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Local normality of a meromorphic function
and a Picard type theorem
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Introduction. For a meromorphic function in the unit disk problems of sin-
gularity at boundary points have been studied in various manner. We are concerned,
in this paper, with the treatment of Picard type theorem by V. I. Gavrilov, P. M.
Gauthier and others. A sequence {z„} in the unit disk D  is called a  sequence of
P-points for a meromorphic function f in D if, for every a> 0 and every subsequence

f  assumes every value, except at most two, infinitely often in the set u {z ;
k=1

p(z, z„,)<e}, where p denotes the hyperbolic metric in D .  A normal meromorphic
function in D has no such sequences.

In this paper, we construct an analogue of a sequence of P-points under some
local normality condition and obtain a Picard type theorem at a regular boundary
point of D in the maximal ideal space of H '.

Preliminaries. Let H  denote the Banach algebra of bounded analytic functions
in D .  The maximal ideal space M of Hoe is a compact Hausdorff space with Gel'fand
topology which contains D  as an open dense subset. Each point of A =M  -D
is classified into Gleason parts, that is, each m e A  belongs to some Gleason part
P(m ). P(m ) is either a one-to-one continuous image of D  or a singleton. In the
former case, m is called a regular Point. A regular point is captured in the closure
of an interpolating sequence in D .  It was shown by L. Brown and P. M. Gauthier
([1]) that a normal meromorphic function in D  is extended continuously to each
regular point me A .  For details of topological structure of 4, we refer to [5].

1. We denote by p and x the hyperbolic metric on the unit disk D = (I zj <1)
and spherical metric, respectively. A meromorphic function f  in D  is said p -x
continuous at a point C on the unit circle if, for arbitrary sequences {a„} and {b„}
tending to C, x(f(a„), f(b„))-40(n->c)o) provided that p(a„, bn )-+O. In addition,
11/1 denotes the fiber of A over C, G the set of regular points of A  and La = (z a)I
(1+ äz) the conformal mapping of D onto itself.

Most part of the following theorem is due to [1], [2] and [3].
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Theorem 1 . For a meromorphic function f  the followings are equivalent.
1) f  is not p - z  continuous at Ç E D .
2) T here is a  sequence a„ tending to Ç f o r w hich {f °La n }  is not a norm al

fam ily . W e can tak e as {an } an  interpolating sequence.
3) There exists a point m e M n G at which f  has no continuous extension.
4) There is an interpolating sequence of P-points converging to

Proof  1)->2) It is enough to  prove that {foLan }  is not normal a t  z = 0 by
assuming 1) is true.

If f  is not p -  continuous at C there exist sequences {an } and {b„} converging to
C such that p(a „), b„)--->0 but lirn sup z(f (a „), f (b „)) = g> O. This means that there
exists an arbitrary large number m such that z(f(a„,), f(b,n))=z(foL„,n (0), foL a nSz„,))
> -

8  

where La (z,n)= b„,. Therefore, the family {f oLa } is not spherically equi-
2 '

continuous at z =0, and hence it is not normal at z =0 ([4] p. 244)
Since {foLan } was shown to be non normal, it contains a subsequence {foL a k }

every subsequence of which is not convergent locally uniformly. We can choose
an interpolating subsequence {a ; } of {ak } such that ffoL a i ) is not normal.

2)->1) We suppose that f  is p  z  continuous at C . Let {an} a sequence con-
verging to C and {b„} another one such that p(a„, 13„)-01 By our assumption, we
can find 6 for 8> 0 so that (f  (a), fb„))<6 whenever p(a„, b„)<S . This means that
{ foL„}  or {(f oLan ) - 1 }  is uniformly bounded in  /3,6 = (I zl < (5)  and th a t {f °La n }  is
normal in D .

1 )-6 ) If f  is not p -  z  continuous at C, we can find sequences {an }  and {b„}
such that p(a „, b„)-->0 but z(f (a „), f (b„))> g. By taking a subsequence, fan } may be
assumed an interpolating and {an } n A n mc n G * 0 .  By the same proof as Theorem
4 in [1], we conclude that C(f, m) is not a singleton for m E {an }.

3)->1) Suppose there exists a point m e M c n G such that the cluster set C(f, m)
contains two values w, and w2 . We obtain a contradiction in the same way as Brown
Gauthier ([1], Theorem 4).

1)->4) f  is not 
p -

 z  continuous at C if and only if there is a sequence of W-
points [2] converging to Ç by definition. And existence of a sequence of W-points
is equivalent to that of a sequence of P-points ([13]).

2 .  Let m be a regular point of A and {ay } a net converging to m.

Lemma 1 . A  meromorphic function f  is ex tendable continuously  to m  if  the
f am ily  {foL o s,} is norm al for all nets {ay }  converging to m.

Pro o f . W e suppose contrary that f  is not extendable continuously to m.
T h en  th e re  ex is t tw o  nets { a}  and {b „ } converging to  m  and  lim f (a,)=
w1 , lim f (b !,)= w 2 ; w 1 5w2 . For neighborhoods U(m ), 17 (w1)  an d  17 (w2 ) there
exists vo  and  fic,  such that av ,  b„ e U(m) and f (a y) E 11 (w1)  and f (b n )e  1/(w2 )  for
v > vo  and it >ti o , respectively. Here we choose V(w 1) and Y(w2 ) such as x-distance
of them is greater than (5>0.  A n d  we set S= {a y ; v> vo l  and  T= {b n ; /i> p o },
then the closure of these sets in the maximal ideal space M contains m in common,
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that is, S n T  n G 0 0 .  Hence, by Theorem 3([1]), for any >0 there exists r„ such
that p(S n (I zi > r„), T n(lzi>r„))<8„ and we can choose sequences {a„; a n e S n
(Izi > r„)} and {b„11 bn E  T n (Izl> rn )} such that p(a „, bn)<2e n . Here, if the family
{foLav }is normal, then {foL a n } is also norm al as a subfamily and so spherically
equicontinuous in DK =(IzI<K ) for any K <1 ([4] p. 24 4). Therefore, if we take z„
so thatLan(z„)= bn , z„ tends to 0 because L„(0)= a„ and p(a„, b„)--40(n —  co), and

by equicontinuity x(fL a n (0), fL,,(z„))<6 which contradicts to our first assumption.

In the proof of the Lemma we arrive at the same contradiction by assuming that
{foL a v }, > , is normal at z= 0 for some index t. So, we have a stronger result.

Corollary. If  f  is not continuously  ex tendable to m, then there ex ists a net
converging to m such that {foL„,}„,, is not norm al at z = 0 f or any C.

Lemma 2. L e t {a ,} b e  a  n e t  conv erging to a  re g u lar p o in t m e d .  I f
a  meromorphic function f  is continuously  extendable to m, then there ex ists a net
index  y 0  such that the fam ily  {foL a v } is norm al at z = 0 f o r v>v o .

Pro o f . We may assume the extended value f(m) is finite, otherwise we consider
1/f instead off. Then there exists a neighborhood U of m such that I f (z ) —  f(n)1 <
and so, If (z)I < 1(m)1+ e in  U n D. A nd the family {La ,} of analytic maps of D is
convergent to the non constant map L. of D onto P (m ) .  And, we can find a net
index vo and a disk D4 =(IZI <) such that 1 . ,„ ( D )  U  for v > vo  ([5] p. 8 4 ) . This
means If oLa v (z)I < I f(m)1 + e in  D4 fo r  v > vo ,  that i s ,  { f  is uniformly
bounded. Therefore, {foL„„} is normal in D .

By Lemma 1, 2 and Corollary to Lemma 1 we obtain the following

Theorem 2 .  A  meromorphic function f  is not continuously  ex tendable to a
regular point m if  and only  if  there exists a net {a,} converging to m for which the
fam ily  {foL a v }„  , is not norm al at z =0 for any  index t.

3 .  Now we study a Picard type theorem at a regular point m of J .  As before,
{ay } denotes a net converging to m.

Theorem 3 .  Let f  be  a  meromorphic f unction such that {foL a v } „ , ,  is not
norm al at z =0 f or any  index  t and {b„} an interpolating sequence which contains
m in its closure. Then, f  assumes every value, except at most two, infinitely often
in the set Uf,- 1 {z ; p(z, b„)<n} f or each ri >0.

Pro o f . Let A  denote the Blaschke product with zeros at {b, },  then U(s)=
{p e M ; I Â(p)1 <e}  is a neighborhood of m, where Â denotes the continuous extension
of A to M .  U(a) n U Rn and R  contained in the set {z ; p(z, b„)<q} =
D ,=(izi <) ([5], [6]). And for each s > 0 , as  stated before, there exist 1)4 =
(IZI<) and a net index vo such that

L0 0 (D ) U  R „={ z ; IA (z )I<8}  n D  f o r  v > vo

Since f f  o L„ is not normal in D4 by our assumption, {foL„,} assumes
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every value, except possibly two, infinitely often in Bo by Montel's theorem and so
does f in U R .

R e m ark . In the proof of the theorem, if s decreases to 0 n decreases to 0 at the
same time. So, f  assumes every value infinitely often except at most two in u n  {z ;
p(z, b„)<n}  for every n >O.

By Theorem 1 and 2, we obtain the following Picard type theorem at a regular
point m.

Theorem 4. I f  a meromorphic function f  in D is not continuously extendable
to a regular point m  of  4 , f  assumes every value, except possibly  two, inf initely
often in every neighborhood of m.

In Theorem 3, {b„} was an arbitrary interpolating sequence containing m  in
its closure. Let {b,} be a subnet of {b„} which converges to in. The set T= {b,}
is considered as an interpolating subsequence {b„,,} of {b„} which contains m in its
closure, and it has the same property as {k} in Theorem 3 if f  is not continuously
extendable to m.

We obtain the following corollary as an anlogy of a sequence of P-points.

Corollary. I f  a meromoephic function f  in D  is not extendable continuously
to a regular point m e 4 , then every interpolating sequence {b„} containing m  in
its closure has the f ollow ing property : For each  n>0  and  each subnet { b,} , f
assumes every value, except at most two, infinitely  often in  U„ { z; p(z, z i,)<n}

The following Weierstrass type theorem is a corollary to Theorem 4 but we give
another proof.

Corollary. If  a meromorphic function f  in D is not continuously extendable to
a  regular point m  of  A , then every complex number a  belongs to the cluster set
C(f, m) of f  at m , that is, C(f , m ) is total.

P ro o f . By our assumption, C(f , m) contains at least two values w , and w2 ,

and there exist two nets {a,} and {b,}  converging to m such that lim f(a ,)=  w , and
lim f(b,) = w 2 ,  respectively. We choose neighborhoods V(w 1)  and V(w2 )  so that
x(V(w,), V(w 2 ) ) > e > 0 .  And then we choose net indices vo and p o  so that f (a v )e
V(w 1 ) and f ( b , , )  V (W 2 )  for v > vo and p> p o , respectively.

Now we suppose a C(f, m), then g(z)=11(f(z)—  a) is bounded in U n D  for a
neighborhood U of m. And, as stated before, there exist r > 0, net indices v, and
such that L a v (D,.), L„(D,.)c U for v> v i an d  p > /2,, respectively. Therefore, the
family {goLav }v , , ,  of holomorphic functions is uniformly bounded, an d  hence
equicontinuous in D,., that means, for all v > v i , lgoL a v (z,,)— goLa v (0)1—>0 if z„—*O.

We set S = { a ;; v> vo , v,} and T = {b, ;  tto , Al }, then S n T n G  contains m
and is not empty. Hence, as stated before, there are sequences {an ; a„e S}  and
{13„; b,, e T} such that p(a„, b„)-40(n--*co). Put an = L,„(0) and choose z,, so that
1,,,„n (z„)=b„, then we obtain



Local normality of a meromorphic function 99

lgoL0 v . (0)-goL 0 „(z )l-> 0  (n - *cc), which contradicts t h e  first setting x(V(w,),
V(w2 ))> s> 0 .
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