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On some extension property for BMO
functions on Riemann surfaces

By

Yasuhiro Goton

Introduction.

In previous papers [6] and [7] we investigated two BMO spaces BMO(R, m)
and BMO(R, A) on Riemann surface R with universal covering D= {]z|<1},
with respect to Lebesgue measure dm=dxdy on the unit disk D and the hyper-
bolic measure di=dxdy/(1—|z|?)? on D. These spaces are defined by using the
universal covering map. On the other hand, in case £ is a plane domain, we
can consider another BMO space B%(Q, m) with respect to Lebesgue measure
dm on £, which seems to be more natural than BMO(£2, m). Reimann [11] and
Jones [8] proved the quasi-conformal invariance of the space BMO(82, m), which
shows that this space depends only on the conformal structure of 2. From such
an observation we shall define in this paper a new space Bﬁl\O(R, m) on an
arbitrary Riemann surface R and investigate its fundamental property.

In §1 we shall study about the relation on the spaces BMO(2, m) and BfJ\WJO
(2, m) for a plane domain 2 and especially we show some necessary and sufficient
conditions for which these two spaces coincide each other. In §2 we define newly
4 space B?\l\O(R, m) on an arbitrary Riemann surface R and show that many
results obtained for B/A\J'Z)(.Q, m) are valid also for B/IM\O(R, m). The next §3 is
concerned with some extension property for the functions of BMO(R, m) and
B%(R, m). It is well known that BMO functions on quasi-disks have extension
property. Here we show that the similar result is also valid for compact bordered
Riemann surfaces.

The author wishes to express his deepest gratitude to Professor Y. Kusunoki
for advice and encouragement.

§1 BMO spaces on plane domains.

Let £ be a plane domain and dm the 2-dimensional Lebesgue measure. We
can define the following BMO space on £ naturally.
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Definition 1. BMO(2, m) ={f€L;,,c(.Q) S S garoce, my=5up m(B)“jB\f—f(B,
m)]dm<+00}, where the supremum is taken for every disk B in 2 and f(B, m)=

m(B)[ f dm. BMOH(2, m)=BMO(Q, m)nH(2), BMOA(2, m)=B MO, m)n
A(2).

The following two propositions play the fundamental roles throughtout this
paper.

Proposition 1. ([8], [12]) Let a>0 and f be a function of L},.(2) such that

supm(B) “Sslf—f(B, m)|dm (=M )<+co, where the supremum is taken for every disk
B in 2 with radius r(B)<ad(B, 32) and d(B, 92) being the distance between B and

N
the boundary 02 of Q2. Then f belongs to BMO(2, m) and || f || g3t0c0, my<<C1(a) M, where
Ci(a)>1 is a constant depending only on the constant a.

Proposition 2. ([8], [11]) Let 2, & be plane domains, f a quasi-conformal map
N
Srom 2 onto Q' having the maximal delatation K and g a function of BMO(2', m), then

N
gof also belongs to BMO(RQ, m) and C3(K)| gl growr. my<!gof | 5o, my<C2(K)
| g\ 530, my» where Co(K)Z>1 is a constant depending only on K.

It is surprising that the constant C(K) above is independent of the choice
of 2, 2’ and f. Next we define the following BMO space on Riemann surfaces.
Let R be a Riemann surface having the universal covering D={|z|<1} and = : D
—— R its universal covering map.

Definition 2. ([9]) BMO(R, m)={feLL.(R) : fore BMO(D, m)},
BMOH(R, m)=BMO(R, m)H(R), BMOA(R, m)=BMO(R, m)nA(R).

The space BMO(R, m) is determined independently of the choice of
universal covering map, since Proposition 2 implies that Cy(1) || for| 530, my<<
| for" | gar0cn, my<<Ce(DIl fom | gato¢p my for a function f on R and another universal
covering map n’. Hence we can define the norm of feBMO(R, m) by
I f 1 asoc,my=SuP Il for | gatocp,my» Where the supremum is taken for every universal
covering map =. Note that the norm | - [|ga0(r, my 18 conformally invariant.

For harmonic functions on plane domains the following characterizations are
known.

Proposition 3. ([3]) (1) A harmonic function h on a plane domain 2 belongs to
B}\-/I\O/H(Q, m) if and only ifsug d(z, 0Q2)|Vh(z)|<Hco, and there exists universal
F{
constants A, A”>0 such that A su]‘)7 d(z, 0|V h(2)| <k 3o rco, oy <A’ sug d(z, 32)
ze ze

| VA(2)L
(2) A harmonic function h on a plane domain 2 having universal covering D belongs to
BMOH(R, m) if and only ifsu[;)2 pa(2) 1 Vh(2)| <400, where po(2)|dz| denotes the
ze

hyperbolic metric on 2, and there exists universal constants A, A’>0 such that A sup
d zen
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pa(2)7| Vh(2) l<“h“BM0H(g,m)<A/ ::g p2(2) | Vh(Z)|.

Remark 1. Above proposition shows that in case of the unit disk D, the
N
space BMOA(D, m)=BMOA(D, m) coincides with Bloch space #(D)={f€A(D):
I1f la=sup(1—|zI)| £ () <+o0}, (ef.[2])-

Note that (2) in above proposition is a direct consequence of (1) since in case
of the unit disk D we have 2-%d(z, 3D) '<pn(z)<d(z, aD)-'. Since py(2)<d(z,
a2)-! for every plane domain £ having the universal covering D, we obtain

N
BMOH (2, m)cBMOH (2, m). Further every Dirichlet function on £ belongs to
BMO(Q, m) (see [7]), especially it holds that HD(2)cBMOH(2, m). As for
BMO(Q, m), Metzger’s result (see [10]) implies AD(2) c BMOA(R2, m), nevertheless
HD(9) is not contained in BMOH(£, m) in general (see[6]).
Further we need the following result.
Proposition 4. ([7]) (1) Let 2 be a hyperbolic plane domain and gy(z, §) its
Green function with pole LE€Q, then A< go(+, O)lgatoco, my<A’s where A, A’>0 are

universal constants.

(2) Let p be a positive measure on D such that its Green /Jotentialf::SDg(-, )du(f)

N
belongs to BMO(D, m), then u(B)<All flgsom,m Sfor every disk B in D whose
hyperbolic radius is equal to 1, where A>0 is a universal constant.

In above proposition, the constant 1 has no special meaning. Now we can
prove the following.

Theorem 1. Let 2 be a plane domain with universal covering map n : D —> 8,

then BMO(2, m)cB%(.Q, m). Further the following conditions are equivalent;

(1) BMO(2, m)=BAMO(2, m),

(2) BMOH(2, m)=BMOH(2, m).

(3) There exists a constant L>0 such that d(z, 82)'<Lpg(z), z€8,

(4) There exists a constant M >0 such that for every (€, the domain {z€8 : py(2, )
<M} is simply connected, where po(z, §) is the hyperbolic distance between z and {,

(5) log '(2)cBMOAD, m) (=#(D)),

(6) log po(2)eBMO(2, m),

Sfurther if Q2 is hyperbolic, the next condition is also equivalent to above conditions,

(7) sup [l go(+, Olparoca, my<+ 0.

Proof. Let f be a function of BMO(2, m) and B a disk in 2 and B’ one of
the connected components of z-'(B), then = is conformal on B’ and so
I forlgamom. my<!'f IBMoco.my Py definition. Further we have ”f“B’A\/i(’)(B. "<
Co(DNl forxlgrtos. my Py Proposition 2, it /ic:llows that || £l g3000, my<<C2(1)
| f lzazoca, my» Which implies BMO(2, m)cBMO(2, m). “(1)—(2)” is trivial.
“(4)—>(1)” is a consequence of Proposition 1.

((2)—(3)) Suppose £ does not satisfy the condition (3), then there exists
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two sequences {z,};2; on 2 and {{,}7., on a2 such that |z,—{,| 1>np,,( zn). We
set uy(z)=log|z—{,|. Since log|z| belongs to B,A\/I-Z)(C, m), the BMO(.Q, m) norms
of u(n=1,2,---) are bounded above. On the other hand, by Proposition 3,
lunllBrMOCo, my=>Apo(2n) | Vin(24)| >An—— + o0, hence BMOH (£, m) does not concide
with B;\-/I\dH(.Q, m) by open mapping theorem.

((3)—(4)) We show that if we choose a constant M so that M<zL-! then
(4) is valid with this constant M. If it were not so, there exists a point z,&£
such that the domain Q,={z€9 :p,(2, z,)<M} is not simply connected, then

there exists a simple closed curve a in £, such that ng(C)ldC|<2M and «a
surrounds some point &ea®. Hence g d(c. 09)‘1IdCl<SaLpQ(C)|dC[<2n<S r-11rdd|

<SaIC—COI‘1]dCI<S d(€, 02)-11d¢|, where {—C,=rei®. This is a contradiction.

((5)—(4)) For an analytic function f on D, its Schwarzian derivative is defined
by Sr(2)=(f"[f") =21 (f"|f’)? then it is known that if |S7(2)|<<2(1—|2z®)"2,
zeD, then fis conformal on D (cf. [4]). Let = satisfy the condition (5). Using
#(D)-norm instead of B]\?O/A(D, m)-norm, we have |(z"'[z")|<<C(1—|2|2)-! on D
with some constant >0 and a simple calculation shows |S.(2)|<<C’(1—|z[?)-2.
Let 0<a<l, y a Mébius transformation of D and g(z)=n(ay(z)), then Sg(z)=a?
Sx(ar(2))(y'(2))? hence we have |Sg(2)|<<a?C’(1—|ar(2)l?) 2|7 (2) *<<a®C’(1—|z|?)-2
Therefore if we choosc a so that a*C’<(2, the map g becomes conformal for every
Mobius transformation y of D, which implies the condition (4).

The similar argument shows *‘(4)—(5)”’, and since —log (1 —|z[?)=log po(n(2))
+log|n’(z)], “(5)«»(6)” follows from the fact log(1—|z|2)eBMO(D, m). “(1)—
(7)” follows from Proposition 4 (1) and the closed graph theorem. Finally ¢(7)
—(4)” follows from Proposition 4 (2). Q.E.D.

§2. BMO spaces on Riemann surfaces.

Let R be an arbitrary Riemann surface. We define the following new BMO

N
space on R which reduces to BMO(R. m) when R is a planc domain.

Definition 3. BMO(R, m)={f€L,.(R) :| flgr0cr, my=5up (l/n)SD|f0¢—fo¢

(D, m)ldm< 4o}, where the supremum is taken for every conformal map ¢ of
D into R.

BMOH(R, m)=BMO(R, m)\H(R). BMOA(R, m)=BMO(R, m)n A(R).

Note that }IfllB/M\O(R_,,,)=SgP | ool Ear0c, m-

The metric d(z, 82)!|dz| on a plane domain £ called quasi-hyperbolic metric
(cf. [5]) is conformally invariant. Indeed, Kocbe’s one-quarter theorem shows
that for a conformal map f of 2 onto £, 47'(d(z, 02)-'|dz|)<d(f(z), 392")1|df (2)|
<4(d(z, 02)7'|dz]) (also see [5]). Now we define the corresponding metric pg(2)
|dz| on an arbitrary Riemann surface R by pr(z)=inf ps(z) (Zps(z)), where the
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infinum is taken for every simply connected domain § on R containing 2.
Equivalently, pz(z)=inf |¢’(0)|"!, where the infimum is taken for cvery conformal
map ¢ of D into R such that ¢(0)=z. When £ is a plane domain, the second
expression and Koebe’s one-quarter theorem imply 4(d-Y(z, 92) !|dz|)<py(2)|dz|<<
d(z, 02)7'|dz|. Thus the metric pr(z)|dz| is considered as a generalization of
d(z, 02)7'|dz|. We call px(z)|dz| the generalized quasi-hyperbolic metric. Now
we investigate the relation between jgz(z) and the injective radius with center z.
Let R be a Riemann surface with universal covering D. We define the injective
radius 7¢(z) with center z€R by rg(z)=sup {r>0 :the domain{{eR : pr(z, {)<r}
is simply connected}, then we have

Lemma 1. Let R be a Riemann surface with universal covering D, then
471U(re(2)) "tor(2)| d2| <pr(2)|d2|<U(r(2)) '0r(2) |dz],

where I(r) denotes the Euclidean radius of the disk in D with center the origin and hyperbolic
radius r.

Proof. Let = : D — R be the universal covering map such that #(0)=2z. Set
d0(Q)=n(l(rr(2))L), then ¢, is a conformal map of D into R such that ¢,(0)=z,
hence pr(2)<|94(0)|"1={(rr(2)) !|a’(0)|"'={(rr(2))'pr(2z). Next, let ¢ be an
arbitrary conformal map of D into R such that ¢(0)=z. Let 2 be the component
of z-1(¢(D)) containing the origin. Then g=z"'o¢ : D — 2 is conformal and so
Koebe’s one-quarter theorem shows that 4-(rx(z))'er(2)<<4-'d(0, 02)-=’(0) |
<] g’(0) 1712’ (0)|-*=|¢’(0)I-*, hence the assertion follows.

The following theorem shows that in the definition of BMO it is enough to
take the supremum over some family of ‘‘tame’ conformal maps. Let B,={{€R:
or(z, §)<rz(z)} and ¢, : D — B, the conformal map such that ¢,(0)=z.

Theorem 2. Let R be a Riemann surface with universal covering D, then for every
Sfunction f of L},.(R) we have

sup | feg. 182700 m< | S 1 53700, my<A sup 11/ °¢:l|5370¢D, my>
F4 €

where A1 is a universal constant. In other words f belongs to B/.M\O(R, m) if and only
if sup m(B)[ | for— fon(B, m)ldm(=M)<+c, and M<I| f|8hidcRm<A'M,

where 7 : D —— R is a universal covering map and the supremum is taken for every disk
B in D such that no two points of B is equivalent and A’>1 is a universal constant.

Lemma 2. For a Riemann surface R with universal covering D, we have
{ler :pr(z, )12} CB,, zER,
where pr(z, C)denotes the generalized quasi-hyperbolic distance between z and (.

Proof. Let BY={{€R :pr(z, {)<27'r:(2)} and 2'€B! then rg(2)<rr(2)+
2-1rp(2)=(3/2)rr(2) hence {(rr(2"))<l((3/2)7(2))<<(3/2){(rr(2)) and so by Lemma 1
we have p(2")>4"U(rz(2’)) pr(2")>6"Y(rr(2)) *or(2’). It follows that pr(z, dBY)>
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6-U(rr(2)) "1 (2 rr(2)) =12"Yrr(2){(rr(2)) '>>12"1, which implies the assertion.

Proof of Theorem 2. The first inequality is trivial. Next, let ¢ be a conformal
map of D into R. By Proposition 1 it suffices to estimate the mean oscillation of
fo¢ on every disk B in D whose hyperbolic radius is less than 12-!. Then the
radius of ¢(B) with respect to the generalized quasi-hyperbolic metric is less than
12-1 and so ¢(B)C B, for some z€R by above lemma. Hence the assertion follows
from Proposition 2.

Next we give some characterization for BMO functions.

Theorem 3. (1) BMO(R, m)cB/]VI\O(R, m) for every Riemann surface R with
universal covering D.
(2) Let 2 be a plane domain, then for every function f on 2,

I f 83000, my<< I f Ig3t0c0, my<<A Nl f I83500, my>

. . P N
where A1 is a universal constant, especially BMO (2, m)=BMO(£, m).
(3) A harmonic function h on an arbitrary Riemann surface R belongs o m(& m)
if and only if there exists a constant M >0 such that |V h(2)|<<Mpr(z), 2E€R.
(4)  An analytic function f on an arbitrary Riemann surface R having universal covering
D belongs to M(R, m) if and only if the Riemann surface of the inverse function of
f does not contain arbitrary large schlicht disk, especially it holds that m(R, m)=
BMOA(R, m).

Proof. Let R be a Riemann surface having universal covering map =z :D
—— R and f€BMO(R, m). Let ¢ be a conformal map of D into R and £, one
of the components of z-1(¢(D)). Since n~log : D — 2, is conformal, we obtain
I fogllEstom,m=(fom)o(a~ ") | 5amoD,my<SC2 (VLS o 5370 @0, my<C2 (V)L f |asocr, my
by Proposition 2. It follows that | f 5375z my<<C2(1)| f Izasocr,my» hence BMO
(R, m)CB/A/TO(R, m). In case 2 a plane domain, the first inequality in (2) is
trivial and the second one is a consequence of Proposition 2. Note that the con-
dition in (3) is equivalent to the condition sup{sup(l—|z|2 A (hor) (2)} <M,
where sup is taken for every conformal map ¢ of D 1nto R, hence the assertion
(3) follows from Proposition 3 and the definition of BMO. Finally, the assertion
(4) follows fom the fact that an analytic function g on D belongs to Bloch space
#(D) (=BXl\O/A(D, m)) if and only if the Riemann surface of the inverse function

of g does not contain arbitrary large schlicht disk (see [2]).
Q.E.D.

Here we show a removability property.

Theorem 4. Let{z,}7_, be a hyperbolically separated sequence on D, that is, there
existx a constant a>>0 such that pD(z“ zj)>=>a (1%¢j). Let D'= D\U {zn} and f a function
of BMO(D’ m), then fEBMO(D m) and ||f||BMO(Dm)<C(a)||f BAOD, my Where

C(a)>1 is a constant depending only on a.
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Remark 2. This rcsult was shown in [3] when f is harmonic on D.

Remark 3. Since D is a uniform domain, above theorem implies that D’
is a uniform domain (cf. [5]).

N
Proof. By Proposition 1, it suffices to show that if f belongs to BMO(D~{0},
N
m), then f€BMO(D, m) and | f 5370, my <A f | 52%0¢ D0}, my With some universal
N
constant A>0. Note that it is known that if g belongs to BMO(C~{0}, m) then

N
gEBMO(C, m) and | gllgaocc, my <4’ glEat0c—0).my With a universal constant
A’>0 (see [12] 5p), and the same argument is valid here.

Let {24}, be a sequence on Riemann surface R such that pr(z;, z;)>>a>0
(t%=j), and ¢ aconformal map of D into R, then the sequence ¢-'(U {z,}) is a

hyperbolically separated sequence on D having the same constant a, hence we
have

Corollary 1. Let R be an arbitrary Riemann surface, {z,}7., a generalized quasi-
hyperbolically separated sequence on R such that pr(z;, z;)>a>0 (i%¢j), and R'= R\U {zn}.
Let f be a function of BMO(R’ m), then fEBMO(R m) and ”f“BMO(R "<

C(@ f 5310, my» where C(a)>1 is a constant depending only on a.

Th e next corollary is a generalization of Proposition 4 (1).
Corollary 2. Let R be a hyperbolic Riemann surface, then

A<”gk(' s e)lB/M?)(R'.m)gAlY EER

where A, A’ >0 are universal constants.

Progf. We can show the existence of the constant A4 by considering the mean
oscillation of gg(-, {) on a sufficiently small local disk containing {. Next, let ¢
be a conformal map of D into R\{{} and f the analytic function on D such that
Re( f(2))=gr(4(2), €), then the Riemann surface of the inverse function of f does
not contain a schlicht disk whose radius is larger than z. Therefore, by Theorem
3 (4), we have [ gz(+, O)llzatorR~ (), m;y<A4’’ for some universal constant 4’”>0, and
the assertion follows from Corollary 1.

Finally we need the following lemma to prove our main theorem below.

Lemma 3. Let R be a Riemann surface having universal covering D, B, a local
disk on R and set Ry=R~B,, then we have
A~ . . o~
(1) For any f&€BMO(R,, m), there exists a function g of BMO(R, m) such that
gl R=".
(2) For any ge BMO(R, m), the function f=g|R, belongs to BMO(R,, m).

Proof. Let B, be a local disk on R such that B,C B, and set 2a=px(aB,, 3B,).
Let ¢ : B, — D be a conformal map such that ¢(B)={| 2| <ro} (0<r,<1). Let f

P N
be in BMO(R,, m), then foq e BMO({r,<|z|<1}, m). Since {r,<|z|<1} is a
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uniform domain (see [5]), there exists a function keB/A\/fZ)(D, m) such that k| {r,
<|z|<1}=fog'. Let g be a function on R such that g=koq on B,, g=f on R,.
We show that g belongs to B/A/I\O(R, m). Let ¢ be a conformal map of D into R
and B a disk in D whose hyperbolic radius is less than a. First we assume ¢(B)
NBy3¢. Then, since ¢(B)CB; and gog is conformal, we have [lg°¢|,3%(3,m)<
C:(V) |kl 5350¢p,my by Proposition 2. Next we assume ¢(B) N By=¢. Then ¢(B)CR,
and so || g0 gar0p,my < S 15326 ¢Ro, my PY definition of BMO. Tt follows by Pro-
position 1 that || 226 |30, my<Ci(a) max {Co(DI k53500 my» 1./ |50, mo}» hence
g belongs to BMO(R, m).

Next we assume g be a function of BMO(R, m). Let x : D — R and =, : D
—— R, be universal covering maps. Let j : R, — R an inclusion map and 7 : D
—— D its lift. Then j: D — D~x"(B,) is a universal covering map, and there
exists a constant >0 such that for every disk B in D whose hyperbolic radius
is less than b, the map J : B—J(B) is conformal. Hence by Proposition 2, || fo
T I‘B%(B,m)<cz( ] )” gon “é}?{o('}(m, m)<02(1)” gom ”B%(D. m)<02(1)” g ”BMO(R, my* It
follows by Proposition 1 that ||fIIBMO(RO,m)<C{(b)Cg(l)|lg[IBMO(R'm).

Q.E.D.

Now we can prove the following result.

Theorem 5. For a Riemann surface R having universal covering D, the following

conditions are equivalent;
=T

(1) BMO(R, m)=BMO(R, m),
(2) zlrelg re(2)>0, that is, there exists a constant M >0 such that for every {ER, the
domain {z€R : pr(z, {)<<M} is simply connected,
(3) There exists a constant L>0 such that p r(2)<<Lpr(z), z2€R.
Further if R is hyperbolic, the next condition is also equivalent;
(4) ngg Il g=(+s Olarocr, m<t+ -

Proof. ““(2) «— (3)” is a consequence of Lemma 1 and *“(2) — (1) follows
from Proposition 1. In case R is a hyperbolic surface, ““(1) — (4)” is a conse-
quence of Corollary 2 and closed graph theorem and ““(4) — (2)” follows from
Proposition 4 (2).

Next we prove ‘(1) — (2)” in case that R is not a hyperbolic surface. Let
B, be a local disk on R and set Ry=R~B,. Let feB/ATO(Ro, m), then by Lemma
3 (1) there exists a function g of BﬁJ\O(R, m) such that g|Ry=f. Since BMO(R,
m)=BMO(R, m), it follows by Lemma 3 (2) that f belongs to BMO(R,, m).
Therefore R, is a hyperbolic surface satisfying the condition (1) and so R, satisfies
the condition (2). Here we remark thatziEan rr(2) =21 inf{lg(a) :a is a closed

curve on R, which is not homotopic to a point}, where [g(a) denotes the hyper-
bolic length in R, of the curve a. And further by Schwarz’s lemma, it holds that
(@) pr(2)<or(2)<pzr(2) on {pr(z, By)>a}. Hence R also satisfies the condition (2).

Q.E.D.
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For arbitrary Riemann surface R having universal covering D, the inclusion
BMO(R, 2)cBMO(R, m) holds, where BMO(R, 1) is the BMO space on R with
respect to the hyperbolic measure di (cf. [6], [9], [12]). If R is compact, we
have BMO(R, 2)=BMO(R, m) (see [9]), hence

Corollary 3. For arbitrary Riemann surface R with universal covering D, it holds
that

BMO(R, 1)CBMO(R, m)c EMO(R, m),
and if R is compact, we have

P
BMO(R, 3)=BMO(R, m)=BMO(R, m).

§3. Some extension property for BMO functions on Riemann surfaces.

Let 2 be a quasi-disk, that is, £ is a domain in C surrounded by a simple
closed curve « and there exists a quasi-conformal hemeomorphism f of €=CU {co}

which maps 2 onto €~ and keeps a pointwise fixed. For a function gEB/A\/Ib(.Q,
m) we define the function £ on G by k(z)=g(z) on 2 and k(2)=g(f(z)) on C~Q.
Since the 2-dim. measure of « vanishes, & is well defined as a function of L},.(C).
Then k£ belongs to B%(C, m) and ||kl g0, my<C(K) gl 5atoco, my» Where C(K)
>1 is a constant depending only on the maximal delation K of f (see [8]). In
this section we prove the corresponding result for compact Riemann surfaces.
First we prove the following simple lemma.

Lemma 4. Let 2 be a plane domain, 2.=2n {Im z>0} and 2_=2n {Im z<0}.

Let f be a function on 2 such that (l)l|fl|3%(g+,,,1): | f | gar0c0_, my<M, (2) for every
point 2E9 such that z€9, it holds that f(Z)=f(z). Then f belongs to BMO(R2, m) and
I f 5300, mySAM, where A1 is a universal constant.

Proof. First we remark that in the definition of B%, we can replace the
word “‘disk B” by ‘“square Q whose sides are parallel to the coordinate axes”
(see the proofs of Hilfssatz 2 in [12] and Lemma 2. 3 in [8]). Further by Pro-
position 1, it suffices to estimate the mean oscillation on the square Q in 2 such
that side(Q )<<d(Q, 32) and Q NR=x¢, where side(Q) denotes the length of the
side of Q. Let (xo, o) be the center of Q, and Q' the square with center (x, side

(Q)/2) and side(Q’)=side(Q). Then Q’cf,, hence m(Q_)'ISQlf—f(Q, m)|dm
<em(Q) 1 f =@ mdm={_  + [ <am(@) [ ) f-f(Q, mldm and

so the assertion follows.
Theorem 6. Let R be a compact Riemann surface with universal covering D,
ai(1<<j<<n) disjoint simple closed curves on R such that R~ U a; consists of two components
=1

Ry, R, and f a quasi-conformal homeomorphism of R with maximal dilatation K which
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maps Ry onto R; and keeps Ua] pointwise fixed. Set b=max{lx([a;]) : I<<j<n}, where
(r([a;]) denotes the h_yperbolzc length of the geodesic [a;) in the homotopy class of aj. For
a function g on Ry, we define the function k on R by k(z)=g(z) on Ry, k(z2)=g(f(2))
on Ry, then

— S~
(1) If g belongs to BMO(R,, m), then kEBMO(R, m) and |klgpocp my<<C(K)
I gl 5370¢R,, my> where C(K)Z>1 is a constant depending only on K.
(2) If g belongs to BMO(R,, m), then k€ BMO(R, m) and ||klgpop m<C(K, b)
I gllpasocr, my where C(K, b)>0 is a constant depending only on K and b.

Proof. Note that there exists a compact bordered Riemann surface R{ and
a conformal map s; of R{ onto R,. Then s5; has a continuous extention to Rl
Let R’ be the double of R{/, j its anti-conformal involution and R;=j(R{). We
define a map s on R’ by s(z)=s(z) on R, s(z)=f(s:(j(z)) on Rj, then s is a
quasi-conformal map having the maximal dilatation K. By Wolpert’s theorem
(cf. [1] 52p), we have [p(s7aj))=lp([s7}(a;)])<<Klx([a;]) <Kb. It follows by
Proposition 2, we can assume from the beginning that R, is a compact bordered
surface, R its double and f its anti-conformal involution.

Let ¢ be a function of B/AJ\O(RI, m). Let H be the upper half plane, m; : H
—— R, the universal covering map and E the limit set of its covering transform-
ation group. We can assume co€E. Then the map =; induce the covering map

: C~E —— R naturally. Let ¢ be a conformal map of D into R. Let £ be one
of the components of #;'(¢(D)), then =, : 2 —> ¢(D) is a conformal map. Set
2.=02n0H, 2.=02nL, where L=C~H, then by Proposition 2, |kom| 537000, . m)=
“(k°¢)°(¢_l°“1)“3’.11\4'b(9+, m)<Cz(l)|| k°¢I|B%(¢‘l(m(!.?+)),m)<c2(l)“g“B/M\O(Rl,m)' Since the
same estimate holds on 2., it follows by Lemma 4 that [|kox 53700, my<<4C:(1)
| &l 530¢k, my- Hence by Proposition 2, we have ||ko || 5376 p, ny<<C2(1)ll komi | 53700, m)
<AC: (1)l gl5320R, my 20d 50 1kl 500k, my<SAC2(1)* 11 283201, m>-

Next we prove the assertion (2). Let g be a function of BMO(Ry, m), =, : D
—— R, and 7 : D — R the universal covering maps, j : Ry —> R the inclusion
map and j : D—D its lift. Note that by the collar lemma (cf. [1] 95p), there
exists a constant a>0, which depends only on B, such that for each a; the domain
Uj={z€R : pr(z, aj)<a} becomes a collar neighborhood of @;. Let z7'(a;)=
{@j,¢} =15, be the decomposition into the component. Let B be a disk in D whose
hyperbolic radius is less than a/2. First we assume that BN&;;=¢ for some &;,;.
We can assume &;,; is the interval (—1. 1). Set 2={z€D :pp(z, @;)<a}, 2.=
2nH, 2.=2nL, then Bc2. We can assume z(2,)CR;. Set 2,=-1(2,). Since
f is a conformal map of D into D, the mapj:.()o
Proposition 2 we have ||kox | 53700, my<Ce(1)]l k°”°j|13?46(00. o =Ce(D)ll gom || 537000, m)
<C:(V) gllprocr, my Since the same estimate holds for £2_, it follows by Lemma

> 2, 1s conformal, hence by

4 that [[koz || g3 myS llk°”||3%(g,m)<AC2(l)|[é’HBMO(R..my Next we assume that
Bnaj;=¢ for every &;,;, then we can assume z(B)CR,. We set £,=;"'(B), then
J 121 — Bis a conformal map. Therefore by Proposition 2, we have |koz || ;750 5,

<Co(1)komo Jl| 5300, my=C2(V)ll gom1 | Ea0cn, my<C2 (D €l zpocR, my:  Summarizing
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above, we obtain ||kox || 53765, my<<~AC:(1)il gl Barocr,, my for every disk B in D whose
hyperbolic radius is less than a/2. Hence the assertion (2) follows by Proposition
1. Q.E.D.

The following example shows that in the assertion (2) of above theorem, we
can not replace the constant C(K, b) by some constant “C(K)”.

Example. Let w=y,(z) be a Mobius transformation such that (w—2)/(w+2)
=t,(2—2)/(2+2), where £,>0 is asufficiently small constant, and w=y;(z) a Mdbius
transformation such that (w—1)/(w+1)=t(z—1)/(z+1), 0<t<101. Set G=<70, 11>,
then the Riemann surface R;=H/G becomes a compact bordered surface having
three boundary components. Let By, Bj and By, B] be the disks surrounded by
the isometric circles for 7, and 7; respectively. The domain Ny=H~(B,UB;U B,
UB!) is a fundamental domain for R,. We define a function g on N, by g(z)=
log |z—1] on Non{Re z>0}, g(z)=log |z+1]| on Non{Re z<0}. Then g belongs
to BMO(N,, m) and its BMO(N,, m) norm is bounded above for 0<t<10-1.
Since g takes the same value on every equivalent point on N,, g define a function
on R. Set I={y(N,): yeG}. Let N;, Njel have a common boundary arc in H,
7 the reflection with respect to this arc. Then for every point zeN; such that
t(z)€Nj, it holds that g(z)=g(r(2)). Further we remark that there exists a con-
stant a>>0 such that for every {(0<¢<10-!), each disk B in H whose hyperbolic
radius is less than a intersects with at most two domains of I. Hence Proposition
1, 2 and Lemma 4 show that the BMO(R,, m) norm of g(0<t<10-!) is bounded
above. Let n, : H — R, be the universal covering map, R the double of R, and
k the function in Theorem 5. The map =; induces a covering map =, : C~E —
R, where E denotes the limit set of G. Then N, {zeC :ze N} and the free
boundaries of N, makes a fundamental domain for this cvoering map, which we
denote by No. For every ¢>0 there exists a constant ¢; >0 such that 2y={e<
|z—1]<2-}c N, for every t(0<t<t,). Let 2,={log e<Re z<log 2-}, and define
the map p : 2, — 2, by p(z)=¢*+1, then p is a universal covering map. Hence
we can regard the domain £, as a subdomain of the universal covering D of R,
and so it suffices to show that [|kopll gm0, my — +° as t — 0. Let Q ={z=x«
+1y :log e<x<log 21, 0<y<log 27 '} cf2,. Since kop=Rez, we have m(Q)-!
SQlkop—-kop(Q, m)|dm=4"1 log 2-%¢! — + as e—— 0 and so the assertion

follows.
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