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On the time evolution of the Boltzmann entropy

By
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1. Introduction.

Among the fundamental problems of statistical mechanics one of the utmost
interest is the justification of the second law of thermodynamics, or the explanation
of the apparent conflict between the microscopic dynamical reversibility and the
macroscopic irreversibility. The following things are well known ; 1) the entropy
(fine-grained entropy) does not change with time and the values of dynamical variables
invariant with respect to the time reversal transformation (t—> —t, p—> — p) can not
increase monotonically for all initial conditions because of the reversibility of me-
chanics, and 2) any continuous dynamical variable can not evolve monotonically
all along the time because of Poincarè's recurrence theorem. Several ways to avoid
these difficulties are to take the definitions of entropy based not on the fine-grained
description provided by an ensemble density, which satisfies Liouville's equation,
but on the coarse-grained [1] [2] [3] [4] or reduced description associated with a
kinetic equation such as Boltzmann's equation [5] [6] or the master equation [7].
These definitions depend on the averaging of the ensemble density on the phase-space
cell in the case of the coarse-grained description and on the assumption under which
the kinetic equation holds or on the introduction of Markov process in the case of the
reduced description. A quite different definition is proposed by Prigogine [8] and
M isra  [9 ] . In their definition the entropy does not appear to have the additive
property [10].

For the isolated finite dynamical system it is impossible, as already we noted, to
define rigorously a nonequilibrium entropy as a dynamical variable if we require that
the increasing law of the entropy should be strictly realized. But these circumstance
will not deny the possibility to be able to prove the increasing law of the entropy
rigorously in the following sense; there exists some increasing function f (t) and some
small g >O for almost nonequilibrium initial states cu such that the inequality I S(T,co)—
f  < g holds for a very long time interval, where 7;co represents the time evolutuin
of co. Of course it is an extremely difficult problem to prove this statement exactly.

In this paper we prove the above statement in  a somewhat weakened form,
namely we introduce the "Boltzmann entropy S(co)", which will be defined, and prove
the inequality S(7;co) S(w) — e for almost co and a very long time interval. This
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statement is compatible with the reversibility and Poincares recurrence theorem.
The definition of the entropy bases on counting the Komplexion of microscopic

states under the partition of p-space (one particle phase space); that is, for a partition
of the p-space p =  pl U  p 2 U • U te the Boltzmann entropy S (co)=S (co) is defined
by

S(0))= —  n i ( w )   log  n  ,
i=i n

where n is the number of particles of the system and ni (a)) is the number of particles
which are in the cell pi under the microscopic state co [1 1 ] [1 2 ]. In connection with
Boltzmann's H-theorem Ehrenfest [2] [13], Kac [14], ter Haar et al [15], and Klein
[16] studied this entropy. In their studies the time evolution was given by Markov
process. Hereafter we consider a simple but basic partition g o defined by the sings
of momentums of particles (its exact definition is given later).

We note here that in our dynamical study for a time dependence of this entropy
we need not assume dynamical properties such as ergodicity, mixing or K-property
[17] nor probabilistic postulates. Furthermore we emphasize that our argument is
based only on taking the number of particles into account, whose significance is well
known [18] [19], and on the geometrical properties of the energy surface and the
vector field induced by Hamilton flow. Recently Misra et al [20], Courbage et al
[21], Goldstein [22], and Goldstein and Penrose [4] show that ergodic properties such
as mixing or K-property are relevant to the problems of nonequilibrium statistical
mechanics. These ergodic propertiesis, however, the concept unrelated to the size
of the number of particles that is a  premise in statistical mechanics. Moreover
it is very difficult to show these properties for real systems. Therefore it will be
meaningful to show that without requiring such dynamical properties the geometrical
properties, for which we take the size of the number of particles into account, play
an important role for the investigation of the increasing law of the entropy.

Our result is the following; under a certain weak condition on the interaction
potential (we call this the condition for the kinetic activity) the entropy S(T;a))
defined by the simple partition go does not decrease from the intial nonequilibrium
value for a time interval I ti efin except for an extremely small set of initial states of
order of cŒn, where co is a phase point, Tt a) is the solution of Hamilton equation with
the initial condition a), n is the number of particles ( 1 0 2 3 ) and a, /3 are positive
constants independent of n. We note here again that this result is compatible with
the reversibility and does not contradict Poincares recurrence theorem because,
though the time interval( — T , T ), T =0 ", is extremely long, it is short compared with
the recurrence time.

Our main idea is to concentrate our attention on each "entropy band Q
( s

,,s . ) "
(defined later) on the energy surface specified by the entropy values. We will see
that when the number of particles is large enough the structure of these entropy
bands has a remarkable geometrical properties, i) the volume of the entropy band
is extremely large compared with the area of its "lower boundary" which abuts the
lower entropy band and ii) the entropy band with the equilibrium entropy value oc-
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cupies a greater part of the energy surface. This structure of the entropy bands
suggests strongly that the entropy has a tendency toward increasing in time, although
our statement asserts only that the entropy is non-decreasing in time.

Now let us formulate our problem more precisely.

2 . Main result.

We consider a  system composed of N =2n particles in a finite box V in the
f-dimensional space R I interacting each other. The Hamiltonian of this system is
given by

N
H(p, q)= E — qN)

i=i 2 m

where pi =(p1,..., p f )e  R f  and qi =(q1,..., q{ )e V  are momentum and position of
the i-th particle.

We assume that the potential U(q i ,..., qN ) is a smooth function with the range
{R U co), and when some particle approaches to the boundary V of the box V,
U(q i ,..., qN )  increases to infinity. We denote a phase point (p, q )= (p i ,• • • , PN,
q 1 ,..., qN ) E R f N  X  V N  by co.

Let

.90: it = i 4  u /./_ = R f  x V

where p ±  =RI x V, R{_= {p 1 ,..., pf)E R 1 ; p 1R f _  = R 1 — R4., be a partition of
the p-space (one particle phase space). By means of the partition .90 of the ft.-space,
we define the Boltzmann's entropy S (co ) as follows

Definition 1.

S (w )—  n± (co) n±(co)n _( w )   log  n_(w) 
N N

where n± (co)=#{i; (p o i) e kt±  }.

We denote the range of S (co )  by R (S ) for some large n .  Let Se q be the maximum
value of the entropy under the condition H(p, q)=E where E is some total energy.
Clearly 0  S(co) . S e q . Before we state our result let us make some definitions. The
energy surface is defined by

Definition 2.

OE= {CO E R 2 f  X  V 2 " ; H(p, q)= E}

The entropy band, a subspace of OE  specified by an interval of the entropy values,
is defined by

Definition 3.

Q [Eb,E.)"-=  {we QE; S b < S (0)) < S  a } ,  S b , S ae an (S ) .
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We denote the boundary of a region G b y  G. W e define the upper and lower
boundary of the entropy band ao-)- [sb,s.), a( - )0(sb,s.),
respectively, by

Definition 4.

=am s -2,s,,s“) a0[sb,s„) n aors.s.)

a( )0(.5„,s0=ao[sb,s.) n aotsd,so

for S c,<S b < S a  S ,  in A SS).
Let {T} be the time evolution maps, namely Ttcoo  = w(t; co( ) ) e R 2 f  x V2 ^ is  the
solution of the Hamiltonian equation with the initial condition coo .

Now our assertion is the following:

Theorem. We assume that for some positive constants Ai ,

(A l)

(A2)

for large n,
where

1,7 d  
dt

1 
K(E; H) —

+  d
d

t  g i ) 2 1 < n l i  on S2E ,

dg[2m(E—  U)]fn - i -

ED <n'.2
dg[2m(E—  U)] 1 "- '

qeD

D= fq e V2 "; E —U(g) >0} .

Then f o r any  pair S a , S b , w ith  0 .S b <S a S e a  in. R a (S ) there ex ist positive
constants a= a(S b , S a ), 13= )3(S b , S a ) and k=k(S ,„ S a ) independent of n such that

Q[sb ,s.); S (Tiu)) Sb for <0'11 >1 — ke - at "

where I • I denote the volume of a region measured by the Liouville measure on the
energy surface. (The constnts a, 13, k  will be given in the proof explicitely.)

We remark that the condition (Al) is satisfied for the many models. As for
condition (A2) we will give an  example, which satisfies this one, in section 4;
we shall call K(E ; H) the index of kinetic activity.

This theorem depends only on the following two geometrical lemmas.

Lemma 1. Let (M, d).) be a  sm ooth dynam ical flow vf, on  a m anifold M
with a tilt -invariant smooth measure and  a metric III • III, and I' be  a piece-wise
smooth hypersurface in  M .  Then

I ti/iT 2T I1 I  (11
t I

dwhere Iltk = suPII and IFI m eans the area of  which is measured bydt—x .r
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the surface element induced from (12 and the metric III • III, i.e. if  F(e) is the set of
points whose distance from F  measured by III • III is less than E, then

III =lim  ir(E)I 
e-.o 2e •

Lemma 2 .  F o r  a  giv en Ham iltonian sy stem  w ith in teraction  potential
U(qi,• ••, (12.) and  a to tal energy E  we assum e the conditions (A l) and (A2) are
satisfied. T h e n  f o r Sa —Sb > 0  where S a ,  S b e a ,„ (s )  there exist some positive con-
stants 23, k' =k' (S b , S a ) and y=y(S b , Sa ) such that

1 OLsb,sol

Proofs of these lemmas will be given in section 3. Now we come to the stage
to prove our theorem.

Proof of  theorem . We estimate the size of the exceptional set E(Q [sb ,s . ) )  of
initial conditions which cause the entropy to decrease from Sb, namely the set of
initial conditions in Q rsb ,s . ) from which the lower boundary a ( - ) Q [ s b , s . )  can be
reached within time T:

E (Q [Sb ,Sa))
=  {W E  g2 [S b ,S .) ;  Tta) a ( - ) Q[sb ,sa) for some I tl <

From lemma 1 we obtain

IE(Q[ sb,s.) )1 <27 -Ia(—)s-2,sb ,s .) 1 Il 1;11

Using lemma 2 we obtain under the condition (Al) and (A2)

lE(Q[sb,s„))1  <2 Tk'nA1+A3e - Y7 .
Otsb,sol

Now we can take a, fi and k> 0 which are independent of n but depending on Sb, Sa

such that

= T  a n d  2Tk'n 1 1+1 3e- Y17 <ke - 2 "

where y— fi> 0 and a <y —f i .  From

{a)[ S b , S . ) ;  S (  T t a ) ) S 1 ,  for I tl < eP"} C2—rsb,sa) E(Q[sb,s0) ,

we obtain the desired result.

3 .  Proofs of lemmas.

Proof of  lemma 1. Notice that for any positive integer L
L-1

Ik tr= IkkT/L( Iktn •Itl<T k=-L 0<t<T/L

10(-)K2 [sb,s.)I <k'n13e-ln.

So we have
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L -1
I «J Ibtrl <  E (kT IL , (p , F ) I = 2 L 1  

Itl< T k=—L OGt<T 0<t<T IL

here we use the tkr invariance of the measure d) . And clearly for any e>

<61r1 +o ( ) .
0<t<c

From these inequalities we get the result.

Proof of lemma 2. The entropy we consider is given by

S (co)= — 2xn log 2
x
n — (1 — 2x

n )  log (1 — 2x
n

where

x----#{i; (p i , q i)ei.t + }

We only need to consider the case n  hereafter because of the symmetry of the
function h(y)= — y log y —(1 —y) log (1 — y) for 0  y  1 .

We divide the energy surface OE  into 22" cells C(e1,•••, 8 2 n )  with 2n suffixes
(81,• • •, 82n) defined by (8i = 0 or 1)

C(81,— .3  
8 2n) =  t(P , q ) e  OE; 8 i =  8(Pi) for all i}

where

i f  p i e
B(Pi)= { 1

0 i f  p i e 1?-!..

We remark that when a phase point on OE is in a certain cell C(e i ,..., 6 2 n )  then
2n

x=  E  ei . The boundary of a cell C(e i ,..., 82 ) , ag g i ,..., 8 2 n )  is given by (except
i=1

higher codimensional submanifolds)

2n
ac(61,..., 62 ) =  u 820

i=1

where

3iC(8 1 ,..., e2„)= ((p, QE; 8 (P 1 ) =  8 i ,  pj o 0  for i O f  and p; = 0} .

Now we define the lower boundary a( - )C(s a cell C(s 1,...,i,•••, 8 2 n )  of 8 2 0  by
2n

0 (— ) C ( 8 1, • • 82n)= O C ( g i , . • • ,  8 2 n )  n (e'1 ,...,  e 2 n )  for E E i < n
(E1,—,.1„) i=1

2n 2n

Z E  ci-1
i =1 1=1

2n

E  Ici —eil=1
1=1
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2n
a C ( 8 1, — , 8 2n) n a g g i,•• ., e2 n ) fo r E

i=1

lei-et1=1I=i

The upper boundary e2„) of a cell is defined similarly.
Then the entropy band S2Esb,s. ) for S b

 <S , in .9 (S ) is given by

Q[s,,,s0= C. U C2 n _ ,
n—n x  e ( a , b 3

where parameters a, b  ( 0  a, b  1) are related to S a , Sb  through

1 1h (1 — a))  = S a a n d  h (T  (1 —  b)) = S b

and Cx is defined by

C x  = \6 2n/ •
Ei=JC

1= 1

For the lower boundary of the entropy band, we get

a( - )Q[sb,sa)=a( - - ) cn-bnU a( - ) cn+bn

where

a( - )cx = a(-)C (ei,..., 82„)
E i= X

1=1

To estimate the ratio Ia (-)Q [sb,s“)1110isb,s.)1 ,  notice that the sizes IC(gi,•••,

I a(ei , • • 8 20 I and 1 a c i )1  are independent o820 i d d t f/

E2n)I5
(8 1 ,— , 8 2 0  and j .  So we

denote these by ICI, IOC! and iaoci respectively. Then we obtain,

io(- 42( sb,so l = 10( - )cn-bni+ la ( - )c.+1,„1

=  E 8201+ E
ei=n—bnE  Ef=n+bn

1=1 i=1

n _2nb n ) (  2n \
(n— bn) iaoci + (2n—  (n + bn)) iaoci

n +b n

(  2 n  )
=2n(1 — b) 1(3°C1

n +b n

And clearly

where
Icn-an-il<10[sb,sol
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ICn — an — 11 — .
/ 2n )

\ n +an +1

Therefore we obtain

la"Qrs,,sol  <  2n(1 + a) (1 — b) Q(a b)  I CI
1- a ICIIrksb ,s,a1

where

Q(a, b)=

Using the Stirling formula, we get

/ 2 n  \  / /  2 n

n+bn  I I \ n + a n  )

.1  1 — a2

Q(a, ,...,e (r(a)-f(b))n N 1 — b2

where f (y)=(1+ y) log (1+ y)+(1— y) log (1— y), 0  y  1, is a monotone increasing
function. As will be shown in the appendix, we have

won 2 0 . 2 f  n - 2

ICI —  6 ,  112 1 - 1

D 
dqR(q) 2 f n - 3

d q R (q ) 2 f n - 2  •
D

From the condition (A2) we obtain

won 2 , 2 f  n-2 1 <n 2
+ 

2 .

ICI2 f  n-1 I C V

Finally we have

la( - ) Ofsb ,sol , 2 ,0 1 +0 3(1 — b) n A2+3e -cf (b) — f (ann .

I Q [S b,S“)I (1—a)(1+b)

4 . Example.

In this section we give an example which satisfies the condition (A 2 ) . To this
end we divide the integration region D= {q E 17 2 " ; E — U(q). 0} into D I  a n d  D 2

where D i = {q e V2 "; E>e_?_U(q)} and D y = D \ D i for some e smaller than the total
energy E .  Then

1   I DI 
V2m(E— ID11
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To obtain a regorous simple result we consider a class of pair potentials which
depend on the distance between each pair of particles. The potentisl for this class is
represented by

u (q i,..., q2 ) = E o f r i )
1<i<j<2n

where ri i =lq i —qi i for qi , qi e V and

0(0= n - 1 0(0r) (r > 0) ,

here A and 6 are some scaling factors for n and 4)(r) is a smooth function with the
range {R U oo}.

Then we obtain the following proposition which gives a sufficient condition for
the assumption (A2).

Proposition. A ssume that there ex ists r0 >0 such that

i f  r
4)(r)f >°1 <0 i f  r>r o

and that 6 > 2/3, E>0, then the assumption on the k inetic activ ity  (A2) is satisfied.

P ro o f  o f  p ro p o s itio n . L e t  e =  0 ,  then  D , fq  e  V 2 "; U(q):<_01. Setting
4n  (  2r0  ) 3

v= 3 n6

we get
2n-1

vi  Vi1D11
v - k vi

k=0
2 n - 1

—  exp E  log ( 1  k
1D1 1 V1 k=0

21vI> exp (—  v i  
2n-1
E  k )>  exp(—J=0

128nrg n 2  

3 111 n36 ) •

Since (5>2/3 and n is large, this concludes the proof.

We remark that we can obtain the same result, even if we take the boundary
condition, mentioned in the begining of section 2, into the consideration.

This proposition says that the condition for the kinetic activity may be satisfied
for the dilute gases.

5 .  Discussion.

Our theorem means that for a nonequilibrium state co, the time evolution of
the entropy S(Tt co) takes the "local minimum" at t = 0 for a long time interval
(— T, T), T=0". This fact coincides with the property of H-curve, pointed out
by Ehrenfest [2]. Therefore in this sense the Boltzmann entropy may behave with
"fluctuation" as if "it is always taking local minimum and has a  tendency
to increase". Consequently when the number of particles becomes infinitely large,
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the dynamical system enable to have the property that the entropy does not decrease,
which is compatible with the reversibility and Poincare's recurrence theorem.

It would be interesting to investigate whether there exists a system which does
not satisfy the condition (A2) of theorem, that is, whose index of the kinetic activity
is extremely small, say K(E; H)— e - ", because in such a case it is difficult to justify
the statement that the entropy should increase. As we mentioned in a previous
section, the condition for the kinetic activity is satisfied in the case of the dilute gases.
We notice here that for a system with condenced density and extremely small kinetic
energy compared with potential one this condition may be false and so that the
Boltzmann entropy may actually decrease. This circumstance seems to relate
profoundly to the arguments about the adequacy of Boltzmann's equation for dense
gases.

Our theorem, however, is proved only for the simple partition g o. So  con-
cerning to the dependence on the partition, several problems are left. The first one
is to extend our result to more general cases, in which the partitions are defined in
momentum and also configuration space, and the second one is to  check the
dependence on the choice of the partition and on its refinements. We note here only
on the first one partially ; for the finite partition into rectangular parallelopiped cells
with the same size cut along the coordinates (p, q), we obtain a  similar formula
on I a(-)Q[st„s„)1110(,,,  )l, but rigorous estimates on the expressions which cor-
respond to l a(-)ci, ICI in this paper are very complicated. However for the parti-
tion only in momentum space, like mentioned above, one could obtain a  similar
result. (At least in some case of the "star-like" partition in momentum space, we
can show the similar result.)

Appendix.

We notice that ICI is given by IS2E1/22 n. To calculate PE I, we remark that
OE is also given by

QE = {p i  ± \ / R (q )2  p 2, p 2  5  R(q)2 ,  e  D}

R(q) 2  =2m (E—  U(q)) and

P=(Pi, Pi,•••, Pi.) •

1f2E1=21
d E E  

qeD 11G ra d  1/11
/22<R(q ).

where

IlG rad III = [ H
aq

2 aH
+

1211/2

o p  j

where

Then
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and the surface element dE E  of the energy surface is given by

Therefore

dEE  = [1 + a2 a 271/2
PI  ( P '  q ) 1 +  ou  P R P ' q )q d p d q .

I fl E l =  m1 d q  R (q ) - 1 5 d p  2 R ( q )  
qeD 122GR(q)2 - ( R  (02 — p 2)112

Let am - i  be the surface area of the unit sphere in  Rm, i.e. um -

xf+ •-• +x„,2 =1}I. Then

0 .2 f n-1
ICI — 

2 2 n
d q  R (q ) 2 f n - 2

qeD

In the same way as above we obtain

2nef n - 2

Ian =2n10° C1 —m 1  d q R (q ) 2 f22n-1 gel)
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