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§ 1 .  Introduction

Let F be a Fuchsian group acting on the upper half-plane U, possibly consisting
of only the identity transformation. Let L (F ) be the closed linear subspace of
L ( U )  consisting of those v E L ( U )  which satisfy

(1.1) v(y(w))r(w)/y'(w)= v(w) for ev ery  y E F.

We denote by M(F) the open unit ball of L o„(F) . For v in M (F), we denote by z =
F (w ) the uniquely determined quasiconformal automorphism of U  with complex
dilatation v = v(w) such that the homeomorphic extension of F v to the closure U=
U u R, which we call it again F v , leaves 0, 1 and co fixed (see Lehto and Virtanen
[3, p. 185 and p. 194]).

Let cr be a F-invariant closed subset of the extended real line 11, which contains
0, 1 and co. L e t  E be a F-invariant measurable, possibly empty, subset of U such that
the set D = has a positive m easure. Let b(w ) be a non-negative bounded
measurable function on E, being automorphic for F and satisfying

ess sup b(w)< 1.
weE

Let h: 11->r? be the boundary mapping induced by F v o for some vo  E M(r).
We consider the class Q - .2(r, h, o•, E , b) consisting of those F ,  with v EM(F),
which satisfy the conditions F = h l ,  and I v(w)1 . b(w )a.e. in E .  We suppose that Q
is not empty. A mapping F , in Q which satisfies co =infIvI D I is  sa id  to  b e

F,EQ
extremal within the class Q, where 11 vID 11  means the L  no rm  of the restriction vID

of v to D .  By [3, pp. 71-74] and Strebel [8, Satz on page 469], we see that there
exists at least one extremal quasiconformal mapping within Q.

In this note, as a continuation of the preceding paper [6], we investigate necessary
and sufficient conditions for a prescribed mapping F„ E Q to be extremal within Q.
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In §2, we give the summarizing statements of Theorems. Theorem 1 gives a complete
characterization for F  to be extremal within Q under the hypotheses that 11111D11. >0

and that either dim A(F, a)< cc or EIF is relatively compact in {U u (R--..o-)}1F. This
theorem generalizes [6, Theorem 2] where we imposed some additional hypotheses
both on E and on b. Theorem 2 gives a necessary condition for extremality under
certain hypotheses which are a little weaker than those of Theorem 1. Theorem 3
gives a necessary condition for extremality within a class s im ila r  to  Q .  In §3,
we give the proofs of Theorems, following the arguments in [6] but with some parts
improved.

The author w ould  like to  express his sincere gratitude to Professor
Tadashi Kuroda for his constant encouragement and advice, and to Professor
Masahiko Taniguchi for his helpful comments on the original version of this note.

§ 2 .  Necessary and sufficient conditions for extremality

In order to formulate our theorems, first we collect necessary terminologies
and notations. Fix F IL E Q once for all, and we put

(2.1) F=F 0 , f  = K(z)=f,(z)lf,(z),

G=FFF - 1  a n d  ko=11/11D11.•

Let ( 5 = h(a) and, for 0, let E, be the subset of E consisting of those w e E with
b(w) Put Ve = U--, ,F (E 0 . We denote by /2 the extension of 

I C I F ( D U E 0 )  t o  U
which satisfies

k(z)=k0K(z)lb(f(z)) f o r  z e F(E--,E0).

As is known, the property of (1.1) of ti implies that G is a Fuchsian group. A
holomorphic function 0 on U is called a quadratic differential for G on U if (k(g(z)) •
g'(z) 2 = (k(z) for every g  e G .  We denote by A(G, (5) the space consisting of all the
quadratic differentials 0 for G on U, which are continuously extensible to
and real on and satisfy

1101lUIG
I I G

IO(Z)1dxdy<oo.

In this note, further, we require that A(G, (5)0 {0 } .  This requirement eliminates
certain trivial cases (see [6 ]).  We denote by A(G, 6) 1 the set of those 0 e A(G,
with 1144E71G= 1.

For 0 and a E L(G), we put

LT, 1 0 (a ) (0 ) R e  1). /G oc(z)0(z)dxdy fo r  0 E A(G, (5),

a L su p  Ly ./G(k)(0),

where the supremum is taken over all 0 e A(G, 6) w ith 11011 -v ./G = 1. For every ck
in A(G, (5)---...{0}, following Reich [4], we put
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D[O, = F  ( D )  G 10(z)1 11 — K(z)0(z)110(z)112 (1 — lic(z)12 ) -  1  dxdy,

E[0, K]= 10(z)Ill — K(z)(k(z)110(z)1 1 2 (1 —1K(z)12 ) - 1 B(f (z))dxdy,
F(E)/G

where B(w)= (1+ b(w))(1— b(w)) - 1 .
Now we give the summarizing statements of theorems as follows.

Theorem 1. Suppose that k0 >0  in  (2.1) and that either dim A(r, o)< co o r
Eli is relativ ely  com pact in {U U (k---..0-)}1r. Then each one of the conditions (I),
(II) and (III) below is necessary and sufficient for F to be extrema! within Q.

Condition (I): Either there ex ists 0 0  e A(G, (5)1 such that

K(z)= b(f(z))100(z)11(ko ( z )  a.e. i n  F(E ) , and

K(z)=k 0 14)0(z)1100( z )  a.e. i n  F(D)

or there exists a sequence {4„} in A(G, (5)1 such that

lim 0„(z )=0 locally  uniformly in U u (R-,(5), and
n

11m L u IG (K )(0n)
=

 kO.n . co

Condition (II):

inf {Ko D[O, lc] +E[0, KB = 1,

where K 0 = ( 1 + k 0 ) 1 ( 1 — k 0 )  and the infimum is taken over all (I) e A(G, (5)1.
Condition (III):

ao= k 0 .

The following theorem is a slightly generalized form of a part of Theorem 1.

Theorem 2 .  Suppose that either dim A(1' , c()< a) or the condition (A) below is
satisfied for a positive number c o . Let E be a non-negative real num ber w hich is
arbitrarily  chosen (resp. less than or equal to c o ) if  (resp. unless) dim A(r , 0<o°.
If  F is extrema! w ithin Q, then aE=k o .

Condition ( A ) :  dim A(F, o)= co a n d  E,o i r  is re l a t i v e l y  com pact in
{U U (k---..o)}IF.

Now we define a  class s im ila r  to  Q .  Let g be a  measurable function on E,
being automorphic for F and satisfying 11g Go < 1 .  We note that B is not necessarily
required to be non-negative. We consider the class = O(F, h, a- , E, g) consisting
of those F, with v M (F), which satisfy F i  =  hi, and v(w)= g(w) a.e. in E . W e  sup-
pose that is not empty. W e say that F E -0 is extremal if Fi r , has minimal maximal
dilatation within the class O . For a prescribed mapping F e 0, we put

a* su p  LF(D)/G(K)(0),

where K  is defined by (2.1) and where the supremum is taken over all q5 e A(G, (5)
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with II F(D)/G= 1. Then, by the same method as that of the proof of Theorem 2,
we can show the following theorem.

Theorem 3. Suppose that either dim A (F, cr)<oo or EIF is relatively compact
in {U u If  F is  e x t r e m a l w i t h i n Q , t h e n a * = k o .  In other w ords, either
there exists some 00 E A(G, (5)----.{0} such that IC = /C01001/00 on F(D) or there exists
a sequence {4)} in A (G, 6) 1 such that

li i n  F (D)1G00 ((k J =
 kO.

n—pco

§ 3. Proofs of Theorems

In this section, we give the proofs of Theorems. For this purpose, first we
recall some result from [7] and prove some lemmas.

Let M o (G, (5) be the subset of M(G) consisting of those T e M(G) such that F t i,
is identical with the identity automorphism of (5. We denote by N(G, (5) the space
consisting of all the elements a E L ( G )  which satisfy L v i 6 (a)(0)= 0 for every 0 E
A(G, (5).

The following Lemma 1  follows from Gardiner [1, Theorem 1 ]  a n d  [7,
Corollary].

Lemma 1. L et S  be a G-invariant m easurable subset of U  such that the set
h as  a positiv e  m easure an d  su c h  th at S IG  is  re lativ e ly  com pact in

{U U (11--.6)}1G i f  dim A(F, o-) = o o . S uppose t h a t  a e N (G, (5) v anishes o n  S .
T hen there ex ists a  curve x(t) E M o (G, (5), defined in  an  interv al (0, to ), which
vanishes on S , and which satisfies

(3.1) lim ilt(o/t = o.
t

Lemma 2 .  Suppose that either dim A(F, < co or the condition (A) is satisfied
f o r some e o O .  L et y  be a  non-negative real number which is arbitrarily  chosen
(resp. less than or equal to s o )  if (resp. unless) dim A(F, o-) < c o . L et {4)„} be a
sequence in A (G, (5) w ith 110 .1 1 v 4 o = 1  such that {4)„Iv o ( v ,3)}  converges to  the  limit
f unction  4)0 locally  un if orm ly  i n  KU (11---6). T h e n  {11 4) o }  i s  a  bounded
sequence and there exists some OE A(G, (5) which satisfies 01,,, (R ,, ) = 00 an d  such
th at {On}  converges t o  4) locally  un if orm ly  in  U  u (E ----.6). M oreov er, the
following equality  holds:

(3.2) lim  O.— 011va G = 1— 11011 V./G •
n—■ co

Pro o f . Put K„=11 n II U /G. Assume that there exists a subsequence of {0,J, which we
call it again {O n }, such that {K} converges to co as n tends to  co . Put ki/„= 0,1Kn .
Then we have 0„ e A (G, 6), and

(3.3) ihn II tknll F (E)/G = 1.
n.00
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Thus {tp„} forms a normal family in U U (P.----(5). We choose a convergent subsequ-
ence of which we call it again {4in ). Since, by our hypotheses, { 1/1 .1v.0 ( w)}
converges to 0 locally uniformly in V, U (k---.5), so does {On} locally uniformly in
U U But this is impossible if dim A(T , a) < co and this contradicts (3.3)
if the condition (A) is satisfied. Therefore we see that {K }  is a bounded sequence.

By the boundedness of {K„}, {0„} forms a normal family in U U (k---,(5). Then,
by our hypotheses and Vitali's theorem, we have the former part of the lemma.

Now we show that (3.2) holds. By a routine work, we see that the following
inequality holds :

(3.4) lim sup 110n — 4)11 e i c  fim sup 110n11U1G- 114)11U1Gn-Ko n-oco

(see Harrington and Ortel [2, Proposition 1.1] and [5, Lemma 3]). But, under the
hypotheses of the lemma, we easily check that the right hand side of (3.4) is identical
with 1— 1101137 a n d  that

lim sup 110.— 46 11u/G= Jim sup II On —n-.00 n.co

i[ilninf 110n —  (1) 11V IG
00

110 II IT/G •

Thus we have (3.2). q. e. d.

By making use of (3.2), we have Lemma 3 below (see [2, Proposition 1.2] and
[5, Lemma 4] for the procedure).

Lemma 3 .  Suppose that the condition (A) is satisfied f o r some e Let B
be a non-negative real number which is less than or equal to Bo. Suppose, further,
that ac =k o > 0 and that there exists no 4) E A(G, (5)--,{0} satisfying ko10110 on K.
Then every sequence {0„) in A(G, 6), with 116

n
 IIT  V rIG=15 which satisfies lim IdiriG  (i2)

n—000

=k o  converges to 0 locally uniformly in U U

Lemma 4 .  S uppose th at  e ith e r dim A (F, o- )< o p  o r th e  c o n d itio n  (A ) is
satisfied f or a positiv e num ber eo . Then a 0 = k 0 i f  an d  only  if  ac =k 0 f o r every
positive number B (resp. for every B satisfying B0 _B>0) if (resp. unless) dim A(F, a)
<co.

Pro o f . If k o = 0, then nothing has to be shown. Thus we may assume that
ko >0.

Suppose that a 0 =k0. I f  /2= ko101/0 o n  I/0 for some 4) e A(G, (5)--4 0}, then
clearly we have a,=k 0 for every e> 0. Next we consider the case where there exists
no 4) E A(G, (5)- ,{ 0}  such that k = k0101/0 on Yo. Under the hypothesis of the lemma,
this occurs only in the case where the condition (A) is satisfied for eo . Thus, by
Lemma 3, every sequence {On} in A(G, (5) with 110n II voic = 1 , satisfying lim L y 0 lG ( 12)"oe
(0„) -= k 0 , converges to 0 locally uniformly in U U (R----,S). Let e be a number satisfying
so  e > 0. Then, by the condition (A) for 60, we see that {110 .11vdc} converges to 1
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as n tends to cc. P u t  = Oni 11 d V G.
 Then we have lim Lvsio(k)(tfrOdxdY  = ko.n-op

This implies that a,= k 0 .
Conversely suppose that a,= /co for every g mentioned in this lemma. Suppose

that, for every such e, there exists some ckg e A (G, 0---{0} with 12= koICl/Oe on K.
Then, for such s and g' with g>g', we easily see that 0c , is a positive constant times
ck on K. We may assume that 0,-- 0,, e A(G, 0 1 and put 00 = 0 , on V,. S ince
it follows from definition that I/0 = Ve, we have k = k 0 1 0 0 1 / 0 0  on Vo . Thus we see

c>0
that cto = k o . Next we consider the case where, for so m e > 0 with s oi f
dim A (F, a)= co, there exists no 4,,  e A(G, (5)----{0} satisfying k =k 01444). on K.
Under the hypothesis of the lemma, this occurs only in the case where the condition
(A) is satisfied for so . Thus, by Lemma 3, we can prove that ao = k o in the same
manner as in the former part of the proof of the lemma. q. e. d.

Now we give the proofs of Theorems.

Proof of Theorem 1 .  Under the hypotheses of the theorem, the condition (I)
is clearly sufficient for the condition (III) to ho ld . We have the reverse implication
as an easy corollary to Lemma 3. If El T is relatively compact in {U u
then, by [6, Theorem 1], we know that the condition (I) is sufficient for the condition
(II) to hold, and that the condition (II) is sufficient for F to be extrema! within Q.
Examination of the proof of [6, Theorem 1], however, shows that if dim A(.1", a)<
then these assertions still hold even if Ell' is not necessarily relatively compact in
{U u (11.- ---o- )} 1F. Thus it suffices to prove that, under the hypotheses of our theorem,
the condition (III) holds provided that F is extremal within Q .  Since Theorem 2 is
a generalized form of this part of Theorem 1, the proof of Theorem 1 is accomplished
once we verify Theorem 2.

Proof of Theorem 2. We may assume that k0 > 0. Suppose the theorem does
not hold. Then, by Lemma 4, it holds that a ,‹  lc, with some s > 0 (resp. 60 >6> 0)
if (resp. unless) dim A (F, a)<o o . By the Hahn-Banach and Riesz representation
theorems, there exists fl e L oo(G) which vanishes on F(E,) and which satisfies the
conditions Ilfillœ=ac and

.L„ /G(i2)(0)=4,. /G( f l) (0 )  for every 0 e A (G, 6).

Put c = i— fi on V, and a = 0 on F(E ,) . Then a  is an element in N (G, 6) which
vanishes on F(E,) and which satisfies

(3.5) 11(k— Œ)1v.11. ac<ko •

By our hypotheses and Lemma 1, there exists a curve t(t) e M o (G, 6), defined in an
interval (0, to ), which vanishes on F(Ee)  and which satisfies (3.1) for the above a.
Let v(t) be the complex dilatation of F r( ,) . F .  Since t( t)  belongs to M 0(G, 6), we
have F, ( ) 1,=FL,.. Thus, in the same way as in the proof of [6, Lemma 4], we see
by (3.5) that F, ( ,) e Q and th at v(01,,11 <  k o  for a sufficiently small t. Therefore F
is not extremal within Q . This contradiction proves Theorem 2.
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Proof  of Theorem 3. Assume that a *  <k 0 . T h e n , by the Hahn-Banach and
Riesz representation theorems, there exists fi e L (G )  which vanishes on F(E) and
which satisfies the conditions 111311.0=a* and

F (D)I GOO (1) =  F  (D )/ ( 0 )  for ev e ry  (/) e A(G,

Put ot=ic— 13 on F(D) and Œ=O on F (E ). Then a  is an  element in  N(G, (5)  which
vanishes on F(E) and which satisfies

Illic- 0 1 )1F(D)I1.=a * <ko.

If we note that E=E c fo r  a  sufficiently large e> 0 , then, by the hypothesis of the
theorem, we can repeat the proof of Theorem 2 verbatim. Then we see that there
exists some F, E  which satisfies 11 vi Dl <  /cc,. This contradiction proves Theorem 3.
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