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Introduction

The theory of abelian integrals on arbitrary open Riemann surfaces has been
attempted in  several ways by putting restrictions on the boundary behavior of
meromorphic functions and differentials under consideration (see references). In
this direction, Kusunoki [6] introduced the notion of canonical potentials and gave
a formulation of Riemann-Roch's theorem and Abel's theorem, which deal with the
class of meromorphic functions whose real parts are canonical potentials (cf. [5], [7]).
By using the notion of behavior spaces, Yoshida [21], Shiba [17] and others showed
the extended theory corresponding to various classes of meromorphic functions.
However the extended theory is yet limited in the point that the differentials used in
the argument of behavior spaces are assumed to be sem iexact. Further, in contrast
with the classical theory, those classes are real vector spaces and the multiplication
of two meromorphic functions in the concerned class does not always belong to that
class. I n  order to improve these points we shall show in this paper a generalized
Riemann-Roch theorem by using certain new behavior spaces over the complex
number field with less restrictions. That is, we leave out the period conditions in
Shiba's behavior spaces, which are required to make use of Riemann's period relation
in proving the theory, and under the present conditions we are able to prove a
Riemann-Roch theorem and an Abel's theorem without direct use of Riemann's
period relation. To show a typical application of these theorems we introduce the
symmetric behavior space on symmetric Riemann surfaces which was considered by
Matsui [9] from a different point of v iew . Meromorphic functions subject to the
symmetric behavior space are not only Dirichlet bounded in a neighbourhood of the
ideal boundary by definition, but also bounded over there. Further, the concerned
class o f meromorphic functions in  o u r Riemann-Roch theorem is closed by
multiplications. A t  last some simple examples of meromorphic functions with
symmetric behavior will be shown.
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§1 . Behavior spaces

Let R be an arbitrary open Riemann surface and F(R) be the Hilbert space
of square integrable complex differentials whose inner product is given by

( 0) 1, CODR = CO1 A  * C7)2 -= (a  .52 + b i  62 )dzdf,

where coi = a idz + bidE, i =1, 2, and *o.)2 = — a2 idz + b2 icr2 is the conjugate differential
of co2 , z being a local parameter. We denote by T h the subspace of f ' whose elements
consist of harmonic differentials and by f ' 0 the closure in T  of the family T e' ,  of
differentials of C2-functions with compact supports. We introduce behavior spaces
which will play the fundamental role in the following.

Definition. A  subspace T,, o f  r h is called a  behavior space if the space
*F x ={*co; w e T x } is the orthogonal complement of T x  in T h .

If T x  is  a behavior space, r x =p; w e  x } is also a  behavior space, where c-Ci
denotes the complex conjugate of co.

Difinition. A  meromorphic differential kfr has T x-behavior i f  there exist a
compact set K on R and differentials co e T  coo  E T e o  such that tp = w + coo on R— K.

At first we shall construct a  specific kind of meromorphic differentials with
Tx-behavior. For an oriented closed curve y on R, we take a ring domain Vy  such
that y is a boundary component of Vy and Vy lies on the left side of y. There is a
function f y e Ct(R — y) such that

f
1 in (a neibourhood of y) n
0 on R— Vy .

Then Oy = dfy is a closed differential in F .  For a point p on R, we take a parametric
disk V (p )= {z ; <  1} about p .  There are real C1-closed differentials on R— {p}
such that

f y =

—

1

d  R e " o n  Vn z" 112= lz; 121<}

0 o n  R—V(p), (n> 1) ,

—  - -
1
- -  *d Re -

1
- - o n  V112n zn

0 o n  R — V (p), (n 1) .

o p ,„ = {

op,„= {

Further for q E V112, there are real C1-closed differentials on R— {p} — {q} such that

Op,
d log z  _ Zz ( q )o n  V112

0 o n  R— V(p),



z — z(q)

o o n  R— V(p).

o n  V112
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Let (0, 6) be any one of 0), (0 p ,„, 6p ,„) and (0,,,q , Om ), where Gy = O. The 0 +*0
has a compact support and belongs to T .  By the orthogonal decomposition F---
Fx +*T x +F„+*T eo ,  write 0 + *6 = co+ 2 ± +  * T o ,  co e rx , T e  *  x ,  coo ,  t o  e F e ° .
Then 0—co—co, =  + * To —4' 6  is c losed and coclosed in  R— {p} — {q}. Hence
49= — co —0)0  is harmonic on R— {p}— {q} . Note that

4)+ i*4)=0— co—coo + i(6+ * 2 — To)

= — CO + i * T — (Wo i T o ) +  i6,

where — co+ i*r e F r , coo + iro  e Feo and 0+ ig has a compact support. This shows
that the meromorphic differential 4)+ i*(1) has Tr -behavior. Thus we have a holomor-
phic differential with F r -behavior 0,,„ and meromorphic differentials with Fx -

1 
z  -

-

z

1

( q )
behavior t&p , n , x ls ,tfrw h o s e  singurarity is z n + , dz at p (

1
 d z  at p and d z

at q ) .  We call these fundamental differentials with F r -behavior.

Proposition 1. If a meromorphic differential çli has a f '-behav ior, then there
exist a finite number of fundamental differentials III  11111),Pk,x and complex
numbers ci , cp, such that E E C i,nIP p„n,x + E pi,pk ,x •

P ro o f . Since h a s  F r -behavior, there exist a compact regular region G and
differentials co E r x  and coo e  e e such that tif = w + coo  on R — G .  There are a finite
number of poles of tfr and we denote the support by R e m a r k i n g  t h a t

ac L + ,
we can choose ce,„ and C iA  such that

— E E Ca I pi,pk ,x — C

is  a  holomorphic differential. C learly  IV  has a  Fr -behavior and we write i//' =-
co' + co(') on R— G, co' e Fr , co(, e r e o .  Further we can choose {ci } such that — co' —
co,' — E ci dfy i = a, is exact on G and belongs to f  e o , where the sum about yi  is taken
over a homology basis of G .  Let dfyi = coi  + T i  COL ° , COi  E  x , Ti E *Fx , coL o e F eo .
From 4/ = i*t/i', we have

co' +co'o + co + E c i (coi +com  —

= i* ( a  +  ±  6 0) 4- E ic i (*0);+*(0 +

and this vanishes. Thus 4/ = E ci (t i + i*T; )= E c i ti/7,,x  and

1/1 EC/P y i ,x +  E Ci,n 111  pi,n,x +  E Cj,k 111 pi,pk ,x •

Remark. If the local parameters about {pi } which define the fundamental
differentials are designated, the representation of 0 is unique.
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Lemma 1 .  Let G be a disjoint union of parametric closed disks {Gi }  which do
not accum ulate in R .  L et a Jordan curve y  not m eet G . I f  a m erom orphic dif-
f erential tfr is written a s  =w + coo , co e  x , W o E F O  on R—G, then

= W ik r
Y OG

where dW =117 on OG and 1117 =0 ,,,, denotes the f undam ental dif f erential w ith x -
behav ior. Further, if  W is a single valued meromorphic function on every Gi , then

= —27ri Res WC,.

Pro o f . Note that

0=0(i, * y )1T-G=(W+C001 * )1 2 — (W + WO, 4‘ y )G ,

where t/J ), =  + = d fy — (0 — C07 , 0 e *Fx , w e  f', co y ,0 e  e o . We have

(w +w 0 ,wo,  * C,)/z =((.0 + wo, +  iT)R = (0) + coo, * T)R

=(c0 + coo,
 * dfy

 — * (0y
 — * coy ,o)R

= (co + wo ,  * df)R

10(R—y) fy(w+ wo)

=

On the other hand, remarking that 1 tkv =0, we have
OGi

(W + WO,
 * C )G = d ( W +  W O O ),

= — WO ySOU

where dW= co, d Wo  = coo on G and W+ W0  = W . Thus the statement follows.

§ 2 .  A Riemann Roch type theorem

Let {VI } be a  family of parametric disks (V i  n F k = 0 , k) which do not ac-
cumulate in R , and set V = U V .  Let 6=6 ,16 ,=g 1 •••g„,1 p i . • • p„( u 1(1,1 n u {p i } 0)
be a finite or an infinite divisor whose support is in  V . We consider the following
vector spaces over C  of meromorphic functions and meromorphic differentials.
M(1/60 ; f .„)={ F;F is a multi-valued meromorphic functions on R  whose divisor is

multiple of 1/61, and dF= co+ wo  on R — V, w e  x , coo e F eo }.
S(6; F.,){f e M(1 /i.,; , c); f is single valued and the divisor off is multiple of 5}.
D(116,; r ) = {tfr ; tp is a  meromorphic differential with r x -behavior and the divisor

of tfr is multiple of 1/64}.
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D(116; f )={ Ii e D(11Sq ; F x ); The divisor of t/i is multiple of 1/6}.
When deg (5 q0 0 ,  two elements F , and F2  o f M(11(5p ; i )  is identified if and only if
F 1 —F2 is a constant. The M(1/(5,; Fx ) is independent of the choice of V whenever
it contains the support of p•

Theorem 1. (Riemann-Roch typ e)

dim M ( 1 1 6  P; F )  
S(ó; i )

D 11(5 q ;  rx )  
D(116; F

I f  5p is a finite divisor, then

dim S(5; Tx )= deg 5p +  1  min (deg 6 q , 1 )  dim D ( 1 1 6 q ; F x)  

D(116; F x )

P r o o f .  As we have no period conditions as in Shiba [17], we need a  slightly
different argument. In place of the bilinear relation we shall use inner products with
the same role as the bilinear re la tions. Now we consider the bilinear form

h(F, 41)=27ri E Res F , ,

P,

which is defined on  the  product space M(116p ; î )  x D(1/<5q ; r x). Although F  is
multi-valued, Res Fiji is w ell defined. For F e M(1/6p ; i x )  there exist differentials

p i

CO e  x  a n d  wc, e Te o su c h  th a t dF = co+ coo o n  R — V. By Proposition 1 we can
write

ti/ = E cy t/iy ,Î+ E E

further write that on R — V' ( V' = Vu {a simply connected region having the poles} )

t 1 + Ty e *Tx ,

=  i , n +  0 , i , n )  a eFX  a n d  (70 , i ,n  E Fe o

j , k +  CO, j ,k , a f , k n i x  a n d  (70, Lk 6  e o •

Set

0= E cy (f y + i*-Ty) + E E (of +j ,k  •  -

on R then 0= tk on R — V '. We have

0 =(dF,

= (6° ± W O , 
*

)12—V
.

= ( ( I) ,  E — (co + (00,

=  c 11 , v ,  W O Ow' =c0 + 0 ) o, El w'01 II dW1111011)
Y 

=  C y  y dF +
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Thus 2ni E Res Flit = — E cy d F ,  and

h(F, E Res F == — E cy dF — 27ti E Res Ftlf.
P i Y q i

Since E and E are finite sums, h(F, 0) has a  finite v a lu e . F o r  f  e S(S; T O  and
Y _  q i

e D(l/6 g ; T x ), it is clear that 1 df =0 for any cycle y and that E Resft/i =0. There-
q j

fore SO; TO is contained in the right kernel of h(. ,.). Conversely  let F E M(11,5p ;
F,) satisfies that h(F, Ilt)= 0 for any tfr e D(1/5 q ; to . Since viy e D(116q ; T x ), d F  =
—h(F, 10 = 0 .  T hus F  i s  single v a lu ed . I f  deg bq = 0, F  belongs to  S ( ;  x ).
Let deg 6q > 1 .  For IP,,,„,, E D(h/6g ; rx),

0= h(F, — 2ni Res

and for 0,7,4 , e DO /6 g ; 0 ,
0= h(F , fr

q J q k
,)= — 2n i(F(g f )— F(g)) .

It follows that F— F(q 1) e SO; ro and the right kernel of h(- , .) is spaned by S ( 5 ; x )
and constants. The D (116; x )  is contained in  the  left kernel o f  h(- , .), because
h(F, tfr)-= E Res Ftk = 0 for tp € D(116; x ) and F E M(1/6p ; F r ). Let tfr E D(116,; rx)

P i
s a t is fy  th a t  h (F , 0 )=0  f o r  a n y  F e M(1/6p ; r o .  Take e M(1/c5; rx)
(d W =0,, j ,„,x ). Then

0 = h(V14 1 )  =R es Vi

P i

and tif e D(116; r x ). This shows that D(116; F x )  is the left kernel of h(. ,.). The
first statement follows. When bp is a finite divisor pI • M(11(5p; TO is spaned
b y  { d W p i , „ , x =  j =1,..., n, l< k  < p i }  and  a  constan t 1. From  the
convention dim M(1/Sp  ; ro= deg p  + 1 — min (deg 6,, 1). T hus the second state-
ment follows.

Now remembering classical Weierstrass points, we define the following.

s ( p .-1  ; rx ), otherwise n is called a Tx  non gap value at p. A point p e

p

R is called1 

a  r x  Weierstrass point if all positive integers not exceeding the genus g(< Go) of R
are rx  gap values at p.

By Theorem 1 n is a F,, gap value a t p if and only if  D(pn; r x )0D(p^ - 1 ; f ,,).
By usual argument we have

Proposition 2. T here ex ists a  f am ily  o f  lin ealy  independent holomorphic
differentials t i / é ,  w i t h  the r x -behavior such that the order p i of zero oft/i t at p
satisfy

0 <p i  < tt, <  • < / tg.

Definition. An positive integer n is called a F x  gap value at p if  S  ( -
1 

; ) =. x
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Then the integers 121 +1, ,u 2 +1 ,..., pg +1 are whole F x  gap values at p.

§ 3 .  An Abel type theorem

Let 61, and 6 , be finite or infinite divisors on R  whose supports have no inter-
1section and are contained in V.012(Vi,i/2= Izi; Izii

! ,

— 2  } vi). A ssum e that the
restrictions to each Vi ,1 1 2 of öp , 6 , have the same degree. Write them as p i ,,•••p i ,„
and q i . ,•••q i . „, where pi ,i  (resp. q i ,i )  may coincide with p,,, (resp. q i ,k )  for j k. I n
our assertion of Abel's theorem we need an assumption that there exists a closed
0-differential 0 in R— U qi,i) such that

{  d E log (z i — z i(pi j ))/(z i — on

and (0, )R - U V t 112
< a ) .

Theorem 2. (Abel type) The following two conditions are equivalent.
(1) There exists a single valued m erom orphic function f  such that (i) the divisor
of f  is 6, (ii) d logf =co + (Do on R — V for some co e Fx , (Do e Fe° .
(2) Let C be a chain in V such that O C =E (p 1d —q1,1 ). T h e n I j  i s  an integer

for every Jordan curve y not meet V. c

P ro o f . Let f  be a meromorphic function in (1). Then we have

Sc

E Res Wy ,, d log f (c1V v,R=Oy,g)

—  2 i !P d log f  (absolutely convergent)
a y ,

7 , x

—1E log f2ni av,

Therefore, by Lemma 1,

1 1 —
4 "

d log f — d arg f2 n  y Y

and this is an in teger. Let show the converse. By the assumption 0 —  i*0 belongs
to F . From the orthogonal decomposition we can write 0 —  i*O= co+ T, w e Tx + re°,
T e * r x +*F eo . T h e n  = — co = T  i* O is closed and coclosed, hence is harmonic
in R— u (pi J u q i,1 ). The ck =OP + /*I44 2  is  a meromorphic differential which
(—co+ i*r)/2 on R—V. Hence by Lemma 1

1  ( —1( '
2x1 .t 0 4 ' = 0)av,

1( ' w

27r1 t  j e v i
 y ,(P  (dV ),,,=0 ),,g )

6=
V i,1 1 2

o o n  R— V
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= E Res P c / )

=

and by condition (2) 1
2
4 1  is an integer for every Jordan curve y. Thus f  (p)=niP Y

e x p  4) is a single valued meromorphic function and f  satisfies (i) and (ii), because
d log f = ck and ck=  —co+ i* T on R — V.

Remark. The f  is uniquely determined except for non zero multiplicative
constants. If f i  is another function in (1), a =d log f  — d logfi  belongs to Fx +F e o .
Then (a, a )= (a , i*a)= 0 and a =O.

§ 4. Symmetric behavior spaces on symmetric Riemann surfaces

Let R  be a symmetric Riemann surface i.e. there is an anticonformal mapping
J  from R  to R  so called involution, and the composite mapping J o J  is an identity
mapping. Let V be a parametric disk and z  be the local parameter. Then J(V )
is also a  parametric disk and denote the local parameter by w(J z — *w). For a
CO E r h(R) there exist harmonic functions f  (z) (on V) and J(w) (on J(V )) such that

df =fz dz +f,c12 o n  V
co =

dr=f dw  + o n  J(V ). •

We define P(co) the pull back of w by J;

d( f of) = j, 7v- z dz + jw ,d2

d(f of)=./.22 wdw +fzz,,c1117-

o n  V
J(co)= 

o n  J(V ).

Note that .1' (J 4(co))= d(f 0.10J)=df on V, = d(f  .J.J)= 47 on J(V ), and for *co=
— ifzdz + ifi d2 on j;  =  -  iL d w + if ,d -rçl on J(V )

JS (*w )( 0 ) = if ww zdz — if w i d2 o n  VI 

Set
s= {w + J4(0)); co e rh}

F t = {co —  (w ); w  e ro .
Then r ( F s ) =F „ J'( r,) =1 " „ and *F s = {*w; we I' s } = r„ because by Lemma 2
J 4 (co + J 4 (co))= r(co)+ w, (w  —  "co p =  .1' (co) —w an d  *co + * JS (co) =* co —  (* co).

f ,Z w dw — ifs zw dvT) o n  J(V ).

So we can define a linear mapping J 5 : Fh —)Fh  and get the following.

Lemma 2 .  For we T h

J 4( J 4(0 )))=  a), " 4'0  =  — * J S( w ) .
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Lemma 3. For w1 and  (1)2  in  1
h

0 ) 1, " C ° 2 » = (" C°1) , w2) an d  W (w i), »0)2» = (ca w 2 )

Pro o f . Write coi =a i(z )dz+b i(z)clf on V, =  i(w)dw +B i (w)chT7 on J(V)(i = 1, 2).
we have

(P  (w 1 ) , w 2 )= R(g 11' T z d Z  cil w,d2) A ( —ia2 dz+ib 2 d2)

=i 1S (6 1 d2 Wiz +ii 1 52 w,) dz A c12,

(col, r(c02))= i d W  61 c/ ) A ( —ib2 dw +ia 2 z,dw)

=i 11 dw A clvT)

= 01521112+Bid2w0 dz A (12.

Thus (co1 , r(w 2 ))=(P(co 1 ), co2 ) and (r(co i ), r(co 2 ))=(./ 5(J1(co1)), co2 ) =(co 1 , co2 ).

Proposition 3. The T s and the T, are behavior spaces such that

Ts +T t =T h .

P ro o f  It is clear that T s + F t = T h .  By Lemma 3 we have

((DI + " w 1 ) ,  (112— " c 0 2»

=(co1, w2) — (r(w1), " 0 2)) —  (col, Mco2))+ (J504), co2)

= 0.

This shows that Ts is orthogonal to T 1. Since T,=*T s , they are behavior spaces.

Definition. A meromorphic differential tif on a symmetric Riemann surface R
has the symmetric behavior if has the F5-behavior and a meromorphic function f
has the symmetric behavior if df has the symmetric behavior.

A  meromorphic function with the symmetric behavior has the following
property.

Proposition 4. L e t f  b e  a  meromorphic f u n c t io n  w i th  t h e  symmetric
behav ior. T hen f  is bounded in a neighbourhood of  the ideal boundary.

P ro o f . Since df has the symmetric behavior, there exist a  compact regular
region G(G=J(6)) and 0-differentials co e  s ,  co, e  e e  such that df =co+co„ on
R — G . The restriction coIR _d  on R - 6  of co is exact and it can be extended to C1-
differential co' on R  which is exact on R .  For cd=dW', set 13-7 =(W'+ W'of)/2.
B y the orthogonal decomposition we can write d W=C6+6 0 , E T he , eti,e T e a .
Since dIV. =.P(dr,P)= (r  (JO+ ea )12  + (P(W  o)+ 0/2, the â  be longs to  T  n F he.
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Write di dS and 6 0 + coo =dSo , where 1S0 1 is a Dirichlet potential. Then we can
assume that for some potential P o 1S0 < P o . Now we know d(S+ So ) = df on R—G,
because d(S+ So) = +  coo and dIT. = (co +P(co))/2= co on R— G. Let S, and S1,0
(resp. S 2  and S2 ,0 ) be the real part (resp. the imaginary part) of S and So respectively.
Take constants n and m which satisfy m < Si + Si,o < n on G, i =1, 2. Let S i n n be
the  greatest harmonic m inorant of min (S i , n) and  Si y m be  the  least harmonic
m a jo ra n t  o f  max (S i , m ). S e t  hi =(S i n ) v  m .  S ince  hi .J= h i , d h i E vs .  We
can write

min (S i , n)= S i n

max (S i n n,

where P1,1 and P i , 2  are potentials. Then

Si n n+P i,i +P o =min(S i +P o , n+ Po)

> min (S i + Si,o , n)

> min (S i —Po , n —  Po)

=S i n n+P i,i  —Po .

Further

max {min (S i + S 1 ,0 , n ) , M ))  <max (S A n + Pi, 1 + P0 , m)

< max (S i n n, m )+Pi,i+Po

=h i —  Pi,2+Pi,i+Po

and also

max {min (S i + Si,o , n), m)}> max (S i A n+ P14 — Po , m)

> max (S i n n, m)— Po — 13
1,1

=hi —  P1,2 — P 1,1 — PO.

Thus we can write

max {min (S i + Si,o , n), m} = hi + g i ,o ,

where clgi,o  belongs to r e ° . Set h= h i + ih 2 and g o = Lo Then

d(S+ SO= d(h +g o ) o n  G,

and

+ 0)11R- - I I  d(S + S 0)11 I f IIR -G —  I d_ R -G  •

By the way

(d(S+ So — h — g o ), d(S + So))R-6

+ S o — h — g o ), i*d(S+ S 0 ))R = 0,
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d(S + S0 ) !I = (d(h + 0 ), d(S + So))R-d•

Therefore

O I ld (S + S o  —h — go)112

= Ild(S + So)I1 2 — 2(d(h + go), d(s+ so))+ II d(h + o)ii 2

= Ild(h+ 0)11 2 — Ild(S + S 0)112 SO.

Thus d(S +SO= d(h +S.
0 ). It follows that f is bounded on R — G.

This boundedness allows that the multiplications of meromorphic functions with
symmetric behavior have finite Dirichlet integrals in a neighbourhood of the ideal
boundary. Further, we have

Proposition 5. L et (51 an d  62 be f inite div isors. If  f i e S((5i ; T s )  i=1, 2, then

f1.f2 S(6,62 ; r s).

Pro o f . We can write

dfi =dS i + dWi o n  R —V,

where S i are harmonic and Si .J=S i and Wi are Dirichlet potentials. The functions
Si and Wi have continuous extensions S i and Wi to Royden's compactification R* of
R and Wi are zero on the harmonic boundary of R* (cf. [4]). Since (S 1 + W1) x
(S2 + W2 ) has a finite Dirichlet integral, by the Royden's decomposition

(S, + WI ) (S2 + W2 )= h +P,

where h  is a harmonic function and P is a Dirichlet potential. Note that h  is a
solution H 5 1 g 2 of generalized Dirichlet problem on R* with boundary value S,S 2

and hoJ = h .  Since d(f1 f 2 )= dh + dP on R —V, f i f 2  belongs to S(6 1 62 ; Fs ).

Similarly we can prove the following.

Proposition 6 .  Let (5 be a finite divisor and fe  S(ô ; F8). Let a complex number
Œ be excluded from the boundary cluster set n {f(R— R s ); R„ is a regular exhaustion
of R } .  Then 1/(f—Œ) has the symmetric behavior.

As for the F, gap values we have, by Proposition 5, the following.

Proposition 7 .  If  n is a T's non gap value at p, then for every positive integer m
the integer nm is also a f ,  non gap value at p and D(rn; F s )=D(p^m - 1 ; I's ).

At last we give examples of meromorphic functions with the symmetric behavior.
Let D, ={z e C; I z I <1}, D2= e-E and D3= C - F, where E is a compact set in C
which is symmetric with respect to real axis and F is a compact proper subset in a
unit circle. T h en  J i (z)= 2, J2 (z)= 2 and J 3(z)= 1/2 are anticonformal mappings
on D1, D2 and D3 respectively. Let Ri be an n sheeted full covering on Di such that

hence
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the branch points lie on a set B i which is invariant by Ti and the lift J i of J i can be
defined to give an  anticonformal mapping on R i . Further provide that 0 E B 1 ,
oo e B 2  and CO E B3 are isolated branch points of order n - 1  and no accumulating
point of B3 lies out of the unit circle. A meromorphic function f ,(z )= z + llz  has the
symmetric behavior o n  R,. If the genus o f R ,  is  la rg e r th an  n ,  zero i s  a

s Weierstrass point. When E consists of slits on y =  +  O x  or y = 0, f2 (z) = z 3 has
also the symmetric behavior on R 2 . On R3 f 3 ( Z ) = Z  is a meromorphic function with
the symmetric behavior, which is unlike f ,  and f 2 a t  the following point : f1 0 J 1 =

f20.12 -f2  but f,../ 3 0 f 3 . The reason why f i has the symmetric behavior is f i ../ =f i

on the boundary.
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