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On the Finsler group and an almost symplectic
structure on a tangent bundle

By

Yoshihiro IcHijYo

In the preceding paper [5], the present author has found a Lie group F(n)
which is called the Finsler group and has investigated a tangent bundle T(M)
admitting an F(n)-structure in the sense of the theory of G-structure. Especially
it has been shown that the base manifold M is a Finsler manifold if and only if
T(M) admits an F(n)-structure satisfying a certain condition. Therefore, an F(n)-
structure which is defined on T(M) as a reduction of the standard tangent
structure has been called an almost Finsler structure. Moreover, in the case
where a non-linear connection is assigned on T(M), the almost Finsler structure
has been studied in detail. For example, it has been shown that any G-connection
relative to the almost Finsler structure in the present case is nothing but a so-
called linear connection of Finsler type whose induced Finsler connection is
metrical.

In the present paper, first, we minutely study almost Finsler structures
without the assignment of a non-linear connection, and find a necessary and
sufficient condition for T(M) to admit an almost Finsler structure, which is
expressed in terms of some quantities in the base manifold M.

Since the Finsler group F(n) is a subgroup of the symplectic group, T(M)
admits an almost symplectic structure if it admits an almost Finsler structure.
So, in this case, we can introduce a special 2-form on T(M). In §2, we are
concerned with this 2-form and deal with the case where the 2-form is closed
or has an integrating factor. The 2-form, anyway, plays an important role in
the development of the theory of almost Finsler structures.

Lastly, §3 is devoted to consideration on almost Hamilton vectors with
respect to the almost symplectic structure derived from the almost Finsler
structure. In the case of Finsler manifolds, Hamilton vectors and Hamilton
systems are treated and Hamilton functions are shown concretely.

Throughout the paper, we use the following indices and notation:

A4, B, C, ..., P, Q, R, ... run over the range {1, 2, 3, ..., 2n};

a, b, ¢, ..., ¢, j, k. ... run over the range {l, 2, 3, ..., n};

a, b, ..., i, j, ... stand for a+n, b+n, -, i+n, j+n, - respectively;
With respect to any canonical coordinate system in a tangent bundle,
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(x4)=(x% x%)=(x% »%), i. €., x*= % and the notation 3; and d; stand for §/axi
and /9yt respectively.

§l. The homogeneous almost Finsler structure #*.

Let M be an n-dimensional differentiable manifold, {(U, x%)} be a system of
local coordinate neighbourhoods which covers M. Then, the tangent bundle
T(M) over M is covered by the system of canonical local coordinate neighbour-
hoods {(z=}(U), (xi, »¥))} where = is the natural projection T(M)—M.

As is well-known, T(M) admits the standard tangent structure &%, and its
0

0) with respect to the canonical local
E, 0

structure tensor Q is given by Q_=<

coordinate (x%, »?) ([1], [2]).
In the preceding paper [ 5] the Finsler group is introduced as a linear Lie
group such that

F(n):{(él 3)*1‘16 o), SESymm(n)}.

And, if T(M) admits an F(n)-structure as a reduction of #,, i. e., T(M) admits

an F(n)-structure depending on %, the structure is called an almost Finsler

structure and is denoted by #. If T(M) admits an almost Finsler structure
satisfying the homogeneity condition, the structure is called a homogeneous almost

Finsler structure and is denoted by #*. The condition for T(M) to admit the

structure F* is given by the following:

(1) T(M) admits an F(n)-structure in the sense of the theory of G-structures
([31), [6], [14]), i. c., in any two canonical local coordinate neighbour-
hoods (z-Y(U), (xi, »)) and (z~Y(U), (xi, »%)), there exist adapted 2n-
frames {Z,} and {Z} respectively which satisfy the condition Z,=P5Z,
((P2€F(n)) in z-Y(U) Nz Y(U) if =-1(U) Nz Y(U)=¢.

(2) In each =~ (U), the adapted frame {Z.}={Z,, Z;} has the following
components

Z,=13|xi+79)8y', Za=rid[dy’,
where det |y!|2=0 and 7} is positively homogeneous of degree 0 for yi and

7. is positively homogeneous of degree 1 for yi.
In the present paper we mainly treat the homogeneous almost Finsler

structure F*.

As to j=<EO _Eé)">, tPJP = ] holds for any PeF(n). So, the Finsler group
F(n) is a subgroup of the symplectic group Sp(n). Hence, if T(M) admits a
homogeneous almost Finsler structure £*, T(M) also admits an almost symplectic
structure, i.e., T(M) admits a non-degenerate 2-form ([3], [7], [9]). By
Q=wapdx*/\dx? (wpa=—was) we denote the 2-form and call it an almost Finsler
2-form associated with F*.

Now we put
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E O D) s,
G ) =G g I, )

e=3 B8 ai=3 (B8~ BiF),

then g;; and B; are positively homogeneous of degree 0 for yi, and «a;; and B: are

positively homogeneous of degree 1 for yi. Since was=Jrof5B%, we have

(1]) .Q=ai,-dx"/\dxi—2g,~jdxi/\d_yj,
. _(%i —&ij
i e (was) <gij 0)'

In this case, we can define a singular inner product of rank n by
<Za> Zb>=5a[)y <Za, ZE>=0a <Z(7~ Zl;>:0

Due to the property of the Finsler group F(n), we can easily verify that this is
the globally defined onc on T(M). Moreover we have

(dfoxi, d)oxiy=gi;, <B|oxi, 8[ayiy=0, <dfdyi, 8/dyi>=0,

namely, g;;dx®dx/ is a singular Riemann metric of rank n valid on T(M). And
gij is nothing but a generalized metric defined on M in the sense of Moér [10].
Next, wap is a skew-symmetric tensor field on T(M). So, after direct calcula-
tion, we can see, in each ==!(U) Nz-}(U) where UnNU=¢, the following trans-
formation rules of g;; and a;; hold:
_ gxP 9x7
Lij=8p0 g7 Hei
(1.2) o ~
_ - oxb 9xT _ oxt %%, - %P . 0xt
A P T P P I P e A T

Thus we obtain

Theorem 1. If a tangent bundle T(M) admits a homogeneous almost Finsler
structure, then T(M) admits an almost symplectic siructure whose associated 2-form is given
by Q=a;;dxiN\dxi—2g;;dxiA\dy). Here, a;; is a quantity such that aj;=—a;; and is
positively homogeneous of degree 1 for yi, g;; is a generalized metric of M, and the
transformation rules of a;; and g;; are given by (1.2).

Now, let N be a non-linear connection defined on T(M) ([6]. [8]) and
Ni be the components of N with respect to the caninical local coordinate (xi, yi).
Then N; satisfies the transformation rule

I

P A I Py R Y

By using this equation, we can show casily that ﬂijzaij-l‘gim]{,;”—gjm[(’;" is a
skew-symmetric quasi tensor on M [6] and is positively homogeneous of degree
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1 for yi. Hence, if we put N}=1§’j~—%gi’"ﬁmj, then we can show directly that

N gives T(M) a non-linear connection and satisfies a;j=—gimN7+ gimN7. Thus

we obtain

Theorem 2. Let g=(gi;) and a=(a;;) be the quantities defined in Theorem 1.
On T(M), there always exists a non-linear connection N satisfying the condition

(1.3) a=—gN+tNg.

Next, let N and N be any two non-lincar connections satisfying the condition
(1. 3). Then N—Nis a (1, 1) quasi tensor field on M and is positively homo-
geneous of degree | for yi. Now, k=(k;;)=g(N—N) is a (0, 2) quasi tensor field
on M and is positively homogeneous of degree 1 for i and satisfies

th=(tN—tN)g=(a+ gN)—(a+gN)=k.

That is, £ is a symmetric quasi tensor field.

Conversely, let N be a non-linear connection shown in Theorem 2 and £ be
any symmetric (0, 2) quasi tensor field and be positively homogeneous of degree
1 for yi. Then N=N+ g-'k satisfies

—gN+tNg=—gN +tNg=a.
Thus we obtain

Theorem 3. In a tangent bundle admitting a homogeneous almost Finsler structure,
let N be a non-linear connection satisfying the condition (1. 3). If N is another non-linear
connection satisfying the condition (1. 3), then N is written as N=N+ g~k where k is
a (0, 2) symmetric quast tensor field on M and ts positively homogeneous of degree 1 for
yi. And the converse is also true.

Now let us consider the converse of Theorem 1. That is to say, we assume
that a manifold M admits a generalized metric ¢ and a skew-symmetric quantity
a=(a;;) which is positively homogeneous of degree 1 for y¢ and satisfies the
transformation rule (1. 2). In this case, Q=a;;dxiAdxi—2g;;dxiA\dy’ is a globally
defined non-degenerate 2-form on T(M). First, we consider a local coordinate
neighbourhood (U, xi). With respect to the generalized metric g, it is casy to
find, in U, n lincarly independent local covariant quasi vectors ¢} such that

gij=2> oia}. That is, g=tso where o=(¢{). Now, we put r=(c})=0"1. Of course,

a=1
o? and 7} are positively homogeneous of degree 0 for yi. Let N be a non-linear
connection shown in Theorem 2, i. e., N satisfies a=—gN +tNg. Then we can
define, on z~1(U), local 2n-frame {Z,.} by

Zo=ri(3)axi— N73[ay™), Zz=1'0]d yi.

The quantities o, 7, N and {Z4} always exist on z~}(U). However, they can not
be determined uniquely. Next, let (U, i) be another local coordinate neighbour-
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hood such that UNU=r¢. Then, on (rr“(U),_(fci, %), we can define similarly
o, 7, N and {Z,}, which we denote by 2, 2, N and {ZA} respectively. Now, on
z-1(U)N=z"Y(U), we can consider these quantities in terms of the local canonical
coordinate system (xi, y¥), which we denote by 1, s, N and {Z.} respectively.
Then, we see

Z 4= ui(3foxi— N 7ajoym), Za=piafoy.
Now, in z-Y(U) N=x~Y(U), {Z.} and {Z 4} have, of course, the relation
P: P
P P

a

7 .=P2Z, where (P§)=<

2o RIS

>eGL(2n, R).

First, Z:=P»Z,+P7Z; can be rewritten as
9]0 yi=Pre! (3axi— N30 y7) + P2l 83 yi.

Hence we have P?=0 and P¥=o¢"u;. Secondly, Z,=P"Z,+P7"Z; can be re-

written as
14i(8)oxi— N7'3)d y™) = P7ci, (3)axi— N18/d y™) + P7ci. /3 yi.
Hence we have Pr=¢"y; and P7=¢"N7c!P:—a"N:u!. Putting A=(P”), we see
tAA="(op) (o) =tugp="ptAAp="1(Ap)(Apr) =En,
i. e., A= O0(n). Next, putting B=(P7), we see, by virtue of Theorem 3,
B=oNtA—oNp=0cNtA—oNtA—ogtkrA
= —oritktAd=—trkr4
where £ is a symmetric matrix. So, putting §=—irkr, we have t§=§, i.e

4 O) where A€O(n) and S§e&Symm(n).

*y

S4 A
That is to say, (P3)€F(n). And, for the relations

SeSymm(n). Thus we get (P’,‘,)=<

Z,=tid[oxi—ciNd[oy™ and Z:=7id[d i,

we have seen already that det |t;|%0 and 7} is positively homogeneous of degree

0 for yi, and N is positively homogeneous of degree 1 for »i. Moreover,

te-1)p-1 = tgg— ‘ O>—l=<" 0):("7 ”> :
(e e go=g and <—Nr . oN o i o) So, we have

i
n _ - "
3 (dloj—0i0}) =2 (74N "7}~ 0%}, N)
ua= a=
=&miNi'— gim N} =a;.
Thus, as the converse of Theorem 1, we obtain

Theorem 4. Assume that a manifold M admits a generalized metric g;; and a
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skew-symmetric quantity a;; which is positively homogeneous of degree 1 for yi and satisfies
the transformation rule (1. 2). Then T(M) admits a homogeneous almost Finsler structure
whose associated almost Finsler 2-form is given by

aijdxi/\dxj — Qg,-jdxi/\dyj.

§2. Finsler structures.

Let T(M) be a tangent bundle admitting a homogeneous almost Finsler
structure. Applying the exterior diflerentiation d to the almost Finsler 2-form
Q=a;;dxi\dxi—2g;dxiAdy/, we get

dQ=0ya; jdxk Adxi Adxd+ (Gpa; j+20; gix) Ay AdxiAd kI
— 20, g;dykAdxi Adyi.

So, the condition for 2 to be closed can be written as
élcgij—éjgik=0‘
Okij+20; i — Opatji—20: 51 =0,
Opt;j+ ;0055 +0 a5, =0.

The first condition means that g;; is a Finsler metric [10]. The second condition
leads us to dpa;;=d;gjs—0;g:. Since a;j is positively homogeneous of degree 1 for
i, we obtain

(2.1) a;j=y"(0igjm—0;&im)-

Conversely, let g;; be a Finsler metric and a;; be the quantity given by (2.1).
From the well-known equation ymékgim=0, we get b,caij=a,-g,-,c—ajg,-k. Hence, the
second condition is clearly satisfied. In this case, moreover, we see

Orerij+0i0 55+ 050k
= " (040: 8 jm—040;&im+0i03 & km — 0i0% & jm+0j0kgim—010: & km)
=0,
That is, the third condition is also satisfied. Thus we obtain

Theorem 5. Let T(M) be a tangent bundle admitting a homogeneous almost Finsler
structure. The almost Finsler 2-form Q=a;;dxi/\dxI—2g;;dxi/\dy? is closed if and only
if gij is a Finsler metric and a;; is given by a;;= y"™(8;8jm—0;8im)-

In the case of Theorem 5, we have
Q= y™(0;8jm—0;gim)dxiNdxI —2g; ;dxiN\dyI
=d(2)™ gm;dxd).

That is, 2 is the well-known exact form [14]. In the paper [ 5], we have called
this £ the Finsler form associated with a Finsler metric and denote it by @*.
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Since £2* is determined by a Finsler metric only, it scems to us that Theorem 5

tells us a new definition and a new treatment of a Finsler manifold.

Next, let there be given a scalar field o(x, ) on T(M), which is positively
homogeneous of degree 0 for yi. If T(M) admits a homogeneous almost Finsler
structure whose associated 2-form is given by Q=a;;dxi/Adxi—2g;;dxi/AdyJ, then
T(M) also admits another 2-form 2=¢*»Q, Putting g;;=¢"""g;; and &;;=e""Va;;
we have f):&ijdxi/\dxf—2§,-jdxi/\dyf. Of course, g;; is a generalized metric. With
respect to @;; , it is easy to verify

~ = ox ox' = o9xb %! ., <= 3% ., 0x¢
T e T e T L o
Thus T(M) admits another homogeneous almost Finsler structure whose associated
2-form is @ itself. The condition for 2 to be closed is given by

(1) &;; is a Finsler metric (2) @;;=9™(0;€5m—0;8im).

The condition (1) implies that the generalized metric g;; is conformal to a
Finsler metric. From the condition (2), we have

(2.2) aij= "™ (9:gjm—0igim) +0i0 g jm " —0j0 gim )"
Conversely, let 2=a;;dxiA\dxI—2g;;dxi/A\dy? be a 2-form on T(M). If there exists
such a scalar field e=0(x, ») that o(x, y) is positively homogeneous of degree 0

for yi, e°g;; is a Finsler metric and the relation (2.2) holds, then
e“a; ;= y™0;(¢° gjm) —0;(¢”gim)} holds good and "2 becomes closed. Thus we obtain

Theorem 6. Let 2=a;;dxi/\dxI—2g;;dxi/\dy’ be the almost Finsler form associated
with a homogeneous almost Finsler structure defined on a tangent bundle T(M). Let
o=a(x, ») be a scalar field on T(M) which is positively homogeneous of degree O for yi.
In order that eQ be closed, it is necessary and sufficient that e°g;; is a Finsler metric
and the relation (2.2) holds good.

Let g be a Finsler metric, 2* be the Finsler form associated with g, and
o=a(x) be a scalar field on M. Then g=¢"g is a Finsler metric. So, let 2* be
the Finsler form associated with g. Then we have 2*=¢®0% 4@ y™ (5,00, —
dj0gim). Therefore, the condition Q*=g=OP* is written as 0;08im—0jogim=D0.
Applying the differentiation g; and multiplying gi* to this equation, we have
9;0=0, i. e., o is constant. Conversely, if ¢ is constant, it is evident that Q%= g7 0%,
Thus we obtain

Theorem 7. Let g and g be Finsler metrics defined on M and be conformal to each
other, namely, g=e"g. Let 2* and Q% be the Finsler forms associated with g and g
respectively. Then 2*=esQ% holds true if and only if § is homothetic to g.

§3. Hamilton vector fields in T(M).

Let V be a vector field in T(M) and Q be the standard tangent structure
tensor. With respect to a local canonical coordinate, V and Q are written as
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0o o

V=vi(x, p)dfoxi+vi(x, )3/dyi and Q =(Q % =<M. 0). Now, calculating the Lic
0j

derivation ¥y Q , we have
ZvQi=—djwi, £vQi=0,
LvQi=—djpi+ai, #vQi=0;vi.
Therefore. if #vQ =0 holds, ¥V must take the form
V=0vi(x)d8[oxi+ ( y"Omvi(x) +ui(x))ad yi.

And the converse is also true. Here, vi(x)d/dxi+ y™d,0i(x)d/dy¢ is called the
complete lift of a vector field v(x)=vi(x)d/dxi to the tangent bundle T(M) and is
denoted by (v(x))¢, and ui(x)d/dy? is called the vertical lift of a vector field u(x)
=ui(x)d/dxt to T(M) and is denoted by (u(x))" ([6], [14]). Hence we obtain

Theorem 8. Let V be a vector field in a tangent bundle T(M) and Q be the
standard tangent structure tensor of T(M). %vQ =0 holds good if and only if
V=_(v(x))¢+ (u(x))" where (v(x))€ is the complete lift of a vector field v(x) in M and
(u(x))V is the vertical lift of a vector field u(x) in M.

Now, we suppose that the tangent bundle T(M) admits a homogeneous
almost Finsler structure #*. Let V be a vector field in T(M). In what follows,
we consider the case where the local l-parameter group of local transformations
generated by V preserves the structure #*. The condition to be demanded is
written as #vQ =0 and vQ2=0. By virtue of Theorem 8, it is enough to
consider the two cases where V is the complete lift or V is the vertical lift of a
vector field in the base manifold M.

First, we consider the case where V is the complete lift of a vector field »(x)
in M. Now, let us calculate ¥ycwap=0 for ((UAB):<a)ij w:-;;>=<a;,~ —g;;>. Using

wij  Wij &ii 0
the relations

D Vo
Pvwap=VP aaa:;)” + aaZA wpstwap aaxB

and v°=uvi(x)d/0xi+ y™dmvi(x)0/d yi, after some calculation, we get
Zyowij=0,
Lpcw=vhdpgij+ Y 0mvhdngij+ivh gri+ gindjoh = vgij.
: _Z’vczuij=vhahai5+y’"amvha'ha,-j+aivhah,-+a,-hajvh
a%yh d%vh

+ gth)’m - gthy’",

where #yg;; is the well-known formula of the Lie derivative of the generalized
metric g;; [13].

As is well-known ([4], [11], [12]), in a manifold admitting a symplectic
structure whose associated 2-form is £2, a vector field V satisfying #y2=0 is called
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a Hamilton vector. And similarly, in a manifold admitting an almost symplectic
structure whose associated 2-form is £, a vector field V satisfying £v2=0 is said
to be an almost Hamilton vector. Now we obtain

Theorem 9. Let T(M) be a tangent bundle admilting « homogeneous almos!
Finsler structure F*, let Q=a;jdxi/\dx/—2g;;dxi/N\dy? be the almost Finsler form asso-
clated with F*, and let v=0i(x)3/ox? be a vector field in the base manifold M. Then, the
complete lift of v is an almost Hamilton vector of F* if and only if
(1) v is a Killing vector field of the generalized metric g;;,

. atoh a2l )
(2) vhdpa;j+ Y dmvhopa; j+0ivhay a0 ot + g jhaxi—gxm)’m —&inggaars" =0

hold good.

In the case where d2=0, i. ¢., g;; is a Finsler metric and a;;=3™(3;gjm—
0;gim), the left hand side of the condition (2) of Theorem 9 can be rewritten,
after some calculation due to yméhgi,,,:O, as

vh y™ 9°gjm —ph ym *gim

Fehoxi Ztgey T YOm0 g jh— V" D08

+ y"0;0h0 g jm— Y0018 hm A Y0 j0M0; Gpin— YOV Gim

d%yh d%yh
+ " eib g — " ik g

Thus we can rewrite the condition (2) as
%( )" Zvgim) —0i( )" L0 8im) =0
Therefore we obtain

Theorem 10. Let g be a Finsler metric of a manifold M, v=0vi(x)d[dx’ be a vector
Sfield in M and F* be the symplectic structure on T (M) derived from 2*=d(2y™gp;dxd).
Then v¢ is a Hamilton vector of F* if and only if v s a Killing vector of the Finsler
metric g.

It is well-known ([ 4], [11]) that, for any p-form, the relation #y=i.d+di,
holds good where iy is the interior product by V and d is the exterior differential
operator. If v is a Killing vector field of a Finsler metric g, then we have
Zye2*=0. Of course, d2*=0 holds. So, we have dis°2*=0. That is, the so-
called Hamilton system p=waa(v€)%dx* is closed. Putting Ha=w.s(v°)?, we have

Hi=y"{(0ngir—0igmr) 0"+ gmid,0"}, Hi=— gm;o™.

The equation »"#,g;,=0 leads us to H;=— y"0™;gmr— "0;0™ gmr. Then we have
p=—d(gmr,y"™). That is, p is an exact form and H=gy,y"s™ is a Hamilton
function of #* ([ 4], [I11], [12]). Thus we obtain

Theorem 11. Suppose that a manifold M admits a Finsler metric g and a Killing
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vector field v=0vi(x)d[dxi of g. Concerning the symplectic structure F* derived from

Q*=d(2)" gmjdx?), H=gm.y™o™ is the Hamilton function with respect to the Hamilton
vector v in T(M).

In the case of Theorem 11, the so-called Hamilton equation is written as

dxi . .m OH
I (=v) =g

dyi . m OH o mr 0H
|—d%—(=y’"amv‘) =—gita +)’”(angmp—t?mgnp)g"'g""w-
It is a matter of course that the Hamilton function is constant along the
integral curve of the Hamilton vector o°.
Next, we consider the case where V=u", u being a vector field on M.
Calculating #,v was, we have

Luvw;j= ztmbmaij+ gmjaiu’" — gim0u™,
L yVwij= u’"bmgu,
Lyvwi;=0.
Thus we obtain

Theorem 12. Let T(M) be a ilangent bundle admitting a homogeneous almost
Finsler structure F*, let Q=a;;dxi/\dxi—2g;;dxi/\dy’ be the almost Finsler form associated
with F*, and let u=ui(x)d[oxi be a veclor field in the base manifold M. Then, the
vertical lift of u is an almost Hamilton vector of F* if and only if

(]) umbmgij=0,
(2) ”m‘:]maz’j"'gmja;um—g;-,,,f)ju’"=O
hold good.

Here we consider the case where d2=0. i. e., g is a Finsler metric and 2=0%
By virtue of (2.1) we have

u’"émaij+ gmji),-u’” — g,-,,,aju’”
=u"(3;8jm—0j&im) + &jmdit™ — gimOju".

Let ¥ be the covariant differentiation with respect to the Cartan’s Finsler

connection I ([ 8], [13]). Using the condition «™d,g;;=0 and the well-known
. *

relation Vig;;=0, we have

* *
3 m __
u™(0;85m—0;8im) + girl it — gji 1™ =0.

* *
Hence, we can rewrite the condition (2) as V;(gjmu™)—V ;j(gimu™)=0. Thereforc
we obtain

Theorem 13. Let g be a Finsler metric of a manifold M, let u=ui(x)d[oxt be a
vector field in M and let F* be the homogeneous almost Finsler structure on T(M) derived
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Sfrom Q¥=d(2y™gmidxd). Then the vertical lift of u is a Hamilton vector of the symplectic
structure F* if and only if

. * *
(1) w"Ongij=0, (2) Vi(gmu™)="V;j(gimu")

* . . . . . N .
hold good where 7 means the covariant differentiation with respect to the Cartan’s Finsler
-
connection I'}.

In the case of Theorem 13, the Hamilton system p is written as p= ginu™dx®.
This g is, naturally, a closed 1-form, however, is not always an exact form.

CoLLEGE OoF GENERAL LEDUCATION,
TokusHiIMA UNIVERSITY
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