \in\left(L^{\times}-F^{\times}\right) / F_{\times}} \int_{L_{A}^{\times} \mid G_{A}} \tag{2.2}\\
\boldsymbol{F}\left(x^{-1} \xi x\right) d \dot{x},
\end{array}
$$

where L runs through all totally imaginary quadratic extensions of F which do not split at $\mathfrak{p} \mid \mathfrak{D}$. For $\operatorname{vol}\left(G_{\boldsymbol{Q}} \backslash G_{A}\right) F(1)$, by Eichler [3] and Shimizu [10], we have

$$
\operatorname{vol}\left(G_{Q} \backslash G_{A}\right)=\frac{2 \zeta_{F}(2)\left|D_{F}\right|^{3 / 2}}{(2 \pi)^{g}} \prod_{\mathfrak{p} \nmid \mathfrak{O}}(N \mathfrak{p}-1)\left|U: K_{\mathcal{S}}\right|
$$

where ζ_{F} (resp. D_{F}) is the Dedekind zeta function (resp. the discriminant) of $F, U=$ $\prod_{p} \mathfrak{D}_{p}^{\times}$, and $\boldsymbol{F}(1)=\prod_{i}\left(k_{i}-1\right) \boldsymbol{F}_{f}\left(1_{f}\right)$. For the second term, we have

$$
\begin{align*}
& \operatorname{vol}\left(F_{A}^{\times} L^{\times} \backslash L_{A}^{\times}\right) \int_{L_{A}^{\times} \mid G_{A}} \boldsymbol{F}\left(x^{-1} \xi x\right) d \dot{x} \tag{2.3}\\
= & \operatorname{vol}\left(F_{\infty}^{\times} \backslash L_{\infty}^{\times}\right) \int_{L_{\infty}^{\times} \mid G_{\infty}} \boldsymbol{F}_{\infty}\left(x_{\infty}^{-1} \xi x_{\infty}\right) d \dot{x} \operatorname{vol}\left(F_{f}^{\times} L^{\times} \backslash L_{f}^{\times}\right) \int_{L_{f}^{\times} \mid G_{f}} \boldsymbol{F}_{f}\left(x_{f}^{-1} \xi x_{f}\right) d \dot{x}_{f} \\
= & (-1)^{g} \prod_{i=1}^{g} \Phi\left(\xi_{i}, k_{i}\right) \operatorname{vol}\left(F_{f}^{\times} L^{\times} \backslash L_{f}^{\times}\right) \int_{L_{f}^{\times} \mid G_{f}} F_{f}\left(x_{f}^{-1} \xi x_{f}\right) d \dot{x}_{f},
\end{align*}
$$

where ξ_{i} is the v_{i}-component of ξ in G_{A}. Now we apply this to our case. Let χ be a character of $\prod_{p \nmid n} F_{\mathfrak{p}}^{\times}$satisfying (1.2). For a divisor $\mathfrak{m r}$ of \mathfrak{n} with $(f(\omega)$, int) $=1$, put $W(\mathfrak{m})=\prod_{\mathfrak{p} \mid \mathfrak{m}} W(\mathfrak{p})$. . We decompose \mathfrak{n} into $\mathfrak{n}_{1} \mathfrak{n}_{2} \mathfrak{n}_{3} \mathfrak{n}_{4}$ in such a way as the following conditions are satisfied.
i) $\left(\mathfrak{n}_{i}, \mathfrak{n}_{j}\right)=1$ if $i \neq j$.
ii) $\mathfrak{f}(\chi)$ and $\mathrm{H}_{2} \mathrm{r}_{4}$ have the same prime factors.
iii) 11 t and $\mathfrak{n}_{3} n_{4}$ have the same prime factors.
n_{i} may be $\boldsymbol{0}$. Such a decomposition is unique. For each prime divisor p of n_{i}, we define Ξ_{p} and f_{p} as follows:
i) For $\mathfrak{p} \mid \mathfrak{n}_{1}, \Xi_{\mathfrak{p}}=K_{p}$ and $f_{p}(x)=\omega_{p}(d)^{-1}$ for $x=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Xi_{p}$.
ii) For $\mathfrak{p} \mid \mu_{2}, \Xi_{p}=\Xi_{p}\left(\chi_{p}\right)$ and $f_{p}(x)=f_{p, \chi_{p}}(x)$ for $x \in \Xi_{p}$.

> (c.f. (1.3) and (1.4)).
iii) For $\mathfrak{p} \mid{n_{3}}_{3}, \Xi_{\mathfrak{p}}=K_{p}\left[\begin{array}{cc}0 & 1 \\ \boldsymbol{w}_{p}^{v} & 0\end{array}\right]$ for $v=\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n})$ and $f_{p}(x)=1$ for $x \in \Xi_{p}$.
iv) For $\mathfrak{p} \mid \mathfrak{n}_{4}, \Xi_{\mathfrak{p}}=\Xi_{p}\left(\chi_{p}\right)\left[\begin{array}{rr}0 & -1 \\ w_{p}^{v} & 0\end{array}\right]$, and $f_{p}(x)=\bar{\chi}_{p}\left(a d / w_{p}^{4 v+2 \mu}\right) \chi_{p}\left(N(x) / w_{p}^{3 v+4 \mu}\right)$
for $x=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Xi_{\mathfrak{p}}$, where $v=\operatorname{ord}_{\mathfrak{p}}(n)$ and $\mu=\operatorname{ord}_{\mathfrak{p}}\left(f\left(\chi_{\mathfrak{p}}\right)\right)$.
For $\mathfrak{p} \nmid \mathfrak{n}$, we take $\Xi_{\mathfrak{p}}=\Xi_{\mathfrak{p}}(\mathfrak{a})$ if $\mathfrak{p} \mid \mathfrak{a}$ and $\Xi_{\mathfrak{p}}=K_{\mathfrak{p}}$ if $\mathfrak{p} \nmid \mathfrak{a}$, and $f_{\mathfrak{p}}$ the characteristic function of $\Xi_{\mathfrak{p}} Z_{\mathfrak{p}}$. Let $v_{\mathfrak{p}}=\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n})$ for $\mathfrak{p} \mid \mathfrak{n}$ and $\mu_{\mathfrak{p}}=\operatorname{ord}_{\mathfrak{p}} \mathfrak{f}\left(\chi_{\mathfrak{p}}\right)$ for $\mathfrak{p} \mid \mathfrak{f}(\chi)$. If we choose Ξ_{p} and f_{p} in this way, then $A T\left(F_{f}\right)$ coincides with $T(\mathfrak{a}) U_{\chi} W(11 t)$ on $S(\mathfrak{n}, \omega, k)$ with

$$
A=\prod_{p \mid f(x)} \frac{\bar{\omega}_{p}\left(-\varpi_{p}^{v_{p} p+2 \mu_{p}}\right) \bar{\chi}_{p}\left(\Phi_{p}^{v_{p} p}\right)}{G\left(\bar{\chi}_{p}\right)} \prod_{\substack{p / n \\ p \mid f(x)}} \bar{\chi}_{p}\left(\sigma_{p}^{v p}\right)
$$

and we can use the formula (2.1) and (2.2).
For $\xi \in L^{\times}-F^{\times}$and an order Λ of L containing o , put

$$
\begin{aligned}
& M\left(\xi, \Xi_{f} Z_{f}, \Lambda\right)=\left\{x \in G_{f} \mid x^{-1} \xi x \in \Xi_{f} Z_{f}, L_{\mathfrak{p}} \cap x_{\mathfrak{p}} \mathfrak{D}_{\mathfrak{p}} x_{\mathfrak{p}}^{-1}=\Lambda_{\mathfrak{p}}\right. \\
& \left.\quad \text { for } \mathfrak{p} \nmid \mathfrak{n} L_{p} \cap x_{\mathfrak{p}} R_{\mathfrak{p}}(\mathfrak{n}) x_{p}^{-1}=\Lambda_{\mathfrak{p}} \text { for } \mathfrak{p} \mid \mathfrak{n}\right\}, \\
& M_{\mathfrak{p}}\left(\xi, \Xi_{\mathfrak{p}} Z_{p}, \Lambda_{\mathfrak{p}}\right)=\left\{x \in G_{\mathfrak{p}} \mid x^{-1} \xi x \in \Xi_{\mathfrak{p}} Z_{p}, L_{\mathfrak{p}} \cap x \mathfrak{D}_{\mathfrak{p}} x^{-1}=\Lambda_{\mathfrak{p}}\right\} \text { for } \mathfrak{p} \nmid \mathfrak{n}, \\
& M_{\mathfrak{p}}\left(\xi, \Xi_{\mathfrak{p}} Z_{p}, \Lambda_{\mathfrak{p}}\right)=\left\{x \in G_{\mathfrak{p}} \mid x^{-1} \xi x \in \Xi_{\mathfrak{p}} Z_{\mathfrak{p}}, L_{\mathfrak{p}} \cap x R_{\mathfrak{p}}(\mathfrak{n}) x^{-1}=\Lambda_{\mathfrak{p}}\right\} \text { for } \mathfrak{p} \mid \mathfrak{n},
\end{aligned}
$$

where for $\mathfrak{p} \nmid \mathfrak{n}, R_{\mathfrak{p}}(\mathfrak{n})=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M_{2}\left(F_{\mathfrak{p}}\right) \right\rvert\, a, b, d \in \mathfrak{o}_{\mathfrak{p}}, c \in \mathfrak{n o}_{\mathfrak{p}}\right\}$. Then $M\left(\xi, \Xi_{f} Z_{f}\right.$,亿) $\neq \varnothing$ if and only if $M_{\mathfrak{p}}\left(\xi, \Xi_{\mathfrak{p}} Z_{p}, \Lambda_{\mathfrak{p}}\right) \neq \varnothing$ for all \mathfrak{p}, and for almost all $\mathfrak{p},\left|L_{p}^{\times}\right| M_{\mathfrak{p}}(\xi$, $\left.\Xi_{\mathfrak{p}} Z_{p}, \Lambda_{p}\right) / K_{p} \mid=1$. (c.f. [6]). If we choose a measure du on L_{f}^{\times}such that $d u=$
$\prod_{p} d u_{p}$ and $\int_{A_{p}^{x}} d u_{p}=1$, then we see

$$
\operatorname{vol}\left(F_{f}^{\times} L^{\times} \backslash L_{f}^{\times}\right)=\left(h_{L}(\Lambda) / h_{F}\right) /\left[\Lambda^{\times}: E_{F}\right],
$$

where $h_{L}(\Lambda)=\left|L_{f}^{\times} / L^{\times} \prod_{p} \Lambda_{\mathrm{p}}^{\times}\right|, \mathrm{h}_{F}$ is the class number of F, and $E_{F}=\mathfrak{o}^{\times}$.
Hence (2.3) equals

$$
(-1)^{g} \prod_{i} \Phi\left(\xi_{i}, k_{i}\right)\left(h_{L}(\Lambda) / h_{F}\right) /\left[\Lambda^{\times}: E\right] \prod_{p} \int_{L_{p}^{\times} \mid G_{p}} f_{p}\left(x_{p}^{-1} \xi x_{p}\right) d \dot{x}_{p} .
$$

We see also

$$
\int_{L_{\mathfrak{p}}^{\times} \mid G p} f_{p}\left(x_{p}^{-1} \xi x_{p}\right) d x_{\mathfrak{p}}=\sum_{a_{p} \in L_{\hat{p}}^{\times} \mid M_{p}\left(\xi, \Xi_{p} z_{p}, A_{p}\right) / K_{p}} f_{\mathfrak{p}}\left(a_{p}^{-1} \xi a_{\mathfrak{p}}\right)
$$

We have to find the condition for $M_{\mathfrak{p}}\left(\xi, \Xi_{\mathfrak{p}} Z_{\mathfrak{p}}, \Lambda_{\mathfrak{p}}\right) \neq \emptyset$ and compute $\sum f_{p}\left(a_{\mathfrak{p}}^{-1} \xi a_{\mathfrak{p}}\right)$. Let $\Psi(X)=X^{2}-s x+n$ be the characteristic polynominal of ξ. Put

$$
C_{\mathfrak{p}}\left(s, n, \Lambda_{\mathfrak{p}}\right)=\sum_{a_{p} \in L_{\mathfrak{p}}^{\times} \backslash M_{\mathfrak{p}}\left(\xi, \bar{E}_{p} Z_{p}, A_{\mathfrak{p}}\right) / K_{\mathfrak{p}}} f_{\mathfrak{p}}\left(a_{\mathfrak{p}}^{-1} \xi a_{\mathfrak{p}}\right) .
$$

If $\Xi\left(\xi, \Xi_{f} Z_{f}, \Lambda\right) \neq \varnothing$, then there exists an ideal \mathfrak{m} of F which satisfies $(n)=$ $\mathfrak{a n}_{2}^{2} \mathfrak{n}_{3} \mathfrak{n}_{4}^{3}\left(\prod_{\mathfrak{p} \mid n_{2} n_{4}} \mathfrak{p}^{4 \mu_{p}}\right) \mathfrak{m}^{2}$. If $\mathfrak{c}=\mathfrak{a n} n_{2}^{2} \mathfrak{n}_{3} n_{4}^{3}\left(\prod_{p \mid n_{2} n_{4}} \mathfrak{p}^{4 \mu p}\right)$ is not a square in the ideal class group of F in the narrow sense, then $\Xi\left(\xi, \Xi_{f} Z_{f}, \Lambda\right)=\varnothing$. Hence we may assume c satisfies this condition. Let η be the map of the ideal class group $I(F)$ of F to the ideal class group $I^{+}(F)$ of F in the narrow sense which sends a class $\overline{\mathfrak{a}}$ to its square $\overline{\mathrm{a}}^{2}$. Choose representatives $\mathfrak{m}_{i}, 1 \leq i \leq l$, which are integral and prime to ant, from classes in $\eta^{-1}\left(\mathfrak{c}^{-1}\right)$, where l equals the number of classes in $\eta^{-1}\left(\mathfrak{c}^{-1}\right)$. Multiplying an element of F^{\times}, we may assume ξ satisfies $(n)=\mathrm{cm}^{2}$ for some $\mathfrak{m}=\mathfrak{m}_{i}$. For an $\boldsymbol{o}_{\mathfrak{p}}$ order $\Lambda_{\mathfrak{p}}$ of L_{p}, let $\left\{w_{1}, w_{2}\right\}$ be a basis of $\Lambda_{\mathfrak{p}}$ over $\mathfrak{o}_{\mathfrak{p}}$, and put $D\left(\Lambda_{\mathfrak{p}}\right)=\operatorname{det}\left[\begin{array}{cc}w_{1} & w_{2} \\ w_{1}^{\prime} & w_{2}^{\prime}\end{array}\right] \mathfrak{o}_{\mathfrak{p}}$. Here w^{\prime} is the conjugate of w over F_{p}. For $\mathfrak{p} \nmid n$, let $2 m=\operatorname{ord}_{\mathfrak{p}}(n)-\operatorname{ord}_{p}(\mathfrak{a})$, then $\Xi_{p}\left(\xi, \Xi_{p} Z_{p}\right.$, $\left.\Lambda_{\mathfrak{p}}\right) \neq \varnothing$ if and only if $\operatorname{ord}_{\mathfrak{p}}(s) \geq m$, and $\operatorname{ord}_{\mathfrak{p}}\left(D\left(\mathfrak{o}_{p}[\xi]\right)\right)-m \geq \operatorname{ord}_{\mathfrak{p}} D\left(\Lambda_{\mathfrak{p}}\right)$ for $\mathfrak{p} \nmid \mathfrak{D}$, and for $\mathfrak{p} \mid \mathfrak{D}, \operatorname{ord}_{\mathfrak{p}}(s) \geq m, L$ does not split at \mathfrak{p} and $\Lambda_{\mathfrak{p}}$ is the maximal order. When this condition is satisfied,

$$
C_{p}\left(s, n, \Lambda_{p}\right)=\bar{\omega}_{p}\left(\varpi_{p}^{m}\right) \text { with } \quad m=\operatorname{ord}_{\mathfrak{p}}(\mathfrak{m}) \text { if } \mathfrak{p \not o ~}
$$

and

$$
C_{\mathfrak{p}}\left(s, n, \Lambda_{\mathfrak{p}}\right)=\left(1-\left\{\frac{\Lambda_{\mathfrak{p}}}{\mathfrak{p}}\right\}\right) \bar{\omega}_{\mathfrak{p}}\left(\varpi_{\mathfrak{p}}^{m}\right) \text { if } \mathfrak{p} \mid \mathfrak{d}
$$

where $\left\{\frac{\Lambda_{\mathfrak{p}}}{\mathfrak{p}}\right\}$ is -1 or 0 according as L is unramified at \mathfrak{p} or not. For $\mathfrak{p} \mid \boldsymbol{n}_{1}$, by Th. 2.3 of [6], $M_{p}\left(\xi, \Xi_{p} Z_{p}, \Lambda_{p}\right) \neq \emptyset$ if and only if $\operatorname{ord}_{\mathfrak{p}}\left(D\left(\mathfrak{o}_{p}[\xi]\right)\right) \geq \operatorname{ord}_{p}\left(D\left(\Lambda_{p}\right)\right)$, and then

$$
C_{p}\left(s, n, \Lambda_{p}\right)=\sum_{\alpha \in \Omega \bmod p^{v+\rho}} \bar{\omega}_{p}(s-\alpha)+\sum_{\alpha \in \Omega^{\prime} \bmod p v+\rho} \bar{\omega}_{p}(\alpha)
$$

Here $\nu=v_{p}$, and $\rho=\operatorname{ord}_{\mathfrak{p}}\left(D\left(\mathfrak{o}_{\mathfrak{p}}[\xi]\right)\right)-\operatorname{ord}_{\mathfrak{p}}\left(D\left(\Lambda_{\mathrm{p}}\right)\right)$, and

$$
\begin{aligned}
& \Omega=\left\{\alpha \in \mathfrak{o}_{\mathfrak{p}} \mid \Psi(\alpha) \equiv 0 \bmod \mathfrak{p}^{v+2 \rho}\right\} \\
& \Omega^{\prime}=\left\{\begin{array}{cll}
\left\{\alpha \in \Omega \mid \Psi(\alpha) \equiv 0 \bmod \mathfrak{p}^{v+2 \rho+1}\right\} & \text { if } & \operatorname{ord}_{\mathfrak{p}}\left(D\left(\mathfrak{o}_{\mathfrak{p}}[\xi]\right)\right) \geq 2 \rho+1 \\
\emptyset & \text { if } & \operatorname{ord}_{\mathfrak{p}}\left(D\left(\mathfrak{o}_{\mathfrak{p}}[\xi]\right)\right)<2 \rho+1 .
\end{array}\right.
\end{aligned}
$$

For $\mathfrak{p} \mid \mathfrak{n}_{2}$, by Lemma 2.4 in [8], $M_{p}\left(\xi, \Xi_{p} Z_{\mathfrak{p}}, \Lambda_{\mathfrak{p}}\right) \neq \varnothing$ if and only if $\operatorname{ord}_{\mathfrak{p}}(s) \geq v+2 \mu$, $\left\{\alpha \in \mathfrak{o}_{\mathfrak{p}} \mid \Psi(\alpha) \equiv 0 \bmod \mathfrak{p}^{3 v+2 \mu}, \Psi(\alpha) \not \equiv 0 \bmod \mathfrak{p}^{3 v+2 \mu+1}\right\} \neq \phi, \quad$ and $\operatorname{ord}_{\mathfrak{p}}\left(D\left(\mathfrak{o}_{p}[\xi]\right)\right)-$ $\operatorname{ord}_{p}\left(D\left(\Lambda_{p}\right)\right)=v+\mu$ for $v=v_{p}$ and $\mu=\mu_{p}$. When this condition is satisfied,

As for the prime $\mathfrak{p} \mid n_{3}$, by [12], $M_{p}\left(\xi, \Xi_{p} Z_{p}, \Lambda_{p}\right) \neq \varnothing$ if and only if $\operatorname{ord}_{\mathfrak{p}}(s) \geq \operatorname{ord}_{p}$ $\left(\mathrm{n}_{2}\right)$ and $\operatorname{ord}_{\mathfrak{p}}\left(D\left(\Lambda_{\mathfrak{p}}\right)\right)=\operatorname{ord}_{\mathfrak{p}}\left(D\left(\mathfrak{o}_{p}[\xi]\right)\right)$. When this condition is satisfied

$$
C_{p}\left(s, n, \Lambda_{p}\right)=1 .
$$

For $\mathfrak{p} \mid \varkappa_{4}$, by Lemma 2.8 in [8] $M_{p}\left(\xi, \Xi_{p} Z_{p}, \Lambda_{p}\right) \neq \varnothing$ if and only if $\operatorname{ord}_{\mathfrak{p}}(s) \geq 2 v+\mu$ and $\operatorname{ord}_{\mathfrak{p}}\left(D\left(\nu_{p}[\xi]\right)\right)-\operatorname{ord}_{p}\left(D\left(\Lambda_{\mathfrak{p}}\right)\right)=v+2 \mu$ for $v=v_{p}$ and $\mu=\mu_{p}$. When this is satisfied

$$
C_{p}\left(s, n, \Lambda_{p}\right)=\sum_{\substack{\alpha \in \operatorname{mid}_{p} \mu \\ \alpha \neq s / \bar{\omega}_{p}^{2+\mu} \mu_{\text {mod }}}} \bar{\chi}_{p}\left(\alpha\left(s / \pi_{p}^{2 v+\mu}-\alpha\right)\right) .
$$

For $\boldsymbol{F}_{f}(1)$, we see $\boldsymbol{F}_{f}(1) \neq 0$ if and only if $\mathfrak{n}=\mathfrak{n}_{1}$, and $\operatorname{ord}_{\mathfrak{p}}(\mathfrak{a})$ is even for $\mathfrak{p} \mid \mathfrak{a}$, and if this is satisfied, $\boldsymbol{F}_{f}(1)=\prod_{\mathfrak{p} \mid \mathfrak{a}} \omega_{\mathfrak{p}}\left(m_{p}^{a_{p}}\right)$ for $a_{\mathfrak{p}}=\frac{1}{2} \operatorname{ord}_{\mathfrak{p}}(\mathfrak{a})$. Lastly, we must determine the trace on M_{o}. Let c be the number of unramified characters of $F_{A}^{\times} / F^{\times}$such that $\lambda^{2}=\omega$. By Prop. 1.2, if ${n_{2}}^{n_{4}} \neq \mathbf{o}$, then $\operatorname{tr} T\left(F_{f}\right) \mid M_{o}=0$ and if $\mathrm{n}_{2} \mathrm{n}_{4}=\mathbf{v}$,

$$
\operatorname{tr} T\left(F_{f}\right) \mid M_{o}=c(-1)^{g} \omega\left(\mathfrak{n}_{2} \mathfrak{a}\right) \sum_{\substack{b, b, a \\(b)=1}} N(\mathfrak{b}),
$$

where \mathfrak{D} runs through all divisors of \mathfrak{a} prime to \mathfrak{D}. From these considerations, we obtain

Theorem 2.1. Let χ be a character of $\prod_{\mathcal{p} \mid \|} F_{\hat{p}}^{\times}$satisfying (1.2), and m a divisor of \mathfrak{n} such that $(\mathfrak{m}, \mathfrak{f}(\omega))=1$. Let $\mathfrak{n}=\mathfrak{n}_{1} \mathfrak{n}_{2} \mathfrak{n}_{3} n_{4}$ be the decomposition defined above for χ and m . Let c be the number of unramified characters λ of $F_{A}^{\times} / F^{\times}$such that $\lambda^{2}=\omega$, and η the map from $I(F)$ to $I^{+}(F)$ such that $\eta(\overline{\mathfrak{b}})=\bar{b}^{2}$. For an integral ideal ideal a prime to \mathfrak{n}, put $\mathfrak{c}=\mathfrak{a n}_{2}^{2} \mathfrak{n}_{3} \mathfrak{n}_{4}^{3} \prod_{\mathfrak{p} \mid n_{2} n_{4}} \mathfrak{p}^{4 \mu_{p}}$ with $\mu_{p}=\operatorname{ord}_{\mathfrak{p}}\left(\mathfrak{f}\left(\chi_{p}\right)\right)$. Put $v_{p}=$ $\operatorname{ord}_{\mathfrak{p}}(\mathfrak{n})$ for $\mathfrak{p} \mid \mathfrak{n}$. If $\mathfrak{c} \in \eta(I(F))$, choose a representative m which is integral and prime to na for each class in $\eta^{-1}(c)$, and denote the set of them by $\{\mathrm{m}\}$. Then one has
$\operatorname{tr} W\left(\mathrm{n}_{3} \mathrm{n}_{4}\right) U_{\chi} T(\mathfrak{a}) \mid S(\mathfrak{n}, \omega, k)$

$$
+b(k)(-1)^{g-1} c \omega\left(\mathfrak{n}_{2} \mathfrak{a}\right) \sum_{\substack{b, a \\(b, b)=1}} N(b)
$$

Here $a\left(\mathfrak{n} / \mathfrak{n}_{1}\right)($ resp. $\delta(\mathfrak{n}), b(k))$ equals 1 if $\mathfrak{n} / \mathfrak{n}_{1}=\mathfrak{v}$ (resp. \mathfrak{a} is a square, $k=(2, \ldots, 2)$) and otherwise equals zero. $\quad a_{\mathfrak{p}}=\frac{1}{2} \operatorname{ord}_{\mathfrak{p}}(\mathfrak{a})$ for $\mathfrak{p} \mid \mathfrak{a} . \quad n$ is a totally positive element in F which generates $m^{2} c$. For s, let $\Psi_{s, n}(\chi)=X^{2}-x X+n$ and $L=F[X] /\left(\Psi_{s, n}(X)\right)$. s runs through all integers of F which satisfy the condition that $\operatorname{ord}_{p}(s) \geq v_{p}+2 \mu_{p}$ for $\mathfrak{p} \mid \mathfrak{n}_{2}, \operatorname{ord}_{\mathfrak{p}}(s) \geq v_{\mathfrak{p}}$ for $\mathfrak{p} \mid \mathfrak{n}_{3}, \operatorname{ord}_{\mathfrak{p}}(s) \geq 2 v_{p}+\mu_{\mathfrak{p}}$ for $\mathfrak{p} \mid \mathfrak{n}_{4}, \operatorname{ord}_{\mathfrak{p}}(s) \geq \frac{1}{2} \operatorname{ord}_{\mathfrak{p}}(\mathfrak{m})$ for $\mathfrak{p} \mid \mathfrak{m}, s^{2}-4 n$ is totally negative and L does not split at $\mathfrak{p} \mid \mathfrak{D}$. Let s_{i} and n_{i} be the v_{i}-component of s and n in F_{A}^{\times}, and let α, β be the roots of $X^{2}-s_{i} X+n_{i}=0$, then

$$
\Phi\left(s_{i}, n_{i}, k\right)=\frac{\alpha^{k-1}-\beta^{k-1}}{\alpha-\beta} n_{i}^{-\frac{k-2}{2}} .
$$

Put $\rho_{\mathfrak{p}}=\operatorname{ord}_{\mathfrak{p}}\left(D\left(\mathfrak{o}_{\mathfrak{p}}[\xi]\right)\right)-\operatorname{ord}_{\mathfrak{p}}\left(D\left(\Lambda_{\mathfrak{p}}\right)\right)$. Λ runs through all $\mathfrak{0}$-orders of L which satisfy the condition that $\rho_{\mathfrak{p}} \geq 0$ for $\mathfrak{p} \mid \mathfrak{n}_{1}$ and $\mathfrak{p} \not \mathfrak{n}_{2} \mathfrak{n}_{3} \mathfrak{n}_{4} \mathfrak{m}, \rho_{\mathfrak{p}}=v_{p}+\mu_{\mathfrak{p}}$ for $\mathfrak{p} \mid \mathfrak{n}_{2}$, $\rho_{\mathfrak{p}}=0$ for $\mathfrak{p} \mid \mathfrak{n}_{3}, \rho_{\mathfrak{p}}=v_{\mathfrak{p}}+2 \mu_{\mathfrak{p}}$ for $\mathfrak{p} \mid \mathfrak{n}_{4}, \rho_{\mathfrak{p}} \geq \operatorname{ord}_{\mathfrak{p}}(\mathfrak{m})$ for $\mathfrak{p} \mid \mathfrak{m}$, and $\Lambda_{\mathfrak{p}}$ is maximal at $\mathfrak{p} \mid \mathrm{D}$. The factors $C_{\mathfrak{p}}\left(s, n, \Lambda_{\mathfrak{p}}\right)$ are given as follows;
a) $\operatorname{For} \mathfrak{p} \mid \mathfrak{n}_{1}$,
b) For $\mathfrak{p} \mid \mathfrak{n}_{2}$,

$$
C_{p}\left(s, n, \Lambda_{p}\right)=\frac{\chi_{p}\left(n \sigma_{p}^{-2 \mu_{p}}\right)^{2}}{G\left(\bar{\chi}_{p}\right)^{2}} \sum_{\substack{\alpha \in p^{2} \bmod ^{2 v p}+\mu_{p} \\ \operatorname{ord} p\left(\Psi_{s, n}(\alpha)\right)=3 v_{p}+2 \mu_{p}}} \bar{\omega}_{p}(s-\alpha) \bar{\chi}_{p}\left(\Psi_{s, n}(\alpha)\right) .
$$

c) $\operatorname{For} \mathfrak{p} \mid n_{3}, C_{p}\left(s, n, \Lambda_{p}\right)=\bar{\chi}_{p}\left(\sigma_{p}^{v p}\right)$.
d) $\operatorname{For} \mathfrak{p} \mid \mathfrak{n}_{4}$,

$$
C_{p}\left(s, n, \Lambda_{p}\right)=\frac{\chi_{p}\left(n \sigma_{p}^{-2 \mu_{p}}\right)}{G\left(\bar{\chi}_{p}\right)^{2}} \sum_{\substack{ \\s / \tilde{\omega}^{2 v_{p}+\mu_{p}} \bmod _{p} \mu^{\mu_{p}} \neq 0 \bmod p}} \bar{\chi}_{p}\left(\alpha\left(s / \sigma_{p}^{2 v_{p}+\mu_{p}}-\alpha\right)\right)
$$

$$
\begin{aligned}
& C_{p}\left(s, n, \Lambda_{\mathfrak{p}}\right)=\bar{\chi}_{\mathfrak{p}}\left(\sigma_{p}^{\nu \mathfrak{p}}\right)\left(\sum_{\alpha \in \Omega \bmod \mathfrak{p}^{\nu} \mathfrak{p}+\rho_{p}} \bar{\omega}_{\mathfrak{p}}(s-\alpha)+\sum_{\alpha \in \Omega^{\prime} \bmod p \nu_{p}+\rho_{p}} \bar{\omega}_{\mathfrak{p}}(\alpha)\right) \\
& \Omega=\left\{\alpha \in \mathfrak{o}_{\mathrm{p}} \mid \Psi_{s, n}(\alpha) \equiv 0 \bmod \mathfrak{p}^{v_{p}+2 \rho_{p}}\right\} \\
& \Omega^{\prime}=\left\{\begin{array}{ll}
\left\{\alpha \in \Omega \mid \Psi_{s, n}(\alpha) \equiv 0 \bmod \mathfrak{p}^{v_{p}+2 \rho_{\mathfrak{p}}+1}\right\} & \text { if } \operatorname{ord}_{\mathfrak{p}}\left(s^{2}-4 n\right) \geq 2 \rho_{\mathfrak{p}}+1 \\
\emptyset & \text { otherwise }
\end{array} .\right.
\end{aligned}
$$

$$
\begin{aligned}
& =a\left(\mathfrak{n} / \mathfrak{n}_{1}\right) \delta(\mathfrak{a}) \frac{2 \zeta_{F}(2)\left|D_{F}\right|^{3 / 2} N \mathfrak{n}}{(2 \pi)^{g}} \prod_{\mathfrak{p} \mid \mathfrak{a}} \omega_{\mathfrak{p}}\left(\sigma_{\mathfrak{p}}^{a_{\mathfrak{p}}}\right) \prod_{\mathfrak{p} \mid \mathfrak{p}}(N \mathfrak{p}-1) \prod_{\mathfrak{p} \mid \mathfrak{n}}\left(1+N \mathfrak{p}^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(h_{L}(\Lambda) / h_{F}\right) /\left[\Lambda: E_{F}\right]
\end{aligned}
$$

If $\mathfrak{c} \notin \eta(I(F))$, then

$$
\operatorname{tr} W\left(\mathfrak{n}_{3} \mathfrak{n}_{4}\right) U_{x} T(\mathfrak{a}) \mid S(\mathfrak{n}, \omega, k)=b(k)(-1)^{g-1} c \omega\left(\mathfrak{n}_{2} \mathfrak{a}\right) \sum_{(\mathfrak{b}, \mathfrak{l}, \mathfrak{a})=1} N(\mathfrak{b})
$$

Remark 2.2. Let \mathfrak{p} be a prime ideal of F of degree 1 and χ_{1} the non trivial character of s_{ν}^{x} of order 2. Then we see easily
a) $\sum_{\chi^{2} \neq i d} \bar{\chi}(a) G(\chi)^{2}=\sum_{m n \equiv a \operatorname{modp}}(N p-1) \psi_{p}\left((m+n) w_{\mathfrak{p}}^{-1}\right)-1-\chi_{1}(a) G\left(\chi_{1}\right)^{2}$,
b) $\sum_{\chi^{2} \neq i d} \bar{\chi}(a) G\left(\chi^{2}\right)^{2}=\sum_{m^{2} \equiv a \bmod p}(N p-1) \psi_{p}\left(m \sigma_{p}^{-1}\right)+2 \quad$ for a with $\chi_{1}(a)=1$,
where χ runs through all characters of $\mathfrak{o}_{\hat{p}}$ which satisfies $\mathfrak{f}(\chi)=\mathfrak{p}$ and $\chi^{2} \neq i d$. . Th. 1 in [9] can be deduced easily from Th. 2.1 by means of a) and b).

Department of Mathematics College of General Education Kyoto University

References

[1] W. Casselman, On some resluts of Atkin and Lehner, Math. Ann., 201 (1973), 301-314.
[2] P. Deligne, Formes modulaires et representations de GL(2), Modular functions of one variable II, Lecture notes in Math., vol. 349, Springer, 1973.
[3] M. Eichler, Uber die Idealklassenzahl total definiter Quaternionenalgebren, Math. Ann. 43 (1938), 102-109.
[4] H. Gelbart and H. Jacquet, Forms of GL(2) from the analytic point of view, Automorphic forms, representation theory and L-functions, Proceedings of symposia in pure mathematics, vol. 33, Part 1, Amer. Math. Soc., 1979.
[5] R. Godement, Notes on Jacquet-Langlands' theory, Lecture note, Institute for Advanced Study, Princeton 1970.
[6] H. Hijikata, Explicit formula of the traces of Hecke operator for $\Gamma_{0}(N)$, J. Math. Soc. Japan, 26 (1974), 56-82.
[7] H. Jacquet and R. Langlands, Automorphic forms on GL(2), Lecture notes in Math. vol. 114, Springer, 1970.
[8] H. Saito, On a decomposition of spaces of cusp forms and trace formula of Hecke operators, Nagoya Math. J., 80 (1980), 129-165.
[9] H. Saito and M. Yamauchi, Congruence between Hilbert cusp forms and units in quartic fields, J. Fac. Sci. Univ. Tokyo, 28 (1981), 687-694.
[10] H. Shimizu, On zeta functions of quaternion algebras, Ann. of Math., 81 (1965), 166-193.
[11] G. Shimura, The special values of the zeta functions associated with cusp forms, Comm. pure appl. Math., 29 (1976), 783-804.
[12] M. Yamauchi, On the traces of Hecke operators for a normalizer of $\Gamma_{0}(N)$, J. Math. Kyoto Univ., 13 (1973), 403-411.

