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§0. Introduction

In a previous paper [8], we introduced an operator U, acting on the space of
cusp forms of one variable for a Dirichlet character y satisfying a condition, and
showed that U,'s satify U, U, =U,,. By means of U,, we defined a decomposition
of the space of cusp forms into subspaces stable under Hecke operators, and gave
trace formulas of Hecke operators on each subspace. The purpose of this paper is
to generalize this result to the case of Hilbert cusp forms over a totally real algebraic
number field F. In [9], we have given such a formula in a special case without
proof, and discussed a numerical example in the case where F =Q(\/5_). A trace
formula in a general case will be given in §2.

Notation. Let Z, Q, R, and C denote the ring of national integers, the field of
rational numbers, the field of real numbers, and the field of complex numbers. Let
H denote the Hamilton quaternion algebra over R. For an associative algebra R,
let M (R) denote the ring of r by r matrices with coefficients in R. For an associative
algebra R with a unit, we denote by R* the group of invertible elements.

§1. Operator U,

Let F be a totally real algebraic number field of degree g, and o the ring of
integers of F. For a place v of F, let F, denote the completion of F at v and for a
finite place v=p, let o, denote the ring of integers in F,. Let F, denote the adele
ring of F and F,, (resp. F,) the infinite part (resp.the finite part) of F,. Then
F,~R¢ Let D be a quaternion algebra over F with the discriminant d». For
infinite places vy,..., v, of F, we assume D is unramified at v,,..., v, and ramified at
Up415---» V. The multiplicative group D* can be seen the Q rational points of an
algebraic group G over Q. Let G, denote the adelization of G and G, (resp. G,) the
infinite part (resp. the finite part) of G,. Then, there is an isomorphism

Go~GLy(R) x H*9".
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We fix a maximal order O of D, and for an integral ideal n of F prime d, we define a
compact subgroup K(i) of G,. For infinite places, put K, =SO0(2, R) or H'
according as 1<i<r or r+1<i<g, where H' is the group of all elements in H of
reduced norm 1. For p|Dd, let K, =0}, where O,=0®,0,. For ptd, we fix an
isomorphism of D, =D®¢F, to M,(F,) in such a way as O, is isomorphic to M(o,),
and for pnd, put K,=0}. For p|n, put

a b
Kp=[[ :IEMZ(O”)|CEIIDp]
c d

and K(n)=]] K,. Let w be anidele class character of F of finite order such that the
conductor of w divides n. For each v;, we fix a positive integer k;>2, and set k=
(ky,..., k;). For w and k, we define a representation p of K(n). For a finite place
pin, we take as p, the trivial representation, and for p|n, we define

“a b
py(x,)=w,(d) for x,=

ek,,
c d ?

where w, is the p-component of w. For an infinite place v=v;, | <i<r, put

([ cosf sind D -
pv =ek19~/_]
—sinf cosg

and for v=v;, r+1<i<yg, let p, be the composite of the embedding of H' into
SL,(C) and the (k;—2)-th symmetric tensor representation. Here we assume
p—1)=w,(—1) for infinite places. We define p as the tensor product representa-
tion ® p, and denote by V the representation space of p. We consider V as row

vectorvs and K(n) acts on V from the right. Now for n, w, and k, we define the space
of cusp forms S(n, w, k). Namely, except when r=0, w is unramified and k=
2, 2,...,2), S(n, w, k) is the space of bounded continuous V-valued functions f on
G 4 satisfying the following conditions:

(1) fyx)=f(x) for y € G.

(ii) f(zxk)=w(z)f(x)p(k) for z € Z , (the center of G,) and k e K(n).

(iii) For v=v; 1<i<r, as a function of x,eG,, f(xx,) is of C®-class and

satisfies

1.1) X,f=0,

where G, is the v-component of G,, hence G,~GL,(R) and X, is the ele-

ment of the complex Lie algebra of G, given by |: 1 _I\/ _} :l
(iv) If r=g, and d=o, f satisfies

ot [o 3 ]
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When r=0, w is unramified and k=(2, 2,..., 2), we denote by M(n, w) the space of
continuous functions on G4 satisfying the above conditions. For a charactes A of
F%/F* which is trivial on [T, o} and satisfies A2 =, let f;(x) = A(N(x)), where N is the
reduced norm of D. Then f, is contained in M(n, w). Let M, denote the subspace
spanned by f;. We define S(n1, w, k) as the orthogonal complement of M, in M(n, w).

For each finite prime p, we fix a prime element w, of F,. Let ord, denote the
additive valuation of F, normalized by ord, (w,)=1. Let a be an integral ideal of
F prime to n. " The Hecke operator T(a)-on S(n, w, k) is defined as follows. For
P|a, put

Z,(a)={xeD,|ord, (Nx)=ord, (a)}
and Z(a)=[]Z,(a)x [ K,(=G,). Define a function F, on G, with the support
pla pta
Z(a) by
F (x)= ]"llpp(x‘,)“ for x=(x,)eZ(a)
pln

Then for fe S(n, w, k), we put

(T(a)f))(X)=S( FOF (9,
if

where dy is the Haar measure on G, normalized by S dy=1 for K,=K(n)nG,.
Kr

It is known that the operators T((a) commute with each other and that there exists a
basis of S(i1, w, k) consisting of common eigen functions for all T(a). For a prime
divisor p of n such that p, is the trivial character, we can define an operator W(p) by

WENE= | SeDFwedy.

Here Z,(W(p))= {[z 3:|E M,(o,)|a, deno,, ord,(c)=ord,(n), ord, (b)=0}

and Fy,, is a function on G, with the support E(W(p))= 1;[ K, x E,(W(p)) which
P
is given by !

Fw(p)(x)=mlpq(xq)" for xeZ(W(p)).
a7Fp

Let x= ]'|[)(p be a character of [ F} satisfying for each p|f(x) the condition
pln plu

1.2) ‘ ord, (f(x,)) + ord, (f(w,))<ord, (n)

2 ord, (f(x,)) <ord, (1)

Here f(*) denotes the conductor of the character *. For such a character y, we will
define an operator U,. Let v=ord,(n) and p=ord, (f(r,)), and for p|f(x) put

a b
(1.3) Z,(xp)= [{ J :| € My(v,) | ord, (a)=ord, (d)=v+2y,
¢

ord, (¢)=2v+u, ord, (b)=v+pu}.
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Then Z,(y,) is a disjoint union of a finite number of K ,-double cosets. Put Z(y)=

IT E,(x,)x TT K,. For p|f(x), define a function f, ,, on DY by
plf(x) pAF(X) !

(1.4) Foy(50) = By =A@y )y (—be| @ +20)y, (Nx 3+ 0)
for x,;,=[‘cz fﬂe.’:‘,(xp) and f, 5, (x,)=0 for x,¢Z,(x,). Then S .y, satisfies

fp,xp(kpxp) =fp,xp(xbkp)=ﬁp(kp)fp.1p(xp)9 for kaKp~
For x € E(y), put

Fx(x)= r[ fp,xp(xp) H pp(xp)nl

pIfGo pln
pAT(x)
and F(x)=0 for x¢ Z(y). Let y, be an additive character of F, such that Y |o,=1
and ¥, |p~1#1. For a character 1 of F} of conductor p*, put

G=_ 3 M, imn)

ie(a/pH

In this notation, we define for fe S(n, w, k)

B Gt ki YA O W s
N= I, = ==ggye L bt N, S Edy.

where v,=ord, (n) and p,=ord, (f(x,)). For the trivial character x,, we define
U,,=the identity. Among the operators T(a), W(p), and U,, the following rela-
tions hold.

Proposition 1.1 Let a be an integral ideal of F prime to nwand p a prime ideal
such that p|n and p,=id.. Then we have
i) T(@W(p)=Wm)T(a).
i) U,T(a)=T(a)U,.
i) UW@E=WmU, if (. e=1
IV) U1U1'= Uxx‘ l.f (f(X)a f(X,))= 1.

These properties can be verified easily and the proof will be omitted. On M, the
operators T(a), W(p), and U, can be defined by the same formula as above, and the
action of them can be easily described.

Proposition 1.2. Let f;=AoN for an unramified character A such that 1?=w.
Then we have
i) T(a)fi=w(a) vol (E(a))f;
ii) W(p)fi=o®)f;
iii) U,f,=0 for a ramified character y 0pr|_£ Fy satisfying (1.2)

Our next task is to determine the eigenvalue of U, and to prove the property iv)
in Prop. 1.1 for y, ¥’ in the case where f(y) is not prime to f(x'). For this purpose,
we may restrict ourselves to the case f(x) is a power of a prime ideal p. Let L3(Gg\
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G4, w) be the space of square integrable functions on G¢\G 4 satisfying the condition
i) in (1.1) and v) if r=g and d=0. G, acts on L3(Gy\G,, w) as right translations
and it is known that L3(G\G,. w) decomposes into a discrete direct sum of irre-
ducible subspaces V(n) with the multiplicities 1, and that the representation n on
V(r) decomposes into a tensor product ®mn, of the admissible irreducible representa-
tions m, of G,. Each component of the functions in S(n, w, k) is contained in
L}(Gy\G,, w). Let S, w, k) be the space spanned by such functions. Then,
there exists a finite number of n;= ®m;, such that V() n S(n, w, k)#0 and S(n, w,
k) is contained in @V(xn;). For each ptn, the subspace V(x;,, K,) of functions in
V(m;,) fixed by K, is one-dimensional. When p|n, let V(m;,, K,)={weV(n;,)|
T (kw=p,(k)w for ke K,}, then V(m,;,, K,) is a finite dimensional subspace of
V(m;,). Forv=v;, 1<j<r, m;, is isomorphic tothe discrete series representation
oy, po) With g =| |*i=2/2 y, =| |~*ki~2/2 sgnki=2, where | | denotes the absolute
value of R, and there exists a non-zero vector w; such that r; (X, )w;=0, which is
determined uniquely up to non-zero constants. For v=v;, r+1<j<g, m;, is iso-
morphic to the representation

X [ N(x)~*i=2/2p, _,(x).

with the (k;—2)-th symmetric tensor representation p,,_,. If we choose suitably
unit vectors w; , in V(m;,, K,) for pyn, then we see

S, @, K =@ @ wi, ® V(T Kp) & w) @ V(i)

ipln 1Sj<r r+1$j<

For r+1<j<r, choose an isomorphism of V(m;,) to C¥~! in such a way as
m, (x)w=wp,(x) for xe H', which is determined uniquely up to non-zero scalars,

then each we @ @ V(n;,. K,) corresponds to an element f, e S(n, o, k). f, is a
i pl
common eigen functlon for all T(a), and every common eigen function for all T(a)

can be obtained in this way. For each p|n, let S¥(n, w, k) be the subspace of
S(n, w, k) spanned by f,, for we ® V(=;,, K,) such that dim V(r;,, K,)=1, and
|n
SO, w, k)= N S(n, o, k).
pln
Now, as in Lemma 2.2 of [8], it is easy to see

Proposition 1.3. Let y, be a character of F} satisfying (1.2), and Z,(x,) the
subset of G, defined by (1.3). Then

0 -1 o* i 0 -1 o*
)= U K,
ive(a/pM)* | @y 0 o m" 0 0 o

is a disjoint union, where p=ord, (f(x,)), v=ord, (0), and w=w,,.

Put

0 -1 o* 0 -1 a* j
(1.5) ol = , W=,
w' 0 0 o+ w® 0 0 w+
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and let &}; be an element of G4 such that all v-components other than p is 1 and the
p-component is af;. Then.

e R (O

For weV(mn;, ,), define

U, w= (T)(_w(;z;‘;)j(mv) i’ZjZ(ij)ni,p(a:"j)w'

If f corresponds to ®w, e® V(m;, ., K,) in the sense stated above, then U, f

corresponds to (U, ,w,)®( ® w,).

For an irreducible adm1ss1ble representation 7 of GL,(F,) and a additive char-
acter Y, a factor &(s, 7, y,) was defined in [7]. We take ¥, as before and put
&(m, wy)=e(1/2, 7, ).

Theorem 1.4. Let feS(n, w, k) be a common eigen function for all Hecke
operators. Let p be a prime divisor of W and x a ramified character of F’; which
satisfies (1.2). Let m, be the irreducible admissible representation of GL,(F,) which
is determined by f in the sense explained above. If fe S,(n, w, k), then

(1.6) U, f=e(m,®@x~" W) e(my, b,)f.
If f is not contained in S*(n, w, k), then
U,f=0.

Proof. Set V=V(n,), w=w,, and n=n,. Fora non-negative integer n, put

a b
G,,=[[ }eGLz(np)lcew"op]
¢ d
a b a b
V= lwe V|n(( Dn'=wp(d)w for ‘7 JeG,,l.
L ¢ d | e d

Let N be the smallest integer such that V¥ #{0}, then it is known (c.f. [1], [2]) that
dim V¥=1 and for n> N, it holds

n—N 1 0
yr= 3% nq ' -D Vi (dirgct sum).

i=0 0 wt

and

It is enough to show U, ,w=0 for we V(n, K,)=V(K,), when N <v, and

Ux,pw =Er®yx ", l//p)/a(na Wp))w

for we V(K,) when N=v. Here v=ord, (n).
For weV, put
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o* a
Rw= ¥ Ja)rn w
ae(o/pH)x 0 w*

el el

— o tama
with C= B( lg; _)';)x(w”) . Let w, be a non-zero element of V. First assume
X

then

N<v. Then the space V(K,) is spanned by w,,and w;=n <[(l) 11(7)':|> w, for 1<i<

v—N+1. Fori>1, we see

ot a 1 0
S L (|2
ae(o/pr)* O wH 0 wi
1 0° o* aqw!
=({ | )<zz<a>n<[ })>
0 @ |/ ¢ 0 ot

. " i L .
If a=a'mod p#~i, then n([g’ Zﬁ,’ :Dwo:n(':g’ agqu‘,. Since f(x)=p*,

we have R,w;=0fori>1. For w,, put

0 1
w=n R,w,,
o' 0

then n([?u‘, _(l)DRl\v,,:n([(l) (;:Dw'. We show n([(l) ‘f]) w'=w" for all aeo,

Then the assertion on w, follows by the same argument as above. We note

|:1 a'J[O —1 j|[l i/w”}
0 1 w'! 0 |1 0 1
l: 0 1 :H: 1 i/w* }[ l+aiwv—r"t [2g@mv—2u-! j|
- o' ! 0 0 1 —aw'™!  1—aiwv ! .
Since N<v and ord, (f(w,))+pu<v—1, we obtain n<[é ‘11:|>w’=w’ for aeo,

Next assume N=v. We take as V(n) the Kirillov model of n for the additive
character ¥,. Let ¢, be a non zero element in V. First we show that the support

of @, is contained in 0. Since (n ([(1) ﬂ) ©,) (=Y, (at)p,(t)=,(t) for all a in o,
the support of ¢, is contained in o,. If the support of ¢, is contained in p, then we

see n([(l) 3_l])<p,,e VN-1, This contradicts the assumption V¥-1={0}. Since
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(n ([ D ) ()=0,(at)=o,1) for aeo,, ¢,(1)#0. For characters a, § of o; such
that af=w, on o} and a non-negative integer n, put
Ca b
eG, .
¢ d

Lemma 1.5. Let o, B be characters of o, such that af=w, on o, and ord,
f(a/B)< n for a positive integer n. Then, one has

’ b
(L.7) Vg,p=[<pe V|n<[ ¢ J D(p=ﬂ(detx)oz/[f(a)<p for x=

¢

Then V4

1,mp

=" and we have

i) rc< m,fé])induces an isomorphism of V! , onto V..
i) If a character A of o} satisfies 2 ord, (f(A))<n and ord, (f(1))+ord,
(fa/B)) <n, then for pe Vi 4 Ri(p) is contamed in Vi pz
. . 0 =17\ . ..
Proof. (i) Since =@ o' 0 is a scalar, it is enough to show that

n([(;,, _(l):D(peVg,, for peVi ;. For x= [‘; Z]EG,,, we see

o D R I W

-
= f(det x)a/B(d)n ({ J)
m"
= f(det x)a/B(det x) B/a(a)m { D
-0
=a(det x)f/o(a)n ( ) .
w0

(i) To show R,(p)e Vi, 4. it is enough to verify the condition in (1.7) for x=

[é ﬂ, [8 2} D ﬂ with a, deo}, bevy, cep',. We show this only fo,.
10

[l OJ The other cases can be shown similarly. For [ 1:| we see

¢ 1y
I 0°r 1 ijamr -~ 1 ijo" [ l—cio™ —ci?w™ %
[c 1“0 1 ._.(0 1 H ¢ l4cimn J
where p=ord, (j(4).) Since ord, (f(4)) +ord, ((¢/B)) <n, a/pf(1 —cim™)=1, and
our assertion follows from this.

We return to the proof of the theorem. Let A be a non-trivial character such
that ord, (f(A))=1. Then we have R,p,e VY Ty and R;R;p,€ Vf’,(,,”. Hence
R;R,0, is a constant multiple c¢, of ¢,. Here c is different from zero, because
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RiRg)(D=wy(3) 5 IO+ )e0)

= wp(wl)l( - l)Np¢o(l) s

Put ¢, =R, then ¢, satisfies
>‘P1 =@,

I a
n
L0 1

for aevo,. Hence the support of ¢, is contained in o

,- Fortew'n), [>0, we have

%(f)=wp(w)ie(o%’x i (itm =), (1).

But we know ¥ A(iW,(itm=")=0 only if [=0, hence the support of ¢, is
ie(o/p)”
contained in 0}. By Lemma 1.5, we have U,p,e VN and U,p,=ap, with a con-

stant a. Let us determinc a. Let ¢ € V'Y 4, then the support of ¢ is containted in
v,, and in the same way as above, we see the support of R,¢ is contained in o} and
for te oy

(R0) ()=, (@")G(D)x(De(1) .

Applying this to ¢, and n([g . —(l)jDRx(po, we obtain

o0 11
;Z(W“)x(t)n([ | OJ)(coox(tv"t))

/ 0 1
—an ([ D(m(wvz)).
-1 0

We note that in our case L(s, 1)=L(s, n®y)=1. By the property of &(s, =,,
,)(cf. Godement [5]), we see
0 1
(@, x(@ D)oy @2 d™t

»

I=j(w") SM a (

=j(@")e(s, @y, 'J/p)g @ (@)~ (D)2t

¥
=e(s, @17, ¥y |, ou(@ 0l 2,
b

where | | is the absolute value of F such that d(ax)=|a|dx for the Haar measure
dx of F,. On the other hand, we have

-0 1

»

=ae(s 7, ¥,) | o@Dl
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Obviously S o (@ 1)|t|>~1d*t#0, we obtain

Fp
a=e(s, n®x~", Y,)lels, m, ¥y,)
=e(1/2, n®x ", ¥,)/e(1)2, 7, ).
This completes the proof.
We note the formula in Th. 1.4. holds also for unramified characters y.

Theorem 1.6. Let x. x' be characters of Fy satisfying (1.2). If ord, f(x)<
v/3, ord, f(x)<v/3, and ord, (w,)<v/3 for v=ord, (1), then one has for fe S¥(n,
w, k)

UUpf=Upf.
Furthermore if p, is trivial, then one has
UW(p)f=W(p)U,f,
for fe S*(n, w, k).

Proof. Let w=w,. Itisenough to show these equalities for U, U, and
@, in the proof of Th. 1.4. Let p=ord, (f(»)) and p'=ord, ((x):) If u=0; or
i’ =0, then the assertion holds obviously. Assume y, u'>1 in the following. The
following can be verified as Lemma 8 in Shimura [11].

Lemma 1.7. i) Ifu>u'>1, then

G(OG)=6x) % R VAUR

(o/ps’)

i) If u=p' >1and ord, {(xx)=pn, then
G(G(X)=G(x')( 2 pJ((l =)' (@)

ie(o/pH)*iZimod
i) If y'=j and u>1, then
G()G(x)=x(— DNp*~.

We divide the proof into three cases.
Case I. u#u'. We may assume u>p'. Let of; and of; be as in (1.5). Put

A B
a‘i‘ia‘fl}= _wv+2u’ .
" c D

then we see by the condition on p, i’
A= —w 't 4+ j @? mod p? = —i,w""* mod pv+

CEJ‘omZv+,u mOd p2\'+2u D= _wv+2u mOd pZ\"

where i,=i+wt i, j,=j+w*# j'. From this, it follows that [g 11;:| € Z,(0),
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[é g] (of, ;)7 t= [‘CI z] €K,, and a=d=1mod p*~2#. Hence we have
Uy wUy @0 =

o,(—w" )y (@) 5
(G(OG(X))? t0,je(o/pM)AT, i e (o /phr)x

(G, —o i), —w "))
X )m (o, ;) 0,

o (_wv*—z“)x—XI(wv) — o DYy (i
SCRWEEN Crracuey X7 DL W)

X Goj)m(af,;,)e,

iovjoe(o/pH)x
==l/2x’,vq70
Case II. pu=p and f(xx')=p*. In the same way as in Case I, we have

0 (—@* 23y (w*)

Uz,pUx’,p(pa=Uz)(’,p¢o+ (G(Z)G(i’))z (S]+SZ+S3),

where A
R S (A GO OT (CRLICTPRT
Josi? e fpmyx : -

Jo=j modyp

and S,(resp. S3) is a sum of the terms of the same form as in S, extended over j, e
p/p*, i, i, j e(ofp)*, i,#i' modp (resp.i,. j,ep/ph i, j €(o/pr)*). We will
show §;,=5,=5;=0. We consider

Z w ja
JoED/pH i(jo _jl)(n (P)(t)
J'e(o/pr)x 0 wH

= wp(W“)jZJ, Ko =i W (J @) 0, (2).

® (1) =

Since supp (¢,) <oy, &(1)=0if t¢ o) and for reoy,
® (@) =w»(m")j2j, 1™ =0 W (Jom ™), (2)
=0.

From this, it follows that S,=S;=0. For S,, let us consider

) m" .iﬂ ’ ‘
i\ joelo/pH) X('.I‘u_.i’)zl(.i’)n P,
J o€ Hyx 1
5 mad 0w
= > A= GIRy @,
Jjre(a/pk)x
J”#1mod p

If we show that the support of "([21" _(I)D R, ¢, is contained in o}, then the asser-
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tion S, =0 follows in the same way as above. Since n([g,v _(l):l) Ryy®o €V Yy, yr

for y"=yxx', it is enough to show V§., ..=Coe,w,". By Lemma 1.5, dim
V3 wp.» =1, and Rg.R,, o, is contained in this space. Since Ry;R,, ¢, =c@,w, 1"
with a non-zero constant ¢, our assertion follows from this.
Case lll. pu=yp' and ord, (f(x))>ord, ({(xx)). Put y"=yy', then y'=jy".
If we show U, ,U; ,=id., then the general case follows from
UpwUy s =Uy Uy Uy = Uy e

In the same way as in Case 1I, we have

_ o) ( _ u1v+2u)
Ui Urvo= (G 6(00)*

(AS‘ + le + S3 +S4)w
where

Si= 2 iy =iVxCo =i VG X7, ;) P00
iosfosi’yj'€(0/pr)x
io#i’,jo%®j modp

and S, (resp. S3, S,) is a sum of the terms of the same form as in S, extended over

i, i',j e(o/pm*, j,ep/p*, i,Fi'modp (resp.j, i',j €(o/pr), i,€p/p*, J,F

j'modyp for S;, i, j e(ofp¥)*, i, j,ep/p* for S,). First assume p=1. Since
> Y (i/m)=—1, we have

ie(o/p)*

Si=( 2 x(1=-dp@* Z n(al,;,) P,
:;(lvx(}*p io,jo€(0/p)*

=0 (~m"* ),
In the same way, we see
S;=S;=w,(—@"*2#*)(Np— Do,
S,=w, (=@ ) (Np=—1) e,

From this, we conclude U, U;,=id.. For u>2, usingue(“X/:w)i//p(uw“')=0,
we can show U, U, ,=id. in a similar way, and we omit the details. The second

assertion is obvious, since ¢, is an eigen function of W(p) and U,.

§2. Trace formula

Let =, be an open compact subset of D}, which is right and left K -invariant,
and put Z,=[[Z,. For almost all p, we take Z,=K,. Let f, be a function on
Z, such that

fp(kx) =fp(Xk)= ﬁv(k)fp(x)

for xe =, and ke K,. We extend this function on Dy in such a way as

fp(ZX)=(BP(Z)fp(X)
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for zxe Z,Z, and f (x)=0 for x¢Z,Z,. Put F(x)=T]f,(x,) for xeG,. Then
»
F, satisfies

F(zx)=® (2) F ((x)

for ze Z;, and supp (F,) is compact modulo Z,. For a function f on G, such that
fzx)=wiz)f(x) for ze Z;, put

(T(Fp) f)(x)= S S(xp)Fy(y)dy.

Zy\Gy

We take the measure on Z, so that dz,=]]dz, with S  dz,=1. Then T(Fj)

defines a linear transformation on S(n, w, k) or M(n, w) in pthe case where r=0, o
is unramified, and k=(2,..., 2). In the rest of this section, we assume D # M,(Q),
since the case of M,(Q) was treated in [8]. For D, let D’ be a quaternion algebra
over F which satisfies D, ~ D for all finite primes p, and

D'®R~H? or D'®yR~M,(R)x H'"'

according as [F: Q] =g is even or odd. There exists such a quaternion algebra. By
a result of Jacquet and Langlands [7]. there exists an isomorphism of S(n, w, k)
onto S'(n, w, k) as T(a), W (p), U,-modules, where S’(n, w, k) is the space of
automorphic forms defined in (1.1) for D’. Hence we may take D’ instead of D,
and we may assume G,/Z , is compact, since D # M,(Q).

Let 7 be the representation

X = N(x)*&=272p,_,(x)

of H*, and V the space on which H* acts unitarily. Take a unit vector v in V and
put

fi(x)=—(k—1)(n(x)u, u) for xeH*.

For the ramified infinite place v;, we put f, =f,.. We choose measures on H* and

GL,(R) as in §15 of [7]. On the center Z,~ R*, we take the measure —‘fi . For

a infinite place v at which D is unramified, we take for f, a C®-function on G,=
GL,(R) with the compact support modulo Z, which satisfies f,(zx)=w}!(z)f,(x) for
zeZ, and x € G, and has matching orbital integrals as f; for k=k, (c.f. §8 of [4]).
Then, for a hyperbolic element y

S So(x71yx)dx =0,
L*\G,

where L* is the centralizer of y. Let LcM,(R) and L' H be the isomorphic
quadratic extensions of F. If there exists an isomorphism of L onto L’ which sends
y to 7', then
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vol(F\LY) { Sl tyx)di

=vol(FALN |, fulr =)
L' v\H*

=(y, k),
CI' 1_,’k—l _ k=2 ..
where — ®(y, k)= T (dety) 2 with the characteristic roots { and n of

y. By Plancherel formula, we have f(1)=f(1). On the other hand, we have
trn(fy)=—1 and tr n’(f,)=1 for the corresponding discrete series representation x’
of GL,(R), which is described in §14 of [7]. For one dimensional representation
n, with 2=w,=1, m,(f,)=1 for k=2 and n,(f,) =0 otherwise.

Let F be a function on G, defined by

F0) = Fu(xa) Fr(ep = T1 fu(x))Ff(x)).

r infinite

then F satisfies F(zx)=w(z) ' F(x) and has the compact support modulo Z,. For
F, consider an operator on L§(Gy\G 4. w) defined by

(T(F)f)(x) = 3 S F()dy.

When o is unramified and k=(2,..., 2), put M,= , ® ‘xoN. By the rela-
x2=ow,unramified

tion between S(n, w, k) and S(n, w, k), we see
(2.1) tr T(F)=tr T(F;)|S(n, w, k)(+tr T(F;)|M,),

where tr T(F )|V is the trace of T(F;) on V and tr T(F;)| M, is added when w is
unramified and k=(2,..., 2). For tr T(F), we have (c.f. [4])

tr T(F)=S T F(x-lyx)di,
Gg\Ga yeGo/Z
for G=G/Z, and
22 wT()=volG)\GIF)+ T vl (Fi\Ly  w |
L < Ee(L*—F*)[Fx JLa\G4
F(x~'¢x)dx,

where L runs through all totally imaginary quadratic extensions of F which do not
split at p|d. For vol (Gy\G 4)F(1), by Eichler [3] and Shimizu [10], we have

vol (Go\G.) = ZEDUDELE 11 vy —1yjv:k ),

where { (resp. D) is the Dedekind zeta function (resp. the discriminant) of F, U =
[19;5, and F(1)=[](k;—1)F(1;). For the second term, we have
» i
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23)  vol (FXL*\L%) SL:\G F(x'Ex)d%

—vol (F3\L2) SLX

oo oo

Foo (x31Ex)d5vol (F3L*\LY) SL}\G F (x7'¢x,)dx,
f

—(=1)s .Ij. O (&, k) vol (FFL*\L¥) S,.y\c, F(x7'Ex ) d% .

where ¢; is the v;-component of ¢ in G,. Now we apply this to our case. Let y be
a character of I'I F} satisfying (1.2). For a divisor m of n with (f(w), m)=1, put

W(n)= H W(p) We decompose n into nymn,nsn, in such a way as the following
condltlons are satisfied.
i) (n,n)=1ifi#j.
ii) f(x) and 1yn, have the same prime factors.
iii) m and nyn, have the same prime factors.

1; may be v. Such a decomposition is unique. For each prime divisor p of n;, we
define =, and f, as follows:

i) Forpln,, E,=K, and f (x)=w,(d)"! for x= l_‘cl 3]65”.

i) Forp|n,, Z,=Z(x,) and f (x)=f, ,,(x) for xe Z.
(c.f. (1.3) and (1.4)).

i) For plus, Z,=K, | 2, ~ ] for v=ord, (n) and f,(x)=1 for xe,.

V) For b1y, 5, =5,(1,)| oy g and ()= 7, (ad /et 241, (NGO +44)

for x= [‘; 3}5 Z,, where v=ord, (n) and u=ord, (f(x,))-

For p A n, we take Z,=%(a) if p|a and Z,=K, if p ¥ a,and f, the characteristic
function of £,Z,. Let v,=ord,(n) for p|n and p,=ord, (x,) for p[j(x). If we
choose =, and f, in this way, then AT(F) coincides with T(a)U,W(m) on S(n, w, k)
with

A= ] Ou(mprr2)g,(wy)

pli(x) G(x pln
(Xp) p|i(0)

Tp(wy?)
and we can use the formula (2.1) and (2.2).
For ¢ e L* — F* and an order A of L containing o, put
M@, E;Z;, A)={x€eGsx"¥xeE;Z;, L,nx,Ox;'=4,
for pyn L, nx,R,(W)x!= 4, for p|n},
M(¢ E,Z,, A)={xeCG,|x "ixeE,Z,, L,nxDO,x"'=A4,} for ptn,
M, E,Z,, A,)={xeG,|x"{xeE ,Z,, L,nxR,(n)x"=A4,} for p|n,

where for pin, Rp(n)_{[ dJeMz(Fp)la, b, deo,, cenop}. Then M(, E,Z,,

A)#¢ if and only if M (¢, E,Z,, A4,)#¢ for all p, and for almost all p, |L;\M (&,
Z,Z,, A))[K,|=1. (cf. [6]). If we choose a measure du on L} such that du=
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[Tdu, andg . du,=1, then we see
b Ay

VOL(FFLA\LY)=(h(A)/hp)[[A*: EF],
where h;(A)=|L}/L* [] 4;|, hp is the class number of F, and Ep=0".
P

Hence (2.3) equals

(=D& k) (AL(A)[hp)[ LA E]I:IS prp(XF‘f-’fp)d*r

Lp\

We see also

S L Se(xyiexy)dx, = > fy(a;'a,)

Lp\Gy ayeLi\My(&,ZpZyp,Ap)/Ky

We have to find the condition for M (¢, £,Z,, A,)#6 and compute ¥ f,(a;'¢a,).
Let ¥(X)=X2—sx+n be the characteristic polynominal of £. Put

Cy(s,n, A)= 2 flay'éa,).

aveL;\Mp({,Epr, Ap)/Kyp

If 2(¢, B;Z;, A)#4, then there exists an ideal m of F which satisfies (n)=
andnynd( [T p**)m2. If c=andnyngd( [T p**?) is not a square in the ideal
class grougngi"F in the narrow sense, then %'('E,""E,Z r» A)=@. Hence we may assume
¢ satisfies this condition. Let n be the map of the ideal class group I(F) of F to the
ideal class group I*(F) of F in the narrow sense which sends a class @ to its square a2.
Choose representatives m;, 1 <i</, which are integral and prime to an, from classes
in n~'(c™1), where I equals the number of classes in #~'(¢™'). Multiplying an element
of F*, we may assume ¢ satisfies (n)=cm? for some m=m, For an o, order 4, of

L,, let {w,, w,} be a basis of 4, over o,, and put D(A4,)=det {z' :Z%} o,. Herew’
1 W2

is the conjugate of w over F,. Forp } n,let2m=ord, (n)—ord, (a), then E,(¢, £,Z,,

A,)#4 if and only if ord, (s)=>m, and ord, (D(0,[£]))—m>ord, D(4,) for p4d, and

for p|d, ord, (s)>m, L does not split at p and A, is the maximal order. When

this condition is satisfied,

Cy(s, n, A))=0 (@) with m=ord, (m) if ptd
and
Ap
P

Cyls, m 4= (1- ! })ap(mvg) if p|o,

where{ /:)” } is —1 or 0 according as L is unramified at p or not. For p|n;, by
Th. 2.3 of [6], M,(&, E,Z,, A,)#¢ if and only if ord, (D(v,[£])) >o0rd, (D(4,)),
and then

Cp(s’ n, Ap)= > c_’5;)(s_a)+ 2 5;,(“)

aefmodpvte aef’modpv*e
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Here v=v,, and p=ord, (D(v,[{])) —ord, (D(A,)), and
Q={aeo,|¥(x)=0mod p"+2r}
Q={( {aeQ|¥Y()=0mod p**2r*1} if ord, (D(o,[{])>2p+]1
@ if ord, (D(v,[E]))<2p+1.

For p|n,, by Lemma 2.4 in [8], M (¢, £,Z,, A,)#¢ if and only if ord, (s)>v+2p,
{aeo,| ¥(@)=0 mod p3**2¢ W(x)#0 mod p3**2+1} ¢, and ord, (D(o,[E])—
ord, (D(A4,))=v+p for v=v, and p=p,. When this condition is satisfied,
C,(s,n, A,)= % - @,(— (s —a) w2 7, (P (2) [+ 20)y, (nfm2r+4n),
v (ﬁz’é"nlf,d” 3v2p
Y (x)EOmodp3y +2ut!
As for the prime p|ns, by [12], M (&, E,Z,, A,)#¢ if and only if ord, (s)>ord,
(n3) and ord, (D(A,))=ord, (D(v,[¢])). When this condition is satisfied

Cy(s,n, A)=1

For p|n,, by Lemma 2.8 in [8] M (¢, £,Z,, A,)#¢ if and only if ord, (s)>2v+pu
and ord, (D(v,[£])) —ord, (D(A,))=v+2ufor v=v,and = p,. When this is satisfied
Csim A)= T ga(s/mdr—a)).

aeopmodpH
«is/d:zp""‘”modp

For F (1), we see F(1)#0 if and only if n=n,, and ord, (a) is even for p|a. and if
this is satisfied, F(1)=[] w,(wg®) for a,= —,]7 ord, (a). Lastly, we must determine
pla =

the trace on M,. Let ¢ be the number of unramified characters of F}/F* such that
A?=w. By Prop. 1.2, if nyn,#o, then tr T(F ;)| M,=0 and if nn,=o,

tr T(F) [ M,=c(—1)fa(na) ¥ N(b),

a
(b,b)=1

where D runs through all divisors of a prime to d. From these considerations, we
obtain

Theorem 2.1. Let x be a character of T] F’ satisfying (1.2), and m a divisor
|un

of w such that (m, j(w))=1. Let n=nlnznp3n4 be the decomposition defined above
for y and m. Let ¢ be the number of unramified characters A of F%[F* such that
J2=w, and n the map from I(F) to 1*(F) such that y(b)=02. For an integral ideal
ideal a prime to m, put c¢=anjnyni [1 p** with p,=ord, (i(x,)). Put v,=

p
plnan
ord, (n) for p|n. If cen(I(F)), choose a ‘representative m which is integral and

prime to na for each class in n=(c), and denote the set of them by {m}. Then one
has



302 Hiroshi Saito
tr W(nyny)U,T(a)|S(n, w, k)

2 (2)|Dg|32Nn

=a(n/nl)5(a) (271,)9

5{ @, (T5P) H (Np—1) H(l +Np~h)

D 3 s TG k) TT Cylsom A)TT(1-{42))
(:‘:)G:(nml;t §2-4n<K0 i=1 plnyinang pld p
n>0

X (h(A)/hp)[[A:EF]
+b(k)(— 1) tcw(n,a) bzn‘a N(b)
(6,9)=1
Here a(n/n)(resp. 6(n), b(k)) equals 1 if n/n, =0 (resp. a is a square, k=(2,..., 2))
and otherwise equals zero. a,= % ord, (a) for p|a. nis a totally positive element

in F which generates m?c. For s, let ¥, (x)=X?—xX+n and L=F[X]/(¥,.(X)).
s runs through all integers of F which satisfy the condition that ord, (s)=v,+2pu,

forp|n,, ord, (s)>v, forp|n,, ord, (s)>2v,+u, for p|n,, ord,(s)> —,I,— ord, ()

for p|m, s2—4n is totally negative and L does not split at p|d. Let s; and n; be
the v;-component of s and n in F}, and let a, f§ be the roots of X?—s,X +n;=0, then
_ kTl gkl k=2
D (s, my, k)= a—_ﬂni

Put p,=ord, (D(o,[£])) —ord, (D(A,)). A runs through all o-orders of L which
satisfy the condition that p,>0 for p|n, and pyw,mzngm, p,=v,+u, for p[n,,
p,=0 for p|ny, p,=v,+2u, for p|ny, p,>ord, (m) for p|m, and A, is maximal
at p|d. The factors C,(s, n, A,) are given as follows;

a) For plnl’
Cp(s9 n, Ap)=ip(w;p) ( Z CBp(s_a)'*' Z 6;1(&))

aeRmod pvptep aeR’ mod pVptep
Q={aeo,|¥, ,(x)=0mod p»r+2rv}
Q' = ( {aeQ|¥, ,(x)=0mod p*»*2e»*+1} if ord, (s>—4n)>2p,+1
@ otherwise
b) For p|n,,

—2up)2 — -
CP(S’ n, Ap)= _X_p_(nlp_z)_ Z wp(s_a)Xp(qjs,n(a))'
G(%,) acopmod p2vp*ip
ordp(¥s,n(a))=3vp+2pup

c) For p|n3! Cp(s’ n, Ap)=x_p(w;p)'
d) Foryp|n,,

~2up) _
C,(s,n A)= _X)’_(n_mp___ a(s/m2vetry — g
o a)= BUTED w RGGjmpr )

s/@2Vp T Hp—g2Omod p
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If ¢¢n(I(F)), then
tr W(nsng)U,T(a)| S(n, o, k)=b(k)(—1)*"'cw(n,a) ‘; N(b)
by=

(b, 1

Remark 2.2. Let p be a prime ideal of F of degree | and x, the non trivial
character of o) of order 2. Then we see easily

a) )(;idi(a)G()c)"'= 2 dp(NP*l)!//p((m+n)w;‘)—1—xl(a)G(Xl)z,

mn=a mo

b) Z;id z(a)G(XZ)Z = szaZ d

mo

(Np =Dy, (mw;')+2 for a with X.,(a)=1,
p

where y runs through all characters of o} which satisfies f(x)=p and y*#id.. Th.
1 in [9] can be deduced easily from Th. 2.1 by means of a) and b).
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