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1. Introduction.

Suppose a closed Jordan curve yo in  the plane is deformed into other closed
Jordan curves yl , where A is a  complex variable in the unit disk D .  Furthermore,
suppose the deformations depend holomorphically on  A . In  such a situation one is
naturally led to investigate the dependence on A of suitably normalized Riemann
mapping functionsh of the unit disk onto GA, the inside region of y,. For a summary
of earlier results on this topic see Warschawski [8]. A result of Rodin [5 ] shows
that, in general, f t  depends real analytically on the real and imaginary parts of A.
It is of interest to know when this real analytic dependence is actually complex
analytic (i.e., holomorphic in A). In the present paper we give some methods and
results which have been useful in our preliminary investigation of the question.

2. Definitions.

Throughout this paper D,., where r > 0, denotes the disk {z e C : I zl < r}. The
Riemann sphere will be denoted C. L e t  E c  C. A  map

F: D r x E - - >  e (2.1)
is called a holomorphic motion of E if the following three conditions are satisfied:

( i ) For all A E D,. the map F (A, •): E—> e is injective.
(ii) For all z e E the map F (• , z): D,.—)C1 is holomorphic.
(iii) For all z e E, F(0, z )= z .
The "A-lemma" of Mafié-Sad-Sullivan [4] states that the holomorphic motion

(2.1) extends to a holomorphic motion

P: D r x  C l E  -- , e (2.2)

of the closure of E .  Furthermore, for each A E D r  the map

P(A, • ): C l E  -- P(A , C l E) (2.3)

is a homeomorphism and is quasiconformal on every open subset of Cl E.
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The "improved 2-lemma" refers to the following result: if F in (2.1) is a holo-
morphic motion of E then there is a holomorphic motion

F: D r 13 x e e (2.4)

of C  such that P(2, z)=F(A , z) for all (2,  z )  D r o x  E .  (This result was proved
in Sullivan-Thurston [7] with " D r 13 "  replaced by " D  for some p e(0, r]", the form
(2.4) of the result was proved in Bers-Royden [1]).

Throughout this paper yo will denote a closed Jordan curve in  C . We will
consider a holomorphic motion

F: D r x yoC

of yo . For each 2 e D r the set

y,= { FR z): z  e yo }

is a closed Jordan curve in C since the 2-lemma asserts that (2.3) is a homeomorphism.
We shall let Ga denote the region inside of y, (2 e D r).

3 .  Let us first observe that the indexed family {y2 : /le D}, where Va is considered
as a subset of C rather than as a parametrized curve, uniquely determines the holo-
morphic motion F: D x yo -+ C that generated it.

Theorem 1. Let

F  D xy 0C  a n d  P 2 : D x yoC

be holomorphic motions of yo . Suppose that for each 2 n D we have

{F1 (2, z): z ey o } = {F2()., z): z y o } .

Then F1 (2, z )=F z) for all (2, z) e D xy 0 .

Pro o f . By the improved 2-lemma the restriction of F 1 to  D113 x yo

extended to a holomorphic motion

P1: Dio X (Go U Yo) — > C.

Consider the function

P2: D113 X (Go U Vo) C

defined by

(3.1)

can be

{ P 1 (2, z) for (A, Z) E D io X  Go
P2(2, z )=

F(2, Z) for (A, z) e D i  /3  x yo

It is easily seen using (3.1) that P 2  is a holomorphic motion of Go u
fixed A eD i o  the functions

z F1(2, z ) a n d  z P,(A , z)

Vo. For each
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are continuous on Go U yo (by the 2-lemma). Since they agree on Go , they agree on
yo . Therefore F 1(2, z)= F 2 (A, z) for (A, z) e D x yo .

We continue to consider the family {y2 : 2 E D }  generated by a  holomorphic
motion F: D x yo —> C of yo . If yo is a quasicircle then each yl  is also a quasicircle.
In Gehring-Pommerenke [3], e.g., this is proved by considering the crossratio

F(A, z 1 ) — F(A, z4) z 2 )  FR z3 ) 
F(1, z 1) — F(A, z 3 ) F ( A ,  z 2 )  RA, z4)

where z 1 , z 2 , z 3 , z4 are four distinct ordered points on yo . The crossratio (3.2) is a
holomorphic function of A with values in C1-10 , 1 , c o b  For 2 = 0  its values are
bounded independently of the four points (this is a characterization of quasicircles);
by Schottky's theorem the same is true for any A with Ill < 1 .  The following gener-
alization, however, requires a completely different proof.

Theorem 2 .  L et {y2 : A e D}  be generated by  holomorphic motion of yo . For
each A e D there ex ists a  quasiconformal homeomorphism o f  e w hich m aps yo

onto y,.

Pro o f . Fix A e D .  Choose 0 = 4 ,  An= A so that Il i ,  —  <(1 —  14)/3
for j= 0 , n  — 1 .  By the improved 1-lemma each map f (A , z)1-4 ( A  1 , z), for
z E yo , of y2 i onto y 2 + 1 e x t e n d s  to a quasiconformal homeomorphism G;  of e. Thus
G= Gn _ 10•••.G i oGo i s  the desired quasiconformal homeomorphism o f e '  which
maps yo onto y2 .

Our next theorem shows that, in general, the Riemann mapping function cannot
be expected to depend holomorphically on A. Let us say that a holomorphic motion
F: Dx E—> C" is triv ial if F(1, z) is of the form

F(A, z)— a(A)z + b(A) 
c (A)z + d(l) (3.3)

where a, b, c, d are holomorphic in D.

Theorem 3 .  L e t {y2 : le  D )  be generated by  a  holomorphic m otion of  yo .
Let f 2 : be a R iem ann mapping function of  D onto the inside of y2 , and let

: D*—*G1' be a R iemann mapping function of the ex terior of  D  onto the exterior
of y,. If  L and f ,t  depend holomorphically on A and if  yo  has m easure zero then
the holomorphic motion of yo is  trivial.

Pro o f . Let {y2 : A e D} be generated by the holomorphic motion F: D x yo —> C
of yo . Define

P : D x e - - ) e s

(3.2)

by
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0
- '(z)) z  inside y,

f ,t(f r ( z ) ) z  outside y.

F(1, z) z  on y,

Iff,, f t, depend holomorphically on A for 1 e D then P is a holomorphic motion of e.
For fixed A E D the function

z P(1, z)

is quasiconformal (by the A-lemma) and it satisfies H2 =0 almost everywhere. Hence
H is a linear fractional transform ation. Therefore P has the form (3.3); the functions
a, b, c, d are holomorphic since P(A, z) is holomorphic in 1 for any fixed z e

The next result gives a means for testing whether the Riemann mapping functions
can be normalized to depend holomorphically on 1.

Theorem 4 .  L et F: D x C  be a  holomorphic m otion of  yo . A necessary
and sufficient condition that the Riemann mapping functions

(3.4)

can be norm aliz ed to depend holomorphically on I  is  th a t  f o r each A e D the
function

z F(1, z): yoy A (3.5)

is the boundary value function of a function holomorphic in G o .

P ro o f . Suppose that for each 2 E D (3.5) is the boundary value function of a
function holomorphic in Go . Since (3.5) is continuous (by the 2-lemma), there is a
function P: D x (Go U yo )—) C such that each function zi-- P(A , z) is holomorphic
for z e G0 , continuous for z E Go U yo , and is equal to z'-+F(1, z) for z e yo .

Let f , : D- .G0 be a fixed Riemann mapping function. Let J o : D u D , G0 U Yo
be its continuous extension. For fixed 2 the function

—= (1, fo ( ) ) : D U OD GA U yA

is, by the argument principle, the continuous extension of a Riemann mapping func-
tion of D onto G .  The Cauchy integral formula shows that f ,  depends holomor-
phically on 2.

Conversely, suppose that, for each A e D , g,: D-- GA i s  a Riemann mapping
function which depends holomorphically o n  A. Let "d,: D U 011—)G, u  y , be the
continuous extension of g,. Define

P(1, z

9 z(9 o- 1 (z))
P(2, z )={

F(2, z)

z e G,

Z  E yo .

Then P: D x (G o U C  is  a holomorphic motion of G, U  Vo •

P(2, z) is continuous. It follows that F(1, z )= ,("46 1 (z)) for z e yo . T his show s
Therefore
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that z->F(A, z) for z e yo is the boundary value function of the holomorphic function
zi-g 2 (g6'(z)) for z E Go .

Theorem 5 .  Let A A , z ) be holomorphic in z E D  and m easurable in 1e D.
Furtherm ore, let

If(.1., z)I < M f o r  'le  D , z e D .

We assume that Ec aD has the property  that for all C e E, AeD the limit

f , 0 =  Jim  f ( ,  1'0,1 - 0

exists, f()., () is holomorphic in )E D , and mes E > 0 .  Then f(2, z) is holomorphic
f or (2, z) e D x D.

P ro o f . Let

f ,  z ) =  i  a (A )z" (z e D).n_o .

Let C e E .  Let C be any piecewise smooth closed curve in D .  We consider

g(z) ---- -

c
f(A, z)cl2= ci  b  z n  (z  e D)n_o .

where

13,,,=  
c  

a n(A ) n =0, 1,....

We obtain from (3.6) and (3.7), by Lebesgue's bounded convergence theorem, that
if rk -- 1 - 0 as k -> oo then

lim  g(r,C)= 
c
f(A, OcIA.

The above integral vanishes because f(A ,C ) is holomorphic in A e D .  Hence we
conclude that

g(rC) —). 0  a s  r —4 1 -0 ( 3 . 1 1 )

for each ( e E.
Let L(C) be the length of C .  Since

Ig(z)l < M • L(C) (z e D)

by (3.6) and (3.9), we obtain from the Riesz uniqueness theorem and from (3.11)
that g(z)= O.

By (3.10)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

n=0, 1,.... (3.12)

Assume for the moment that Morera's theorem holds in the generalized form: if
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a(2) is a bounded measurable function of A E D and if 
c  

a(2)d2 = 0 for every piecewise
smooth closed curve C in D  then a(2) is equal a.e. to a function holomorphic for

e D .  Then we could conclude from (3.12) that each an(A), and hence f(A ., z), is
holomorphic in 2.

For the convenience of the reader we shall give a proof of the generalized form of
Morera's theorem. Let

h(z)= a(A )dA , z  e D. (3.13)

Then h is well defined, independent of the path of integration. The function h is
absolutely continuous and

hx (z)= — ihy(z)= a(z) (3.14)

for almost all z  D .  Thus we have a generalized Stokes' formula for any closed
rectangle R c D :

0= ( i h x —hy)dxdy h(z)dz (3.15)
OR

where the first equality is due to (3.14) and the second is derived by writing the double
integral as an iterated integral and using the absolute continuity to apply the funda-
mental theorem of calculus. From (3.15) we conclude that h is holomorphic in D.
Hence, by (3.14) ,a(A) is equal a.e. to the holomorphic function h'(2).

4 .  Examples.

We consider examples of holomorphically moving Jordan curves and discuss
the dependence on A of the associated Riemann mapping functions.

Example 1. Let (5 be a q u asic irc le . T h e re  is  a holom orphic m otion { y ,:
E D}  of the unit circle y o = OD such that y k = (5 for some k e D  and the associated

R iem ann m apping functions f  A : D--4G, can be norm alized to depend holom or-
phically  on A e D.

The construction is well known. Let f  be a quasiconformal mapping o f e
which maps D conformally onto A , the inside of (5. We may assume f  leaves 0, 1, co
fixed. L et it = faz , k =1 1 1. Let it(A)= k ) i t  if O . L e t  L I be the /4,W-conformal
homeomorphism o f  e" which leaves 0, 1, co fixed. Then f A is conformal in D,
holomorphic in A, and f k = f .  The holomorphic motion

F: D x y o C

defined by F(A , z )=f,(z ) has the required properties.

Example 2. (H adam ard v ariation). A ssum e y ,  i s  a  closed Jo rd an  curve
with continuously turning tangent. L et iî(z ) be the unit norm al vector at z  ey o .
The holomorphic motion of yo
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(A, z)1 >F, z )= z  + D x yo - - r  C (4.1)

is the cornplexified H adam ard variation (Courant [2]). The associated Riemann
m apping functions can be norm aliz ed to depend holom orphically  on i f  a n d
only if y o is a circle.

Let 4> : Du aD— G 0 U yo b e  the continuous extension of a Riemann mapping
function of D onto G ,.  By Lindel6f's theorem arg 0' extends continuously to OD;
we denote this continuous extension by arg 4>'( ), E O D . From (4.1) we obtain

F(2, 0( ))=0( )+ n e iar" . () e OD). (4.2)

According to Theorem 5 we investigate when

4>( .)): OD C (4.3)

is the continuous extension to OD of a function holomorphic in D .  Evidently, this
will be the case if and only if the function

g =  e iar90 ' ({) (4.4)

is the continuous extension to ap of a function holomorphic in D.
The function g  in (4.4) maps a» into ap and the image curve has winding

number one about the origin. Therefore, if g  is the continuous extension to OD of
a function holomorphic in D, that function would have to be a Möbius transformation
and so there would exist k e OD, a ED such that

c.iargd'"g)— k g — 1

for all e  O D . The function

G ( z ) —   _ k(z — a)
,z(az — 1)0 (z)

is meromorphic in D .  In an annulus jal < I z I <1 there is a single-valued branch of
arg G(z) and by (4.5)

lim arg G(z)= O.

The reflection principle shows that G is a rational function which exhibits the sym-
metry

C(z)= G(1/i). (4.7)

Therefore (/,' is rational. It has no zeros or poles in D .  Also, it has no zeros or
poles on OD since OG0 has a continuously turning tangent.

If Œ=O  then 4:1' is constant. Assume a O . Then w e see from  (4.6) and (4.7)
that G has one pole inside of D, namely z =0 , and therefore only one pole outside
of D at z = c o .  G has only one zero inside of D, a t z = a, and therefore only one
zero outside of D, at z  1 1 5 .  We conclude that G has the form

(4.5)

(4.6)
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G(z)—  c z  C I C ) ( t z  1 )  (4.8)

If we compare (4.6) and (4.8) we find that

, (z ) _ 0 '0 )  
(az —1) 2

cO(z)—
a
_

(1  —  a
_

z )

+ onst.

We conclude that G o = O D ) is a  disk if (4.3) is the boundary value function of a
function holomorphic in D.

Example 3. (Siegel disks). U p to  now  the domains GA that we considered were
Jordan domains. In  many cases this was only for simplicity; those results hold as
well for non-Jordan dom ains. In this example we explicitly refrain from assuming
GA is Jordan.

This example concerns iterations of rational functions (degree 2 ) .  I t  i s  a fact
that the boundary of a Siegel disk of a rational function is contained in the closure
of the forward orbits of the critical points. Let us call a subset of the critical points
ample if the forward orbits are infinite and disjoint, and if the subset is maximal with
respect to these two properties. If the set of normality (of the iterates) of a rational
function contains a Siegel disk then the closure of the forward orbits of an ample set
of critical points will contain the boundary of the Siegel disk.

Theorem 6. (D. Sullivan) L et flc  C  be sim ply  connected. For each A e 52 let
RA  be a  rational function w ith a S iegel disk  GA centered at a (A ). Let c,(A)....,
cN (A) be an ample set of critical points of RA . Assume that a, c1 ,..., c, depend holo-
morphically on  A . Then for ) eQ, aGA moves holomorphically and the R iem ann
mapping functions f: D—>G2 can be norm aliz ed to depend holomorphically on A.

The proof is due to Dennis Sullivan [ 6 ] .  Let EA be the union of the forward
orbist of c ,(A),... , c,(A) under RA . As observed above, OGA CI EA. We shall first
show that in  a  neighborhood o f  each point Ao E 52 the Riemann maps f 2  can be
normalized to depend holomorphically on A. The general result will then be seen
to follow by the monodromy theorem.

For the local result we may assume Ao = 0E D c  Q . The construction of EA
determines a  holomorphic motion of E0 (note that we have assumed the orbits to
be disjo in t). By the improved )-lemma, the restriction of this motion to 1AI <1/3
can be extended to a holomorphic motion F: D113 x t'-+ e of C. W e  have

F() , R(c„(0)))= RT(c„(A)) (n=1,..., N ; m= 1, 2,...)

and we can assume RA , a(0))= a(A).
N ote  that F(A, GO= GA  fo r  A E D io . Indeed, i f  zo e Go b u t  F(A, z 0 ),4 GA

then there would be a point z, e Go with F(A, z 1 )e aG 2 (consider the motion of an
arc in Go from a(0) to z o). F ro m  F(A, z 1 )e  Cl EA it would follow that z 1 E Cl E0,
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a contradiction. Thus F(A, Go )c  GA . A  similar argument gives the opposite
inclusion.

Let {z„} be a sequence in G, which is fundamental for a prime end of G, (i.e.,
g(z ) converges to a point on OD whenever g is a conformal map of G, onto D ) .  For

e D 1 13 set 4 1 )=F( 2, z„). Let C„(1) be the closure of the orbit of z ( l)  under R2 ;
C(A) is an analytic closed Jordan curve. Let C(1) be the component of the com-
plement of C„(1) which contains a(1).

Let 441,.) be the conformal mapping of e(0) onto C„(1), normalized so that
a(0)1-- c1(.1) and so that z„(0) corresponds to z ( l )  under the continuous (in fact,
analytic) extension of 0„(.1., • ) to the boundary of C„(0); this extension will again be
denoted by ck„()., • ). Let O(1,.) be the conformal map of G, onto GA., normalized so
that a(0)1—*a(1) and so that the prime end {z„(0)} corresponds to the prime end of
{z(1)} (the sequence {z„(1)} is fundamental because it is the image of a fundamental
sequence {z„(0)} under a map F(1,.) which is continuous on Cl G0 ).

For each fixed A e OA • ) converges to OR ) uniformly on compact subsets
of G0 . This can be seen most easily, perhaps, by mapping G0 , G, conformally onto
unit disks so that a(0), a(1) correspond to the origin and so that the prime ends
{z„(0)}, {z„(A)} correspond to 1. The curves {C„(0)}, {C„(1)} will be mapped to
cir d es. The mapping 0(A ,.) is transformed to a map of the form b,X where b„ E
C, b„—> 1.

The equation

(/)„(A, Rz„(0))=R 11(z(A))

shows that on a dense subset of C„(0) the boundary values of io„(2, • ) depend holo-
morphically on A. By the 1-lemma it follws that all the boundary values of 0„(1, • )
on C(0) depend holomorphically on A. It follows, using the Cauchy integral formula
for example, that 0„(2, • ) depends holomorphically on A in C(0).

Since 0„(11., • ) is holomorphic in A, the same is true of the limit function 0(2, • ).
Let f  be a fixed Riemann mapping function of D  onto Go . T hen

f ,t( • ) = 4 f  ( • ))

is a Riemann mapping function of D onto GA, and f 2 depends holomorphically on 1 .
This local result means that 52 can be covered by open disks Ui such that there

are Riemann mapping functions

D G2: 0 a(2)

which are defined for 2 e U . and which depend holomorphically on A eU i . If
Ui n U Ø

f„-,1424(z)-=kuz (z  e U i n U1) (4.9)

where ku  has modulus 1 and therefore, being holomorphic in A, is independent of A.
Since Q is simply connected there are constants k1,1k 11= 1, such that k u =k ilk i . Thus
if we define
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(z e U.)

we obtain a well defined family of Riemann mapping functions D — G, which depend
holomorphically on 2 e  Q . (T he  existence of the {kJ, a  topological fact, can be
put into function theory context by using (4.9) to see that log f 'A,,(0) is locally holo-
morphic in A and has a globally single-valued real p a r t .  Therefore there is a single-
valued holomorphic function g(2) in S2 with the same real p a r t .  Now g(2) — log f A , KO)
is an imaginary constant in I. and so the constant

eg ( A )  

(2e U 1)

has modulus 1; it satisfies k i lk i =k u  as required.)
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