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Introduction

A quasiconformal mapping between two Riemann surfaces induces an iso-
morphism between the Hilbert spaces of square integrable harmonic differentials on
those surfaces, and it is known (cf. [10]) that such an isomorphism preserves several
important subspaces. The first purpose of this paper is to generalize such an iso-
morphism for the case of a deformation from a Riemann surface with a finite number
of nodes to another (cf. §1-1°)). Let (f; R, Ry) be an allowable deformation
(cf. §2-1°)) from such a surface R to another R, then we will show in §2 (Theorem 1)
that the mapping H naturally induced from fis a bounded linear injection from the
Hilbert space I',(R,) of square integrable harmonic differentials on R, into I',(R),
and has similar properties as in the case of quasiconformal mappings. We also
give an estimate of the norm of H, which is coincident with the known one when f is
a quasiconformal mapping.

Now there are several investigations concerning on continuity properties of the
above Marden-Minda’s isomorphisms on the Teichmiiller space (cf., for example,
[7] and [12]). The second purpose of this paper is to show certain continuity pro-
perty of H on the finitely augmented Teichmiiller space T(R*) of arbitrary Riemann
surface R* (cf. §1-1°)). Actually, we will show in §3 (Theorem 4) that H,,(w) con-
verges to  strongly metrically for every weI'(R,) when (R, corresponding to f,
converges to Ry and) {f,},=, is an admissible sequence.

Also we state related results on Dirichlet finite harmonic functions. See
Theorem 2 in §2-2°) and Theorems 5 and 6 in §3-2°).

§1 is preliminaries, where we give definitions of notions concerning on the finitely
augmented Teichmiiller space and the spaces of differentials and functions.
Theorem 1 is proved in §2-3°), and a general sufficient condition with which a
given sequence of differentials converges strongly metrically is given in §3-1°)
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(Theorem 3), and proved in §3-3°). As applications we show several results includ-
ing Theorem 4.

§1. Preliminaries

1°) Finitely augmented Teichmiiller spaces. A Riemann surface with nodes
is a connected complex space R, on which three are k points N(R)={p;}%_,
(0<k< + ), called nodes of R, such that (i) p; has a neighbourhood homeomorphic
to the analytic set {z,-z,=0, |z,|<1, |z,] <1}, with p; corresponding to (0, 0);
(ii) each component of R — N(R), called a part of R, is an ordinary Riemann surface
whose universal covering surface is conformally equivalent to {|z|<1} (cf. [4]).
A continuous surjection f from a Riemann surface R with nodes onto another R’ is
called a deformation if f~1 restricted on R’ — U is quasiconformal for every neighbour-
hood U of N(R') and f~!(p) is either a node of R or a simple closed curve on R — N(R)
for every p in N(R').

Now let a Riemann surface R* without nodes be given and consider the set of
all deformations from R* onto another surfaces with or without nodes. Two defor-
mations (f;; R*, R,) and (f,; R*, R,) are called equivalent if there are homeomor-
phisms g from R, onto R, and h from R* onto itself which are homotopic to a
conformal mapping from R, onto R, (namely, a homeomorphism from R; onto R,
which is conformal on R, — N(R,)) and to the identical mapping of R*, respectively,
such that gof, =f,oh on R*. The augmented Teichmiiller space of R* is the set
of all equivalence classes of deformations from R*.

In this paper, we consider only surfaces with a finite number of nodes. The
subset of the augmented Teichmiiller space of R* consisting of all equivalence classes
of deformations from R* to such surfaces (with a finite number of nodes) is called
the finitely augmented Teichmiiller space of R* and is denoted by T(R*). A point
of T(R*), an equivalence class of a deformation (f; R*, R) is called a marked
Riemann surface with nodes, and is denoted simply by a representative (f; R*, R),
or even by R when the marking f is clear from the context. A deformation f=
(f; Ry, R,) from a marked Riemann surface R, =(f;; R*, R,) with nodes to another
R,=(f,; R*, R,) is called a marking-preserving deformation from R, to R, if there
are homeomorphisms g and h from R, and R*, respectively, onto themselves which
are homotopic to the identical mappings such that gofof; =f,oh. Recall that the
subset {R e T(R¥): N(R) is empty} is the usual Teichmiiller space of R* (without
topology). For the basic results on Teichmiiller spaces, see for example, [2].

Next, following Abikoff [1], we define a Hausdorff topology on T(R*). Let
R, e T(R¥) be fixed. For every positive ¢ and every neighbourhood U of N(R,)
on R, we set

W(e, U)={R € T(R*): There is a marking-preserving deformation (f; R, R,)

such that f~1 is (1 +¢)-quasiconformal on Ry, —U}.
Taking these sets {W(g, U): ¢ is positive and U is a neighoburhood of N(Ry)} as a
fundamental neighborhood system at R,, we have a Hausdorff topology on T(R¥),
which is called the conformal topology. 1t is clear that T(R*) equipped with this
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topology satisfies the first countability axiom, hence we need to consider only
sequential convergence. Also note that on the Teichmiiller space T(R*) the con-
formal topology is coincident with the usual Teichmiiller topology.

Convergence of R, to R, on T(R*) is equivalent to the existence of a sequence
{(fx; Ry, Ro)}-; of marking-preserving deformations f; from R, to R, such that for
every neighbourhood U of N(R,), (fi! is quasiconformal on R,—U for every
k from the definifion and) it holds thatgirg K(f%x!, Ro—U)=1, where and in the sequel,

we denote by K(f, E) the maximal dilatation of a quasiconformal mapping f on a
borel set E. We call such a sequence an admissible sequence for {R,}%-, (converging
to R, on T(R*)).

Finally for every R € T(R*), we call an open neighborhood U of N(R) such that
U is compact in R, and every component of U contains exactly one node of R and
is homeomorphic to {z,-z,=0:|z,|<]1, |z,]<1} a standard neighbourhood of
N(R). Fix such a U, and map each component of U— N(R) conformally onto
{0<|z|<2}. Then the union U(e) of N(R) and all preimages of the part {0<|z| <&}
is a standard neighbourhood of N(R) for every ¢€(0, 1] and {U(¢): €€ (0, 1]} isa
fundamental neighbourhood system of N(R), for N(R) is a finite set. We call
this system the standard system of neighbourhoods of N(R) with respect to U.
Also for every g€ (0, 1], we denote by R(e, U) the set R—N(R) U U(e).

Here we give a special example of a standard neighbourhood of N(R), though we
use such a neighbourhood only in the proof of Theorem 3 in §3. For every part S
of R, let {p;= pj(S)};fLSI’ be punctures of S corresponding to N(R). If S admits
Green’s functions, then letting g(p, p;) be Green’s function on SU {p;} with the
pole p; for every j, set

n(S)
(i) bs(p)= J; 9(p, pp)-

If not, then for every pair {p;, p;;} in {p;}1), fix a harmonic function g(p; p;, p;)
on S uniquely determined up to constants by the following conditions; g(p; p;, p;) is
bounded outside any neighbourhood of {p;, p;}, and g(z;; p;, p;;)+log|z;| and
g(zj; pj» py)—logl|z;|, respectively, are harmonic in a neighbourhood of z;=0
and z; =0, where z; and z; are local parameters near p; and p;. such that p; and p;
correspond to z;=0 and z; =0, respectively. Here we may assume that {{p,;_,,
P2} )7y are all pairs in {p;}$) such that p,;_, and p,; correspond to the same
node of R, (which may be empty). Now set

. m n(s)
(i) bs(p)= X 9(p; P2j—1» P2)+ 2 9P Pams1s D))
Jj=1 Jj=2m+2

where the second term of the right hand side is empty if n(S)=2m or 2m+1. In
each case, we call bg(p) the indicator function on S. Then for every sufficiently
large M, the set Ug, ={|bs(p)|>M}, added a suitable doubly connected deleted
neighourhood of p,s, if n(S)=2m+1, is a deleted neighbourhood of {p;}1<) whose
components are doubly connected and relatively compact in R for every part S.
The union Uy, of N(R) and {Ug ,: S is a part of R} is a standard neighbourhood of
N(R).
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2°) Spaces of differentials and functions. For every R in T(R*), we denote by
T'(R) the Hilbert space of square integrable differentials on the finite union R— N(R)

of Riemann surfaces with the inner product (v, w')g= wA*@', where *w’

is the conjugate differential of w’. A differential w belongs({z I’(R) if and only if
wlg € I'(S) for every part S of R, where w|g is w restricted on S. Various subspaces
of I'(R) are defined similarly as in the case of ordinary Riemann surfaces (cf. for
example, [3] and [6]). In this paper, we treat only real differentials and consider
I'(R) as the real Hilbert space. The only one exception is the space I',(R) of all
analytic square integrable differentials on R— N(R), which is used in §3.

For the sake of convenience, we recall some definitions. Let I',(R)={w e I'(R):
w is harmonic}, I' ,o(R) be the closure of the space {df: fis a C*-function with com-
pact support on R— N(R)} in I'(R), and *I',o(R)= {*w: we I',o(R)}. Then we have
the orthogonal decomposition; I'(R)=TI",(R)+ T ,o(R)+*I' ,o(R), and I'y(R)+TI,o(R)
is equal to the space I' (R) of all square integrable closed differentials on R — N(R).
Next let I, (R)={weTl(R): w is exact} and I',(R)={wel'(R): w is semi-exact,

namelyg w=0 for every dividing curve on every part of R}. Then the subspaces
I',o(R) ar;d I',.(R), respectively, are characterized by the orthogonal decompositions;
I'(R)=T,o(R)+*I,(R)=T,(R)+*I,,(R). Here we recall other characterizations
of these spaces. - For every 1-cycle ¢ on R— N(R), there is the uniquely determined
harmonic differential o(c)=0(c, R) in I',(R) such that (w, a(c))R=S o for every

in I',(R), which is called the period reproducer for ¢. Then I ,,O(R)cand I, (R) are
the closure in I',(R) of the spaces spaned by

{*a(c): c is a cycle on R—N(R)}, and
{*o(c): c is a dividing curve on a part of R},

respectively.
Next for every R in T(R¥), let R, be the union of all parts of R admitting Green’s
functions, and set

HD(R)={u: u is a harmonic function on R such that du € I'(R)},

where and in the sequel, u is considered to be zero on R—N(R)U R; for every
ue HD(R). Clearly, I',,(R)={du: ue HD(R)}. Also corresponding to I',o(R) and
T'(R)=T,o(R)+TI,(R), we consider the spaces Dy(R) and D(R) consisting of all
Dirichlet potentials and functions, respectively, on R— N(R), where we set Dy(S) =
D(S) on a parabolic surface S. For definitions see [5] Ch. 7. It is known ([S]
Satz 7.5 and 7.6) that D(R)=HD(R)+ Dy(R) and I',o(R)={df: f€ Do(R)}.

Finally take a pair of points R and R, in T(R*) such that there is a marking-
preserving deformation (f; R, R,). Let L(R, R,) be the set of cycles on R whose
representatives are simple closed curves freely homotopic to some f~!(p) with pe
N(R,) (and with suitable orientations), and set

I'y(R, Ry)={ ¥ a;*o(c;) withreal a;}, and

cjeL(R,Ro)
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I'(R, Ry)={weTl(R): S =0 for every ce L(R, R,)},

where x stands for h, he, hm, hse or h0. It is clear that I'y(R, R,) is a finite dimen-
sional (closed) subspace of I' (R, R,) and that I', (R, Rg)=T,.(R) and I',,(R, Ry)=
I',(R). We also note the following

Proposition 1. (i) I, (R, R0)={weF,,(R):S w=0 for every dividing curve
¢’ on every component of R'}, where R’=R—{}‘1(p): PE N(Ry)} (which is an
open subset of R— N(R)).

(ii)) TI'w(R, Ry) and I'y, (R, Ry)=T,(R) are the closure in I')(R) of the spaces
spaned by {*a(c', R): ¢’ is a cycle on R’} and {*a(c’, R): ¢’ is a cycle on R’
dividing both on every component of R’ and on every part of R}, respectively.

Proof. (i) Let wel, (R, Ry) and a dividing curve ¢’ on a component S’
of R’ be given arbitrarily. Then clearly, ¢’ is homologous to a dividing curve ¢ on
a part of R (containing S’) modulo cycles generated by L(R, Ry) on S’. Hence from

the assumption on w, it holds that \ w= S w=0.
Next let w e I'(R) satisfy the condition that|\ =0 for every dividing curve ¢’

on every component of R’, and ¢ be any dividingccurve on a part S of R. Take a
boundary component ¢, =f"1(p) (with pe N(R,)) of a component of R’ contained in
S arbitrarily. Then the algebraic intersection number ¢, x ¢ between ¢, and ¢ is
zero, for ¢ is dividing on S. Since ¢, is.a simple closed curve, we can find by a
standard argument a cycle ¢, homologous to ¢ on S such that ¢, N ¢; =@. Consider-
ing the representation by a canonical homology basis on S—c,, we can see that c,
is a dividing cycle on each (or the one) component of S—¢,. Repeat this argument,
and we can find a cycle ¢’ homologous to ¢ on S, contained in R’, and dividing on
every component of R’. Hence from the assumption, it holds that a)=S 0= 0,
which implies that w e I',(R). And since every f~!(p) with pe N(Roc) is a l;oundary
component of some component of R’, S w=0 for every ce L(R, R,), namely, we
Fhse(R9 RO)

(ii) Denote by I'" and I'” the closure in I'(R) of the spaces spanned by
{*a(c’, R): ¢’ is a cycle on R’} and {*¢(c’, R): ¢’ is a cycle on R’ dividing both on
every component of R’ and on every part of R}, respectively. Then it is clear that
I'yo(R, Ry)>TI" and I',,(R)>T". First since we have shown in (i) that every dividing
curve ¢ on R—N(R) is homologous to a dividing cycle on R’, we have that
rhm(R’ R0)=F”'

Next suppose that I'" is a proper subspace of I',o(R, Ry). Then from the
second characterization of I',o(R), we can find a curve ¢’ on a part S of R such that

*a(c’, R)eTo(R, Ry)—T". Let ¢, be as in (i), then ¢’ x c0=S *a(c’, R)=0(, where
c
¢, is considered as a cycle on S), for ¢,€ L(R, R,). Hence b; the same argument

as in (i), we can show that ¢’ is homologous to a cycle on R’, which implies that
*a(c’, R)eI". This contradiction shows that I',o(R, Ry)=1I". q.e.d.
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§2. Isomorphisms induced from allowable deformations

1°) In this section, a marking-preserving deformation (f; R, R,) is specially
called an allowable deformation, to stress the property that f~! is quasiconformal on
R, —U for every neighbourhood U of N(R,).

Now, let an allowable deformation (f; R, R,) and a standard neighbourhood U
of N(R,) be given arbitrarily. Take wel,(R,), then w|y_yp, is exact, hence
there is a harmonic function h(p) on U—N(R,) such that dh=w on U— N(Ry).
Here we can assume that h(p) is continuous on the whole U. We call a continuous
function on U, harmonic on U—N(R,), a harmonic function on U. Next take a
continuous e(p) € D(R,) such that 0<e(p)<1, e(p)=0 on U(e,) and e(p)=1 outside
U(1), where {U(e): 0<e<1} is the standard system of neighbourhoods of N(R,)
with respect to U and ¢, is an arbitrarily given value in (0, 1). In the sequel, such
a function e(p) is called a U-function. Now set

E(w)=e(p)-w+h(p)-de

with a convention that h(p)-de=0 outside of U(1). Then it is easy to see that
E(w)=0 on U(gy), E(w)=w outside U(1) and E(w) e I' (R,) (cf. [10] Proposition 4).
Hence the pull-back (E(w))of by f belongs to I'(R), for f~1 is quasiconformal on
R, — U(g,) which contains the support of E(w). Thus we can define a linear operator
H, from I'(R,) into I',(R) by setting H /() be the projection of (E(w))<f into I',(R)
for every w e I'(Ry).

Lemma 1. H[ is well-defined, namely, H (w) does not depend on the choice
of U, h(p) and e(p). And H «(I'y(R,)) is contained in I'y(R, R,).

Proof. Take another triple of a standard neighbourhood U’, a harmonic func-
tion h'(p) on U’ such that dh'=w, and a U’ function ¢'(p). Setting E'(w)=e€'(p)- w0+
h'(p)-de’, let H;(w) be the projection of (E'(w))of into I'y(R). Here considering the
third neighbourhood, it suffices to show that H (w)=H'/(w) in case that U(1)>U".
Then it holds that

E(w)—E(w)=d((e—¢€)-h)+(h—h')-de'.

And since h—h' is constant on each component of U’, g=(e—e")-h—(h—h')(1—¢’)
is a continuous bounded Dirichlet potential and E(w)—E'(w)=dg. Because g(p)
is constant on each component of a neighbourhood of N(R,) and has a compact
support in Ry— N(R,), we can see (cf. Proposition 2 below) that gofe Dy(R), or
equivalently, dg of € I' ,o(R), which implies that H (w)= H'/(w).

Next since E(w)e f=0 on f~1(U(g,)), H [(w) is exact on f~(U(go)), henceg H (w)
=0 for every ce L(R, Ry). Thus H(I'(Ro))=Ty(R, Ry). q.e.d.

Remark 1. (i) Ifanallowable deformation f=(f; R, R,) is a homeomorphism,
then for every neighbourhood U of N(R,) we can construct a (marking-preserving)
quasiconformal mapping f from R,—N(R,) onto R—N(R) such that fof is the
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identical mapping outside U(cf. the proof of [14] Lemma 1). And we can easily see
that H, is coincident with the linear operator (f~')§ induced by f~! in the sense of
Marden-Minda (cf. [10]).

(ii) Allowability is inessential for the definition of H,. In fact, we have defined
H, for every marking-preserving surjection (g; R, Ry) such that g~! is quasicon-
formal outside a standard neighbourhood Uy(=U(g,)) of N(Ry). Also note that for
such a g we can construct an allowable deformation f such that f~!=g~! outside
an arbitrarily taken neighbourhood of N(R,) containing U, and then H  is coincident
with Hz.  On the other hand, allowability gives a reasonable estimate of the norm
of H, (Theorem 1 (i)).

Now the main theorem of this section is the following one, which generalizes
the Marden-Minda’s results (cf. [10] Theorems 6 and 7).

Theorem 1. (i) Let (f; R, Ry) be an allowable deformation, then the operator
H, induced from f is a bounded linear injection from I'(R,) into I'(R, R,), and
neH is an isomorphism from I'\(R,) onto I'(R, Ro)/T'x(R, R,), where and in the
sequel, n is the natural projection from IR, Ry) onto I'(R, Ry)/[I'y(R, Ry).
Moreover, it holds that

a_ 2 )1/2)2. .
1H02< inf (1+ (ortzsy) ) KU Rofe, U,
where U is any given standard neighbourhood of N(R,).

(ii) It holds that moH (I' (Ro))=n(I' (R, Ry)), where x stands for he, hse, hm
or hO.

The proof will be given in §2-3°).

Remark 2. In case that f is quasiconformal homeomorphism, that estimate
in Theorem 1 (i) reduces to the known one (i.e. |H/|2<K(f™!, Ry)). Also
(I (R, Ro))=T(R) for any x as in Theorem 1 (ii), and H, itself is an isomrophism
from I' (R,) onto I'(R) as is shown by Marden-Minda.

2°) Corresponding to the operator H,, we can define a mapping H/ from
HD(R,) into HD(R). Let (f; R, Ry) be an allowable deformation (cf. Reamrk 1
(i), U be a standard neighbourhood of N(R,) and e(p) be a U-function, then e(p)u(p)
€ D(R,) (with a convention that u(p)=0o0n Ry—(Ry)s U N(R,) for every u € HD(R,)).
Since e-u=0 in a neighbourhood of N(R,), (e-u)of belongs to D(R). We denote
by H/(u) the projection of (e-u)of into HD(R) for every u € HD(R,). This mapping
HY is well-defined (, for letting U’ and e’ be another pair of a standard neighbourhood
of N(R,) and a U’-function, (e-u)of—(e’-u)of is clearly a Dirichlet potential), and
can be considered as the correspondance between the Dirichlet solutions. To
state this more precisely, let SP be the Royden’s compactification of S for every
Riemann surface S, and 4(S) be the harmonic boundary of SP. (For the definition
and basic facts on the Royden’s compactification, see [5] and [11].) The com-
pactification RP of a Riemann surface R with a finite number of nodes is the union
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of R and the boundary {S?—S U (U n S): S is a part of R} with the natural topology,
where (U n S) is the closure of Un S in S? with a standard neighbourhood U of
N(R,). The harmonic boundary 4(R) of RP is the union of A(S) of all part S of R.
A continuous Dirichlet function g on R — N(R) belongs to Dy(R) if and only if g=0
on A(R). (Here recall that every continuous Dirichlet function can be extended
continuously to R?—R). The following fact is essentially well-known.

Proposition 2. Let (f; R, R,) be an allowable deformation, then f can be
extended to a continuous surjection from RP onto (Ro)P. Moreover, f gives a
homeomorphism from RP—R and A(R) onto (R,)° —R, and A(R,), respectively.

Proof. Fix a standard neighbourhood U of N(R,), then by the localization
theorem ([11] III. 5C or [5] Satz 9.11) and invariance under quasiconformal mappings
([11] I1L. 7C), we can see that f gives a homeomorphism from R? —f~1(U) onto (R,)?
— U such that f(4(R))=A4(Ry)." g.e.d.

Now every u € HD(R,) have the continuous boundary function on 4(R,), which
is denoted also by u, and the Dirichlet solution HY,, for the continuous boundary
function uof is coincident with H/(u), for (e- u)of has the same boundary function uof
on A(R), hence (e-u)of —HR, . e Dy(R). Here concerning Theorem 1, we note the
following

Theorem 2. Let (f; R, Ry) be an allowable deformation, then the linear
mapping H' is a bijection from HD(R,) onto HD(R), and it holds that

nedoH/(u) =mnoH ;(du) for every u e HD(R,).

Proof. Let U and e(p) be as above and take g, €(0, 1) so that e(p)=0 on Ul(g,).
For every v e HD(R), vof 1 restricted on Ry(gy, U) is a continuous Dirichlet function,
bounded in a neighbourhood of the support of de, hence e- (vof °!) can be considered
as an element of D(R,). We denote by I/(v) the projection of e- (vof 1) into HD(R,).
Then similarly as before, I/ is well-defined and I/(H”/(u)) is the projection of
e(e-u—gof 1) for every ue HD(R,), where g=(e-u)of—H/(u) is a continuous
Dirichlet potential on R— N(R). Because of Proposition 2, e-gof~! € Do(R,) and
it is clear that e-e-u—ueDy(R,). Hence it holds that I/(H/(u))=u for every
ue HD(R,). Similarly we can show that H/(I/(v))=v for every ve HD(R). Thus
(H/') texists and equal to I/, which show the first assertion.

Next to prove the second assertion, we need the following

Lemma 2. Let (f; R, Ry) and U be as above and u(p) be the characteristic
function on U—N(R,) of a fixed component of U—N(R,) (namely, u=0 on
U—N(R,) except for the fixed one component of U—N(R,), where u=1). Then
d(e-u)of with a U-function e(p) can be considered as an element of I' (R) and the
projection of d(e-u)of into I',(R) belongs to I'y(R, Ry).

Proof. It is clear that (e-u)of is a continuous bounded Dirichlet function on
f~YU) and is constant on a neighourhood of every boundary component of
f Y (U—-N(R,)). Hence w=d(e-u)ofel (f~'(U)) and has a compact support in
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f~1(U), so we can consider @ as an element of I' (R).
Next we can easily see that the projection of w into I',(f~1(U)) is equal to
*a(c, f~1(U)) with some c € L(R, R,) (oriented suitably), hence it holds that

Sc B=(@, o(c, [T UN)s-10y=(D, —*d(e-w)of)s-1v)
=(d, —*w)g for every @ el ,(R).

Thus the projection of @ into I',(R) is equal to *a(c, R) with the same ce L(R, Ry)
as above, which shows the assertion. q.e.d.

Now returning to the proof of Theorem 2, let ue HD(R,) and a harmonic
function h(p) on U such that dh=du on U be fixed. Then we have that

dHY(u) — H (du) =d(e - u)of — (e du+ h - de)of + dg =((u — h) - de)of + dg

with a suitable g € Do(R). Since u — h is constant on every component of U — N(R,),
we conclude by Lemma 2 that dH/(u)—H (du)eI'y(R, Ry), which implies that
nedH/(u)=noH (du). q.e.d.

3°) The proof of Theorem 1. First we show the following
Lemma 3. Let (f; R, R) be as in Theorem 1, then H, is bounded linear,
and for any standard neighbourhood U of N(R,), it holds that

it o, (1 (agtaer) ) 007 Rote, O

Proof. Fix a standard neighbourhood U of N(R,) arbitrarily, and for every
e €(0, 1), take as a U-function the function e,p) corresponding to

ez)=log(|z|/e)/log (1/e) on {e<|z|<1},
=0 on {|z|]<e}, and =1 on {1<]|z|<2}

under a mapping from every component of U— N(R,) onto {0<|z|<2}. Then by
a simple computation, we have that |de,|%,=2n/log(1/¢), where and in the sequel,
|@||g implies the Dirichlet norm of a differential w on R (i.e. |w|% =(w, ®)g).

Next fix w e I',(R,), and take a harmonic function h(p) on U with dh=w so that
h(p)=0 for every pe N(R,). Then we can show that

h(P)?< = |dhlg  forevery peU().

Hence we have that

E{@)[Iro(= lle; - @+ hde,||g,)

<1+ delwV™)- 10l <(1+ (o) ) 1ol

Also since the support of E (w) is contained in Ry(g, U), we can show that
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[Efw)of [R<K(f', Ro(e, U))- |Efw)l%, -

Thus noting that |[H (w)|z<|E(w)f|lr and w is arbitrary, we have the desired
estimate on the norm of H . g.e.d.

Next to prove Theorem 1, the following lemmas are crucial, which generalize
[10] Theorem 4. (Also see [7].)

Lemma 4. For every cycle c on Ry— N(Ry), it holds that
H  (*a(c))—*a(f1(c)) e 'N(R, Ry).

Proof. We may assume that ¢ is a simple closed curve. Take a relatively
compact doubly connected region Win R,— N(R,) which contains ¢. Then we can
find continuous g,e D(W) and ge Dy(R,) such that 0<g.<1, g,=0 and =1,
respectively, in a neighbourhoods of one and the other boundary components of W
and *o(c)—dg,.=dg with a convention that dg,=0 on R,— W.

Now take a standard neighbourhood U so that Wn U= and let h(p) be a
harmonic function on U such that dh=%*a(c), then we have that

E(*o(c))of = (e(dg.+dg) + hde)of = dg of + d(e- g)of + (h—g)de)of.

Because (e-g)ofe Dy(R) and h—g is constant on every component of U— N(R,),
we have by Lemma 2 that H (*a(c)) —dg.of e (R, Rp)+T ,o(R).
On the other hand, similarly as in the proof of Lemma 2 we have that

(0, *(dg o Nr=(0, *(dgco ) s-rary=(@', —a(f71(c), fTHUW))) -1w)

= —S [0)]
S ()

Thus we conclude that H [(*a(c)) —*a(f~*(c)) € 'v(R, Ry). q.e.d.

’

for every ' €I',(R).

Lemma 5. For every w and o' in I'(Ry), it holds that
(H (@), *H ((0))r = (@, *@)g,,.

In particular, for every weTI',(R,) and every cycle c on Ry—N(R,) we have

S H () = S o.

S(e) c

Proof. Let E be an operator as before, then it holds that
(H (@), *H ((0")g = (E(@)°f, *(E(@")f )&

={§_ —E@srE@)= ([ —B@)AEw)
R-N(R) Ro—N(Ro)
=(E(w), *E(0)g,= (@, *)g,
for every w and o’ in I'(R,). In particular, for every weI'\(R,) and every cycle
¢ on Ry—N(R,), we have from Lemma 4 that
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Sf-l(c) H ((w)=(H y(@), o(f~())r

= (H(0), —*H (*o@)x=(®, o(e)r,= | o

for H (w)eI'y(R, Ry) by Lemma 1 and *I'y(R, R,) is orthogonal to I'y(R, R,) from
the definition. q.e.d.

Finally we construct the inverse mapping of noH, explicitly. Again fix U and
e(p) as before. Let V=f"1(U), then o|, is exact for every we ', (R, R,), hence
there is a bounded harmonic function v on V¥ such that dv=w on V. Then vof~1!
is also a continuous bounded Dirichlet function on U — U(e) for every ¢ (0, 1), and
we can consider the differential

Fw)y=e-(wof " 1)+vof!-de

as an element of I' (R,). We denote by I (w) the projection of F(w) into I',(Ry).
Then we have the following

Lemma 6. The mapping I, is well-defined. And it holds that I (w)=0
for every welN(R, Ry), hence I, can be considered as a mapping from
T'y(R, Ro)[T'N(R, Ro) into I'y(Ry).

Proof. Let U’, ¢’ and v’ be another triple such as used in the definition of F,
then noting that (v’ —v)of ! is constant on each component of U’ (, where we assume
that U' <= U(1) as in the proof of Lemma 1), we can show similarly as in the proof of
Lemma 1 that I, is well-defined.

Next let U, e and V be as above. Then for every ce L(R, R,), we can find a
component V,_ of V, a continuous g.e D(V,) and a continuous g € Dyo(R) such that
0<g.<1, g.=0 and =1, respectively, in a neighbourhood of one and the other
boundary components of V,, and *o(c) —dg.=dg with a convention that dg,=0 on
R—V,. Take ¢, so that e(p)=0 on U(g,), and let U, be the component of U — Ul(g,)
on which e(g.of~!) is not a Dirichlet potential. Then similarly as in the proof of

Lemma 2 (using U, instead of f~1(U)), we can show that S w=(w, —*d(e-g.of ))g,
for every weTI',(Ry), and hence d(e-g.of ~1)—*a(c,, RO)’e I'.o(Ry), where ¢, is the

cyclein U, corresponding to c¢. Since *o(c,;)=0and e-(gof~1) € Do(R,), we conclude
that F(*a(c)) € Do(R,), or equivalently, I(*a(c))=0. g.e.d.

Lemma 7. (i) I/(H/w))=w for every weI'(R,).

(i) H(I(w))—wel'y(R, Ry) for every wel'(R, Ry).

Proof. Fix wel'(Ry), U, e(p) and h as before. Then there is a continuous
g € Do(R) such that dg=H [(w)— E(w)<f, where E(w)=e-w+hde. Take another
standard neighbourhood U’ of N(R,) such that e(p)=0 on U’, and set V=f"1(U").

Since E(w)of=0 on V, we can take g as v for H(w) in the definition of F. Hence
letting e’ be a U’-function, we have that
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F'(H (w))=¢e'H (w)of 1 +gof 'de’ =d(e’ - gof ')+ E(w).

Since e’ - gof "1 € Dy(R,) and E(w)—w e I',o(R,), We have the assertion (i).

Next fix we I'(R, R,), and let g be a continuous Dirichlet potential on R, such
that I (w)=F(w)+dg (=e-wof '+vof~'de+dg). Then dg=I/(w) on U’, for
e(p)=0 on U’. Hence for every harmonic function A'(p) on U’ such that dh'=
I (w), it holds that g—h' is a linear combination of the characteristic functions of
components of U'— N(R,). Since ¢'(p)=1 on the support of e(p), we have that

E((w)—w(=(eI(w)+h"-de)of—w)
=eof -w+v-deof+ (e -dg)eof+(h'-de)of —w
=—d((1—ef)-v)+d(e - g)of +((h' —g)- de')f.
Here it is clear that —(1 —eof)-v and (e’ - g)of belong to Dy(R). Also from above

we know that ((h'—g)de’)of=d((h’'—g)e’)of, and by Lemma 2 we conclude that
H (I (w))—weTlN(R, Ry). q.e.d.

Now we give the proof of Theorem 1. First H(I'y(Ro))<TI'y(R, R,) by
Lemma 1. Next, if noH (w)=mnoH ("), then I (H (w))=1,(H (w")) by Lemma 6.
Hence w=w" by Lemma 7 (i). which shows that noH is injective, hence so is also
H,. Finally by Lemma 7 (ii) we have that moH (I',(Ro))=T4(R, Ro)/I'x(R, Ry).
Thus by Lemma 3 noH, is a bounded linear bijection from I'y(R,) onto I'(R, R,)/
I'y(R, Ry), and the closed graph theorem implies that noH is also an isomorphism.
Thus we have the assertion (i).

The assertion (ii) for I',, has been already shown in Theorem 2, for
noH ((I'y(Ro)) =noH ((d(HD(Ry))) = ned(H/(HD(R,))) = ned(HD(R)) = n(I',(R)). For
T',o, note that ¢ is a cycle on Ry—N(Ry) if and only if f~!(c) is one on R’ (=R—
{f7'(p): e N(Rp)}). Since noH ((*a(c))=n(*o(f~*(c))), hence *o(c)=1,(*a(f*(c)))
for every cycle ¢ on Ry —N(R,) by Lemmas 4 and 7 (i), and H and I, are continuous
as are shown above, we see from Proposition 1 (ii) that meH (I'yo(Ro))=n(l)=
n(yo(R, Ry)), where I'' is as in the proof of Proposition 1, and that I (I',o(R, Ry))=
I(I")=To(Ro). Here Lemma 7 (ii) implies that n(I'yo(R, Ro))=moH (I [(I'yo(R; Ro)))
cneH (I'yo(Ry)), hence we conclude that moH (I'yo(Ro))=n(I'yo(R, Ro)).

For the case of 'y, note that every dividing curve ¢ ona part S of Ry, thereisa
dividing curve ¢; on S such that a(c, Ry)=0(c,, R,) and one of component of S—c,
contains no punctures of S corresponding to nodes of R,. Clearly, f~!(c,) is a divid-
ing curve both on the component of R’ and on the part of R containing it. Hence
similarly as above, we see that noH (I',,(Ro)) = (") =n(I",u(R, Ry)), where I'” is
as in the proof of Proposition 1. On the other hand, for every dividing cycle ¢’ on
a component of R’, f(c') is a dividing curve on the corresponding part of R, hence it
is clear that I(I',,(R, Ro))=I/(I'"")=T,(Ry). Thus the assertion for I, follows
from Lemma 7 (ii) as above.

Finally, Lemma 5 it holds that S H s(w) =S 0=0 for every w € I'y,(R,) and

J(c’)
every dividing curve ¢’ on every component of R’, hence H ((I'y;(R)) = 'yse(R, Ro)
by Proposition 1 (i). Also by Lemmas 5 and 7 (ii) we see that
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Sclf(w)= S,_.(c) Hf(lf(w))=§ =0

S~ 1(e)
for every wel',, (R, Ry) and every dividing curve ¢ on every part of R,, for
*a(c")=0 for every c¢"eL(R, Ry). Hence I/(I,.(R, Ry)<=TI}(R,), and
S 1e)

again by Lemma 7 (ii) we have the assertion for I',.
Thus we have proved Theorem 1.

§3. A continuity property of H, on T (R*).

1°) In this section, we investigate a continuity property of the operator H,
on the finitely augmented Teichmiiller space T(R*). For this purpose, first we
state such a property for holomorphic abelian differentials. We consider the Hilbert
space I',(R) of square integrable holomorphic abelian differentials on R— N(R) for
every Re T(R¥), and for every marking-preserving deformation (f; R, R,), set
I'(R, Rp)={weTl,(R): Rew and Im w belong to I'(R, R,)}. Also we denote by
d.h the holomorphic differential dh+ i*dh for every real harmonic function h on
R—N(R).

Fix a sequence {R,}, converging to R, in T(R*), and an admissible sequence
{(fi; Ri,» Ro)}i-, of marking-preserving deformations (cf. §1-1°)) once for all. Let
0, € I';(R,) be given for every k, then we deform 6,0of;! as follows. For every part S
of Ry, let {p;}"%) be punctures corresponding to N(R,), and g(p, p ;) and g(p; p;, p;)
be as in §1-1°). Set af ;= gf;'(c )Ok, where c; is the cycle corresponding to a simple
closed curve which surrounds onljy pjon S. Now consider the indicator function
bg(p) on S defined in §1-1°) for every part S, and define the holomorphic differential
Os,. by

. : n(S)
(i) tL)s,k= %7?12:1 a?,k'dzg(': Pj), or

(ii) Os,k= 21_7:1;1 agj—l,k'dzg('; P2j-15 sz)

n(S)

i .
-E.j=2zm+2 af.k'dzg(' s Pam+1s pj),

according as bg(p) is defined by (i) or (ii) in §1-1°), for every k and S. Then we note
the following :

Lemma 8. For every k, j and S, it holds that
g 05,k= ai,j.
cy

Proof. Because { dig(-,p)={ dagCipp pp=={ doC-: p pi)=
<y J cyr n
—2ni, we need only toshow that *) af; ;= —a3;_;,and **) a3, ,=— Y a$

Jsk
j=2m+2
(or=0) if n>2m+2 (or n=2m+1) in the case (ii). ’
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First *) is clear, for ¢,;_; and c,; bound a component of a standard neighbour-
hood of N(R,), hence fi!(c;;-) is freely homotopic to —fkl(czj) on R, for every k.

Next because S admits no Green s functions in the case (ii), 2 (—c;)bounds a

parabolic end in S, hence o is Z —f%'(c;) no R,. Then it is wel] known (cf. [6]
Corollary 8.9) that Z S wj 0 for every wel'(R,), which, togather with *),
rit(ep

implies **). q.e.d.

Now fix a standard neighbourhood U of N(R,) and ¢, € (0, 1) arbitrarily. Then
from the assumption f3! is quasiconformal on Ry(ey, U) for every k. We define
a differential w, on R, by setting

Oyls=0kof ks —Os

on every part S of R,. Then by Lemma 8§, we can see that w, is exact on each
component of U(1) N Ry(gy, U). Hence we can find a continuous bounded
Dirichlet function g, on U(1) N Ry(gy, U) such that dg,=w,. So for every k,
we can consider the closed differential

FO,=e(p)- w,+9g, - de,

where e(p) is a U-function such that e(p)=0 on U(g,). It is clear that F6, is square
integrable and F, =w, on Ry(1, U). We denote by RO, and I6, the projections of
Re FO, and Im F0,, respectively, into I',(R,). (We can show similarly as in the proof
of Lemma 1, that R and I are well-defined.) Note that if 0, € I',(R,, R,), then it is
clear that RO, =1,,(Re 6,) and 10,=1, (Im 6,), where I, is as in §2. (Also note that
H; and I, can be defined and bounded linear for any surjection (g; R, R,) such
that g~! is quasiconformal outside some standard neighbourhood of N(R,), cf.
Remark 1 (ii).) Now we can prove the following

Theorem 3. Let R, converge to Ry on T(R*), {(fi; Ri» Ro)},; be an admissible
sequence of marking-preserving deformations, and 0, € I' ,(R,) be given for every k.
Suppose that

1) {l6:lr )= is a bounded sequence, and

2) (RO,—Reby, *(10,—1Im 0,))g, =0 for every k.

Then 0, converges to 0, strongly metrically (cf. [14] §2), namely, for every
neighbourhood U of N(R,) it holds that

21_'12 [0kof &' — 00l Ro—u=0.
The proof will be given in 3°) of this section. Here we note the following

Corollary 1. Let {R,}%, and {(fi; Ri, Ro)}%=y be as in Theorem 3, and
0. (R, Ry) be given for every k. Suppose that

1) {l6llr %=1 is a bounded sequence, and

2) (Ref,—H,(Refy), *(Im 0, — H (Im 0;))g, =0
for every k, then 8, converges to 0, strongly metrically.
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Proof. First for every k, let wi=Re6,—H,(I;(Ref,)) and wi=Imo,—
H;(I;(Im@,)). Then by Lemma 7 (ii), o} and w} belong to I'y(R,, Ro). Because
H;(I',(Ro))=T (R, Ry) by Lemma 1, I'y(Ry, Ro)=T'y(R;, Ro) from the definition,
*I'n(Ris Ro) is orthogonal to I'y(R,, Ro), and RO, =1 (Re0,) and 16,=1,,(Im 6,) in
this case, we see from Lemma 5 that

(Re 0, — H ;,(Re o), *(Im 6, — H,(Im 6,))),
=(wk+H (I, (Re6,)—Re 0,), *wk+*H,(I;,(Im 6,) —Im 0,))g, -
= (o, *o¥)g, +(H (I ;(Re 0,)—Re 0,), *H (I ;,(Im 6,)—Im 6)),
=(I,(Re 8,)—Re 05, *(I;,(Im 6,) —Im 6)),
=(RO,—Re 0, *(16,—Im 6,))g,.

Thus the condition 2’) implies the condition 2) in Theorem 3, and the assertion
follows from Theorem 3. q.e.d.

Remark 3. (i) Several kinds of continuity of (, and more quantitative results
on) differentials under quasiconformal mappings have been investigated by several
authors. See, for example, [7], [9], [13] and references of them.

(ii) We can also show the strongly metrical convergence of certain differentials
of the third kind. And in general, the strongly metrical convergence with some
reasonable conditions implies the geometrical convergence even on the finitely aug-
mented Teichmiiller spaces, as in the case of the Teichmiiller spaces treated in [14].
These investigations will be appeared elsewhere. (See also [15].)

2°) Applications. Returning to real harmonic differentials, we have the
following

Theorem 4. Let {R,}>, and {f,}5=, be as in Theorem 3. For arbitrarily
given wg e I'y(Ry), H (o) converges to w, strongly metrically.

Proof. Let 0, be the element of I'(R,) such that Re 8, =H ;,(w,) for every k.
Then by Theorem 1 (i), {|Re 0, ]| g, }i%, is a bounded sequence, hence so is {||0, |z, } i1
Next we show that RO,=1I,(Ref,)=w, Because Rel, el (R, R,), every af,
is purely imaginary, hence Re 6, is a real linear combination of dg(-, p;) or dg(-;
pj» pj)- Ineach case, we can see that Re 65, is exact and there is a harmonic function
ug, on S such that dug,=Re 0, and e(p) - us,(p) € Do(S) for every S and k, where
e(p) is any U-function with a standard neighbourhood U of N(R,). Hence Re F 0,—
I, (Re ;) € Do(R,), or equivalently, Rf, =1, (Re 0,) = w,.

Thus we have that (RO, —Re 0y, *(10,—Im 0,))g, = (0, *(16,—Im 6,)),=0 for
every k, and from Theorem 3 we have that 6, converges to 6, strongly metrically,
hence so does H ;,(w,) to w,. g.e.d.

Here we note the following

Proposition 3. Let {R,};%, and {f,}%=, be as in Theorem 3. Fix pe N(R,)
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and let ¢, be the cycle on R, corresponding to f;'(p) for every k. Then o(c;) con-
verges to zero strongly metrically.

Proof. Set 6,=0 and 6,=o0(c,)+i*o(c,) for every k. Since Im 0, e I'y(R,, Ro)
<I'y(Ry, Ry), we can show similarly as in the proof of Theorem 4 that 16, =1, (Im 6,),
which is equal to zero by Lemma 6. Hence we have that (R§,—Re6,, *(16,—
Im 60))g, = (RO, *I;,(Im 6,))g, = (RO, 0)g,=0 for every k. On the other hand, it
is well-known that ||a(c,)||%, is the extremal length of the homology class of ¢, on
R,, which tends to 0 as k tends to +oo. Thus the assertion follows from Theorem 3.

q.e.d.

Proposition 4. Let {R,}i>-, and {f,}7, be as in Theorem 3, and a cycle c on
Ry—N(Ry) be given arbitrarily. Then o(f;;'(c)) converges to a(c) strongly
metrically.

Proof. Set 0,=0(f3'(c))+i*a(f;'(c)) for every k. Since we can easily see
that {||lo(fz'(c)llr.}i=: is a bounded sequence, so is {||0,[ g, }i=;- Next Lemmas 4
and 7 (i) implies that I, (*a(f%'(c)))=*0(c), and as in the proof of Theorem 4, we
can show that 16, =1, (*a(fi'(c))), for *o(f;'(c)) € ['(Ry, Ry). Hence it holds that

(R6,—Re b, *(16,—Im 6,))g, = (RO, —Re 0, 0)g, =0
for every k. Thus the assertion follows from Theorem 3. q.e.d.

Now for harmonic functions, as a variant of Theorem 3, we have the following
generalization of Shiga’s result ([12] Theorem 1).

Theorem 5. Let {R,}> and {f,}i-, be as in Theorem 3, and uy,e HD(R,) be
given arbitrarily. Then dH'*(u,) converges to du, strongly metrically, and
HYx(ugy)of v 1 converges to uy locally uniformly on (Ry)g.

Corollary 2 (cf. [12] Theorem 4). Let {R,}io and {f;}3-, be as in Theorem 3,
and a continuous bounded function h on A(R,) be given. Let u, be the Dirichlet
solution of the boundary function hof, on A(Ry) for every k. Then uofi! converges
to uq locally uniformly on (Ry)g.

Proof. Using Theorem 5, we have the assertion by the same argument as in
the proof of [12] Corollary 1. g.e.d.

Finally we note that by the same argument as in the proof of Theorems 3 and 5,
we can show the following

Theorem 6. Let {R,}-o and {fi}, be as in Theorem 3, and u,€ HD(R))
be given for every k. Suppose that

(1) {ux}-o are uniformly bounded, and

2) (RO, —duy, *(10,—*dugy))r,=0 for every k,
where 0,=du,+ i*du, for every k. Then 0, converges to 0, strongly metrically,
and u,of ! converges to ug locally uniformly on (Ry)g-

The proofs of Theorems 5 and 6 will be given at the end of 3°).
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3°) The proofs of Theorems. Let {R,}>, and {f,}i>, be as in Theorem 3.
Let S be a part of Ry, and consider the mapping f§=f%!|s from S onto f;!(S).
Attaching punctured disks along each borders of f;!(S) in R,, we have a surface S,
homeomorphic to S for every k. Then we can easily construct a sequence of
homeomorphisms f§ from S onto S, such that for every neighbourhood U of N(R,)
we can find a k(U) satisfying that f$=f$ on S—U for every k>k(U). Because
{fJ, is an admissible sequence, {f$}, is a weakly admissible sequence (in the
sense defined in [14] §1). So, letting G5 be a Fuchsian group acting on the unit
disk U, associated with S, G§ be the point in the reduced Teichmiiller space T#(G®)
corresponding to (f%; S, S,) for every k, and F§ be the lift of f$ on U, with respect to
G§ (=GS), we know the following

Lemma 9 ([14] Lemma 3). Fj converges to the identical mapping locally
uniformly on U, and G converges to G§ elementwise for every S.

Next for given 0, € I'(R,), we consider 8] =0,/ ;15 as a differential on f;!(S)<=
S,. Then, though 63 is defined not on the whole S,, we can show by the same argu-
ment as in the proof of [14] Proposition 1 and Corollary 3 the following

Lemma 10. Let aj(z)dz be the lift of 65 in U, with respect to G3.

(1) If {l6:llr}i=1 is a bounded sequence, then {a§(z)}%, are locally
uniformly bounded, hence is a normal family, for every S.

(ii) If 6, converges to 0, strongly metrically (with {f,}%,), then a3(z) (and
also a§(F3(z))) converges to ay(z) locally uniformly on U, for every S.

Lemma 11. If a§(z) converges to a§(z) locally uniformly on U, for every S,
then 0, converges to 0, metrically (namely, lim |6, of 1 —0,| =0 for every compact
k—o0

set E in Ro—N(Ry)), and g _, B converges to\ 0, foreverycyclecon Ry— N(R,).
S (¢) c

Next we note the following

Lemma 12. Fix a sufficiently large M so that the set Uy, defined in §1-1°) is a
standard neighbourhood of N(R,), and let e,(p) be the U,-function defined as in the
proof of Lemma 3 with U=U,,. Then it holds that

(1) l(e).dzll%,=ll(e,):dZ ||k, = n/log (1/e), and

(i) Iles(gi 05,1, < (2/n)- A - (M +log (1/e)+ B),

n(s)
where A, =Y. ( X |a5l), and B is a constant depending only on Ry and U.
S Jj=1

Proof. The equality (i) follows by a simple computation. To show (ii), fix a
standard neighbourhood U of N(R) arbitrarily. Then from the definition of g(p, p;)
and g(p; p;, pj), we can find a constant B, depending only on R, and U such that
lgl<Bo on S—U, for every S and g=g(p, p;) or g(p; p;, p;) according as S admits
Green’s functions or not, where U, is (the union of) the component(s) of U—N(R)
containing p; (or p; and p;-). Also for every g appeared in b, it holds that |g| <
|bs—gl|+|bs|<|bs|+ NBy, on U,n S except for the component of U,—N(R,) cor-
responding to p,,, 4+, (which exists only if g=g(p; pam+1, p;) and) where we also
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have that [g|<(n(S)—2m—1)lgl<|bs—(n(S)—2m—1)-g|+|bs|<|bs|+ NB,, for
9(P; Pam+1> Pi)=9(P; Pam+1> P)+9(P; pjs Py)- Here N is, at most, twice the
number of nodes of R,. Thus we conclude that, for every S and g appeared in by,
it holds that |g| < |bs|+ NB, on S.

On the other hand, it is well-known that |d.gl},<m,=47M, or 8aM,
for every positive M,, according as g=g(p, p;) or g(p; p;, p;;). Hence we have
that e, (T 05,0l < | S sl -uaer < (2/m)-(M+log (2fe)-+ NBo)- A, for |bs| <
M +1og(2/e) on Ry— Uple). q.e.d.

Now suppose that the condition (i) in Theorem 3 holds. Then by Lemma 10
we can find a subsequence, say {k'}, such that a$.(z) converges to a holomorphic
function a%(z) locally uniformly on U, for every S. And we can see that aS(z)dz is
G3-invariant for every S, hence defines a holomorphic differential 8; on Ry— N(Ry).
Here by Lemma 11, it holds that [|6g[|2 =1im [|0,of$.112 < lim K(fi!, E) - 01131k

k’— k’—00
<sup ||6;]%,(=C) < + oo for every compact set E in R, — N(R,). Since E is arbitrary,

k

we have that |6,/ g, < C'/2, and hence 0; € I',(Ry). Also we can show the following

Lemma 13. (i) lim A4,. =0,
k’—00 —_—
(i) For every £€(0, 1), we can find a continuous h,(p)e D(U, — Uy (g/2))
such that dhy,=w, and |h.(p)|*>< %(l|06||5M+1) on Uy(1)—Uyle) for every
k'>k'(e) with a sufficiently large k'(¢) depending on e.

Proof. The assertion (i) follows from Lemma 11, for every af . converges to
0,=0. To show (ii), recall that, for the holomorphic function g, on U, such that
dgj0 =0, and go(p)=0for every p e N(Ry), it holds that |go(p)|*< 2171 16613, on Up(1).
Fix S and a component W of U, N S, and let W be a component of the lift of W on
U, with respect to G§ and go(z) be the lift of go(p) on W (i.e. dL‘g;Q —a5(z)). Then
since a$.(z) converges to a5(z) locally uniformly on U,, we can find, for any given
¢€(0, 1) and compact set E in W covering (Uy(1)—Uy(e)) n W, a holomorphic
function §,(z) on the lift of fz!(Uy — Uy(g/2)) such that dg:i—z(z) =aj.(z) for every
sufficiently large k' and that gk,(é), hence §,.(F,(z)) converges to §y(z) uniformly on E.
Also, for every k', letting b}.(z)dz be the lift of 65, with respect to G§, we can find a
holomorphic function §g,(z) with dgsTkz(Z)_ = b}.(z) converging to zero locally
uniformly on U, for so does bj.(z) by the above (i). Hence we can find an k'(e)
such that |g,(F,(2))2< 2—1—71.' <||06||%,M+ —é—) and |y, (2)I2< 41—n on the above E for
every k' >k'(e).

Finally set h,(z)=g(Fi(2))—gsi(z) on E for every k'>k'(¢). From the
construction we can show that f,.(z) can be projected to a continuous Dirichlet
function h,(p) on (U, — Uy(e/2)) n W, and that dh,. =w,. for every k'. Also from
above, h,. satisfies the desired estimate, hence we have the assertion (ii). q.e.d.
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Lemma 14. Let {k'} be as above, and suppose that the condition (ii) in
Theorem 3 holds. Then 6,. converges to 0, strongly metrically (, hence 6,=0,).

Proof. Using h,(p) in Lemma 13 (ii), set F(6;)=e, - wy +h, -de,. Then we
see from the condition (ii) that

0=2i(Re (F(6)— 00), *Im (F(0r) ~ 00D,
= —(F L) =00, *(F6) =0, = (F(0)~00) A FBI=05).

which implies, by writing 6,.of i} = apof .} -((fi).dz + (fi}); dZ), that
lee- (awefu!-(fi).dz = X Os) = 0o+ hi - (e)-dz %

=lle;- apofit -(fih)z dZ+ hyo - (eo); dZ[ R,

Hence by Lemmas 12 and 13 (ii) we have that

lee- awofit-(fit).dz —bollr, < ll€; - apofict -(fi')z dZl g, + AK', &, M)
for every k'>k'(c), where A(k', ¢, M)=(2/n)(M+log (1/e)+B))/2.A4,.+2
(165lly,, +1) (log (1/e))"*/2.  Then by a standard argument (cf. the proof of [8]
Theorem 1), for every k' > k'(¢), we can show that
(%) lles - Oiof ! — B0l ro

<(K(fiets Roe, Up) = 1)+ [18o]Ir, + K(fi!, Ro(e, Up))- A(K', &, M)
Now let a neighbourhood U of N(R,) be given arbitrarily. Then take M so

that Uy, < U, and fix ¢e (0, 1) arbitrarily. Since {f,.} is an admissible sequence and
lim A,,=0 by Lemma 13 (i), we have from (x) that
ko

Jim [0 of ! = 0o | ro-v
<lim |le, Oyef ! —Bollry < 218511, +1)- (log (1/e)) /2

Since ¢ is arbitrary, we conclude that lim [|6;.of ;! —8y|lg,—y=0. And since U is also
k’—0

arbitrary, we have the assertion. q.e.d.

Proof of Theorem 3. Under the assumptions in Theorem 3, every subsequence
of 6, also contains a subsequence such as {f,.} defined before Lemma 13, which
converges to 0, strongly metrically by Lemma 14. Thus 6, itself converges to 6,
strongly metrically. : q.e.d.

In the course of the above proof, we have shown the following estimate, which
seems to be interesting in itself.

Proposition 5. Under the same assumptions as in Theorem 3, fix a sufficiently
large M and €€ (0, 1), then for every sufficiently large k it holds that



616 Masahiko Taniguchi
llec- Ouof ' —Bollro
<(K(fic', Ro(e, Up)) = 1)+ 1186l ry+ K(fic !, Roe, Up)) - [((2/7)(M +1og (1/e)
+B))2- A+ 21106 v, + 1) (log (1/€))71/2]
where e, and A, are as in Lemma 12.

Proof of Theorem 5. First from Theorem 2, dH/*(uy)— H [, (duo) € I'\(Ry, Ry),
and hence I (dH *(ug))=1,(H(dug))=du, by Lemmas 6 and 7 (i). Also since
dH'<(up) e I'(R,, Ry), we can show as in the proof of Theorem 4 that RO, =
I, (dH' (uy))=du, for every k, where 6, =d,H/*(u,).

Now from the definition, it is clear that {||0,]g,}i=; is a bounded sequence and
it holds that (R, —dug, *(16, —*dug))g,=(0, *(18, —*duy))g, =0 for every k. Thus
we have the first assertion from Theorem 3.

Next fix a sufficiently large M and ¢€(0, 1) arbitrarily, then as in the proof of
Lemma 13 (ii), we can find a continuous (real) u, € D(U,, — U (¢/2)) such that du, =
dH *(ug)of x ! and |u,(p)I2 < %(I|00||,210+1) on Uy(1)—Uy(e) for every k. Let e, be
as in Lemma 12, F(dH'*(uo))=e,- dH *(ug)of ' +u,-de,, and o = F (dH'“(uy))—
dug, then from above we have that o, , € I',o(R,), hence «, ., =dg, , with some g, .
Do(R,) for every k. Also since dg, ,=d(e.- H *(uq)of x* —uo) on Ro—U,, we have
that g, ,=H'*(uo)ofy ' —uo on (Rg)g—Uy. Moreover, Proposition 5 with Lemmas
12 (i) and 13 (i) implies that

1{1-»12 ldgu.ellro SELIB (le. Brofict — 0ol ro + [l - degll &)

<2(/160ll g, +1) (log (1/€))1/2+([|6oll r, + 1) (log (1/€)) /2.

Hence setting &, =exp (—22"*4(||60,llg, + 1)?) for every n, we can find a subsequence
{k(n)}, such that |dgy..llr,<27" for every n. Then by [5] Hilfsatz 7.8, we
conclude that 11m Gx(ny,.,=0 for almost every p on (Ro)g, which implies that lim

n—*w

HS k(n)(uo)ofk(,,,(p) uo(p) for almost every p on (Ry)g— Thus (, since
Ox(my=d.H * converges to 6o =d.u, strongly metrically), we can show, by using
Lemmas 9 and 10 (ii), that Hf<tm(ug)ofd,y converges to u, locally uniformly not
only on (Rg)g— Uy, but also on (Ry)g.

Now we have shown that every subsequence of {H/*(ug)of;!}ix; contains a
subsequence converging to u, locally uniformly on (R,)g, which shows the second
assertion of Theorem 5. q.e.d.

Proof of Theorem 6. First because |u,| <M, for every k with some M, by the
condition (i'), the lifts ui(z) of u, on U, with respect to G§ form a normal family for

every S. Also aj(z)= 66 k_(z) are locally uniformly bounded on U, and hence make

a normal family. Thus the first conclusion of Lemma 10 still holds in this case.
Next for any sequence {k'} such as defined before Lemma 13, we may assume

that @f.(z) also converges to a harmonic function #5(z) such that |#5(z)| < M, locally

uniformly on U,;. Then using the same notation as in the proof of Lemma 13,
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it holds that |Re Jo(z)| < |@S(z)| + M, <2M, on W for every W. Hence we can find a
constant C(M,) depending only on M, such that |gy(p)| <C(M,) on U(1). From
this estimate of g,, we can have a similar assertion as in Lemma 13 (ii) (using C(M,)?

instead of L [165]13,,)-

Because the other parts of the proof of Theorem 3 are available without change
also to this case, we have the assertion. q.e.d.
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