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Introduction

In the theory of Kleinian groups, the following result by H. Shimizu [10]
(see also Kra [7, p. 68], Leutbecher [8, Lemma 2.1]) is one of the most fundamental
fact.

Proposition. L et G  be a  discrete subgroup o f  PSL(2; C)=SL(2; C)/{±E},

where E  is  th e  u n it  m atrix . I f  ( 0
1 1) E G, then f o r any  ( a

c
 b

d ) e G w e have

lel > 1 o r c=0.

It is known that one can regard a discrete subgroup of PSL(2; C) as a group of
Möbius transformations, acting discontinuously on the upper half 3-space H 3 =

a  b{(x 1, x2 , x 3 ) E R3 ; x 3 >0}, a n d  that an  element ( c e  P S L ( 2 ;  C), c0 0, cor-

responds to a Möbius transformation with isometric sphere of radius ler 1 . In this
point of view the above Proposition informs us that if a group G of Möbius trans-
formations, acting discontinuously on H 3 ,  contains the parabolic transformation:
(x 1 , x2 , x3 )1-4x1 + 1, x2 , x3 ), then for any TE G, T(cc) 0 co, the radius of the isometric
sphere of T does not exceed one. O ur aim is to study this property in the higher
dimensional cases. In §2 we shall state the main results in this paper, after providing
some definitions and basic facts in §1 . The proofs of our results will appear in §§2
and 3.

The author wishes to express his deepest gratitude to Professor Y. Kusunoki
for his genial encouragement and valuable comments. And the author also thanks
to Dr. M. Taniguchi for his advices.

§ 1 .  Preliminaries.

Let R n and R n = R" u {co) be the n-dimensional Euclidean space and its one-
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point compactification, respectively. To represent points in R n  w e use n x 1-
matrices mostly but sometimes we use pairs of (n -1 )  x 1-matrices and scalars. W e
denote the transpose of a matrix A by 'A  and the standard basis of R n  by e1 , e2 ,..., e„,
e.g. te1 =(1, 0,..., 0).

A mapping of the form

(1.1) x kUx+ a,

where k >0 , U n  0(n) and a e Rn, is called a (Euclidean) sim ilarity . The reflection
in the unit (n-1)-sphere S" - 1  is denoted by

(1.2) x J(x)= x* 1x12 (0*= 00, 00 *  =  .

The (full) M öbius group ,g„ is defined by the group of the MI5bius transformations
of R ", which is generated by all similarities and the reflection J .  All transformations
considered in  this paper are Möbius transformations only, hence we call them
transformations for short from now on.

The transformations except the identity are classified into three kinds of mappings
as follows. An element in .,g„ is said to be parabolic if it is conjugate (in ,#„) to a
similarity of the form

(1.3) x 1—> Ux + a,

where U e 0(n), a E Rn---,..{0} and Ua = a, and loxodromie if it is conjugate to a
similarity of the form

(1.4) x k Vx,

where k >0, k  1 and ye 0 ( n ) .  An element Te T OE, (we use the same letter
E  for the identity transformation with the unit matrix,) which is neither parabolic
nor loxodromic is said to be elliptic. A parabolic transformation such that U =E
in the above definition (1.3) is said to be stric tly  parabolic . A parabolic trans-
formation which is not strictly parabolic is named to be parabolic w ith torsion in
Apanasov [3].

A parabolic transformation has one fixed point and a loxodromic transformation
has two fixed points. On the other hand an elliptic transformation does not neces-
sarily have a fixed point; for example - J :  - x*, but if it has then the set of the
fixed points is equal to the image of the j-sphere S i, 0< j <n, under some element
in ( c f .  Agard [1, §5.1])

It is known that a  transformation, leaving co fixed, is a  similarity and that
Te T(cc) cc, has the form

(1.5) T (x )=kU (x - p)* +g,

where k > 0, U e 0(n) and p, g e R". (cf. Ahlfors [2, pp. 21-22])
By T'(x ) we denote the Jacobian matrix of Te d in  at x G R n

.  It is easily seen
that
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(1.6) j, (x )_   i xli2  (E  2 ixx x  ).

Following Ahlfors, we set

(1.7) Q(x)= xix 1x12( X  0 ,  oc).

One can see that

(1.8) E -2Q(a) e 0 (n ),

in fact E -2Q (a ) is the reflection in the (n -1)-plane E R n ; ta x = 0 } . The chain
rule implies that T'(x) can be written with a positive scalar A and an orthogonal
matrix V as T'(x)=-. A V . (This means that T is conformal.) We denote by I T'(x)I
this positive scalar A. From (1.5)-(1.7) it follows that for TE T ( o c ) c o ,  the
set {x ER"; IT' (x)I = 1} is an (n -1 ) - s p h e r e  with center p  T - 1 ( o o ) .  This sphere
is called the isom etric sphere o f T. We denote its radius by r ( T ) .  From the
definition of r(T ) we obtain k= r(T) 2 in (1.5).

We can regard as a subgroup of , g „ If we represent points in R n+' by
means of the pairs (x, s )  of X E R "  and s E  R  and identify R n  with the subset
{(x, 0); x e Rn} of Rn+ 1 . Then a similarity (1.1) can be extended to a  similarity of
the form

(1.9) (x, s)[—  k(U x, s)+  (a, 0)

and the reflection (1.2) to the reflection in the unit n-sphere Sn

(1.10) (x, s) i—* (x, s )* -   ( x ,  s )  
ix 12+ s 2 •

The above extensions induce a mapping t of A  in to  A  +1 n atu ra lly . One can see
that this induced mapping t  is well-defined and each transformation in its image
c(A )  keeps the (n  + 1)-dim ensional upper half-space Hn+ 1 = { (x , s) e Rn x R ; s>  0}
invariant. Moreover th e  fo llow ings can  be seen . S e t ..g(Hn+ 1 )= {T E 1 ;
T(Hn+ 1 )=11n+ 1 }. Then the mapping t  is  an isomorphism of .,‘„  onto ,1411n+ 1 )
and preserves the radii of the isometric spheres. Therefore we identify the elements
in A  with the elements in .4 '(Hn+1) and use the same letters.

Since din is a group of continuous self-mappings of Rn, which becomes a compact
metric space with the help of the spherical metric, by uniform convergence a topology
is induced on A .  We remark that this topology is equivalent to the topology
defined in Ahlfors [2, P .  79].

The followings, well-known for the case of n= 2, is valid for any dimensions.
(1) If  G is a discrete subgroup of  A , then G is discontinuous on Hn+ 1 .
(2) The converse of (1) holds.
(3 )  If  G  is discontinuous in  R n, that is, discontinuous on an open subset of

R n, then so is G on Hn+1 .
It is easy to see (2). The statements (1) and (3) are shown implicitly in Ahlfors

[2, pp. 79-82].
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§ 2 .  Statements and proofs

A parabolic transformation in .,e„ ( = .* H n + 1 )) is cojugate to a similarity of the
form

(2.1) x Ux + e„, x  e Rn ( Uen = e ),

where U e 0 (n ). We remark that torsion U in (2.1) is not uniquely determined under
this "normalization" but ord U=#<U>, the order of U, is.

For a subgroup G of ..W„ we set Go, ={TE G; T(oo)= oo }.

Theorem 1. Suppose that a subgroup G of acts discontinuously  on Hn+1

and  contains a  parabolic transform ation X  of  the f o rm  (2.1). I f  ord U<  +o3,
then for every transformation Y in  G G th e  rad iu s  r(Y ) of  the isometric sphere
of Y  satisfies

(2.2) r(Y)< ord U.

The estimate (2.2) in Theorem 1 is sharp in the following sense.

Theorem 2. L e t X e be  a  parabolic  transform ation of  the f o rm  (2.1).
If  ord U< + co, then there exists a transform ation YE with isometric sphere of
radius ord U for which <X , Y > is discontinuous on Hn+ 1 ( , and also in Rn if  n> 2).

Corollary 1. Let G and X be as in Theorem 1. Then the horoball B= {x E H" ± ';
ten ± i x>ord U} at co is precisely  invariant under Gc„, i.e . Y(B)=B i f  YE G
Y(B) n B =0  if  Y e

P ro o f .  Suppose tha t G a similarity Y(x)= kVx+ a  such that k  1.
By taking Y - ', if necessary, we may assume that k <1. It is easily seen that Y has a
fixed point b=(E—kV) - 1 a. Let T (x )=x+b  and set g-= T - ')C T and V= 7- 1 YT.
Then w e have g(x)= Ux +c, where c=e„+(U — E)b, and I7 (x)= kVx. B y (1.9)
w e  have king ifr- in(en +  i )= e„ 1 + lenr i c .  Since c0 0, Vmg- f - ni are a l l  distinct.
Letting + oo we see that the orbits km)-r f - m(e„,_ i ) converge to e + 1 , which con-
tradicts the discontinuity of C= T - 1 G T . Therefore G consists of only similarities
x—) Wx + a, We 0 (n ). These transformations keep B invariant. On the other hand
we see from Theorem 1 that r(Y)<ord U for any Ye H e n c e  i t  f o l l o w s  t h a t
Y(B)c fx E lin+ 1 ; ten +  i x < ord U} for any YE G---..G. This completes the proof,

q. e. d.

In the case of ord U= + co, by contraries, there does not exist such a uniform
estimate as in Theroem 1. We can show

Theorem 3. Let X be a parabolic transformation of  the form (2.1). If  ord U
= + co, then f o r any  r>0  there ex ists a transform ation Y E  A , Y (00 ) co, with
isometric sphere of  radius r(Y)>r, for which <X , Y > is discontinuous in Rn.

As a corollary of Theorem 3 we immediately obtain
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Corollary 2. Let X be as in Theorem 3. Then there is no h oro  ball B at co such
that f o r all Y e d 4  f o r w hich <X , Y> is discontinuous on lin+ 1 ,  B  is precisely
invariant under <X , Y>.

Moreover we can show

Theorem 4. Let X be a parabolic transformation of the form (2.1). If  ord U =
+ co, then there exists an infinitely  generated subgroup G of  di such that 1) X e G,
ii) G is discontinuous in R n and  iii) { r(Y ); YE is not bounded.

Corollary 3. Let G be as in Theorem 4. Then there is no horoba ll at oo which
is precisely invariant under G..

Theorems 2, 3 and 4 will be shown in §3 by constructing examples.
We begin by proving Theorem 1 under the assumption U =E in (2.1). Under

this assumption Theorem 1 is proved in Apanasov [4] and Wielenberg [11, Pro-
position 4]. (See also Apanasov [5, Theorem 3.3], which says that in the estimate
(2.2), even if ord U= + cc, ord U could be replaced by 1, but, as we shall see in §3,
it is not valid. He actually proves for the case U = E only.) They make use of the
representation of by means of the Lorentz group 0(n +1, 1) and derive the result
from the discreteness of G .  We give here a more direct proof, in which the assertion
from the discontinuity on H"+ 1 of G.

Lemma 1. I f  T has the form

(2.3) T: x 1- 4  r 2 V (x- + g,

then we have

(2.4) g= T (o o ) ,  p =  7- 1 (x ) ,

(2.5) V -  I x  - P I 2  T '(x){E - 2Q(x - p)} .
r 2

Lemma 1 is easily obtained by elementary calculus.

Lemma 2 .  L et T be a transform ation such that T (oo)0  co. T h e n

1(2.6) I T (x)- T (y)I - r (  T ) 2 x - yl 
I x -  T - 1 ( 0 0 1  I T - 1 ( 0 0 )1

and

(2.7) 1T(x)- T( 0 0 )1 Ix T - 1 (co)I = r(T) 2 .

Since Tis of the form (2.3), one can see (2.6) by direct computation or elementary
geometrical consideration. (In fact (2.3) means that T is a composite mapping of
the reflection in the sphere with center T 1 (cc) and radius r (T ), and a Euclidean
isometry.) Letting y-* cc we get (2.7) from (2.6).

Proof  o f  Theorem 1. (The case U =E) Let Ye then Y is written as
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Y(x)= r2 V (x—  p)* +q. We define

Yo= 17J+1=
(2.8)

Yi (x) = r3 V i (x — p)*+ q

Setting T= Y 1 , x= Y(cc) in (2.7) and then T= Y »  x  X ± 'Y y l(oo), we have

11+ =  Moo) — U 1 7710 0 )11 Y;( 0 0 ) —  YiX - 1 3 7 71 ( 0 9 )1
r3 

I XY V (o p ) — Y71(cx)11 X-1 y ii( 00 ) _ y.7 1( 00 )1 rl ,

where we use the fact X(cc)=cc in the first equality and X± 1 (x)=x+e„ in the third,
hence r  1 = r3 . This implies

(2.9) r i = r 2 j .

From Lemma 1 and (2.8) we get

(2.10) qi+ i =q i +r3V i en , Pi + i = r3Vien

in particular,

(2.11) iqi + 1 — P + 11= 2r3 =2 ri  + 1  .

Differentiation o f (2.8) yields Y'i + 1 (q + 1 ) = i(co))=Y /i(X 2(p))Y :i(X (pi))-1.
S in c e  w e  h a v e  from  Lem m a 1 ri(X k (0 ) = ( r i lk) 2 1/J { E-2Q(ke n ) } ,  we obtain

ri-F1(q1+1)=1. E , where we use Q(2en )=Q (e„). Therefore again from Lemma 1

we get

(2.12) Vi+i =E— 2Q(Vi en ).

Now we suppose that r>  1 . Then from (2.10) and (2.9)

I lg.» =11Ril — lqi — qi-11

E  lqk-qk-11+1q01= E rk + r2
k=1 k=1

= r •J -  •

Thus our assumption r >1 implies

(2.13) li• m —1,
; -.00 r

and also from (2.10)

(2.14) lim  IP "

I =1.r

Let us show that the orbits of e 1 under Yi  have an accumulation point in lin+1 ,
which contradicts the discontinuity of G .  First, from (2.8), (1.9), (1.10) and (2.14),
we have
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(2.15) en +  i yi (en +  1 ) = 'T (Ip  +1) —+ 1.

Next, from (2.6)

(2.16) 11;( 0 ) —

On the other hand, from (2.10), (2.13) and (2.12)

IP_H-112q;+1=q;+1`Pi+iPi+i

=r,Vi en + eit{E —2Q(Vi e„)}qi  + 0(r1)

=r1{E —2Q(Vi e„)} (qi — r3Vi en )+ 0(r1)

2 2= ri + 11/i+ + 1 + 0(r 1  .

We note that {E —2Q(a)} a = — a .  Hence we have

(2.17) IP;12IY;(0)1

— P i

=1P;12 1qi —

It follows from (2.14) that the Irbiit2sq —  r{Y(0)} Pairel = ° f r )bounded and therefore, because of
(2.16), so are the orbits {Y; (e„, i )} in Rn+ 1 . This and (2.15) implies that the orbits
{Y(en + i )} have an accumulation point in Hn+ 1 .

In the general case we consider the subgroup <X'n, Y> of G, where m=ord U,
instead of <X , Y>. Since Xm(x)=x+ men , the above argument can be applied to
th e  conjugate group T '  <X', Y>Tm =<T,-n 1XmTm , T,-n l YT„,>, where Tm (x)=mx.
Because we have r(TVYTm )=r(Y)1m, thus we obtain (2.2), q .  e .  d .

§ 3 .  Examples

In the case of n=1, that is, in the case of Fuchsian groups, the Modular group
PSL(2; Z)= (X : z'-'z  + l, Y : 1 / z >  is our desired example f o r  Theorem 2.
We remark that if  n =1 then every parabolic transformation is strict, i.e . U =E.
In addition, also for n> 2, if U=E then a natural extension of PSL(2; Z) to Hn+1

turns out to be an example, too. Hence in order to show Theorems 2, 3 and 4 it is
sufficient to construct examples only for the case of U0E, i.e. ord U> 2 and n>2.
All our examples, for n> 2, act discontinuously not only on 11 4 +1 b u t  also in R n .
Therefore we consider the actions of transformations on R n only. From now on to
the end of this section we express points in R n by means of the pairs (x, s) of x e Rn - 1

and s e R .  Then the action of the parabolic transformation X  of the form (2.1) is
represented as

(3.1) X: (x, (Ux, s +1),

where U E  0 (n -1 ). We remark that, strictly speaking, U in (3.1) is the restriction
of U in (2.1) to the (n-1)-plane {(x, 0); x e Rn - 1 }. But, by abuse of language, we
use the same letter.

Let m be an arbitrary integer such that 2 < m < ord U .  It is easy to see from the
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fac t tha t d im  { S n - 2  n ker — E)} <n — 3 f o r  1 < j<  m, where S n - 2  i s  the unit
(n-2)-sphere {(x, 0); Ixl =1}, that there exists a point C in Sn- 2  such that

(3.2) (0  UiC f o r  j=  1, m —1.

Hence we can find an open neighbourhood N (in Sn - 2 ) of C such that

(3.3) N n U i(N )=0 f o r  j =1, m — 1.

Set

(3.4) N,,,={(x, s)e(Rn - 1 -,{0 })x  R ; x/ 1.xl e N, 0<s<m}

Let us suppose that N m  fi X i(N„,)00 for some j e Z---..{0}. We may assume j > O.
Let (x, s) be a point in N„, n Xj(N„,), then from the definition (3.4) of N„, we see that
x/ Ixl e N , 0<s<m, U - i(x/ 1)0= U - ix/ IU- ixl e N  a n d  0<s— j<m . Hence we
h a v e  N n U i(N )3  Xi Ix' a n d  0< j<  m . T h is  contradicts (3.3). Therefore we
obtain

(3.5) N,„ n Xi(N„,)=0 for any j e.

Now we state a  result, due to  B. Maskit, which we use to construct examples.
We begin with definitions. For a subgroup G of we denote by fl(G) ( c R n )  the
set of discontinuity of G. A non-empty subset D of Q(G) is called a  partial funda-
mental set (PFS) for G if no two points in D are equivalent under G . And in addition,
if every point in S2(G) is equivalent under G to a point in D, then D is said to be a
fundamental set (FS).

Theorem. (Maskit [8, Theorem 4 ] )  Let G . ( j=  1, 2.) be a  subgroup of
such that Q (G )0Ø  and let Di  be a PFS f o r G .. L et H be a common subgroup of
Gl and G2, and let .4 be a PFS f o r H . Set Ei = u T(D J ) =1, 2.), where the union
is tak en ov er all T  in  H .  I f  E l  u E2 n52(G1) u fl(G2 ) and D' =int(D)00, where
D=E i  fi E 2  n J .  Then G= <G1, G2> is discontinuous, moreover D ' is a PFS for G.

Let us continue the construction of examples. First we consider the case of
ord U= + c o .  Let Bi  =B ( j , m) (j = 1, 2.) be two mutually disjoint open balls with
radii m/2-1/4 which are relatively compact in N„„ and  le t Y„, be a  loxodromic
transformation which maps ext (BO onto B 2 .  Then r(Y„,)= m/2-1/4, in fact, the
isometric sphere o f  Y„, is OBI . Since ext (B 1 ) n ext (B2 ) is a  FS  for <Y„,>, and N„„
containing B, n B2, is a PFS for <X>, from the above Masakit's theorem (or Koebe's
combination theorem) we see that <X , Y„,> is discontinuous. Because m is arbitrary,
the group <X , Y„,> is an example for Theorem 3.

In  the  above argument, if we take balls B(j, ni) (j =1, 2. m =1, 2,...) which
satisfy the additional condition

B(j, m) n B (j', m ')=0 i f  (j, m )0 (j', m '),

then the infinitely generated group <X , Y1, Y2,...> is found to be an example for
Theorem 4.
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Next we consider the case of ord U<-I- co, and set m = ord U .  Choose and
fix a positive number .1 such that if  Ix < m , x  R n - 1 , then x/ Ixl N, where C
and N are as in (3.2) and (3.3), respectively. Define a transformation Y of Rn by

Y(x, s)= m2 {E —2Q(0, 1))1 {(x, s)—(AC, O)}* +), 0).

We shall show that <X , Y> is a desired example for Theorem 2 .  It is obvious that
<X , Y> satisfies the statement of Theorem 2 except that it is discontinuous.

Set G, = <X7n, Y>, G2= <X> and H =<Xm>. Let H be an arbitrary (Euclidean)
2-plane which contains the line {( 4, s) ;  s E R } .  It is  easy  to  see  tha t G , leaves
17=H U {co} f ix e d . In addition, because the restriction of G, to /I is conjugate to
the Modular group P SL (2 ; Z ), we find that

DI ={(x, s); Ix—A41>m, 0<s<m}

can be taken as a PFS for G , .  On the other hand G 2 and H have PFS's N„, and
= {(x, s); 0 < s < m}, respectively. Since we have

E 1 = T(Di) = {(x, s); — AC1> ml
T H

E2 =  J  T (N ,n )= {(x , s); E NI D

we get

E 1 u  E2=R n S2(G  1 ) u Q(G 2 ) .

And we have int (D, n N  z1)0 0. Hence from Maskit's Theorem it follows that
G= (G ,, G2> = <X, Y> is discontinuous, q. e. d.
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