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On well-posedness of the Cauchy problem
for p-parabolic systems, II

By

Ahmed EL-Fwv*)

§1. Introduction.

Let A(x,D ) be a matrix of pseudo-differential operator of order p  in the form

(1.1) A(x, D)AP-I-B(x, D), xER 1,

where H(x, e) is m x m homogeneous matrix o f degree 0  in e(le(_>:.1) and smooth
in x and e . B(x, e) belongs to the class Sf°0 ,  0  .1),< p , modulo smoothing operators.
Here, the symbol of A belongs to SL , (see for example, H. K um ano-go [2]) and
coincides with ICI for Iv 1 and p  is a positive number.

The purpose of this paper is to show that the condition

(1.2) S u p  R e e)<O, 1S v i< rn
e R 1, e S ie - - 1

is necessary and sufficient in order that there exist positive constants a , b and 13
such that the estimate

(1.3) I1(2/—A(x, for vU E H P, V A , Re /30

holds.
Here U (x ) is m-vector, (ip denote L 2 and HP-norm respectively. Ài(x, e),

( = I, 2,...m ) are the roots of the characteristic equation

d e t  (Al—H(x, e)) = O.

Note that the sufficiency was proved in  [1] by using a partition of unity of
the unit sphere Sr and a partition of unity in R  as in M izohata [3]. Therefore,
we need only to show the necessity of the condition (1.2).

In this article we shall use the method of micro-localization of pseudo-differe-
ntial operators which was developed by M izo ha ta  [4 ] and [5]. In  §2. we give
the definition of micro-localizer and state our result. In  §3. we give the proofs
of the proposition 2.1 and lemma 2.1.
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§ 2 .  Statement of the result.

In  this section we give the definitions of the micro-localizer a n (D ) fi(x ) and
state our propositions and lemmas.

The following definitions are due to Mizohata [4] and  [5].

Definition 2.1.

L et (xo , V) ER/ x RI/0 and I V I = 1. Let a ( )

0_a(C) _<1, =1 o n  le, le—e°I__<r021 and=0 on  {e, le—
°i ro},ro<1. Put

(2.1) an(E)=a(In ).

W e note that

i) a n ( e )  has its support in IC, le—neol nro}, and= 1

(2.2)

ii)

on {, le --nois_izr 0/2} .

c(olnI"', for

Next, 8(x) EC, = 1  o n  {x, I x — xo I ro/2} ,

and=0 on  (x, ix —xol-ro}.

Notice that ro is usually chosen small and w e call it the size of micro-localizer.

Assume that the condition (1.2) is violated, namely for any given 6(>0) small,
there exist (x0, e.) , l e o i = „ 1 )  and one of the characteristic roots, say 21 (x°,
Co), such that

(2.3) R e 2,(x0, C°) >_— .

Let c= t(ci, c2,..., cm )  be an  eigen-vector corresponding to 21 (x0, e°),
then

>71
Cl -

(2.4) H(xo, V) =21(xo ,  V) , EIcil 2 =1.
J= 1

Ci -

_CII

Now, consider the sequence

CI

(2.5) Un(x)-=a0(D)t9(x)ç-b(x)

where cro,(D )fi(x ) i s  th e  micro-localizer which was defined above and (x ) is
defined as follows;

let sb(E) be a  function with support in  lei.<1, and

SIsp(e) i2dC=1. Then putting On() =0($--ne'),
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we define

n(x) = F [On (e)] = (2r) tSei tç1fl(e)dE

=(27r) - /Seix10(e-ne°)Q=einx 0 (x),

where

(2.6) s3(x)= (27) - 1 Seive0(e)de.

Hereafter according to U n  defined by (1.5), we take A in  (1.3) defined by

(2.7) 2n=p0+ enP + 21(x 0 , e°)nP

Let us notice that it holds

Re 2,,.. .130>0.

(1.3), (2.5) and  (2.7) imply

(I.3)' (211/ -A  (x, D) tin (x)11_---. b U n (x)p, n =1 , 2,...

On the other hand, we can show that the estimate (1.3)' fails to hold, by
taking e=b/4.

Now we consider

(2.8) (41 - H (x 0 , $°) AP) U „(x)

= (27,- 2 1 (xo , E°)AP)ai, (D) ti (x)i-G,„(x)

Then, we state

Lem m a 2 .1 .  Put 4 =p o + -4-nP+,l i (xo, V )nP, then we have

11(À„I- H(x o , e °)AP)U n(x)11

-.-_-(2180-1- - nP- FcronP)Iii9 (4(x)11,

where c is a positive constant independent of n and ro .

(see §3. for the proof). Next we consider

(2.9) (H (x , D )-H (x o , e o ))APan (D)p(x) n (x)

-

Ci

Now we micro-localize the symbol f  (x , In  order to make this article self-con-
tained, we explain it with proofs (see [5]). First, we define a  C"-function
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x ER 1 as follows ;

x  for Ix —xol -<ro
(2.10)

xo for I x —xo 2r0 , (constant map).

If r ox — x 0 1 .270, then ri(x)—xo
Similarly, let EE—* (E) b e  a Ca° — mapping satisfying

eo for - 0 r 0

(2.11) e (e)
eo for I e—e°1: 2ro , (constant map).

If ro le — Co l .<2r0, then I (E) —E° I 2ro.
Putting

(e)=nee-(e/n),

we localize H (x , e) in the following way

(2.12) I I n ,lo c (X , e )= H rx (x ), 
-én (e)).

By using (2.10) and (2.11), we see easily that

1) lin,toc(x , E)=H(x, for I x—xo I ro and I e—neo I nro

2) I I n,loc(X0, e)=H (x
°
,  n e )  for I 2r0 and I Ç—ne° 2nr0.

3 )  I entry of (Hndoe(x , e)-1/(xo, ne°))1 const ro

where const. is independent of ro and n.

With these preparations (2.9) becomes
-

Cl

(2.9)' (Hn,100(x, D) — H(xo, e °))A Pan(D)P(x)S-In(x)
cm _

Cl

+11(x , D)— H,1„(x , D))A Pa n (D)13(x)(x)

Before we state our propositions, we introduce a convenient terminology.

Definition. W e say a sequence of operators an (x , D ), is negligible if for any
large L,11a(x, ,,L(LW )  is  estimated by e L n- L when

Proposition 2.1

Cl

(H(x, D) — 11„ 1„(x, D))A Pa n (D)13(x) (x) is negligible.
_cm



Well-posedness of the Cauchy problem 169

(see §3 for the proof).
Next, by virtue of sharp GArding inequality, we have

Proposition 2 .2  Let p>0, then we obtain

D)—H(xo, ETAPan(D)/3 (x)i3 (x)

<c' •roal'ili9(4 (x)I1 -1- C-0 -112 11B (x)(x )ii,

where c ' and are positive constants independent o f ro and  n.

cl

For B(x, D ) a n ( D ) P ( x ) S œ b n ( x ) ,  by virtue of Caldertn-Vaillancourt theorem,
_cm

we get

L e m m a  2 .2  Let B(x, po<p, then we obtain

Cl

-

Cl

_cm

D)an(D)13(x)(x) 11_<const. nP̂ 1113(x) (x)il,
Cm _

where const. is independent of n and ro .

From these Lemmas and Propositions, we obtain

(2.13) 11(Âni—A(x, D)) (b/2 +const. ro)nP P(4(x)11,

if n is large, where const. is independent of n and ro .
On the other hand, we consider

U (x )  Ip= ( " I I< A )P (D )p (4 (x ) c  112 ) 1 / 2

i= 1

=-<A>Pan(D)p(x)&(x)il,

where <A>u(e) (1+ temii2t, (e)•

Since (1+1e12)p/2_1e1P__(1—ro)PitP, f o r
 e e su p p (an ()) ,

we obtain

<A>Pan(D)p(x)ç—bn(x)il (1— r o) P  71P II an(D) fi (x)ç-I; (x)II.
Now, by commuting an (D ) with p(x), we get

(2.14) an(D)13(x).-(x)--= p(x )a„(D )(x )

v! - '43( ,) (x)a;„") (D);b.
 n (x)-Fr iv (x, D ; n)'ç-V(x).
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H ere  cr„(D) (x) = s7),, (x ), since au (e) = 1  for e e supp (On  (e)).

Hence,

P(x)a,,(D)„(x )=I3(x )„(x )=einv ii(x )-(x ),

and its 1.2 — nor m  is 1113(x)0(x)d.
Taking into account that a ( e ) 0 ( e ) =0 ,  for 11)1>  1 , w e see that all term s of the
second part of the right-hand side of (2.14) are a ll zero. Therefore, it suffices to
consider the remainder term.
From (2.14), we have

1
rN (x , e, n)=(N +1)S o (1-0)NrN,e(x, e, n)d0,

(2.15) rN,e(x, e, n)

=  E  v ! - /(27r) - ISSe - iYva(„”)(e+ fico (x+0 y)dydri.t.,1=N+1

Put

(2.16) 1(x, e, O ,  ) =S S e - i"cr (ed->2)190,)(x+0y)dydvi,

then by integration by parts, we obtain

1(x, e, 0, ('-4?),`+((ii i :± v ) )   (1— 431)Y( (136)
+
(X

1 y
+

 1
°
2?» )dy dr,,

Since Icr' ) (C)1-<c()/nio, for 1.,>_0

an d  supp (an (e))c {E;

we obtain

1(1 —4,,)/cr,'' ) (e+72)1_<c l (v)/7/1,, ,

where c ' is  a constant independent of n. So that,

/(x , 6 , 0, n)1.< const. •

where const. is independent of 0  and n . W e have the sam e type inequality for
aiag(x , e , 0, n):

Thus we have

and

I aseag(x , e , 0 const. • 11. - N - 1

1rN(x, e, const. •

aiagxrN(x, E. n)(_< const.

By applying Calderón -vaillancourt theorem to rN (x, D , n), we obtain
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(2.1 7)r  N (x , D ,c o n s t . • 1 1 - N - 1 ,

where coast. is independent of n.
Summing up the above results, we obtain

(2.18) II Un (x)II (1 -r 0 )P nP 11 (X)S (X)11 — (negligible terms).

By taking ro sm all, (2.13) an d  (2.18) shows that the estimate (1.2) fails to  hold.
Thus the proof is complete.

§ 3 . P r o o fs  o f  L e m m a  2.1 and Proposition 2.1.

Here we give the proofs of lemma 2.1 and proposition 2.1 which are used
in  §2.

Proof  of  L em m a 2.1. First, denote [3(x) (x ) b y  v„(x), a n d  take into account
of (2.4) and  (2.5), t hen we have

E°)An)Un(x)II

----11(2„-21(xo , e0)AP)ai i (D)v„(x)1

= il(Ân — 21(x o e°)Ie iP)an(e)NW

Next, since 2„---- 4304-4 -nP+21(xo, e())/tP, we obtain

11(2.— 21(x 0 ,  e°)Ie(P)an(e) vn(e)II

+ -b2r. nP 2,(x° , e°) I _ ,vp< r  (I — 1)1Ianvn II

By using Mean-value theorem, we get

sup a le I ne° I D _<const.•ro • nP ,
Eu l - " " 0

where const. depends only on p.
Hence

(271 21(xo, e°)A P)an(D) (x)s- bn(x)II

(A0+ 91-n- c r o nP) Ilan(D),(3(x)S-bn(x)11-

Since

II, u(D)A(4n(x)115_ II (x) (x)) + (negligible),

we obtain

(4 -2 1(xo, e°)AP)an (D)13(x)sIn (x)1

< (2 + 2 cnP) 1i3(4(x)11.
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Thus the proof is complete.

P roof of Proposition 2 .1  Put

H (x , e ) -1 1 , 1 „(x , e )=H '(x , e )

Then H' (x, e) = 0 for {x ;  Ix —x0r o }  an d  {e; e—ne
°

Hence, fo r xesupp(fi(x)), 11/(x , e) vanishes. Now, considering the asympototic
expression of the commutator [H 'A P« , j3(x)J,

(3.1) (H'(x , D)A P«„(D))/i(x)

= !-1i9(„)(x) (II' (x, D)A l'a i ,(D)) ( ") +r' N (x , D, n),
N

w e see that a ll term s of the first part of the right-hand side o f  (3.1) are zero
operator. So it suffice to consider the remainder term.
By using the same argument as we used in  §2, together with the properties

and

I a (e ) < °I 1.
,
> 0,

We see that

, D, n)112 ( L7,Lz) ScNnP - N- 1 .

Thus the proof is complete.
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