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Introduction. The generalization of Abel's theorem to open Riemann surfaces
in the form analogous to the classical one has been studied by many authors (for
recent references, Maitani [4], Sainouchi [6], [7], Watanabe [ 8 ] ) .  In this paper, we
define a  class (.4'0 )  of meromorphic functions on an arbitrary open Riemann
surface (for the definition of (-W ), see section 2) and give a necessary and sufficient
condition for the existence of a meromorphic function of (d ic,) which has the
given divisor. It has a similar formulation to classical Abel's theorem, but we do
not assume the finiteness of divisor. In the last section, for certain class of Riemann
surfaces with a metric condition, we give some sufficient conditions in order that a
meromorphic function should belong to the prescribed class.

B ,
holomorphic differentials having the same property a s  above is denoted by go .
The class 9 (2 0 ) always exists on an arbitrary open Riemann surface, but does not
be determined uniquely for given canonical homology basis.

2 .  Let .4e be a class of meromorphic functions on R such that each function f
belonging to has the following two properties: (1) there exists an integer n„) such
that for all n no)

1 d log f = 0 (i =1, 

where yi )  are the components of as-2„ and do not contain the zeros and poles off.
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1. We shall consider an arbitrary open Riemann surface R  and denote its
genus by g  (0 < g  +  co). Let {On } (n=1, 2,...) be a  canonical exhaution of R,
then there exists a  canonical homology basis {A i , B i }  (i=1, k(n),...) with
respect to {52„} such that {A i , Bi } (1=1, k(n)) for a canonical homology basis
of Q„ (mod 0 0 „). Let 2  be a class of an enumerable number of semiexact holomor-
phic differentials dwi (i =1, 2,...) on R such that 1 dwi = Si ;  (Kronecker's S) and set

t u ;  real). A lso  a class of the square integrable semiexact
A ,
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(2) lim wi d logf= 0,
n-.00 Ofd„

where dwi e 3  and w, = dwi =w i (p) with a fixed point po  ER .
po

If g  is replaced by go in  (2), we use .44 in place of .4f. We note that
wi d logf (n n 0 ) do not depend on the choice of branches of w, and the number

man
of zeros of f  in 0„ is equal to that of poles of f .

Now let .5= Fla bi be a divisor on R and 6„= a i • • a t o o l b • • • bi o o  its restriction
to 0„, where we assume OC2„ does not contain a i and bi (i =1, 2,..., 1(n)). Also let

go
us denote by yi a singular 1-chain in 0„ such that Oyi = bi — ai and set c(n )=  E  yi .1= 1

Proposition 1. The necessary and sufficient condition for the existence of single
valued meromorphic function f  of (-10 )  w hose div isor is exactly  6 is  th at  the
conditions

(3)
k(n)

Ern dw,— (m,— E  n ; 13i i )} =0
n-œ c ( n ) j=1

hold for all dif ferentials dwi e 3 (3 0 ), where mi and n;  are  integers.

Pro o f . Take a  simply connected region U i containing ai and bi and set
1(n)

U Since the square integrable analytic and anti-analytic differentials are
1=1

mutually orthogonal, we have

(dwi , *d logf)D _u  =0.

On the other hand, by the Green's formula we have
k(n) /C

(4) (dwi, *d log f) 0 _  = jE= t u A id  log f
ei

— d logf 5 dwi ) — wid logf.
Ai 0 ( f 2 „ - - U )

Set d  logf=2rcin ;  and d log f= 2irim ; m f ;  integers), then the right

hand side of (4) becomes to
k(n)

27ri E ((5um; — n; Bi ; ) — wid logf+ wid logf
j= 1 of1„J O L I

k(o)
=2rci(m i — E  n; Bi ; )— wid logf+ wid logf.

j= 1 JOQ., dU

By the calculation of residue we have
1(n)

wi d logf=2rci E (w i (a; )—wi(1); ))= dwi.
DU j=1 c (n )

Hence we obtain
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(5 )
k(n)

dw i —(m i —  E
c (n ) i=1

1w i d  log f .27ri 5

Therefore by (2) we have the desired result (3).
Conversely, let drp be a meromorphic differential which has a simple pole of

residue 1 (-1) at a i (b i)  ( i= l, 2,...), respectively and add to drp an appropriate
holomorphic differential, then we can get the meromorphic differential dtfr such that

SAJ Bi

 dtP=21rim i and dtk = O.

Set tp =f d t i f  and f =ex p t/7, then f  is a single valued meromorphic function with
given divisor and 1 d lo g f= 0 . Hence if (3) is satisfied, it follows from (5) that

),,■"
hm w,d logf= O. T hus f  belongs to and the proof of proposition is corn-
n-000 190„
pleted.

3 .  When dlog f  is  the distinguished harmonic differential, a single valued
meromorphic function f  is defined to be quasi rational (Ahlfors-Sario [1]).

Proposition 2. The quasi rational function belongs to class .,go .
P ro o f . Since a distinguished harmonic differential is semiexact outside a suffi-

ciently large regular region, the property (1) is c lear. Also we can put

d logf=w h„,+coe o + T,

where coh .  EF h . ,  COe o e  F  e o  f l  f i  and r  is  zero in each component of R — 0„ for a
large n. Since T h m l  F*  h s e  and F e o l T h ,  we have

(d logf—T, *dw i)---(\whin+ we, *dw i)=0.

While d logf—T is exact, so if we set dh=d logf — "C, then

 logf—T, *dw i)=1im(dh, *dw i),,,.- ..

= —fim hdw i= lim w idh=lim wid log f .
n--■ co dfd„ n--“:0 O f2 „ n-)a) O f?„

Thus the quasi rational function has the property (2).

A quasi rational function has the same finite number of zeros as poles and dlog
f  is exact in R —52n for a sufficiently large n, and so there exists an integer k  such that

n • — 
2

1d l o g f = 0  ( j>  k).
A j

Corollary. L et 6=a 1 .••a1lb 1 .••b1 b e  the div isor o f  a quasi rational function,
then

dw i = m i — E f o r  a l l  dw1e.90,
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where c is a f inite cahin E y ;  (ay;  = b; — a; ).
.1=1

Let g x be the set of square integrable analytic differentials such that the
real part of p has the f ' - b e h a v i o r ,  where T h. c Tx c The (Kusunoki [3], Yoshida
[9 ] ) .  Now we denote by .,Kx the class of meromorphic function f  such that f  satisfies
(1) in section 2 and

limlmd  log f = 0,
n—.00 0 0 , ,

where 0 =  (p)= 1 e  g x ).
PO

Proposition 3. T he necessary and  sufficient condition for the ex istence of  a
meromorphic function f  such that f  belongs to al, and  its div isor is exactly  (5 is
that the conditions

lim Re ço,i= integer
c(n)

lirn Re Ç( 0 B. ------ integer
n- ..co c(n)

hold for the differentials (p A L , (pB , ( e gx ), where and  9 ,
1
 are  the  fundam ental

differentials associated to the homology basis A i and B i respectively.

The proof is obtained easily by the same way as in section 2 and so we shall omit it.
Also let ex be the class of meromorphic function f  such that Re log f  has Tx -behavior,
then ex c .,12„

4 .  We take mutually disjoint annuli D 1) (i =1,..., mn) each of which includes
exactly one contour of 0 0 „. Let D „ =  tC ) I&  and assume that Du (n =1,...) are

i=
disjoint each other. If, in the definition of (AO, (2) is replaced by the following
(2'), then we shall use (.,#) in place of (-Ws ) : (2') there exists a  canonical
exhaustion {52„,} such that

Of2„, c  D. and lirn wid log f = 0,
n'-.00 Oa „  '

where the sequence {52„.} is the subsequence of {On }  and depends of f  and dw i e g
(go).

By the same way as in the proof of proposition 1, we have

Proposition 4. T he necessary and  sufficient condition for the ex istence of  a
single v alued m erom orphic function f  such that f  belongs to  ( . . W )  a n d  i t s
divisor is exactly (5 is that the condition

k (o ')
l i M dw,— (mi—  E  n331 = 0

c (n ') j=1 r(3 ')
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holds f o r each dif ferential dw i e  ( g o) , where the support of  6  is contained in
R— U D„.

Now let v(„i) be the harmonic modulus of D;70 . If

(6) E min IV = oo,
n i

then the Riemann's period relation holds for any two differentials (e Fkse) and so the
class go is determined uniquely by the canonical homology basis and B . dw i =Bi

dwi =B  (dw i , dw  e g o ), and for each n the matrix (Im B 1)1 i = 1 ,2 ......... n is positive
definite (Sainouchi [5], Kobori-Sainouchi [2]).

Proposition 5 .  L et E min v;,i) be divergent and f  be a  meromorphic function
on R  such that f  satisfies Cl) and

(7) IldlogfIluo„<+ 0 0 ,

then f  belongs to ..#,; and so

k ( n .)
Ern dwi— (m i —  E  n =0

c ( n ') j = 1

for each differential dw i e g o .

Pro o f . If E min V» = co, then there exists a canonical exhaustion {Q }  such
that (2') holds for dw i(e 90 ) and f  satisfying (7), and so we obtain the desired result
by use of proposition 4.

5 .  Next we shall consider the converse of above proposition. Here the
finiteness of divisor is assumed.

Proposition 6 .  If  E min vw = ce andE  ni ni t i i  converges and moreover
n i n p - .ŒD i , j = i

1 k (n )
(8) E dw i = m i — lim E ni B i i

j = 1  J a j n , c o  j = 1

f or each dw i (e 20 ), then there exists a single valued meromorphic function f  such
that (i)the div isor of f  is ex actiy  6=a 1 •••a1lb 1 •••b1 (ii) d log f  is semiexact and its
norm is finite outside of a compact subset of R , where m i and ni  are integers. The
function f  is determined uniquely up to the multiplicative constant.

P ro o f .  We use the Abelian differential dw(ai , b i ) which has the following pro-
perties (i) dw(ai , b i ) has two simple poles ai  and bi  with residue 1 and — 1, respectively
(ii) the norm of d w (a b.)  is finite outside of an arbitrary region containing a  and
bi  (iii) it is semixact outside of a suitable curve joinning ai  and bi  (iv) all A-periods of
dw(ai , b i )  van ish . The existence of dw(ai , b i )  has been proved in [5] and in the
present case it is determined uniquely.

Bk-period of dw(ai , k J) is obtained by the application of period relation and we
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have

(9)
Bk 

dw(ai, b i )=27ri(w k(b i )—wk(a i )).

1
Put dw' = E dw(a i , b i ) and dwp" = E n i ciw i , where n;  are integers in the assumption.

i= 1 J= 1
Then

dW 1 2  =  (dw ;, dw )=  E  n ‘ni (dw i , dw i )
i,J=1

= —  E  n i n i E dw dw dw
J=1 n"- AktBk .37 .1 " JAk JBk JBk JAk

=  — i E  n i n i (B B O = — 2 E  n i ni t i i ,

therefore, i f  lim  E  n i n i Ti ;  is  convergent, dwp" converges to dw"(€ f ' h 5 )  
in norm

p-oc0 4 , J l

and we have

(10) dw" = lim E n iB i i  a n d dw"= ni.
Bi i = i Ai

Set dw=dw'+27ridw", then by (8), (9) and (10) we get

dw=27rin k

and

1
dw=27ri E (w k(b i )—wk(a i ))+2,1ri E n i B ik

Bk i=  1 p -.0 3  i=

=2,trimk .

Now set f= ex p  f dw , then f  is a single valued meromorphic function on R  and its
divisor is exactly and d log f= dw is semiexact outside of a compact subset of R and
has a  finite norm. Let g  be an arbitrary meromorphic function with the same
properties as f ,  then by the application of period relation to the square integrable
harmonic differential d log I f/ S I (e lh e fl * I l e)  we have I f / S I =constant and so f  is
determined uniquely up to the multiplicative constant.

6 .  Finally, we shall give a  sufficient condition in order that a  meromorphic
function should belong to the class Let co be a fixed square integrable holo-
morphic differential and set dw i = g i to (dw i e  9 ) .  Also we denote by u + iv  (v ;
conjugate of u) the function mapping u D„ onto a strip domain ; 0<  u<R' =  E 11

n ,
n=1

0 <V <21r, where v„ is the harmonic modulus of D.

Proposition 7 .  Let f  be a  m erom orph ic function such that Ildf + co and
f  satisfies (1), an d  se t
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111;1) (g; ) =  max Igi (p)1, M ;,i )(1 /f )=  max Il/f(p)I .
peD ,Y ) p e l ) ; »

v (n i )

If min .
n=i M;3')(gi)M(„i)(1/f)

— co for all j, then f  belongs to

n - 1 n
Pro o f . let I„=[ E v i, E v j and for r e I n we denote by y;.i) th e  level curve

1=1 i=1
{p e R ; u(p)= r}  contained in D;,i ) . In D„ we can put co= adu + bdv and df =

f u du+f ,dv , hence if  we set L (r)= dwI d logfl a n d  Ln =  min L(r),

then
m„ 1/2
E (5 .I g  1 2 d1, 1 I

/
P

12dv) Ibl2dv l f F d v )
i=1 rP) Y■

/r \ 1/2
r
it i, (1 1, p )  Ig12dt, y(i)Illf 12 dv ) E Ibl2dv1,

(
)I LI2dv)

i=i 7,»

m (i) ( n .w o) ( 1 ,f ) 2 n
<271V max Ib l2 d V  1 2'm IL I 2 dV) 1 / 2n

V(7,i) 0

By integration with respect to r e I n we have

L„[2ir max  111 "i ) ( " M
o )

("1 ) ( 1 / f ) I IIDIfIID
V n

hence it follows from the assumption that lim L n = 0 .  Consequently there exists
n  CO

1/2

a subsequence {n'} such that

Ern widlogf
n'-■co Of2„'

lim  L = 0 , q. e. d.
CO

With a slight modification we can prove

Proposition 8 . Let f  be a meromorphic function such that logf + oo
v n( i )

and f  satisf ies (1). I f  E  min . = co f or all j, then f  belongs to
n = 1  i MV ( g .)
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