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1. Introduction and first statement of main result.

1 .1 .  The study of holomorphic sections of the Teichmtiller curve was initiated
by Hubbard [16] (see also Earle-Kra [7 ] ,  [8 ] ) .  Hubbard proved that for p = 2
the map V,,-  T, has precisely 6 holomorphic sections, the Weierstrass sections,
while for p  3, it has no holomorphic sections. The base space Tp  is a contractible
domain of holomorphy. Nevertheless, Hubbard's result shows that for p >2 we
cannot choose a point on each surface in a way that depends holomorphically on
moduli. On the other hand, we can choose on every surface of genus p 2 a divisor
class of degree one that depends holomorphically on moduli (see [5]).

1 .2 .  Let n be a positive integer. Let it,,: Sil(Vp ) - )T p  be the fiber space whose
fiber over t e Tp  is  it; 1(t) S n (X ,) , the n-fold symmetric product of the Riemann
surface X t = it (t) represented by t (see §§2 and 3 for details). The points of S (X )
can be identified with the integral divisors of degree n  on X .  A  holomorphic
section of it,, corresponds to a choice on each surface of an integral divisor of degree
n that depends holomorphically on moduli.

In this paper we concentrate on the case n=p -  1 .  For n< p  every divisor
D e S''(X) on a compact Riemann surface X  of genus p is special in the sense that
there exists on X  a nontrivial abelian differential of the first kind that vanishes on
D (p - 1 is the largest integer with this property). A divisor D e SP- 1 (X ) is  half-
canonical if 2D is the divisor of a nontrivial abelian differential of the first kind.
Similarly, a section s of Irp _ i  is half-canonical if s(t) is a half-canonical divisor for
all t E Tr  We can now state our main result as

Theorem 1. T he map rc p _ i : S'4,- 1 (Vp )->T , p .2 ,  has a  half-canonical holo-
morphic section if  and only  if  p- 2, 3, or 4. The number of such sections is precisely
6 f or p= 2, 28 f or p= 3, and 120 for p =4 ; that is, precisely the number of odd half-
periods in the Jacobi variety .
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Bers [1] has constructed holomorphic sections of 7r2 ,_ 2 . The general problem
of determining all sections of 7s„ for arbitrary n is open and apparently quite difficult.
In particular, it would be of interest to determine the lowest value of n for which 7r„
has a holomorphic section. 2 )

1.3. The study of sections of n =n i  involved the Kobayashi metric on
Teichmiiller space. In the present study, line bundles over the Teichmtiller curve,
Jacobi varieties, and the Riemann 0-function play a crucial ro le . In order to explain
that role clearly we have devoted most of §§2, 3, and 4 to exposition of rather standard
results. In addition, our method of proof leads us to consider Riemann surfaces
with nodes (as introduced, for example, by Bers [3]), and §7 includes a discussion of
some properties of the Bers deformation space. All this expository material has
increased the length of this paper, but we trust it may be useful in other connections.

The authors thank Hershel Farkas for many fruitful discussions on classical
function theory.

2. Holomorphic families, divisors, and line bundles.

2 .1 .  The material in this section is standard, but we find it convenient to
summarize it here. We start with a holomorphic family n: V  -+B of closed Riemann
surfaces of genus 2. This means that V and B are connected complex manifolds,
TC is a proper holomorphic map of V onto B, the derivative of it is surjective at every
point of V, and each fiber X ,=n - 1(t), t e B, is a closed Riemann surface of genus p.
Let n be any positive integer, and let S ( X )  be the complex manifold obtained by
taking the quotient of the n-fold Cartesian product X 7 by the obvious action of the
permutation group E (n). Our first goal is to define a  complex manifold S (  V)
and a proper holomorphic map onn : S',73(V ) -B  so that 7r; 1(t)= S "(X ,). The first
step is to form

{(X1,..., X n ) E V n ; n(x i)=7r(x i ) f o r  i, j=1,..., n} .

It is easy to verify that V is a complex manifold, that the map co,,: I/1->B defined by

con (x l ,..., x„)= 7r(x,) for a l l  (x l ,..., x n) E VIA

is proper and holomorphic, with a surjective derivative at every point, and that
co,-; 1 (t)=X 7 for all t in B.

The left action of E (n) on VI', is given by cr(x i ,..., x„)= (x,-, ( ,) ,..., X,_ I ( ,,) )
for all a e E (n) and (x 1 ,..., x„)E

Proposition. T he quotient sp ac e  S (V )=V V E (n )  is  a  com plex  manifold.
T he  m ap  con : V23 -43  induces a  proper holom orphic m ap n„: S 23(17 )->13. The
derivative of it,, is surjective at every point, and nV (t)=S n(X ,) for all t in B.

Proof. S (V )  is the quotient of the complex manifold VIA by a finite group of

2) The claim in [18] that r, a lw ays has holomorphic sections was too optimistic. Such a result
remains unknown.
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biholomorphic maps. Such a quotient space is a complex manifold if the stabilizer
of every point is generated by transformations whose fixed point set has codimension
one [13, Satz 1]. I f  x e Ph, the stabilizer of x in  E (n) is generated by the set of
transpositions in E (n) that fix x, and it is easy to see that the fixed point set of a
transposition has codimension one in V .

The holomorphic functions o n  S',13(Y) are precisely th e  E (n)-invariant holo-
morphic functions on V . S in c e  con : 1/73 -03  is holomorphic a n d  E (n)-invariant,
it induces a holomorphic map ir a : S'A(V)-->13. Since con is proper and has a surjective
derivative at every point, the same is true of nn . Finally, tr-

n
 1 (0  is the quotient of

co-
n

 1 (0= XII by E (n), which is Sn(X t ).

2 .2 .  A  point of S73(V ) in the fiber tr; 1 (t)=Sn(X,) determines an (unordered)
n-tuple (x 1 ,..., x n)  of points of  X .  T h i s  i n  turn determines a n  integral divisor
x i  + • • + x, on the Riemann surface X „ and one can construct in the usual way a
line bundle L on X , having a holomorphic section with the given divisor. We shall
now describe a similar correspondence between holomorphic sections of na : S (V ) - >13
and the divisors of certain holomorphic sections of line bundles on V.

Let co: V be a  holomorphic line bundle o n  V .  We call the holomorphic
section s: V ->L a  nontriv ial relative section if the restriction of s to each fiber X ,
is nontrivial. If : L 1 -* V and co,: L 2  V  are line bundles with sections s t  and s,,
we call s t  and s2  equivalent if and only if there is a bundle isomorphism f  : L 1 ->L 2

such that f  os, = s, (o r , equivalently, s 1/s2  defines a  nonvanishing holomorphic
section of the line bundle L i  (8)L2

- 1 ).

Proposition. L et s be a nontriv ial relative section of the line bundle co: L->V,
and let n ( 0) be the number of zeros of s in some fiber 7r - '(t 0 ). T hen s has ex actly
n z eros in  each  f iber ic i( t) . I f  n >0 , th e  div isor of  s determ ines a holom orphic
section a(s) of ira : Syi (V )-43. T he sections s i  and s 2  determ ine the sam e a if  and
only  if  they are equivalent.

P ro o f . Let x be any zero of s on 1r- 1 (t0 ), and let its order be m >0. Choose an
open neighborhood Ux  of x in V with these properties :

(i) there are  loca l coordinates (I, z ) i n  Ux  so  th a t n ( t, z )=t a n d  x  has
coordinates (t o , 0),

(ii) the line bundle L is trivial over Ux , so that s is defined in Ux  by a function
f (t, z ),

(iii) in  Ux  we can write f =g h , where h(t, z) is nonzero and g is a Weierstrass
polynomial

(2.1) g(t, z)= zm + a i (t)zm - 1 + •-•+a,n (t)

with a,(t o )= 0 for all i 1,
(iv) if t e n( U.), then (t, z ) e U. whenever z e C and g(t, z )= 0.
Since s has only finitely many zeros in the fiber ic l( t o ), we can and do require

that the sets U. corresponding to different zeros be disjoint.
Let U be the union of the sets U . and the set of all points of V where s 00.
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Since proper maps are closed and U is an open neighborhood of 7r- 1 (t0 ), there is an
open neighborhood D  o f to i n  B  so that rc- '(D )c  U . If  t e D, the zeros of s  on
X, = n - 1 (t) all belong to one of the disjoint sets Ux , and (iv) says their total number
is independent of t. The number of zeros of s  on X , is thus a  locally constant
function of t, hence constant.

If s has n> 0 zeros in each fiber, we define a: B-+StA(V) by putting a(t) equal to
the (unordered) n-tuple of zeros of s in the fiber X , .  (A zero of order m is of course
listed m times.) It is clear that equivalent sections sl  and s2 produce the same map o. .
Conversely, if s  and s2  determine the same a, then s 1 /s2 defines a nonvanishing holo-
morphic section of the line bundle L i  ® Li', so s i  and s2  are equivalent.

It remains to prove that the map a: B - S ( V )  is holomorphic. For this we
need local coordinates in S 'A (V ). Fix to e B, and at each zero of s in the fiber 1r- 1 (t 0 )
choose local coordinates (t, z ) as above. Local coordinates for S ( V) at a(t o )  are
given by t  and appropriate combinations of the "fiber coordinates" z. If  (to , 0)
corresponds to a zero x of order m, so that x occurs m times in the unordered n-tuple
0(t0 ), we need m coordinate functions that are symmetric functions of the variables
z1 ,..., z nz. It is convenient to use the symmetric functions (ID ..., a m  defined by

(2.2) zm + a + •  •  •  + a„,=  ( z  -  z i ).

It is now clear that a  is a  holomorphic function of t. since its description in these
coordinates is given by a = a i (t), for all j ,  where the holomorphic functions a i (t)
are defined by (2.1). The proof is complete.

2 .3 . Now we shall prove that every holomorphic section a: B ->S (V ) can be
produced in the above way.

Proposition. L et a be a holom orphic section of  ira : S (V ) -0B . T here ex ist
a  line bundle co: L -+V  a n d  a  nontriv ial relativ e section s: V ->I, such that s
determines a.

P ro o f . First we need to obtain a  divisor o n  V from a .  We shall do this by
covering I/ with open sets Ui  and  defining holomorphic functions J ..;  in  U . so that
f i /f , is holomorphic and never zero in U . n U k and so that the zeros of the functions
f i  are exactly at the points of V determined by the im age of a. We observe first that
the image of a determines a  closed set C in  V. Indeed a(B ) is a  closed subset of
S (V ), and if q: V  -*S (V )= 1/731E (n) is the quotient map, then q - 1 (a(B)) is closed
in V .  Therefore C is closed in V, since it is the image of q - '(o-(B)) under the closed
map (x 1 ,..., x n)-*x , o f  vy3 onto V.

For x e C we choose as before an open neighborhood Ux  o f x in V with local
coordinates (t, z ) so that rr(t, z )=t and x has coordinates (t o , 0). We also choose
a s  before local coordinates for S ( V )  a t a(t o )  so that i f  x  occurs m  times in
the  unordered n-tuple cr(to ) ,  then the  coordinate functions include the functions

am  defined by (2.2). The holomorphic section a(t)  determines holomorphic
functions a i (t),..., a m ( t ) ,  and we define the holomorphic function f  on  Ux by
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(2.3) f (t, z)= zm + a i (t)zm - 1  + • • • + a„,(t).

That determines our divisor in a neighborhood of every point of C, and to determine
it on the rest of V we use the constant function f = 1, defined in the open set V\C.

Now any open cover of Vby sets U  which holomorphic functions f i  are defined
so that f i k = f i u k is holomorphic and never zero in U. ; n uk allows us to use the f i k

as transition functions to define a holomorphic line bundle V with a holomorphic
section s: V—>L whose local description in U . is given by f i . Our divisor therefore
determines a line bundle L.-4 V with a section s that has no zeros in V \C and that has
local description (2.3) in U,, if  x e C .  Comparison of (2.1) and (2.3) shows that s
determines the section a: B--*S73 (V ) with which we started. The proof is complete.

2 .4 .  If we call the holomorphic sections tr: B—>S7i (V ) positive relative divisors,
the  results o f this section can be summarized by the  statement that the positive
relative divisors are precisely the divisors of the nontrivial relative sections of line
bundles L-4 V.

3 .  Line bundles over the Teichmiiller curve; restatement of Theorem 1.

3 . 1 .  The general considerations of section two can of course be applied to the
Teichmiiller curve. We start by recalling some of its basic properties, established
by Bers [ 2 ] .  For any integer 2, let Tp  be the Teichmiiller space of closed Riemann
surfaces of genus p. Tp  is  a  complex manifold of dimension 3p — 3 and can be
embedded in C 3 p- 3 as a bounded contractible domain of holomorphy.

Let /' be the fundamental group of a fixed orientable closed surface X  of genus p.
The Bers f iber space over T1, is a subregion F,, of Tp  x C with these properties:

(i) F,, can be embedded in  C 3P- 2  as a  bounded contractible domain of holo-
morphy ;

(ii) F  acts freely a n d  properly discontinuously on F , ,  a s  a  group of
biholomorphic maps

(3.1) y(t, C)= (t, 'AC)) for a l l  y e r  a n d  (t, C) e Fp ,

and y t ( C )  is a Möbius transformation for every t in  Tp :
(iii) D ( t ) =  e C ; (t , C) e Fp }  is a Jordan region in  C  fo r every t  i n  Tp ,

and the quotient space D (t)IF is the  closed Riemann surface represented by the
point t ;

(iv) the projection (t, C)1-4 of F,, onto Ti, induces a holomorphic map n from
the quotient manifold Vp =F p / / ' onto T„, and 7r: V,,—> Tp  is a holomorphic family of
closed Riemann surfaces of genus p, which we call the Teichmiiller curve (of genus p).

Properties (i), (ii), and (iii) of F,, were proved by Bers [2], and (iv) follows easily
from the results of [2] although it is neither stated nor proved there. For a  proof
of (iv) in a more general setting see Theorem 1 (a) of [6].

3 .2 .  As in §2, there is a  canonical correspondence between nontrivial relative
sections s of line bundles over Vp  and holomorphic sections of Itn : Sif(Vp )--->Tp . The
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complex manifold S L (V ) — we write T  instead of Tp  for obvious typographical
reasons — can be described explicitly in terms of the fiber space F p  in the following
way.

Since Vp  is the quotient of Fp  by the action (3.1) of the group (Vp )11- is the
quotient of the complex manifold

F„(Tp )= {(t, e Tp x C ; en) a n d  (t, Ci )e F p  f o r  j =

by the free, properly discontinuous action of the group rn, acting in the obvious way:

(Y1,..., Yn) CO=(t, yaC0).
The action of E (n) on (Vp )7, lifts to the action

a(t, C„)= (t, Cc,- i(i),• ••1 Ccr — , (n ) )

on F „(T d. The groups and E (n) generate a properly discontinuous group Gn

of biholomorphic mappings of F„(Tp ). The quotient space F n (Tp )IG„ is Sii(V p ),
and we can identify the set of holomorphic functions on Sq,(Vp ) with the set of Gn-
invariant holomorphic functions on Fn (Tp ).

3 .3 . The line bundles over Vp  and their relative sections can also be described in
terms of F,,. Every line bundle over Vp  can be lifted to a line bundle over Fp . The
Bers isomorphism theorem [2] asserts that F p  is biholomorphically equivalent to the
contractible domain of holomorphy Tp ,i  (the Teichmiiller space of closed Riemann
surfaces of genus p  with one distinguished point). All line bundles over Fp  are
therefore trivial, and it follows (see Gunning [14]) that all line bundles over Vp  are
determined by "factors of automorphy" on F,,. Recall that a factor of automorphy
is a map C: F x F  C such that 4y, • ) is a nowhere vanishing holomorphic function
on F p  for each y e F, and

(3.2) 4Y1Y2, z)— 1, Y2(z))(Y2, z)

for all Y i '  y 2  e  F and z= (t, C) e Fp . The holomorphic sections of the line bundle
determined by are described by the tomorphic functions f  : F C .  These are
the holomorphic functions f  that satisfy

(3.3) f  (yz)= z)f (z) for all y e r  a n d  z =(t, C) E Fp .

f  describes a  nontrivial relative section if and only if for each t e Tp  the function
f (t, •) on D(t) is not identically zero.

3 .4 . In terms of line bundles, Theorem 1 takes the following equivalent form.

Theorem 2. I f  2 / 3 .4 , there are  2P- '(2P —1) line bundles L--+V ,, with non-
triv ial relative sections whose divisor on ev ery  f iber is half -canonical. I f
there are no such line bundles.

It is this formulation of the theorem that we will prove.
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4 .  Half-canonical divisors and Riemann's theta function.

4 .1 .  We need to review some classical theorems about Jacobi varieties and theta
functions. For details we refer to the books of Farkas and Kra [11, Chapter VI]
and Fay [12, Chapter 1]. Let A 1 ,..., A p , BD ..., B p  be a canonical homology basis
for the closed Riemann surface X of genus 2, and let coi ,..., cop  be a basis for the
space 1-1' , °(X) of holomorphic 1-forms on X that satisfies

Ak 
a); = (5.ik i f  1 j p a n d

The Riemann period matrix T = (Ti k ) of X (with respect to the given homology basis)
is the p x p matrix with

(4.1) T •  = co • ifJk and

The columns of T and of the px p identity matrix I are linearly independent over R
and generate a lattice subgroup of CP  whose members are the column vectors

(4.2) (I, T )N , N  eZ 2 P.

The quotient of CP by that lattice is a complex torus J(X), the Jacobi variety of X.
It is both a complex manifold and an additive group. If E  CP , we denote by [A]
its image in J(X).

If xo  e X  is any fixed point, the multivalued "function" from X  to CP whose
j-th component at x e X is

CO -.1x)c

induces a well defined holomorphic map 0: X—>.1(X) with the property that 0(x 0 )= O.
Using the group structure of J(X ) we obtain holomorphic maps 0,3: Sn(X)--4J(X),

1, given by

0„(x x„) =  ( x i ) + • • • + 4)(x„) .

The sets W,,=0„(Sn(X)), 1, are analytic subvarieties of J(X).
If co E W '

°
(X ) is not identically zero, its divisor has degree 2p —2 and determines

a point (co) in S2 P- 2 ( X ) .  Its image 0 2 p - 2 ((co)) is called the canonical poin t of J(X).
The canonical point is independent of the choice of co, but it does depend on the
basepoint xo , so we denote it by K(x 0 ). The maps 0,, and the sets W„ also depend
on xo , but our notation suppresses that dependence.

4 .2 .  Let rep be the Siegel half space of symmetric p x p matrices with positive
definite imaginary parts. The Riemann theta function 0: .yepx C is defined by

0(T, z)=-N E ,  exp [ni(tAITN +2'Nz)], (T , Z ) e er p  X  CP
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(As usual, 'IV denotes the transpose of the matrix N . )  The Riemann period matrix
E <rep , so we can consider the set

{z E  C P ; 0(T , Z )=0}  .

That set is invariant under the lattice (4.2), so it projects to a closed analytic subvariety
e

According to a  remarkable theorem of Riemann, there is a unique point k(x 0 )
in J(X ) such that

(4.3) Wp_, = 0 +k(x o ).

We shall need two additional properties of k(x o ). First, 2k(x0 )=K(x 0). Second,
if 2e  C P  and  [2]+k (x 0 )e W p , then the set Op- 1101 + k(x 0 )) contains more than
one point in SP- , (X ) if and only if the holomorphic 1-form

(4.4) P /
CO -  E  ,q, Ur, A )W jj= 1  ( ) L i

is identically z e r o . Further, if o.) is not identically zero, D e SP- 1 (X ), a n d  p  1 ( D )  =

[2]+ k(x 0 ), then 0.) generates the space of holomorphic 1-forms on X  whose divisors
are (See Lewittes [19] and Farkas [10] for details.)

4 .3 .  It is important to understand the dependence of k(x0 ) on xo . If  (t• and
Wp _, are defined using the basepoint x o , the effect of replacing x, by x 1 is to replace
(/) by xi-0(x)-0(x 1) and Wp _, by Wp _1 - (p -1 )0 (x 1). Using (4.3) twice we get

+ k(x 1)= Wp _  -(p -1)0(x  1 )= e + /coo -(p  -1 )0 (x 1 ) ,

so k(x 1 ) = k(x c ,) - (p - 1)(/)(x i ). Hence the map

x  k(x)= k(x 0 )- (p -1)0(x )

is holomorphic, and there is a holomorphic map t1/: X - *J(X ) such that

(4.5) k(x)= (1 -  p)11/(x) for a l l  x e X.

Now (1 - p)(0(x) -  0(x))= k(x 0 )  is constant, so ti/(x)- 4)(x) is also constant, and
4)(x)= 0(x) - 0(xo).

As in §4.1, there are holomorphic maps On : Sn(X) - 4(X ), given by

, x„) = + • • • + 4/(x„) ,

and ii/„(D)=0„(D)+0(x o ) for all D e Sn(X).

Proposition. If  Ili: X - .1(X ) is holomorphic and satisfies (4.5), then

(4.6) _ ,(SP - '(X ))=  0 ,

and De S2 P-
2 (X) is a canonical div isor if  and only  if tli 2 p _ 2 ( D ) =0 .  M oreover, if

2E C P and [A] e O, then K ,l i ([2]) contains more than one point of SP- 1 (X ) if  and
only  if  the 1-form co defined by (4.4) is identically  z e ro . Finally, if  to is not identi-
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catty  zero, D E SP- 1 (X ), and  ilip _ 1(D )=[2], then co generates the  space o f  holo-
morphic 1-forms on X  whose divisors a r e  D.

Pro o f . This is merely a restatement of properties of k(x 0 ) from § 4 .2 . Indeed,
by (4.5), tk p l (D )= p  i (D)— k(x 0 ), so

p  , (S P (X ) )  =  W  p X 0) = ,

by (4.3). Similarly, the divisor D eS 2 P- 2 (X ) is canonical if and only if

K (x ,)= 2(D) = 02 p _ 2(D) -  (2p — 2)0(x 0 )

= IP2p _ 2(D) 2100) = 02 p _ 2(D) - FK(x0),

and that happens if and only if  di- 2p- 2(D) = O. F in a lly , the sets tn± ,([2 ]) and
0 -; 1 1([2 ])+ k(x0)) are equal, so they bear the same relationship to the 1-form co
defined by (4.4). This proves the Proposition.

4.4. Now we turn our attention to half-canonical divisors. By the Proposition,
if D e SP- 1 (X ) is half-canonical, then 20p_1(D) = r  2 p -  2 ( 2 D )

= 0, SO _ 2(D) belongs
to the group of half- periods, which by definition consists of the points t E J(X ) with
2t= O. That group is isomorphic to (Z/2Z)2P. In fact any half-period t  can be
written as t =[2], with

(4.7) 2=1(1, T )N for som e N eZ 2P,2

and [2] = 0 e J(X ) if and only if N E 2Z2P. We call t = [2] the half-period determined
by N e Z 2 P and we identify t with the corresponding element N E (Z/2Z)2P. Write
tN =(tU ,W ) with U, Ve Z P .  We call the half-period t or N odd or even according
as the inner product U. Vis odd or even.

Every odd half-period t = [2] belongs to the set e (see for instance Farkas-Kra
[11, p. 286]), so the Proposition implies that ifr ([2 ]) is a nonempty set of half-
canonical divisors. That set contains only one divisor exactly when (4.4) defines a
nontrivial 1-form on X.

4.5. We emphasize that all the above results are classical and go back
to Riemann. To apply them to our problem we need to know how t and ii depend
on moduli. For that purpose we shall use an explicit formula (due to Riemann)
for (see also [5]).

We recall from §3 that the Teichmiiller curve Vp is the quotient of the Bers fiber
space F,,  C by the group F, and that each fiber X „ t E Tr  is the quotient by
F of the Jordan region

D(t)={ e C; (t, C)eFp } .

The quotient map D(t)—>X,= D(01 F is a univeral covering, and we choose generators
A 1 ,..., B1 , ..., for F that satisfy the defining relation

rj AB .A - 1 4371 =1
J=1 .1 ,
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and determine a canonical homology basis on each X .  The corresponding basis
W1, for 1-1' ,°(X t ) lifts to a set of 1-forms ati (C)dC in D (t ) .  The embedding 0 :

X t ->J(X t ) lifts to a holomorphic map n: D(0-4 CP . Classical formulas ensure that
0 satisfies (4.5) if

(1 - p)ri ; (0 = ,T + 1A1(C) ds 1s Œ (u )c4 (s )d u , 1  j p .
k=1 s = t u = C k

(Here T." is defined by (4.1).)
By a theorem of Bers [1], there are holomorphic functions cci (t, C) on F,,, 1 p,

such that ai (t, C)=ati (C) if C e D (t). These functions satisfy

(4.8) a » ,  0 
---
-oef(YO,

°
a
Y
( (t, for all y e

and
(Afjc)

Œ.(t, u)du -= j k

whenever (t, C) e F p , and 1 k The 1-form Œ.(t, ()dC is not closed in
F,,, so the above integral and all similar integrals must be computed using paths in
F,, along which t is constant. With that understanding, the functions Tf t : T , ->C
and n: F p ->CP defined by

( BL()
(4.9) tik(t)= u)du, j 5 p  and 1 - k

and

(4.10) (1 - - ÷-r i i (t) + Y i` (C ) ds1s a i (t, u)ak (t, s)du,
k=1 s=C u=C

are holomorphic.

4 .6 .  As is well known (see for example §3 of Mayer [20]), the fact that T. / k W
is holomorphic implies that the group Z2 P acts on Tp  x C P by

(4.11) N • (t, z)=(t, z +(I , T(0)N)

as a  group of biholomorphic maps, producing a quotient manifold J(Vp ). The
map (t, z ) -÷t induces a holomorphic projection p: J(Vp ) - T p  so that p 1 (t )= J (X )
for all t e Tp . It is easy to prove (see [5]) that the map (t, n ( t ,  0 )  from F p  to
Tp  x CP induces a holomorphic embedding 0 : V,, -J (V d ; the restriction to each fiber
is an embedding 0 : X 1->J (X ) that satisfies (4.5). Similarly, we can define holo-
morphic maps on : sI(v„),J (vp ), n  1 ,  whose restrictions to fibers are the maps

S (X ) - J (X 1)  of § 4 .3 . Recall that Sg,(17
p ) is a quotient space of the complex

manifold F (T )  defined in §3.2, and define tin : F(T,,) - 3. b y

nn(t, CI—, C ) = n(t, (;), ( t , C 1 ,..., C.) F n(Tp) •i=1
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The m ap  (t, Ci,• C . ) 1 (t, nn(t, C i ,..•, C)) f ro m  F„(Tp ) t o  Ti,x  C P  covers a
holomorphic map gin : S'AT/p )- >J(Vp ) with the required property.

5 .  Proof of Theorem 2: Existence and Uniqueness.

5 .1 .  The considerations of §4 lead quickly to a proof of the existence part of
Theorem 2 . They also lead to a uniqueness statement that will be useful both for
counting relative sections when 2 p 4  and for proving their nonexistence when

5. We shall begin with the uniqueness statement. We need some notation.
For N e Z 2 P ,  put

(5.1) 4 (0 = t(t))N for all t eTp ,

so that for each t E 7; the half-period in  J(X ) determined by N  is [ A O ]. In ad-
dition, let HN: F,, -  C be the function

(5.2) HN(t, C)- (r(t), 4(0)oci (t, C).
j . i  Z

Recall that the relative sections of the line bundle L- V,, determined by a factor
of automorphy are described by the -automorphic functions on Fr

Lem m a. S uppose the -autom orphic f unction f : defines a relativ e
section whose divisor on every  f iber is half-canonical. Then there ex ist N  e Z 2 P and
a holomorphic function 0: F,,-+C such that

(a) N  determines an odd half -period 4(0 on each J(X ,),
(b) for fixed te  T p , the function (1)(t, •) either has no z eros in  D (t) or else

vanishes identically,
(c) H N = 0 • 2 .

P ro o f . First we find N .  Let s: T/p - q , be the relative section determined by f.
B y Proposition 2.2, the divisor of s determines a  holomorphic section a: Tp -*
SPr

- 1(Vp ). The composition Op _ i oa: Tp ->J(11, )  i s  holomorphic, and tfrp _ i (0-(t))
is a  half-period in J( X )  for each t  in Tp ,  since a(t) is half-canonical. The map
op _ 1 .0 - lifts to a holomorphic map ti- qt, g(t)) from Tp  to Tp x  C P .  Since tlip _ i (a(t))
is a half-period, for each t there is N E Z 2 P  such that

g(t)= -c(t))N

Since g : T,,- * C" i s  holomorphic, N  is independent o f t, and g =A N . Since
Ii,,_ 1 (0-(0) e 9  c AX,),

0 (t(t) , N (t))= 0(t(t), g(t))=0

for all tE T p . It follows (see Farkas [9] or §7.2) that N  determines an odd half-
period on each J( X ,) .  That proves (a).

5 .2 . It remains to produce the function 4). Let
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A= {t e Tp ; HN (t , 0 =  0  for a l l  C E D(t)} ,

and let B= {(t, e Fp ; t e A}. For each t e T M , the functions HN (t, • ) and f ( t , • )2

have exactly the same zeros (counting multiplicities) in D(t), so

C)— 
H N ( t

'

f ( t ,  C)2

is a nowhere vanishing holomorphic function in Fp \ B .  Since HN vanishes identically
on B , 0 extends to a holomorphic function on Fp  that vanishes identically on B and
satisfies (b) and (c). That proves Lemma 5.1.

5 .3 . The existence proof requires an additional

Lemma. I f  H A ( t , . )  does not vanish identically in D(t) fo r any fixed te  Tp ,
there is a holomorphic function f  p —>C such that f  2 =H N .

P roo f. Since Tp  is contractible, the existence of f  is a local question. The
existence off is obvious near any point (t o , ( 0 ) where HA t o , CO) 55 O. I f  HN (t o , C0 )= 0,
then (to , Co) has an open neighborhood in which HN is the product of a nonvanishing
function h and a Weierstrass polynomial

W(t, C)= (C — Cori + a 1(0 (C C o)m - 1  + • • + a „,(t)

with a,(t o )= 0 for all i 1. It is obvious that h has a holomorphic square root in
some open neighborhood of (to , C0 ). Also, since every zero of H N ( t ,  )  has even
order, for each t near to there is a unique polynomial

F(t, =(C — Co )" + M t) (C — Co)n- ' + • • • +b„(t)

such that F(t, C)2 =W (t, C). It suffices to prove that F(t, C) is a holomorphic function
in a neighborhood of (to , Co), and that follows from the formulas

2b 1 (t)=

k -1
2b,(t)= (4(0—  E b i (t)bk _ J(t), 2  k  n .

The lemma is proved.

5 .4 . The hypothesis of Lemma 5.3 is satisfied if 2  p  4 and N e  Z2 " defines
an odd half-period. Indeed, 0(40, • ) vanishes to odd order at AN (t) if [I N (t)] is odd,
so if HN (t, • ) vanishes identically for some t, then 0(40 , • ) vanishes to order at least
3 at AN (t). Let De SP- 1 (X ,) be a divisor with iiip _1(D)= P A O ]. The Riemann
vanishing theorem (see [11, p. 298]) would then imply that D has index of speciality

(5.3) i ( D )  3.

But Clifford's theorem (see [11, pp. 306 or 107]) gives
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where as usual [k ] is the greatest integer k .  That inequality contradicts (5.3) if
p <5, and we conclude that HN ( t ,  ) cannot vanish identically if 2  p  4.

5 .5 . Now we can prove Theorem 2 for 2  /3._ 4. Let N e Z2 P  define an odd
half-period. By Lemma 5.3, there is a  holomorphic function f :  F p --*C  such that
f 2 = H N . By (4.8) and (5.2), HN satisfies

H N (t, C)=H N (y(t, C)) (t, C) for all y e r,

so there is a factor of automorphy 4y, z) for r on F,, such that

f (y z )= 4y , z )f (z ) for a l l  y E F  a n d  z =(t, C) e F,,,

ayand 4y, • ) - 2  = . Thus f  determines a  nontrivial relative section s  of the lineOC
bundle L—> Vp  determined by It is clear that the divisor of s on every fiber is half-
canonical.

We show next that N i  and N2 produce equivalent sections s i  and s2 if and only
if they define the same half-period for some (hence a ll)  t E Tp . First suppose
[AN 1 (0] = [t N 2 (t)] e J(X ) for all t e Tp . Proposition 4.3 implies that H N ,(t, • ) is a
nonzero multiple of HN ,(t, •), so there is a  nonvanishing holomorphic function
4)(t) on Tp  with

H N ,(t, = 4)(t)HN ,(t, 0 for all (t, C) e F p  .

Therefore the square roots satisfy

C)=F(t)f2 (t, C) for all (t, C) e F,,,

where F(t) is a nonvanishing holomorphic function on Tp . That means f i  and f 2

determine relative sections s i  a n d  s2 o f th e  same line bundle, and s i l s2  i s  a
nonvanishing section of the trivial bundle. Therefore s1 and s2 are equivalent.

Conversely, if s i  and s2  are equivalent, then the line bundles L 1 —* Vp  and L2 -* V,,
determined by N i  and N2 are equivalent. The same is true of their restrictions to
any fiber X „ so [A1 (0 ]= [ .2 (t)] e J(X ) as required.

5 .6 . Finally, we shall prove that if s is a relative section of a line bundle L.-+ Vp ,
and the divisor of s on every fiber is half-canonical, then s is equivalent to one of the
sections constructed in § 5 .5 . Since there are exactly 2P- 1 (2P —1) odd half-periods
(see [11, p. 285]), this will complete the proof of Theorem 2 for 2 4 .  Let the
-automorphic function f  determine s, and choose N  and 4) as in Lemma 5.1. Using

Lemma 5.3, choose f1 : F  C  so that fl = H N .  Then f f  = OP, so there is a  non-
vanishing holomorphic function F  on F,, such that f 1 = F f . Clearly the relative
section s i  determined by f i  is equivalent to s. The proof is complete.

6 .  The action of the modular group on half-periods.

6 .1 . We begin by reviewing the action of the modular group on F,, and Tp.



52 Clifford J. Earle and Irwin Kra

As in §3.1, let I' be the fundamental group of the closed orientable surface X  of genus
p  2. Every homeomorphism f: X —> X which fixes the base point x , induces an
automorphism of F, and f  induces an inner automorphism if and only if f  is homo-
topic to the identity. Further, every automorphism of r is induced by some homeo-
morphism of X.

Using the generators of I ' described in §4.5, we define a  homomorphism
r-,z2P by

k
ek

v (A O =(
0  )

(6.1)
0

, 1a n d  v(B k ) = ( ) ._ p,
ek

where ek  = the kth column of the p x p identity matrix. The kernel of v is the com-
mutator subgroup of F, so every automorphism g  of r induces a unique automor-
phism 13(g) of Z2 " satisfying

(6.2) fl(g)(v(y))=v(g(y)) for all y E

Usually one interprets 16(g) as a 2p x 2p unimodular matrix (with integer entries).
If g  is induced by the homeomorphism f ,  then 'K g) describes the effect of f
on H i (X , Z), the first homology group of X .  In particular, g  is induced by an
orientation-preserving homeomorphism if and only if the matrix /3(g) preserves the
intersection matrix of the homology basis A 1 ,..., B p ; that is, if and only if

( 
0 — I

i 13(04 30 ) =  j , j = •

The group of automorphisms g of r such that /3(g) satisfies (6.3) is the modular
group mod (r). The map /3 is a homomorphism of mod (F) onto the symplectic
modular group

Sp (p, Z)= {Q E SL (2p, Z); tqfQ= J} .

6 .2 .  The modular group acts on Tp  as a group of biholomorphic maps so that
for each t e Tp  and g E mod (F), the Riemann surfaces X , and X g ( )  are equivalent.
In addition, the transformation theory of the 0-function (see Igusa [17, pp. 50 and 85]
or Rauch-Farkas [21, p. 87]) leads to an action of mod (F) on the group (Z/2Z)2 "
of half-periods, which we shall need in § 7 .  To describe that action we need some
notation.

If Q is any square matrix, Diag (Q) is the column vector whose components are
the entries on the main diagonal of Q .  The 2p x 2p matrix L is defined by

0  I \
L—

—( 0  0  )

where I  is the p x p identity matrix. If g E mod (F) and N e Z2 ", the vectors x(g)
and g • N  in Z2 " are defined by

(6.3)
I 0

(6.4) z(g).= — Diag (fl(g)Lt fi(g))
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and

(6.5) g • N = 13(g)N + x(g).

Formula (6.5) does not define an action of mod (F) on Z2 " ,  since gh • NO
g • (h • N) in general. However, by reducing modulo two, we obtain the desired
action on the group (Z/2Z)2 " of half-periods.

6 .3 . We shall need the following classical fact.

Proposition. T he sets of  odd and even half-periods are inv ariant under the
action (6.5) and mod (F) acts transitively on each of them.

For completeness we indicate the proof. To see that g • N is odd if and only if
(Z/2Z)2 " is odd, one can verify it directly from (6.5) on a convenient set of

generators of mod ( F ) .  Alternatively one can use the transformation theory of the
0-function (see Rauch-Farkas [21, pp. 16 and 87]).

For the proof of transitivity we follow Igusa [17, pp. 211-213]. First let N e Z2 "
represent an even half-period. Write tN =(ta,tb )  with a, b e Z P . Then ta b  0
(mod 2). It is easy to verify that .the matrix of integers

atb ata
P=

— b tb  I+ bta )

satisfies tP JP =J, and it follows (see, for example, Siegel [22, p. 115]) that
P e Sp (p, Z ) . An easy computation gives g • 0 =x(g).. - N  (mod 2) if 13(g)= P.

If N e Z 2P represents an odd half-period, we write t1V =(fc, 'd )  with c, d e ZP.
Since icd - 1  (mod 2), there is some j ,  1 p, with c;  d r a . 1 (mod 2). We may
assume that c1 = d,= 1. Put a= c b  = d  el , and define P as above. If I1(g)=P,
then

/ e \ e i a  _  c
g -( e 1 ) =  P (  ) + x ( g )  _ (  ) + (  ) — (  )  (mod 2),

\ e ) e, b d

so the orbit of ( ° )  contains all even half-periods and the orbit of ( e l ) contains all0 ei
odd half-periods.

7 .  The zeros of HN.

7 .1 . We shall complete the proof of Theorem 2 by showing that for 5 there
are no N e Z 2 " and holomorphic functions 0: F p — C satisfying the conditions of
Lemma 5.1. Toward that end we study the set

A (N)= It E T : H N(t, ) = O fo r  all E D(t)} ,

where N e Z2 "  defines an odd half-period. Since the functions oti (t, • ) on D(t),
are linearly independent, the ,definition (5.2) of HN implies that A (N) is

the analytic variety
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(7.1) A (N )= it E T ae
p ; (c(t), AN (0)=O  if 1  --5./ 13} •

We shall need some basic properties of the varieties A(N).

Lemma. If  N  and N ' E Z 2 P define odd half-periods, then
(a) A (N)= A (N') i f  N (mod 2),
(b) A (g • N )= g(A (N)) i f  g e mod (n.

Pro o f . To prove (a ), fix t e  7 ;„  write t ---t(t), and write Z = Api(t)E C P .  If
N - N ' (mod 2), then

= 440 = Z +(i, M E Z2P,

so the functional equation of the 0-function [11, p. 282] gives

0(t, z ')= a(t, z)0(t, z)

for some nonvanishing holomorphic function a. Since 0(T, Z)= 0, we have

ae ao 
az ( T ,  z ') =  0 ( T ,  z ) ( T ,  z), 1

That proves (a).
The proof of (b) is similar. Let g E mod (F) and let

fi(9)—( 
a  b )

c d  
e Sp (p, Z),

where a, b, c, d are p x p matrices. Then (6.3) implies

'd —(1))

Fix t e Tp  and put T = T(t) and t"= t ( g (0 ) . Formula (6.8) of [5] says

(7.2) t( —  CT + -c)=(I, T 5 )13(g),

so (I, T 5 )='(— cr+d) - '(I, t)/3(g) - 1 , and

T$F = t (— et ± d) i(rta — tb)= (at — b)(— e t  d) - 1 .

Put z 5 ='(—  CT ± d) - lz  if z e C P . The transformation theory of the 0-function
(see Igusa [17, pp. 50 and 85] or Rauch-Farkas [21, p. 87]) gives

(7.3) 6(t°, + 14 )X (g))=  O (t , Z )(1 ),(T  , Z )

for some nonvanishing holomorphic function (kg  o n  Xep  C". I f  0 ( t ,  z)= 0, dif-
ferentiation of (7.3) gives

ao ( 7 . 4 )

a z ,  kt, zyp g (t, Z) = f U i k
a° ET z ' + T ")x (g )) ,

13(0 - 1 =
t c ta
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if (t i k ) is the matrix t(— CT d ) - 1 . In particular, if z =2,,,(t), then (7.4) holds, and
(5.1), (7.2), and (6.5) give

Z1 -I- l a
'
 T ” Z (g )= I [ t ( -  CT + T)N+ (I, 'r°)x(g)]2 2

1 x")66(g)N+ x(g))

1 #= T ( ' ,  ) ( g  • N)= Ag .N (g (t)) .

Substitution in (7.4) gives

00(7.5) (t(t), A N (t))a g  N(t) — tt i k (t(g (t)) , A p .N ( g ( t ) ) ) ,az ki = 1 C/Zi

with cr6,,,(0= Og er(t), 2N (0). Since the matrix ( t i k ) is invertible, that proves (b).

Remark. Lemma 7.1(a) says that the set A(N) is determined by the half-
period defined by N.

7 .2 .  The crucial issue is the size of the sets A (N ) . As a first result in that
direction we prove this

Lemma. If  Ne Z 2 P defines an odd half-period and the set A(N) is neither
em pty  nor all of  Tp .

P ro o f  Fix t e Tp  so that X , is hyperelliptic. It is shown in Chapter VII of
Farkas-Kra [11] that there are half-canonical integral divisors D I  and D 2 on X ,
with index of speciality i(D1)= 1 and i(D2 )= 3. Choose N1 and N2 in  Z2 " so that
tfri,_ 1 (Di )= p.,„,j (0], j =  1, 2. The Riemann vanishing theorem implies that 0(t(t), • )
vanishes at il.N 1 (t) and 4 4 0  to orders 1 and 3 respectively. Therefore N1 and N
define odd half-periods such that tEr A(N,) and t e A (N 2 ).

Now let N e Z 2 P define an odd half-period. By Proposition 6.3 , there are
g ,  and g 2  in mod (F) such that

N 2=- N (mod 2) .

By Lemma 7.1, g 1 (t) •È A(N) and g 2 (t) e A (N ). That proves the lemma.

Remark. Lemma 7.2 shows that A(N) is always a  proper subvariety of Tp ,
so we have proved the following result of Farkas.

Theorem (Fark as [9]). The vanishing of  the gradient of  the 0-function at an
odd half-period is special in the sense of moduli.

A similar argument proves the companion

Theorem (Fark as [9]). The vanishing of the 0-function at an even half-period
is special in the sense of moduli.
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Pro o f . Just as (7.4) leads to (7.5), (7.3) leads to the formula

0(t(g(t)), il.p .,(g(t)))=0(z(t), A N(t))ap ,,,,(t),

for any g e mod ( l)  and N e Z2 ". It is shown in [11, Chapter VII] that 0(t(t), 0)0 0
for some fixed te  Tr  and the above formula (with N =0) implies that

0(t(g (0), ) 9 .0 (g (t))) 0 0

for all g e mod (n.
If N e Z2 " defines an even half-period, Proposition 6.3 gives g e mod (F) with

g • 0=--  N (mod 2). Then

Kr(g(t)), A N(g(t)))0 O.

That proves the theorem.

7 .3 . The connection between Lemma 5.1 and the sets A (N ) is given by the
following

L em m a. Suppose N e Z 2 P defines an odd half-period and  p 5 . I f  there is a
holomorphic function 0 satisfy ing the conditions of  Lem m a 5.1, then the variety
A (N )c Tp  has pure dimension 3p-4.

Pro o f . Given t0 e A (N), choose Co e D(t o )  and an open neighborhood U  of
to in  Tp  so that Co e D(t) if t e U .  Then

A (N) n u= {t e U; 0 0 ,  ) = O } ,

so A (N) is a hypersurface in Tp . That proves the lemma.

7 .4 . The nonexistence of 0: F-+ C  when p = 5 is a consequence of Lemma 7.3
and the following

L em m a. If  p= 5 and N e Z 2 P defines an odd half-period, then A (N) is an open-
closed subset of  the hyperelliptic submanifold of  Tr

Pro o f . If t e A (N), there is a half-canonical integral divisor D on X , such that
Op _ i (D)=[A N (t)] and the index of speciality of D satisfies

i(D)> 3 -  P + 1
2 •

Clifford's theorem [11, p. 106] implies that i(D )- 3 and X t is hyperelliptic. The set
of t E T  such that X  is hyperelliptic forms a closed subset S  of Tp , each of whose
(countably many) connected components is a  closed submanifold of dimension
2p -1. The computations in Chapter VII of Farkas-Kra [11] show that if t e A(N),
then the connected component of t in S is contained in A (N ) . The conclusion of the
lemma follows.

Corollary. If  p= 5 and N  e Z 2 P defines an odd half-period, there is no 0: F - *
C satisfy ing the conditions of Lemma 5.1.
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Pro o f . By Lemmas 7.2 and 7.4, A (N) has dimension 2p — 1 (0  3p —4) if p= 5.

7 .5 .  The above corollary completes the proof of Theorem 2  for genus p= 5.
The proof for p> 5 will be completed by an induction argument. To set up the
induction we refer to Figure 1, which shows a closed surface X  of genus p 5, with
a canonical set of generators for the fundamental group F. L e t  g E mod (F) be the
element of order two determined by the 180° rotation r in the horizontal axis, as
indicated in Figure 1, and let

(7.6) H = {t e Tp ; g(t)= t}  .

H is a connected component of the hyperelliptic locus. Finally, let N e Z2 P be the
vector

(7.7) N=e1+e2+•••+ep-I-ep+1+ep+3+ep+5.

 

AXIS
 - - - OF
SYMMETRY

 

Figure 1. Canonical homotopy basis.

We shall need the following lemma, whose proof we postpone until Section 8.

L em m a . I f  H c Tp  and N e Z 2 P are def ined by  (7.6) and (7.7) (and p 5 ) ,
then H c A (N).

7 .6 .  Since H is an irreducible analytic subvariety of Tp , at least one irreducible
component of A (N) contains H (see H ervé [15 ]). We shall complete the proof of
Theorem 2 by proving the following

L em m a . Let H c T p  and N  eZ 2 P be def ined by  (7.6) and (7.7). I f
then any  irreducible com ponent of A (N) that contains H  has dimension 6.

First we shall derive Theorem 2 from this result. Lemmas 7.5 and 7.6 imply
that some irreducible component M  of A (N) has dimension 3p — 6 <3p —4. Pro-
position 6.3 and Lemma 7.1(b) imply that A (N ') has such a component whenever
N' E Z2 P  defines an odd half-period. Lemmas 5.1 and 7.3 therefore imply that for
no factor of autom orphy can we find a  -automorphic function f :F,,— C that defines
a relative section whose divisor on every fiber is half-canonical, if 5. That proves
Theorem 2.

7.7. T h e  proof of Lemma 7.6 is by induction on 13 5. I f  p =5 , the only
irreducible component of A (N) that contains H is H  itself, and H  has dimension
2p — 1 = 3 p -6 , so the lemma is true when p= 5. For the induction step, we assume
that p 6  and that the lemma holds in genus p —i. We shall reduce the problem for
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genus p to that for genus p - 1 by pinching the curve y shown in Figure 2 to a point.
For that purpose we must introduce the Bers deformation space (see [3] and [4])
determined by the curve y.

Figure 2. Pinching curve y is homologous to 4.13,A; 1 B ; 1 =0.

That deformation space is a bounded domain D c C 3 P- 3 . The closed analytic
hypersurface

G=.(w =(w i,...,w 3p_3)eD; w , = 0}

parametrizes the singular Riemann surfaces obtained as in Figure 3 by pinching y
to a  p o in t .  Each such surface has two nonsingular pieces, of genus p -  1 and  1
respectively, and G is biholomorphically equivalent to the  product Tp _  "  x T1 ,1 .
(As in §3.3 for any k  1 , T o  is the Teichmiiller space of closed Riemann surfaces of
genus k with 1 distinguished point.)

Figure 3. Riemann surface with node obtained by pinching the curve T.

The points of the open set D0  =D\G represent nonsingular closed Riemann
surfaces of genus p .  Let f  be the element of mod ( f )  determined by the Dehn twist
about the curve y, and let <f> be the cyclic subgroup generated by f . Then Do is
biholomorphically equivalent to the quotient space Tp l<f>, and there is a surjective
holomorphic map 7r: T1,-4:4 such that ir(t)=Ir(e) if and only if t' =f  (t) for some
n e Z.

The period matrix map ti-T(t) factors through 1C. Indeed, there is a holomorphic
map a: D-4,Y ep  such that
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(7.8) t(t)=o(n (t)) f o r a i !  t  e Tp

7 .8 . Now let M c Tp  be an irreducible component of A(N) that contains H, and
let t be a regular point of M . Since 7E: Tp –)D , is a covering map, (7.1) and (7.8)
imply that n(t) is a regular point of the analytic variety

00 (7.9) V = iw e D; ( o - (w ) ,  —
1

(I, o- (w))N) =  0  i f  15 j  .2

Let W be the unique irreducible component of V that contains n(t). (W  is the closure
in D of the connected component of n(t) in the set of regular points of V.) We note
that n(M )c W.

Now the elements f  and g  in mod (F ) commute, so g  acts on Do as a biholo-
morphic map in such a way that

g(n(t)).= n(g(t)) for all t e Tp .

The fixed point set of g  in Do is precisely n (H ). Since D is bounded and G=D\D o

is an analytic hypersurface, g  extends to a biholomorphic map g :  D–)D whose fixed
point set is the closure of n (H ).  Since n (H )cn (M )cW  and W is closed in D, every
fixed point of g: D-+D belongs to W.

7 .9 .  Let d  be the codimension of M  in Tr  O ur goal is to prove that 3.
We know that d  equals the codimension of W in D, which in turn equals the codi-
mension of Wn G in G, by Corollary 1 on p. 105 of [ 1 5 ] .  In fact, by that same
corollary, any irreducible component Y of W n G in G has codimension d.

W e fix our attention on G  and its subvarieties. Since G  is equivalent to
T,, -1,  x T1 ,1 , all biholomorphic maps of G onto itself have connected fixed point
sets. I n  particular the fixed point set of g :  is a  connected subset of wn G,
so it is contained in an irreducible component Y of W n G .  We know Y has codi-
mension d. Since Yc Wn G  Vn G , some irreducible component X  o f V n G
contains Y. We claim that the induction hypothesis implies that X  has codi-
mension at least three. The inequalities

3  cod (X )  cod ( Y)= d

will then complete the proof.

7 .1 0 . To show that cod (X ) . 3 we examine the variety Vn G in G .  For w e G,
the period matrix a(w) of the corresponding singular Riemann surface S splits along
the main diagonal into two square blocks t '  and T" of dimension p– 1 and 1 re-
spectively. These are the period matrices of the two pieces of S .  If z e C P  is
written

z =(
z '

z"eC,
z"

then the 0-function is a product
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0(r(w), z)= 0_ ,  z ') x  0  at" , z") .

Here 01 ,1 , and 0 1 are 0-functions of genus p — 1 and 1 respectively. In particular,
if N is defined by (7.7) and z=1(I, a(w))N, then

1z' T ')N ' and z" = -c")N".2

Here N' E Z 2 ( P- i )  is the odd half-period defined by (7.7), with p replaced by p — 1,
and N"= el  e Z2 is an even half-period. Therefore 0 1 (r", z") *0 and

az')—  °' (r", z")= O.ez

Comparing with (7.9) we see that weYnG if and only if

( 1 ,, , 1  I ,  0 —)IV = 0  i f  1 1.zi 2

Therefore Vn G= p - 1 (A (N )), where p: G—>Tp _ 1 i s  the holomorphic map defined
by first projecting G (= T 1,_ 1 ,1 x T1 ,i ) onto Tp _ 1 ,1 , then mapping o n t o  Tp _,
by the "forgetful map".

Since X is an irreducible component of vn G and vn G= p - 1 (A (N )), p(X ) is
an irreducible component of A(N') and p- 1 (p(X))= X .  Further, the codimension
of X  in  G equals the codimension of p(X) in  Tp _ 1 . Since X  contains the fixed
point set of g in G, p(X) contains its image in Tp _ i . That image is precisely the set
H c Tp  _ 1 , so the induction hypothesis implies that cod (p (X )). 3. That completes
the proof of Lemma 7.6 and of Theorem 2, modulo the proof of Lemma 7.5.

8 .  Half-periods in J(X ) for hyperelliptic X.

8 .1 .  We proceed to prove Lemma 7.5. By the Riemann vanishing theorem,
it suffices to prove that for X hyperelliptic and N defined by (7.7) we can find a divisor
D  SP- 1 (X) with i(D ) 3 and

p _ 1 (D )=[1(I, 'ON].

(Here the hyperelliptic involution of X  and the canonical homology basis used to
compute t are related as specified in §7.5.) We will actually find a divisor (of degree
p — 1 and) of index of speciality precisely 3.

8 .2 .  We adjust the arguments of [11, Chapter VII] to the canonical homology
basis determined by the homotopy basis shown in Figure 1. That homology basis
is shown in more detail in Figure 4. The Riemann surface X in Figure 4 should be
viewed as a hyperelliptic surface conformally embedded in R 3 . It is of genus 5
and its Weierstrass points Y i '  y 2 ,••., y2 p + 2  a re  located on the x -ax is . The 180°
rotation r about the x-axis preserves X  and is identified with the hyperelliptic in-
volution on X .  The canonical homology basis A 1 ,..., Ap , B 1 ,..., Bp is chosen as
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indicated in Figure 4  Note that the curves B;  are invariant under r. In fact for
p, let /3;  b e  a  curve from y2 ; + 1  t o  y2 ;  a s  shown by the solid part of Bj .

Then B.; = r(I3 j ).

Figure 4 .  The canonical homology basis corresponding to the homotopy basis of Figure 1 and
some additional curves.

Similarly, for j=1,..., p +1, we define pi  to be a curve from y2 ;  to y2  j _ 1 (as shown
by the solid part o f bj  in Figure 4) and we set bj =fi j - r(fi j ). To determine the
homology class of bk  we compute the intersection numbers of bk with the curves A;

and Bj . All the intersection numbers are zero with the following exceptions:

bk x Bk —1 f o r  k=1,..., p,

bkX Bk_ 1= -1 f o r  k=2,..., p+1.

Therefore b,= A l ,  bk = Ak— Ak_ fo r  k=2,..., p, and - A p  a s  homology
classes.

Since r  acts as multiplication b y  - 1  on both the homology classes and the
abelian differentials of the first kind, we can compute easily the images in J(X ) of
the W eierstrass points. It is convenient to use Y i  a s  th e  basepoint for the map
4): X -4 (X ) .  As in [11, p. 303], we have:

06/1) = ,

0(Y2)=P27 e l l ,

403) = P2 -  (e) + 'rep + 1)1

4 0 4 )- (e2 + 'rep+ 01,

4)(y5)=[÷(e 2 +-r(ep + ,+e p + 2 ))1,

(10 2 k  + 1 )
P 2- (ek + x(e,,, i + • • • +e p , k ))1, k = 1 ,..., p - 1,

0(.172k+2)=L- 1(ek+1+T(ep+1+•••+ep+k))1 , k = 1 ,. . . ,p - 1,
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0(Y 2p+i)=[ 2
1 (ep+ T(ep+ i+ '• • + e2p))1,

0(Y2p+2)=LIT(ep+ + • • • +e2p)l•

The points (/)(yi ), 1 j_ 2 p  +2, are all half-periods. The half-period (1)(yi ) is
even if j = 1, 2, 4, 6,..., 2p + 2 and  odd if j = 3, 5,..., 2p +1. The calculations of
[11, pp. 305 and 309-311] show that

k = k() 1 ) - 4)()) 2 F 1)J=1

= [
1 ,T v i  ••• ± ep + t(pe p , i +( p - 1 ) e p + 2 -1-••• ± e 2 p ))1.

Note that k(3/1) is a half-period.

8 .3 . With these preliminaries out o f the w ay, we a re  ready to produce the
divisor D e SP- 1 ( X ) .  Let

D = 2
(Y10+.Y11)+ (.Y4k+10+.Y4k+11) i f  p =2 n +5 ,

k=1

and

D = 2 (Y 10+Y 11)+ ki l

1
(Y 4k +io+Y 4k -F11)+Y 2p+2 if  p=2n+6.

Then deg D = p - 1 and (by the remarks of [11, pp. 306-307]), i(D)= 3. The cal-
culations of §8.2 show that

Op-. ,(D )= q-c(e  p  + + e p +  9± e p + i i
-
F•••-ke2 p ) 1  i f  p is odd,

and

( -
1

t(e + e-1 D)=L, 2 p + i p + 2 +  ' ' •  e p + 6 +  e p + 8 +  e p + 1 0 +  • • '  e 2 p ) 1

It follows that

p- i(D)= 4)p- 1(D) -  k(y 1 ) = Op- 1(D) + k(y 1 )

=L1 ,-
2

v ,+• • • +e p +T(e p + 1 + ep + 3 +ep + 5 ))1

as required.

if  p is even.
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Note added in proof:
J. Harris has brought to our attention his paper :  Theta-characteristics on

algebraic curves, Trans. Amer. Math. Soc., 271 (1982), 611-638.
In that paper, Harris proves that each variety in the moduli space of sur-

faces of genus p  of Riemann surfaces with a half-canonical divisor D of index of



64 Clifford J. Earle and Irwin Kra

speciality 1 is either empty or has codimension r  (r+ 1)/2. It follows that
d of §7.9 must be equal to 3 (the case r =2).


