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Introduction

In our previous work [1], we developed a theory of eigenfunction expansion
or generalized Fourier transformation associated with the Schrédinger operator
H=—-4+V(x) in L*(R") (n>2) with a long-range potential V(x) satisfying the
following assumption

V(x) is a real smooth function on R" such that for some constant ¢,>0
(A) DV (x)=0(|x|71=I%) as |x| —> 0
for all multi-index o.

More precisely, we constructed a partially isometric operator & with initial set
L2.(H) (the absolutely continuous subspace for H) and final set L2(R") satisfying

(FaH)) (@) =alE)(F (&)

for any bounded Borel function a(4) on R and fe L%(R"). The main idea was as
follows: First we construct a real function ¢(x, £) which behaves like x - £ as |x|— oo
and solves the eikonal equation

|7 p(x, OI2+V(x)=|{|?
in an appropriate region of the phase space R"x R". We set G(x, {)=e i(*:0).
(=44 V(x)—[¢]?)et¢>9 and R(z)=(H—2z)"!. We then define & formally by

O (FNO=Er e e fx)dx

—@r) 1000 Gow DIR(EI+i0)f(x)dx.

If V(x) is short-range, i.e. ¥ (x)=0(]x|~!7%), one can take x-¢& as ¢(x, £). Then the
above formula (0.1) takes the following form

02 (FNE@=@n 72 { 2 ()

—Qr)r2 S e~ EV()R(E|2+ i0) £ (x)dx.
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As is clear from the above definition, the operator & is a generalization of the
ordinary Fouier transformation

03 EoNO=F@=@ry 2 et fx)dx,

One knows many interesting properties of &#,: Various Paley-Winer type
theorems, transforming rapidly decreasing functions into smooth ones, etc. It
may be of interest to consider to what extent these properties extend to &#. The
main purpose of this paper is to prove the following differentiability property for &#.
For a real number s, let L?:s denote the space of measurable functions f(x) on R*
such that

I fllZ= S(1+ 1x[)28] f(x)|2dx < 0.

Theorem 0.1. Let y>1/2 be arbitrarily fixed and N a non-negative integer.
If fe LNt (F f)(&) is N times differentiable with respect to £#0, and for any
e>0

2 S|~‘§|>£ <f>_27|Dg(go'f) (é)lzdéSC”f“Iz\Hy .

|a|<N

The differentiability of & is closely connected with the decay rates for scattering
states. Using the above result, we can prove the following

Theorem 0.2. Let (1) be a smooth function on R' such that for some ¢>0,
x(A)=1 for A>2¢, y(1)=0 for A<e. Then for any s>0 and 6>0

Ix(H)e 8 fl -y <CA A+t flls+5 -

One can make use of the above result as an intermediate step to prove the best
possible decay rate

0.4 Ix(H)e "  fll ;< CA+D*Ifls  (s=0),

whose proof will be given in a forthcoming paper. 4

As can be seen from (0.1) and (0.2), in order to prove the differentiability of &,
one should consider that of the resolvent R(A+ i0), which occupies the major part
of this work and is studied in §1 (Theorem 1.9) utilizing the recent results of Isozaki-
Kitada [2], [3] concerning the micro-local estimates for the resolvent. The differ-
entiability with respect to A of R(A+i0) is also discussed by Jensen-Mourre—Perry
[8], where they employ the commutator method due to Mourre [9].

Let us list the notations used in this paper. For a vector x e R", £ =x/|x| and
(x>=(1+]x|?)1/2. B(R") denotes the space of smooth functions on R" with
bounded derivatives. CZF(R™) is the space of smooth functions on R" with compact
support. For two Banach spaces X and Y, B(X; Y) denotes the totality of bounded
linear operators from X to Y. For a multi-index a, D#=(0/0x()*-:-(0/0x,)*",
lae|=0; +---+0a, Throughout the paper, C’s denote various constants independent
of the parameters in question.
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§1. Differentiability of the resolvent

Let H=—A4+V(x), where V satisfies the assumption (A) in the introduction,
and R(z)=(H—z)"!. Our starting point is the following limiting absorption
principle (see e.g. [2], Theorem 1.2).

Lemma 1.1. For any A>0 and y>1/2, there exists a strong limit s-]ilm R(A+
el0

ie)=R(A+i0) in B(L*7; L?77). Moreover for any &>0, there exists a constant
C>0 such that

IR(A+i0)f | -, < CI/AISI,
for A>e.

Our aim of this section is to discuss the differentiability with respect to 4 of the
resolvent R(A+i0). It leads us to consider the powers of R(1+i0), since by the
formal calculus

_d_>" R(A+i0)=N! R(A+ i0)V+1
a7 + PRAL 0T

Needless to say, one cannot use Lemma 1.1 directly to treat R(A+i0)¥+!, If one
inserts some pseudo-differential operators (Ps. D. Op.’s), however, one can give a
definite meaning to R(A+i0)*!. The estimates of resolvents multiplied by
Ps. D. Op.’s, which we call the micro-local resolvent estimates, have been intensively
studied in [2] and [3]. Let us begin with recalling the results.

Definition 1.2. Let a,>0 be arbitrarily fixed and p>0. A smooth function
p(x, &; A) belongs to W(y) if for any «a, f

sup  <xprHlelKE P DEDE p(x, &5 A)| < oo,

x,éeR",A>ag

Definition 1.3. p(x, &; ) e S, if
(1) p(x, & 1) e W(0),
(2) there exists a constant £¢>0 such that

p(x, & )=0 if ||E]/\/A-1]<e, A>a,,
(¢ may depend on p(x, &; A)).

Definition 1.4. p,(x, &; M) e S, if
(1) ps(x, &5 A)e W(0),
(2) there exists a constant ¢> 0 such that
pe(x, & A)=0 if ||¢]/JA-1]>¢, A>a,,

(e may depend on p.(x, ¢; 4)),
(3) there exists a constant . such that —1<pu, <1 and
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p(x, & D=0 if £.-&<p,,
p-(x, & D=0 if £-&>u_,
(u+ may depend on p.(x, &; 4)).

For a Ps. D. Op. P(4), P(A))e S, (or S.) means that its symbol belongs to S,
(or S;). Then we have shown in [2], Theorems 3.3 and 3.5 the following

Lemma 1.5.
(1) Let P(A)eS,. Then for any s>1/2 and A>a,

[P(DRALI0)f ;< C/AIf s -
(2) Let PL(A)eSy. Then for any s>1/2 and A>a,

IPz(DRAL0)f 5~ 1 < C/\JAf ;-

A remark should be added here concerning the limits 11m P(A)R(A+ie) and
hm P;(A)R(A+ic). What we have shown in [2] actually is that for any s>1/2

(1.1) Jup [P(DRA£E)f ;-1 < CIVAISf s

(see [2], Theorem 3.7), which does not necessarily imply the existence of the strong
limit s- 11m P(A)R(A+ie) in B(L?*; L?7!). As can be checked easily, however,

(1.1) 1mplles the existence of the strong limit s- hm P (A)R(Atie) in B(L?s;

L2:s71-8) for any §>0. In the same way, one can show the existence of the strong
limit s-lim P(A)R(A+ ig) in B(L?:s; L?-s7%) for any 6>0.
el0

Definition 1.6. (1) Let- P(1), Q(4) be Ps.D.Op.’se W(0) with symbols
p(x, &; 2), q(x, &; A), respectively. {P(1), Q(4)} is said to be a disjoint pair of type I
if

inf dis (supp p(x, &; A), supp q(x, &; 1))>0,
xep™,A<ao

where dis (4, B) denotes the distance of two sets 4, BcR", and supp p(x, & 4)

means the support of p(x, &; A) as a function of £.

(2) Let P.(4) be Ps.D.Op.’se S, with symbols pi(x, &; 4). {P.(4), P_(A)} is
said to be a disjoint pair of type II if there exist constants u, such that —1<u_<
ue<1and

pi(x, & D=0 if £-&<p,,
p_(x, & N=0 if f-E>p_.

Lemma 1.7. (1) Let P(%), Q(A)€S,. Suppose {P(4), Q(A)} is a disjoint pair
of type I. Then for any s>0 and A>a,, there exists a strong limit s-lilx(? P(A)R(A+

ie)Q(A) in B(L?-~s; L*) and
IPYRA+i0)QA)f < C/JAISf Il -
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(2) Let Py(A)eS, and Q(A)€S,. Suppose that {P(4), Q(1)} are disjoint pairs
of type I. Then for any s>0 and A>aq, there exist strong limits

s-lirgl Q(MDR(A+ig)P L (A), s-lirgl PL(D)R(A+ie)Q(4)
in B(L?~s; L?%). Moreover,
IQRMAIOP (W) f < CIJANSf =5

IPx()RAi0)QA S, < CIVAIfIl-s.
(3) Let P.()€S,. Suppose {P.(1), P_(})} is a disjoint pair of type II. Then
for any s>0 and A>ay, there exists a strong limit s-lilrgl P.(A)R(ALie)P.(A) in
B(L*~s; L?>*) and
IPE(ARA£i0OP (A f ;< CINAIfIl -
For the proof, see [2] Theorems 4.2, 4.3, 4.4 and [3] Theorem 2.
We now study the limit s-lim R(A+ig)N.
el0

Theorem 1.8. Let y>1/2 be arbitrarily fixed and N an integer >1. Let
A>ay. Then we have:
(1) There exists a strong limit s-]lim R(A+ie)¥ = R(A+i0)Y in B(L?-v*N-1; [2.77-N+1)
el0
and
IRALIOVS -y 1 SCAM2| flly4n-1-
(2) Let P.(A)eSy. For any s>N+y and 6>0, there exists a strong limit
s-lim P(A)R(Axie)" in B(L?*s; L*s"N-%) and
el0
[PE(AR@A IO fll,-y< CAN2| f].
(3) Let P,()eS,. For any s>N+y and 6>0, there exists a strong limit
s-lim R(A+ie)VP . (A) in B(L?:~s*N; L2:7s7%) and
ei0
[RAZIOWNP (A f-s<CAN2| fll —sin -
(4) Let Py()eS;. Suppose {P.(), P_(A)} is a disjoint pair of type I1I. Then
for any s>0, there exists a strong limit s-lilmP;(A)R(Ai-ia)"Pi().) in B(L?7s;
el0
L25) and
IP+(DRALIONPL(A)Sf ;< CAN2| f] —s.
(5) Let Q(A)eS,, and s>y+N—1. For any 6>0 there exists a strong limit
s-lir(}l OQ(A)R(A+ie) in B(L?s: L?s~N+1-9) gnd
IQDRAL IO flls—n+1 < CAN2|| f 5.

Proof (by induction on N). The assertions of the theorem have already been
proved for N=1 (see Lemmas 1.5, 1.7). Assume the theorem for N.
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Choose ¢o(¢) € C*(R") such that
L Jigl-1l<e
0 [I¢[—1]>2e,

Po(8)=

where 0<e<1/2. We set
D (D) =1-0o(%).
Let xo(x), x(x) € C*(R") be such that yo(x)+ x.,(x)=1,
Xo(x)=0 for |x|>2,
Xo(x)=1 for |x|<1.

Choose constants —1<jfi; <1 and C*-functions p.(f) so that gi_<j,, p,()+
p_(H)=1and

p+(=0 for t<f,,
p_(H=0 for t>ji_.

Let A(4), B(2), P1(4) be the Ps. D. Op.’s with symbols ¢, (¢/v/2), 26(x)Po(E/+/2),
Xo(X)P £ (2 - E)Po(E/\/7), respectively. By definition A(A)eS,, P,(A)eS,, the
symbol of B(1) is compactly supported for x and

AN +BA+P, . (AH)+P_(1)=1.

We further introduce the following notations. Let

| I={zeC;Rez>a, Imz>0}.
For an operator T(z) defined for zel, T(z)e C(I; L?-s, L**; k) means that there
exists a strong limit s-elli:)n T(A+ig) in B(L?s; L?>") for A>a, and

ITA+i0)f], <CA*2| f|,.
Pfroof of (1) for N+1. We split R(A+ig)¥*! into four parts:
(1.2)  R(A+ig)N*1=R(A+ie)VA(L)R(L+ ie)+ R(A+ ie)"B(A)R(A+ ig)
+R(A+ie)"P ,()R(A+ ie)+ R(A+ie)* P_(A)R(A+ic).

Since A(A))eS,, Lemma 1.5 (1) shows that A(A)R(A+ig)e C(I; L2:7+N—1
L2v*N-1. 1), By our induction hypothesis (1), R(A+ie)¥e C(I; L2:v+N-1,
L2.-v=N+1: N). Thus the first term belongs to C(I; L2:v*N=1 [2,=v—N+1. N4 ]),

Since the symbol of B(4) is compactly supported for x, R(A+ie)"B(A)e C(I;
L2:7v, L2:~v=N*1: N) by our induction hypothesis (1). This, combined with Lemma
1.1, shows that the second term belongs to C(I; L2?»7, L2:~v~N+1; N 41),

In view of Lemma 1.1 and our induction hypothesis (3), we have R(1+ie)e
C(I; L*v, L?-7; 1) and R(A+ie)"P, ()eC(I; L*~7, L27"N; N), which shows
that the third term belongs to C(I; L2+, L2~v"N; N+1).
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Making use of our induction hypotheses (1) and (2) for N, we have for small
6>0, P_()R(A+ie)e C(I; L2v*N, L2:v*N-1-3: 1) and R(A+ie)" € C(I; L¥7~%*N-1,
L2:-v+6-N+1. N)  Thus the fourth term belongs to C(I; L2:*N [2.:77=N+1: N 1),

Proof of (2) for N+1. We multiply (1.2) by P_(4). By methods similar to the
above, ong can show that P_(A)R(A+ ie)YA(D)R(A+ ig), P_(A)R(A+ ie)"B(A)R(A+ i)
and P_(A)R(A+ie)"P_(A)R(A+ie) belong to C(I; L?s, L2s"N-1-6; N+1) for
s>N+1+47y and 6>0. In order to treat the term P_(A)R(A+ie)¥ P (HR(A+ie),
we note that {P_(A), P (1)} becomes a disjoint pair of type Il if i, >u_. Thus by
our induction hypothesis (4) for N, we have P_(L)R(A+ie)"P (4)eC(; L*7,
L2s; N) for any s>0, which, combined with Lemma 1.1, shows that P_R(1+
ie) P ()R(A+ic)e C(I; L7, L2s; N+1) for any s>0.

Proof of (3). By the asymptotic expansion of the symbol of P.(4)*, we have
for any m>0,

P (A)*=P(D)+0.(4),
where P{(1) € S, and the symbol g,(x, &; ) of Q,(4) verifies
|D2DEq,(x, &; A)| < Coploxd~m 121 1A
(see [2], Theorem 2.4). Thusif s>N+yand m>y+s—1
[P(D)*R(Axie)"flls-n
<IPEN(DRMAL i) f - n+ I Qu(DRAL i) fl;-n
<CAN2| £,

where we have used (1) and (2). Taking the adjoint, we have | R(AZig) P (A)f] - <
CA7¥2| f|| _s4+ N> Which proves that (3) for N follows from (1) and (2) for N.

Proof of (4) for N+1. First we choose fi, in such a way that —l<u_<f_<
fiy<p,<l1sothat {P_(), P,(2)} and {P_(4), P.(1)} form disjoint pairs of type IL.
Next we recall that the support with respect to & of the symbol of P (4) lies in a small
neighborhood of the sphere {&; |¢] =\/—):}. Thus for a suitable choice of ¢ for
A(4), {A(4), P.(4)} becomes a disjoint pair of type I.

We multiply (1.2) by P.(4) from both sides. Consider the resulting first term.
By Lemma 1.7 (2), A(A)R(A+ie)P,(A)eC; L?~s, L?s; 1) for any s>0. We
also have by our induction hypothesis (2), P_(A)R(A+ i) e C(I; L?»s, L2»s~¥~1; N).
Thus the first term belongs to C(I; L?:7s, L2-s; N+1) for s>0.

The treatment of the second term is easy, hence is omitted.

Taking the adjoint in Lemma 1.5 (2), one can show using Lemma 1.1 that
R(A+ig)P,(A)e C(I; L* =, L2~s2; 1) for s>0. Since {P_(A), P,(2)} is a disjoint
pair of type I, we have P_(A)R(A+ie)P,(A)eC(; L*~s2, L?s; N) for s>0.
Thus the third term has the desired property.

Since {P_(A), P.(A)} is a disjoint pair of type II, P_())R(A+ie)P,.(L)e C(;
L?7s, L?; 1) for s>0. This, combined with (2) proves that the fourth term has
the desired property.
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Proof of (5) for N+1. We shall estimate

QM)R(A+ ie)V+1 = Q(A)R(A+ i) A(A)R(A+ ie)" + Q(A)R(A + ie) B(A)R(A + i)V
+ Q(MR(A+ie)P ,(A)R(A+ie)¥ + Q(A)R(A+ ie) P _(A)R(A+ ie).

The treatment of the first two terms is easy. We have only to use (1), (5) for N
and Lemma 1.5 (1).

Since Q(A) e S,,, one can assume that {Q(4), P, ()} is a disjoint pair of type 1
by an appropriate choice of &. Therefore by Lemma 1.7 (2), Q(A)R(A+ie)P (1) e
C(I; L?~s, L?s; 1) for s>0. This, combined with (1) for N, shows that the
third term belongs to C(I; L2:**N, L2:s; N+1) for s>0.

In order to treat the fourth term, we have only to take note of (2) for N and
Lemma 1.5 (1). 0

N
In view of Theorem 1.8 and the formula <%> R(Atie)=N!R(A+ig)"*1, one

can conclude the strbng differentiability of the resolvent R(1+i0).

Theorem 1.9. Let y>1/2 and N be an integer >0.
(1) Asanoperator e B(L*7*N, L2:=7~N), R(A+i0) is N-times strongly differentiable
and for A>ay>0,

N
|(-4) Ratior | <cioworyg,,,.
di - v
(2) Let P .(A)eS.. Foranys>N+1+yand A>ay,>0

| P ()" Ra£ 1001

[ <Ca®HOR|f|
s—N-1

[(45) razio | Purs|_<ciownrify_ .

(3) Let P.(A)eSy. Suppose that {P.(A), P_(A)} is a disjoint pair of type II.
Then for s>0 and A>ay>0

[ P:] (-4) RU£10) | Patrs| <caoveorzysy,.
(4) Let QA)€S,. Foranys>N+yand A>ay>0
|or () RaziONS|_ <carenisy,.

For later use, it is convienient to rewrite the above theorem in the following
form.

Theorem 1.10. In addition to the assumptions of Theorem 1.9, suppose that
the symbols pi(x, &; A), q(x, &; ) of P+(A) and Q(X) have the following properties
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|D2DEDY p1(x, &; k2)| < Copnxd~14IKEYTIAL,
|DEDEDY q(x, &; k2)| < Copmx)~14IKEYTIFT,

where the constant C,g,, is independent of k>ko=1/ay>0. Then we have for
k>ko>0

© ()" R tiong|__ <citifian,
(2) fors>N+1+y

|(5% ) tPstkrae £ 10111

<CKHf1s>
N-1

s—

|(4k) RO i0PL KRS | <CRIA N prmar
(3) fors>0

|() tpsterGe £i00PL (k21 | <Ch1f 1,
(4) fors>N+vy

”(%k)lv [Q(k*)R(k? £ i0)] f”s_Nng“l £l

§2. Differentiability of generalized Fourier transforms

In [1], we constructed a solution to the eikonal equation
21 | 7xd(x, OI>+ V(x)=1¢|?

and used it to develop an eigenfunction expansion theory for the Schrédinger operator
H. 1In [4], we gave a slightly different method of construction. First we recall the
results of [1] and [4] (see [1], Theorem 1.16 and [4], Theorem 2.5).

Lemma 2.1. Let ¢>0 be arbitrarily fixed. Choose d>0 arbitrarily. Then
there exists a real function ¢(x, £)e C°(R"x(R"—{0})) having the following
properties:

(1) For any 6>0

|D2DE(P(x, &) — x-&)| < CpplxpteomlI(E)~1
for xe R" and |&]|>6.

(2

52

xeRS"l;llr;|>d <axiaéj ¢> (X, é)_II < 1/2’

where I is the n x n identity matrix.

(3) For any 6>0, there exists a constant R>0 such that for |x|>R, |{|>6 and
R-E> —1+¢/2, P(x, &) solves the eikonal equation (2.1).
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Lemma 2.2 ([3], Theorem 2.3). Choose &, d>0 arbitrarily. Let ¢(x, &)
be as in Lemma 2.1. Then there exists a smooth function a(x, &) e #(R") having
the following properties:

M ID2DE(a(x, &) —1)| < CoplxdremIeI(EN1,

if |€]>d, £-&>—1+¢, |x|>2R, R being the constant specified in Lemma 2.1 for
8=d[2. a(x, &)=0if |¢|<d2 or £-E< —1+¢/2 or |x|<R.

(2) Let G(x,&)=e i¢®O(—A+V—|E2)eitxq(x, £). Then for £-E>—1+e¢,
we have for any N >0,

ID2DEG(x, &) < Copn{x>~N(ED.
If$-8<—1+e¢,
IDEDEG(x, &) < Cpplx)~17101(ED

Our generalized Fourier transformation in [1] is constructed by the following
method.

Lemma 2.3 ([1], Theorem 5.5). Let ¢(x, &) be as in Lemma 2.1. Choose
O<u<1 arbitrarily and let p(t) e C*(R?) be such that p(t)=1 for t>1—pu/2, p()=0
for t<l—pu. Let Y(t)e C°(R') be such that y(t)=1 for t<1, Y(t)=0 for t>2.
We set Yr(x)=y(|x|/R). Then for fe L*? and k>0, there exists the following
strong limit

s-lim 2ik(2m)~"2 S e"i¢(x'kw]<%lﬁR(x)> (% - W)R(K2+ i0) f(x)dx = F (k) f
R—0
in L>(S*™Y). This #(k) is independent of u and for any 6>0

(2:2) I#f | L2sn-1y < Ck= D2 I, (k>6).

Let us take notice that (2.2) follows from the formulae (8.1), (9.4) in [1] and
Lemma 1.1 in the present paper. The fact that #(k) is independent of u follows
from the proof of [1], §5.

For fe L??, we define (£ f) (£) by

(23 (FNE=(FDNE/IED-

Then £ is uniquely extended to a partial isometry with initial set L2 .(H) and final
set L2(R"), and plays the role of a generalization to the Fourier transformation
([1], Theore 7.1). Moreover, the above Lemma 2.3 shows that &# depends only
on the behavior of the phase function ¢(x, &) in a neighborhood of £=&. As has
been noted in the introduction, & f(&) can be written formally as in (0.1). We now
rewrite (0.1) by using a(x, &).

Definition 2.4. Let ¢(x, £) and a(x, &) be as in Lemmas 2.1 and 2.2. Let
Yr(x) be as in Lemma 2.3. We define for fe L2:* and k>0
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F(k,R) f(@)=@r) /2 | Yr(x)emi#ko) a(z, ko) fx)dx
—(2r)i? S V(x)e-i9:k) Gx, k) R(k?+i0) f(x) dx.

Lemma 2.5. For feL?? and k>d,
s-lim #(k, R)f=F(k)f in LXS"").
R—0

Proof. We proceed as in [1], §5. Let u=R(k*+i0)f. Since
@) #(k, R) f= g Vel A(e=19a) ) udx — g Ve~ i®adudsx,
we have by integration by parts
Qr)"2F(k, R) f= S e-i9(AYg) audx+2 S eid (i v ) a (‘3_“ —iku) dx
’ R or 'R or
. Ziof O _
+2ik S e i¢ (—07 lﬁx) audx

=I,(R)+ I,(R) + I(R).

One can argue as in the proof of [1], Lemma 5.2 to see that I;,(R)—0, I 2(R)—0 as
R—oo. Let p(f) be as in Lemma 2.3. Then as in the proof of [1], Lemma 5.3,
we have

[leocsor (2 yux) )ale, R@)(1L—p(8- @)u(x)dx—0
as R—oo. Thus we have only to consider
2ik S i (_gr_ wR) ap(% - wyu(x)dx.

Since |(a(x, ko) —1)p(% - w)| < C{x>~* by Lemma 2.2, we have as in the proof of
Lemma 5.2 in [1],

ol @ _
S e-it (W .pR) (@ —1)p(% - wu(x)dx —> 0.
Therefore by Lemma 2.3, we have
sclim (202 (k, R)f=s-lim 2k S eit (% ¢R>p(x - )u(x)dx

=@m*#(k)f. O

It follows formally from Lemma 2.5 that

2.4) (21r)"/2.”f(k)f=g e"io(xka) g(x, kw) f(x)dx

—S e-i6(ko) G(x, k@) R(k2+i0) f(x)dx.
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The rest of this section is devoted to showing that the right-hand side is a well-
defined bounded operator on L?'* and that it is differentiable with repect to é=kw
if f decays rapidly.

Lemma 2.6. Let b(x, £)e Z(R?") be such that for some ¢>0 b(x, £)=0 if

|é|<e. Then the integral transformation

T7(0) = ete=-0b(x, 1 (x)dx

has the following properties:
(1) IffeL?N, Tf(&) is N times differentiable and

2 IDETAON < Cpl flly -
|a|<N

(2) Let y>1/2 and >0 be arbitrarily fixed. Then for any k>e,
ICTf) (k) asn-1y < Ck=(=DI2| £,

Proof. (1) follows from [1], Theorem 3.2. Arguing in the same way as in
[1], Theorem 3.4, we have

§ o1k | Tf(6)12dS, < CI f 112,

where the constant C is independent of k>eg. The assertion (2) directly follows
from this inequality. 0

Lemma 2.7. Let S(k) be defined by
SU)f (@)= -1 kbix, ka)f s k>0,

where b(x, &) e C*(R?") and
| DEDEb(x, £)| < Coplxdlel.
Let P(k) be the Ps. D. Op. with symbol p(x, &; k) such that
|DEDEp(x, &3 k) < CopdxD™ S

for a constant C,z independent of k>k,, ky being as in Theorem 1.10. Suppose
that b(x, &) and p(x, &; k) satisfy either of the following assumptions (1), (2):
(1) There exists a constant ¢>0 such that

p(x, ¢; k)=0 if |1¢El/k—1] <e, k> k.
(2) There exist constants py such that —1<uy_<p, <1 and
bix, )=0 if %:&>p_,
p(x, & k)=0 if %-E<py, k>k,.
Then for any s>0, k>k, and N>0
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IS(k)<xHN P(k) fll Lagsn-1y < Ck™* I f = -

Proof. Choose x(x), x2(x)e C®(R™) such that x,(x)+x(x)=1, x;(x)=1
for |x| <1, x;(x)=0 for |x| >2. We split S(k){x)VP(k) into two parts: S(k){x>"P(k)
=A,(k)+ A,(k), where

A,(K) f@) = | [emiteerors0b(x, ko) ¥pix, & Rz (1) F(@dedx,
R >0 being a constant yet to be determined. By Lemma 2.1 (1),

| 7 (@(x, kw)—x- &) — (ko — )| < Ck™I{x)*0.

In view of the assumptions (1) or (2), one can find a constant C>0 such that on the
support of the integrand

|kw—E&|>Ck for k>k,.
Therefore, there is a constant R>0 such that
| P (Pp(x, kw)—x- &) >Ck for k>k, and |[x|>R.
Letting Y(w, x, &; k)=¢(x, kw)—x-¢ and using the relation e ¥=|P Y| 2P -

V.e”i¥, we have by integrating by parts in x 3N times

Ax(k) f@) = || emve@xsvby(@, x, & ) J(E)dedx,
where
(2.5 ID2DEby(®, x, &; k)| < Cug<xD2Nk2N,
Let B,(k, w) be the Ps. D. Op. with symbol {x)"by(w, x, ¢; k). Then we have

A (k) f (w) = S e i* kN (x)"N(B,(k, w)f)(x)dx.
Thus for large N
14206) flagsn - <C_sup | 4:(k) f(w)
stEssglgl I Bo(k, @) f |l L2gsn-1) -

(2.5) implies that ||By(k, w)f || .2< Ck™2N|| f ||y, Which shows that || A,(k)f [ L2(sn-1)
<Ck™ 2| fll -n- .

Next we consider 4,(k). Since in this case the symbol {x>¥p(x, &; k)x,(x/R)
is compactly supported for x, one can easily show for any s>0

I41(R)f Nl agsn-n < CIf Nl -5

with a constant C independent of k>k,. In order to derive the decay with respect
to k, we have only to note that for large k, | F(¢(x, kw)—x - €)] > Ck for a constant
C>0 and integrate by parts. O
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We turn to the estimate of the right-hand side of (2.4). The first term is treated
by Lemma 2.6 (1). In order to treat the second term, we set

T(k)f ()= S e~i¢ (ko) G(x, kw)R(k2+ i0) f(x)dx

and

(TN =TENSE/IED-

Lemma 2.8. Let d>0 be the constant specified in Lemma 2.2. Choose y>1/2
arbitrarily. Then we have for any N>0 and k>d

| |2$N | Dg Tf(é)l,::kw”Lz(S"‘l)SCk_(”_l)/2|’f||N+y .

Proof. We make use of the localizations used in the proof of Theorem 1.8.
Let ¢o(&), ¢(8), xo(x) and x.(x) be as in the proof of Theorem 1.8. Choose
p+()e C*(R") such that p ()+p_(H)=1and p,(N=0if t<1/2, p_(t)=0 if t>3/4.
Let A(k), B(k), P.(k) be the Ps.D.Op.’s with symbols ¢, (¢/k), xo(x)Po(¢/k),

Xo(X)p £ (R - E)Po(E/K), respectively. Then T(k)= é‘,l Ty(k), where
Ty(K) f () = g e~ 14 k) Gx, k) AR(K? + i0) £ (x)f x,

Ty (k) f(w)= | e "¢ =*DG(x, kw)B(k)R(k?+i0) f(x)dx,

fe
Ty f (@)= | e 1ok G, Kw)P  (KIR(K? +10) (x)dx,
fe

T, (k) f(w) =\ e ¢k G(x, kd)P_(k)R(K2 + i0) f (x)dx.

We set
T;f(©)=TLIENSE/IED.

First we consider T,. By a straightforward calculation we have
¢T
T DT @)
= £ fereeoca,txn 014,08 D5 R +10) £(x) dx,
B<3
where {£>ag(x, ) and Ay(|¢]) arise from the derivatives of G(x, &) and A(|¢]),

respectively. In particular, ag(x, £)e Z(R?*") by Lemma 2.2. In view of Lemma
2.7, we have for any s>0

|3:s~”Dg T f(Ole=koll L2sn-1)

<or 3 [() mosio

SCE™* [ f Insy »

-s
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where we have used Theorem 1.10 (1).
Since the symbol of B(k) is compactly supported for x, we have by using Lemma
2.6 (2),

2, IDET2f Dl e-ralliasn -

d

<Ck-0=D12 3 W)"' R(k?+i0) f”_N_y

m<N
S Ck™ 02| f I nsy -
Since G(x, £)=0((&Y {(x>~1), we have, similarly,

3 IDETaf(©)lgekol s

R ”(x)N-m-Hv (45 ) P RG> +i0) f”m

S Ck= D2 £l 4y

The treatment of T is slightly different. Choose x.(f)e C*(R!') such that
1+(D+x-(®=1and y,(1)=0if t<—1/4, x_(1)=0if t>1/4. We split T; into two
parts: T=T§ + TS, where

T (k) f (w)= S eIk G(x, kw)y (R - w)P (k)R(k? +i0)f(x)dx.

Since G(x, kw)y +( - w) is rapidly decreasing in x, we have as for T,
|a'|zs:N | D% Tg+)f(€)|.§=kw“L1(S"'l)

<Ck™D2| fllyg,y
Using Lemma 2.7, one can treat TS~ in the same way as T;:

2 1 D8 TSV £ ()l g=koll L2sn -1y

SCE™*| f Nty - a

Theorem 0.1 in the introduction now ready follows from Lemma 2.8 by inte-
grating in k.

§3. Decay rates for scattering states

As an application of the differentiability property of &, we derive in this section
a decay rate for scattering states of the Schrodinger operator H.

Theorem 3.1. Let y>1/2. Let y(4)e C*(RY) be such that for some &>0
and an integer N>1, y(A)=0 for A<e, and |<%) x(/l)l < C AN=2y=m)[2 for J>¢,
m=0, 1, 2,.... Then we have for t>0
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Ix(H)e "M f I _y<CUN| fllysgay-

Proof. Let y(&)=(Fx(H)f) (£). By [1], Theorem 7.1,
e=itHy(H) f=S: F (k) =itk (k- Yk dk.
From (2.4) it follows that

Fk)y*Yk-)=2n)~"2 Ss" . el (x:ko)g(x, kw)(kw)dw — R(k? —i0)w(k),

where

3.1) o(k) (x) = (2m)~"/2 SS" _ eEROG(x, ko)(ko)do.
Therefore,

(3.2 e”""Hy(H)f=(2m) "2 S ei @ O711E Mg (x, EW(E)dE

- g: R(K? — i0)o(k)e= "k~ 1dk.

First we consider the first term of (3.2). Using the relation (—2it|¢|?)~1¢-
Vee~itl¢1?=¢~it1¢1’ we have by integration by parts

<x>—NSew(x.:)—'l':"’a(x, Y(e)de

= X, [etemo-isha,ix, & nDg(o)E,

where |D2Dla(x, &; )] <Cp(tl€])™™. Thus by an L2-boundedenss theorem of
Fourier integral operators ([1], Theorem 3.2), we have

(3.3) ”(x}‘” S el (@G O-11E g (x, g)w(é)dé”u
<Ct™V ¥ IKEMDH | Lo

|a|<N

The sceond term of (3.2) is treated by the technique employed in [5], Lemma
5.1. Fore>0

©
R(kl —‘18) — _ie—it(H—(kz—ie)) S eis(H—(kz—is))ds.
t

Therefore letting g(k)=v(k)k"~!, we have

S: R(k?—ic)e ¥ g(k)dk = —i Sm e~ (s=Nze=itt=9) G(s)ds,

t

9(s)= §°° e~iskg(k)dk.
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In the following, we show for finy s>0

(3.4) 19(s) 1< Cs™™ 1 5 KO MDgpll Lz
|a|<N+1

If (3.4) is established, we have by the dominated convergence theorem
‘\S: R(k? —iO)e“"""g(k)dku
L2

<Ct™V ¥ KENDY L.
ISN+1

|a

Therefore for t>0

Ix(EDe ¥ fll_y<CrV |a|§~+1 IKE>NDgY |2

Since (&)= 1(1€12) (£ (£) and IDH(EI)] < CCEM 2,
5, KOMDWIL<C 3 IO RDHF Ol

|a| <N+
<Clfllnt1+y»

by Theorem 0.1. This proves the theorem.
Now we prove (3.4). By (3.1),

§)=Qr)yniz | 601806 (x, DYEME.

Choose x.(t)e C°(R') such that y,.()+x-(H=1, x+()=0 for t<1/2, x_ (=0
for t>3/4. Split g(¢) into two parts: §(1)=g () +g_(t), where

9.2(0)=@m) 712 | 001G x, By (% EEE.

Since G(x, &)x4+ (% - &) is rapidly decreasing in x, we have by integration by parts as
we have derived (3.3)

g+l < Ce ™t 3 (IKENDEY | L2
|a|<N+1

(Take notice of the estimates for G(x, £) in Lemma 2.2).
Choose p,(t), p;(0)e C°(RY) such that p()+p,()=1, py()=0 for t>2,
p(1)=0 for t<1. Split g_(¢) into two parts: g_(1)=g2(t)+g?(¢), where

g¥(=Cm)"2 S el @ O=11E1p (x| [R)G(x, E)x—(% - EW(E)E,

R >0 being a constant yet to be determined. Since p(|x|/R) is compactly supported,
we have as above

lg (@< CeNt 3 KENDgll L2
|a|<N+1

On the support of the integrand of g{?’, we have for large R>0
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[7(p(x, O)—1IE1DI=C(Ix|+1¢])  (Ix|>R).
Thus by integration by parts

9D (D)= eewo it 5 b (x, & DDI(E)E,

la|<N+1
where |DED2b,(x, &; DI < Cr¥~1¢|~N. Therefore again using the L2-boundedness
theorem of Fourier integral operators

lgPD < Cr¥1 5 IKOMDW .. O
|a|<N+1

In order to prove Theorem 0.2, we have only to interpolate the estimate in
Theorem 3.1 with the obvious one

Ix(H)e " M fl 2 < fllpa-
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