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Introduction

Let i: C = = X be a closed embedding of the line in the affine plane.
Already in 1956, B. Segre realized that the embedding may be far from trivial, i.e.,
may not be just a "linear" embedding followed by an automorphism of the plane.
Considerable effort has gone into determining the nature and extent of this departure
from the trivial : A conjecture has formed (phrased variously, and originating with
various people independently), to the effect that all such embeddings are obtained,
if one allows in addition certain "relative Frobeniuses" of the plane (regarding X
as a variety fibred over A 1 by the parallel translates of the curve C).

In this note will be found the solution of a considerably simpler problem, posed
by M. P. Murthy in 1980, namely, that of classifying all embeddings of the line in the
plane by Kodaira dimension (Theorem 2.4). The classification is achieved by
purely numerical means, reminiscent of those in Nagata's article [8], but using more
heavily the machinery of characteristic pairs.

It is a pleasure for me to thank Peter Russell for many stimulating discussions
and constant encouragement.

Let k  denote an algebraically closed field of characteristic p 0, and R  be a
polynomial ring in two variables over k. "Surface" means reduced, irreducible,
nonsingular surface. If X is a complete surface, K x  denotes a canonical divisor on X.

1. Lines in the plane

Let Je R .  Then R—■RI fR defines an embedding i :  (zero locus of f)=CL4A 2 .
One calls C  a  line if RI f R  is  a polynomial ring over k  in one variable. I n
the following I will often make statements about C, or about f ,  when the reference
is really to the embedding i.

Call Ca coordinate line if there is a g  eR such that R = k [ f, g ] .  It is well known
(theorem of Abhyankar—Moh — see [2], [3], [6], [9],...) that a line in the plane is
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a coordinate line under certain tameness hypotheses (e.g., di,* 0 (mod p), where d h

is the last characteristic multiplicity of C at infinity — see below). Hence it is natural
to call noncoordinate lines w ild . B. Segre [10, p. 18] gave examples of wild embed-
dings of the line in the plane for p> 0. Later a larger class of embeddings was given
by Abhyankar and Moh ([2, p. 148], in parametric form ). It is common knowledge
among the specialists that there abound examples of wild lines which do not fit the
Abhyankar-Moh mold.

Let f e R  define a line . It is well known, and easy to see, that

there exist variables x, y for R  such that
d = degf=-- degy f >deg x f  =e.

moreover
iff  defines a wild line, then

e> 1, p  divides both d and e, and
one may choose x, y so that the bidegree {d, e} is "nonprincipal",

i.e., neither of d, e is a multiple of the other.

In fact, given f  and arbitrary variables for R , by successive automorphisms of R
which fix one variable, one arrives at suitable x, y in a finite number of steps. M ore-
over, given a plane curve f  with only one place at infinity (e.g., a line),

a nonprincipal bidegree {d, e} is unique, if it exists.

(I thank Avinash Sathaye for calling my attention to this fact. T h e  elementary proof
is omitted, since this point is not essential to the subsequent discussion.)

Embed Spec R in the projective plane P 2 in standard fashion : Let X 0 : X 1 : X 2

be homogeneous coordinates, with x = X i /X 0 , y = X2 /X0 . Denote again by C the
closure of { f= 0} in  P2 . Then C has a unibranch point P, = (0 : 1: 0) at infinity.
Note that

(multiplicity of C at P 1 )= d — e and
the intersection multiplicity (C, L oe)p i

of C at P , with the line at infinity is d.

In this situation one has available the machinery of characteristic pairs for an ir-
reducible plane algebroid curve (see [9 ], [7 ], [1 ],...) . Out of familiarity with them,
I  choose the approach and notation of [ 9 ] .  Choosing the param ete rs  =1/x,
n=y 1x  a t P , and the local equation f o o =f Ixa for C, we consider the Hamburger

-Noet her tableau

Pi

HN (foc, ,t7)=

e i _ i>0

c i

Here c i  = d, p 1 =d— e, in general ci +  = gcd (pi , ci)  for i > 0, and ci = 1 for i  large.
Note that iff  is a line, the formula for the length of the conductor at P, is
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1.1 (p1-1)(ci — 1)+ E  P i(c1 -1 )= (c i— i)(c1 -2 ).
i>1

(See e.g. [9], 6.1.)

If d> 1, then the characteristic numbers d i of f  relative to n at P 1 are those
ci which are greater than one, say c1 = d 1 > d 2 > • • • > d,, (h> 0). Let i 1 = 1, and for
j> 1  le t if  b e  the greatest s such that ci =cl i . Let q 1 =p 1 , and for j> 1  let
gi =  E  p i . The data (g . i , d i ); > 0  are the characteristic pairs of the singularity.

Equation 1.1 may be rewritten as

1.2 g i (d — 1) = (d 1 — 1) (d — g 1 — 1) .
j= 2

1.3 Let (20 , a l  be positive integers, and let

a0 =Q i al +a 2

a1 =Q 2 a2 +a 3

aa _ i = Qa aa

be the Euclidean algorithm. (Q 1 =0 if a o <a i .) One has

1.4 Q .a=a0a1  a n d  ±  Qi ai = a o + a 1 — aa .
i=1 i=i

(See [8], 1.1.)

1 .5  Lemma. 1) W ith notation as in 1.3,

Q,i
{

=1 <ao lai+ailaa in any  case.

2 )  L et h>l, and  le t d 2 ,..., d,, be integers such that cl i >cl i . "  and
h

d . 1  divides d i  f o r j>1 .  ( 4 ± ,:=1 .)  T h e n  E
j=2

Pro o f . First note that Qi ,.>.1 for 1 < i ( a, and Q1 _.>.1.4-ci 0  a  i•
Now for 1), one may assume Œ 2. W rite  a o laa  as

1  
a  i  

(((Q 1 — 1)a + a 2 ) + ((Q2 — 1)a2 + a) + • • • + ((Q„_ 1 — 1)a,, t + a„)+ Q„aa ).

From this it is clear that Q 1 1 implies a o laa  Q1 + Q2+ • • • + Qa . Applying this to
the Euclidean algorithm on a l  and a2 , one has a i laa  „>..Q2 - 1-- • • • ±  QOE, whence follows
the remaining statement in 1).

2) is clear for h = 2. F o r  h = 3, d2 /d3 +d 3 <d 2 /2+2<d 2 , the second inequality
holding since d2 >4, the first by calculus on the interval 2<d 3 <d 2 /2. The case
h> 3 reduces to the above case by induction.

‹ a o l o „  i f  ao>ai,
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2. Kodaira dimension

Recall the following variant of Kodaira dimension, whose roots are classical.
Let L be a function field in two variables over k, and let V be a prime divisor of

L lk .  Clearly one can find a complete nonsingular model X of L, on which the centre
of Vis a nonsingular curve D .  Define tc(V) to be the logarithmic Kodaira dimension
k- (X\D) (see [4]). Using the structure of birational maps of complete surfaces, and
the invariance of l(n(D + K s )) under blowing up a point of multiplicity <2 on D,
one sees that K(V) is well defined. (That one is really measuring a prime divisor
here was pointed out to me by Peter Russell, as was the next fact, which is mentioned
here in order to elucidate the significance of nonnegative Kodaira dimension.)

2 . 1  Proposition. Let V  be a prim e div isor o f  a rational function f ield L  in  two
v ariab le s . Then KW) i f  a n d  o n ly  if  I/ has a one-dimensional
centre on any complete nonsingular model of L .

Pro o f . If the centre of V on X is a point P, then IA V)= tc(X\P)= - co. For
the converse, suppose the centre of  V on X is a nonsingular curve D .  Since IK+

D  is  rational. If the self-intersection n=(D 2 ),>. -1 one blows up on D  n+1
times and is done. Otherwise, use [5], Theorem 2.1 (d) a )) to  replace X  by the
minimal ruled surface F_„ and assume D is the directix. Then -  n -1  suitably chosen
elementary transformations yield a birational map F1, under which the proper
transform of D is exceptional.

As mentioned in the introduction, M. P. Murthy suggested classifying lines in
the plane using Kodaira dimension. This will be done after a  few preliminary
observations.

Let l e  R define a line in the plane. Define K(f) to be the Kodaira dimension of
the prime divisor V= Rf R  of the field of fractions of R .  This will be computed by
choosing suitable variables for R, embedding Spec R in P2 (a ll as in section 1),
closing up {f =0} to obtain the curve C c P 2 , resolving minimally the singularity of
C at infinity to get a birational morphism X -4 3 2 , under which the proper transform
of C is a normal rational curve D, and computing the logarithmic Kodaira dimension
of the surface Y= X\D.

In all but the most trivial cases (degf <3), C will be singular at infinity. For
use in the proof of 2.4, denote by P 1 ,..., P,. the successive infinitely near multiple
points of C at infinity, and by m1 ,..., m, their multiplicities.
2 .2  If f  defines a wild line then (D2)<0.
In fact, the equivalence of wildness and (D2 )< 0 is well known. (See e.g. [8], [6],
or [3].)

2 .3  Theorem. (Kumar-Murthy) L et P 1 =D c-)X  b e  a  closed em bedding, X  a
complete rational surface, Y= X\D.

1) R (Y )  is negative -4,> 12Kx + DI is empty.
Suppose (D 2 ) < O. Then
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2) k(Y ) is 0 or 1.4.>l (2Kx + D)= 1.
3) Suppose (D 2 )= —4, ( K i )  —1, and  I— Kx l is em pty . T hen

l(2K x +D )=1, an d  k (Y )=0 1 3 K ,+ DI is empty.
See [5], Corollaries 2.4 and 3.2, Theorems 3.1 and 3.3. (Note that (D2 ) <0 is not
needed in Corollary 2.4, since the general case follows from the case of negative self-
intersection.)

2 .4  Theorem. Let Je R  define an embedding of the line in the plane, with Kodaira
dim ension  k (f ). Then

1) K (f)<0. -f defines a coordinate line.
2) K(f)= 0<=>p = 2 and there ex ist generators x, y f or R  such that degy f= 3 p

and degx f =2p.
3) K (f)=1<*p= 3 and there ex ist generators x , y  for R  such that degy f= 3 p

and degx f =2p.
4) k (f )= 2 f or all other embeddings f .
The group Autk R acts on the set L i of embeddings A 1c- 4 2  of  Kodaira dimension
i (i =0, 1). T he  quo tien t is k* /U, where U is the group of cube [resp. square]
roots of unity if  p= 2 [resp. p= 3]. More specifically, f defines such an embed-

ding if  and only  if  f  m ay be written as the Segre line (y 3  — x 2 )P —  C )'
c x  p  =3 ,

f o r suitable x , y. T h e  scalar c e k * is unique up to a cube [square] root of
unity.

Remark. There is an abundance of embeddings of general type as in 4) above,
in all positive characteristics. (E. g., the Segre lines f (yq — xP)P + y, with q  large
and not a multiple of p.)

Proof  of  2.4. The bidegree (deg y f, deg x f )  will be determined below. Once
this has been done, it is just a matter of brute force (using e.g. the techniques of [3],
2.2-2.9) to check that every term xi y i occurring in f  with nonzero coefficient f u

satisfies i +j= 1 or i, j divisible by p .  After some further reduction, f  is easily brought
to the given canonical form . (We indicate here how to start. T h e  fact that f  is
unibranch at infinity forces f u = 0 for 3i + 2j> 6p, as one sees by considering the local
equation f x , =f /x 3 " at infinity and blowing up twice. Moreover, unibranclmess at
P 3  requires that E  f u x iy i =(ay 3  —bx 2 )P for suitable a, b e k*. The require-

3 i+ 2  j=6p
ment that our line be unibranch with multiplicity p  at P 4  already forces f u = 0 for
3i + 2j = 6p —1, etc. It should be remarked here that T— t. M oh has more stream-
lined techniques for determining the coefficients of f ;  here these would involve "the
(ay 3 — bx2)-adic expansion of f ".)

Next, recall that the sufficiency in 1) is well known : Embed Spec R  in P 2 as
in section 1 and for te k, let A A  P 2 be the closure of {f = A } . After blowing up
the base locus of A  one gets a surface Z  with a  P 1-fibration Z -+ P' ([3], [6],...).
Letting '  denote proper transform on Z, one has that Z\A '0 contains a "cylinderlike
open set", so K (f)< O.

For the remainder of the proof, assume that f  defines a wild line, and that Spec R
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is embedded in P 2 in standard fashion relative to generators x, y for R  chosen to
give f  nonprincipal bidegree. Then

(t) d1—q, >2d 2 .

In earlier notation, the linear system I2Kx  + DI on X  is in natural bijection with
the linear system (d— 6)H— E (mi -2)/),1 of effective divisors on P 2 of degree d - 6
which pass through each P i with multiplicity at least mi — 2. (Classically this is
"the system of special adjoints of C of index tw o " .)  Clearly

1(2K x + D) -[(d— 5)(d — 4) — E (me— 1)(m i — 2)] .

L e t E:= Ê (m i — 1). F rom  th e  conductor form ula E mi(mi -1)= (d —1)(d —2),
one concludes that

(*) 1(2Kx+ D) E — (3d, —9).

For a wild line f , one knows that the number h of characteristic pairs is at least 2.
(Both the x- and y-degree are divisible by p.)
( A )  Suppose h = 2.

(Note in passing that in this case, it is unnecessary to assume that d is not a
multiple of e. This follows easily from the fact that gcd (d, e) is the residue field
degree over k(t) of the place at infinity of the generic member A , of the pencil A,
hence is independent of the choice of generators for R . )  By 1.2, one has

(Al) q2(d2-1)=(d1 — 1 )(di q1 — 1),

whence q2 — 1  (mod d2 ). The multiplicity sequence <mi > begins with
Q, points of multiplicity q 1 ,..., Q Œ  points of multiplicity d2 (see 1.3 and [8], 1.2),

then continues with

K  (say) points of multiplicity d2 .

There follow one point of multiplicity d2 —1, and simple points.
By the conductor formula and 1.4 (with a o , a l  replaced by d 1 , q 1 ), one has

(d 1 — 1) (d1 — 2) = (d i q  — d1 — q d2 )± Kd 2 (d 2 — 1)+ (d2  — 1) (d2 — 2) ,

hence K (d2-1)=2(di — q 1 d 1 -2 d 1 + q 1 + 2d 2 —  di).

Let Q=Q, d- • •• + Qa , in the notation of 1.3. Then E is given by the following
function 5 of d 1 , q,:

(A2) E = +  d 1 — d2 — Q)+ K(d 2  — 1)+ (d2 —2)

=q i+d i —d2—Q+ 1 2 (di— q i d i - 2 d i +q i )= : 6. Hence

(A3) E=3d1+q1— d 2— Q+R1/d2+d1A /d2,

where by (t), 4 =d 1 —q 1 - 2 d 2 - 2 >  —2.
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C ase 1. d  > 0 .  Then d 1 4/d 2 > d i ld 2 „>- Q by 1.5 1), so E> 3d 1 ,  hence K( f ) = 2  by
(*) and 2.3.

Case 2. d A+2 is a nonnegative multiple of d2 > 1, hence = 0 or 2.
(a) d  = 0 .  Then d2 divides 2 , so d2 = 2, so d i  —q i = 3d2 ,  and by (A3) and

1.5 1) one has
X> 3d, +(RI — d2) —(d1 — q 2  >3d i —  3, so k (f )= 2 again.

(b) d  + 2 = 0 .  Then q 1 =rd 2 , d 1 =(r+2)d 2 ,  r odd. It is easily checked that
Q=(r + 5)/2, hence by (A3) and a quick computation,
E=3c1 1 -8+(r — 1)(d 2 -3/2).

( b l )  Suppose r >, 3. Then I> 3d, — 8 and x (f ) is again 2.
( b 2 )  Suppose r= 1 . T h en  / =  3d, — 8. From (b) and (A l) one sees at once

that d2 — 1 divides 2. So d2  is  2  or 3. But f  is by assumption wild.
So by [3, 1.3 1)1 e.g., and the observation in (A), the conclusion is that
char k =p  is 2  or 3. In either case, one verifies easily that m i =p  for
i < 10, m 10 =2, (Ki) =  —1 and (D2) = —4.

Looking further at case (b2), one sees easily that in the case of the sextic with ten
double points (i.e., p= 2), 2K x  + D  0, so 1—Kx 1= IKx  +DI is empty since D is an
irreducible nonsingular rational curve on a rational surface. Moreover, 13Kx+DI
=IK x 1 is empty. By 2.3, KW = O.

If p= 3 in  (b2), one checks that 3K x +D— E 1 0 = last exceptional fibre in the
minimal desingularization of C .  If X  has an effective anticanonical divisor then from
D•K x = 2  one has that D  is  a  fixed component of I— K x l, hence —(2K x +D)
is  effective. But by direct calculation 12Kx + DI contains a  p o s i t iv e  linear com-
bination of L oo , E 1 ,..., E 8 .  SO I - K x1 is empty. By 2.3, tc(f)-- 1.
( B )  Suppose h> 2.

For 1 < j< h ,  let Q(j) be the sum of the coefficients in the Euclidean algorithm
on q ,  d i . Repeated application of 1.4 gives

E=(d, + q —  d 2 —Q(1))+ • • • +(dh + q h — 1 —Q(h))

=d 1 + Q (j)-1 .
i=t i=1

By 1.5 1), for 2 < h  one has Q (j)<d i ldp . ,+q i ld i . Also, by 1.2 one has qh

—1 (mod dh) ,  whence it follows that Q(h)= dh+ dh+ 1). From this expres-
sion and 1.52) it follows that (with dh + , : -= 1) h

E >q i +d,— Q(1)+ q(1 -1 /d )---
.J=2 j=2

>q i +d 1 —d2 —Q(1)+ q; (1-11d ; )-11d h = : a.
.J=2

Now regard q l ,  d i > ••• > dh as constants and q 2 ..... q,  a s  nonnegative variables
satisfying 1.2. Since , 1

 —
,  

1
(4

d ,   <  d i - 1
,  , a triv ia l app lication  o f lineard i+ ,

programming shows th a t  fo r  (13 + • • • + qh > 0, =a(q 2 ,..., q h)>o -(q 2 , 0) =
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q i +d i —d2 —Q(1)+q 2 (d2 - 1)/d2 -11dh =: E, where, using 1.2 and comparing with
6 in  (A2), one has e=6+11d 2 -11dh >6 8. So E> 3d i  —8, and by (*) and
2.3, x (f)= 2. This completes the proof of 2.4.

Remarks. 1) L e t  0: Z—>In be the morphism, mentioned in the proof of 2.4,
which results upon minimally ridding A of its base points. Then, as Bogomolov
pointed out to me, the cases 2), 3) of the theorem are precisely those in which 0 is a
quasielliptic fibration. The exceptional curve E9 is in each case a pseudo-section of
0 ,  i.e ., it m eets th e  general fibre physically once w ith  intersection num ber p,
"normally" if p= 2, trangentially if p= 3.

2) A well-known theorem in Coolidge's book on algebraic plane curves says
that an irreducible rational projective plane curve C has K(C) negative in our sense

there is a  Cremona transformation, the proper transform of C under which is a
straight line. I n  view of this, part of 2.4 says that if C is the closure in P2  o f a  line
in A2 an d  a  Cremona "straightening" exists, then the straightening can in  fact be
achieved by an automorphism of A2 .

3) O ne might also classify lines C  A 2 defined by f ,  by 1(f):=14(A 2 \C).
Obviously k (f )> K (f) in  our sen se . It can also be seen directly (or via 2.4) that
k(f) is negative f is coordinate. Making a lengthy calculation in cases 2), 3), one
finds that k = 2 for all wild lines.

Note also that, for nonconstant fe R and any embedding o f  A2 i n  P 2 ,  with
C = closure o f  {f= 0}, one  h a s  K(f)<, R(P 2 \C )< k (f). Hence f  coordinate line

.k(P 2 \C) negative, and the converse follows from 2 .4 . Can it be seen more directly?
Let C be an irreducible rational projective plane c u rv e . A lot is known about

conditions on Sing C which ensure that R(P2 \C) is nonnegative. (See papers in the
Proceedings of the Japan Academy by Wakabayashi (1978), Yoshihara (1979), and
Tsunoda (1981).) Call a  unibranch curve sigularity a cusp of the curve. Theorem
2.4 shows that wild lines provide examples of such curves C, having Sing C= {cusp}.
(Tsunoda found examples of such curves — with singular locus consisting of a solitary
cusp — over the complex ground field.) A s fa r  a s  I know, the following is an open

Q uestion. Let k have characteristic z e ro . L e t C  P 2 b e  a n  irreducible rational
curve with only cusps as singularities, and let K(C) be the Kodaira dimension in the
sense of the present n o te .  Is K(C) negative?
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