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On some extension property for BMO
functions on Riemann surfaces

By

Yasuhiro GOTOH

Introduction.

In previous papers [6 ]  and [7 ] we investigated two BMO spaces BMO(R, in)
and B M O(R , A ) on Riemann surface R  with universal covering D =  z I <11.
with respect to Lebesgue measure dm = dxdy on the unit disk D  and the hyper-
bolic measure cl2=-dxdy1(1-1z1 2 ) 2 o n  D .  These spaces are defined by using the
universal covering map. On the other hand, in case Q is a plane domain, we

can consider another B M O space BMO(D, m) with respect to  Lebesgue measure
dm on Q, which seems to be more natural than BM0(f2, in ) . R eim ann  [11 ] and

Jones [8 ] proved the quasi-conformal invariance of the space BMO(D, m), which
shows that this space depends only on the conformal structure of Q. From such
an observation we shall define in  this paper a  new space B M O(R , m ) on an
arbitrary Riem ann surface R  and investigate its fundamental property.

In  §1 we shall study about the relation on the spaces BMO(Q, in )  and BMO
(D, m) for a plane domain Q and especially we show some necessary and sufficient
conditions for which these two spaces coincide each other. In §2 we define newly

a space B M O(R , rn) on an arbitrary Riem ann surface R  and show that many

results obtained for BM O(Q, m ) are valid also for B M O(R , m ) .  The next §3  is
concerned with some extension property for the functions o f B M O(R , m ) and
B M O(R, m ). It is well known that B M O functions on quasi-disks have extension
property. Here we show that the similar result is also valid for compact bordered
Riemann surfaces.

The author wishes to express his deepest gratitude to Professor Y. Kusunoki
for advice and encouragement.

§1 BMO spaces on p lane domains.

Let Q be a plane domain and dm the 2-dimensional Lebesgue measure. We
can define the following B M O space on Q naturally.
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Definition!. BMO (S2, m)=1 .f  L ; „ , ( Q )  f sup m (B )1  f —  f (B ,

m)1 dm<+ co), where the supremum is taken for every disk B  in Q and f (B , m )=

m(B) - 1 B f  d m .  BMOH(Q, m)=BMO(S2, m) n H(Q), BM0A(S2, in)=BMO(Q, m) fl
A(S2).

The following two propositions play the fundamental roles throughtout this
paper.

Proposition 1. ([8], [ 1 2]) L et a > 0  and f  be a function o f  /4„,(D) such that

supm(B) - 'L l f  —f (B, m)Iclm ( M )< +  o ,, where the supremum is taken f o r every disk
B  in  Q  w ith radius r(B)<ad(B, 3 r2) and d(B, as2) being the distance between B  and
the boundary aQ of  D. Then f  belongs to BMO(S2, ni) an d  f liffiv̀ ro ( Q m ) <C ,(a )M , where
C i (cr) > 1  is  a constant depending only on the constant a.

Proposition 2 . ( [8], [1 1] ) Let Q, Q ' be plane domains, f  a quasi-conformal map
from  Q onto Q ' having the maximal delatation K and g a function of  BM0(12/ , m), then
go f  also belongs to BMO(S2, in )  and C 2 (K) -  g l l,BMO(D',m)<I1 g

°
 f IIB M 0 (0 ,m )<C  2 (K )

glIBMOCT
 where C2 (K )> 1  is  a constant depending only on K.

It is surprising that the constant C2 (K )  above is independent of the choice
of D, f2' and f .  Next we define the following B M O  space on Riemann surfaces.
Let R  be a Riemann surface having the universal covering D = {1z1 < 1 } and 7r : D

R  its universal covering map.

Definition 2 . ( [ 9 ] )  BM O (R , m )=1f E.14„c (R ) :f orEB M O (D , m )} ,
BM O H (R , m )=BM O (R , m )nH (R ), BM 0A(R , m )=BM O(R , m )nA (R ).

T h e  space B M O (R , m ) is determined independently o f  t h e  choice of
universal covering map, since Proposition 2 implies that c2(1) - '11.forlla -o w m ) <

c)7r/ ilsmo(n, )<C2 ( 1 )  f  °it IIBMO(D for a function f  on R  and another universalm 
covering map 7'. H e n c e  w e  c a n  d e fin e  th e  norm  of f  e B M O (R , m) by

f 11Bmo( B ,. )
--sup  i f  °7rilsmocio.no, where the supremum is taken for every universal

covering map 7r. Note that the n orm  •  !IBMO(R, I n )  is conformally invariant.

For harmonic functions on plane domains the following characterizations are
known.

Proposition 3 . ([3]) (  I ) A  harmonic function

BMOH(Q, ni) if  and only if  sup d(z, aQ) I vh(z)
zef2

constants A , A '> 0  such that A  sup d(z, a f2)1 v h(z)1
z.(2

Vh(z)1.
( 2 )  A  harmonic function h on a plane domain Q  having universal covering D  belongs to

BMOH(Q, in) if  and only  if  sup pq(z) - 'I Vh(z)I<- o o , where ps2(z)Iclz! denotes the
z ED

hyperbolic metric on Q, and there exists universal constants A , A '> 0  such that A  sup
zED

h on a plane domain Q  belongs to
l<4- co, a n d  there exists universal

‹  11 h ilBmoH(o, m)<A sup d(z, 3s2)
zel2
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pir2(z) - ' 1 V h(z)1<ilhlI B m a t i ( Q ,,,,) < A ' sup pf2(z) - 1 IV h(z)
zEs2

Remark 1 .  Above proposition shows that in  case of the un it disk D , the

space BM0A(D, in) --BM0A(D, m ) coincides with Bloch space m(D).= i f  eA (D ):
IlfIls=sup( 1 -1z12)If'(z)1<+001, (cf.[ 2 ])•zED

Note that (2 ) in  above proposition is a direct consequence o f (1) since in case

of the unit disk D  we have 2 -2d (z , a p ) _ i < p D ( z ) < d ( z ,  a p ) i .  Since pp(z)<d(z,
a Q ) - i  fo r  every plane domain Q  having th e  universal covering D , we obtain

BMOH(Q, m)cBMOH(S2, m). Further every D irichlet function on  Q  belongs to

BMO(Q, m ) (see [7 ] ) ,  especially it holds that HD(D)OEBMOH(S2, m). As for

BMO(S2, m ), Metzger's result (see [10]) implies AD(D)cBM0A(Q, m), nevertheless
HD(D) is not contained in  BMOH(D, m) in  general (see[6]).

Further we need the following result.

Proposition 4. ([7]) ( 1 )  Let Q be a  hyperbolic p lan e domain and gQ (z, C) its

-,,,BmoGreen function w ith p o le Ce (2, then A < mm)<A/ 'IlgQ (•, E111 where A , A '> 0  are
universal constants.

(2) Let pe b e  a  positive measure on  D  su ch  tha t its Green potential f p g(- C)cl,u(C)

b elon gs to  BMO(D, 7n), then p(B)<All f II M O(D, m ) f o r  every  d isk  B  i n  D  whose
hyperbolic radius is equa l to  1, where A>0 is  a  universal constant.

In  above proposition, the constant 1 has no special meaning. Now we can
prove the following.

Theorem 1 .  Let Q be a plane domain with universal covering map it  : D

then BMO(D, m)cBMO(S2, m). Further the fo llow in g conditions are equivalent;

(1) BMO(S2, m)=BMO(Q, m),

(2) BMOH(Q, m)=BMOH(S2, m),
(3) There exists a constant L>0  such that d(z, a Q )-1 < L p  (2 (z ), zEQ,
(4) There exists a constant M > 0  such that for every C ‘ 2 ,  the domain {zES2 : p0 (z, C)

< M }  is simply connected, where pD (z, C) i s  the hyperbolic distance between z and C,

(5) log 7r/ (z) BMOA (D , m ) (=m(D)),
(6) log pa (z)EBMO(D, m),

further i f  Q is hyperbolic, the next condition is also equivalent to above conditions,
(7) sup  j go(. C)Iismo(u,m)‹+ œ

P r o o f .  Let f  be a function of B M O(Q, 7n) and B a  disk in  Q and B ' one of
th e  connected components o f  7-11 (B ) ,  then it  is conform al o n  B ' a n d  so

I B  M O ,f orlIBmo ( B, ,m) <II f  11B m om m , by definition. Further we h a v e  f (B  ,n )
<

-
C2 (1)11 f  7r11° b y  Proposition 2, it fo llow s th a t f  11/3 -0(0,„,)<C2( 1)

!if  11.Biwo(Q.m), which implies BM O(Q , m )cBM O(Q , m ). " (l)---> (2 )"  is  trivial.
"(4)—>(1)" is a  consequence o f Proposition 1.

((2)—*(3)) Suppose Q  does not satisfy the condition (3 ) , then there exists
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two sequences o n  Q and {Cn}7-1 on a9 such that I z n - - - C n I - i > n P 0 ( z n ) .  W e
set un(z)=Iogiz —Ci. S ince loglz1 belongs to BMO(C, ni), the BMO(D, m) norms
o f  u(n=1,2,...) a re  bounded above. O n  th e  other hand, b y  Proposition 3,
11 unilmwomm)>APQ(z.)1v u n (z,,)1 >An—*4- co, hence BMOH(Q, m) does not concide
with BMOH(D, m) by open mapping theorem.

((3)—>(4)) W e show that i f  we choose a constant M  so  that M<;rI, - }  then
(4) is valid with this constant M . I f  it w ere no t so, there exists a point z0 ES2
such that the domain Q0 = {zeD : pf2 (z, z o ) < M }  is not simply connected, then

there exists a sim ple closed curve a  in  Q0 s u c h  t h a t  prd (C)Ic/CK 2 M  an d  aa

surrounds some point eo E at). Hence Ld(c, af2) - 1-1c/C1 -4 ,Lp0 (C)1dC1<27K.f a r - 1
 I rdOI

C  'I dC  ‹f d(c, at2)-a 11dC1, where C—Co =reie. This is  a contradiction.

((5)—*(4)) For an analytic function f  on D, its Schwarzian derivative is defined
b y  S f(z )= (f" If ')/ -2 - 1 (f " I f ' ) 2 ,  then  it is  know n  that i f  1St (z) <2(1 —14 2) - 2 ,
ZE D , then f  is conformal on D  (c f. [4 ]). Let 7r satisfy the condition (5 ). Using
.'(D ) -norm instead o f BM0A(D, m)-norm, w e have 1(e/e)1<C(1
with some constant C >0 and a simple calculation shows 1S,-(z)1<iCi  z ) 2 )(1—i  nl zo l2)
Let 0<a<1, r  a Möbius transformation of D  and g(z)-=7r(ar(z)), then Sg (z)-=a 2

S„ (ar(z))(7J (z)) 2 , hence we have I Sg (z)l <a2C'(1 Har(z)1 2) - 2 1r'(z)12<a 2c ( 1 - 1z 12 ) - 2 •
Therefore if we choose a so that a2C'<2, the map g becomes conformal for every
Möbius transformation r o f D, which implies the condition (4).

The similar argument shows "(4)-0(5)", and since —log (1 —I z12) = log pf2 (z(z))
+log I e(z) , "(5)<->(6)" follows from the fact log(1 —] zl 2 ) e B M O (D , m ). - (1)—>
(7)" follows from Proposition 4 (1) and the closed graph theorem . Finally "(7)
—>(4)" follows from Proposition 4 (2). Q.E.D.

§2. B M O  sp aces  on R iem ann surfaces.

Let R be an arbitrary Riemann surface. We define the following new BMO
space on R which reduces to BMO(R, m) when R is a plane domain.

Definition 3 .  B MO (R m)= If ELL (R) :1! f „ „ ) =  sup ( 1 /r)SD 1 f00—f 00

(D , m)Idm<d- co} , where the supremum is taken for every conformal map Ø of
D  into R.

BMOH(R, rn)=B-7-11- 6(R, m) n H(R), BM0A(R, m)=BM -0(R, m) n A(R).

Note th at if  lir-rAk ( R ,„,) = f 11.8mow. no• sup

The metric d(z, aQ)-iidz  I on a plane domain Q called quasi-hyperbolic metric
(c f. [5 ]) is  conformally invariant. Indeed, Koebe's one-quarter theorem shows
that for a conformal map f  of Q onto Q', 4 - 1 (d(z, ap)-ildz()<d(f (z), a(r) - iidf(z);
<4(d(z, aQ) - } Idzt) (also see [5]). Now we define the corresponding metric "PR(z)
Idz l on an arbitrary Riemann surface I? by PR(z) p s ( z )  ( > p s ( z ) ) ,  where the
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infurium is taken  for every sim ply connected  dom ain  S  on  R  containing z.
Equivalently, R (z)-=inf 10'(0) I - ', where the infimum is taken for every conformal
map 0 of D  into R  such that 0 (0 )= z. When Q is  a plane domain, the second
expression and Koebe's one-quarter theorem imply 4(d - '(z, Q(z)Idzl<
d(z, 'Thus the m etric ifiR(z)Idz is considered as a generalization of
d(z, a(2) -1 1dzi. W e ca ll i3R(z)Idz I the generalized quasi-hyperbolic metric. Now
we investigate the relation between PR (z ) and the injective radius with center z.
Let R  be a Riemann surface with universal covering D . We define the injective
radius r R (z ) with center zeR  by r e (z) =sup {r>0 : the domain { eR : pR(z, C)<r}
is simply connected), then we have

Lem m a 1. Let R  b e a R iemann surface w ith  un iversa l covering D , then

4 - 1 1(rR(z)) - 1 pR (z )Idz I<R (z )Idz I<l(r(z )) - 'pR(z)IdzI,

where l(r) denotes the Euclidean radius o f  th e disk in D with center the origin and hyperbolic
radius r.

P r o o f  Let 7r : D R be the universal covering map such that 7r(0)=z. Set
sbo(C)--=z(/(rR(z))C), then 00 is  a conformal map o f D  into R  such that 00 (0)=z,
hence 'f1R (z ).< 0(0)1 - 1 =1(rR(z)) - 1 17' (0)I - i =l(rR(z)) - 1 ,0R(z). Next, l e t  0  b e  an
arbitrary conformal map of D  into R  such that 0(0)=z. Let Q be the component
of 7c- 1 (0(D)) containing the origin. Then g =r - '00 : D --> Q is conformal and so
Koebe's one-quarter theorem shows th at 4 - 1 l(rR(z)) - 1 pR(z)<4 - 1 d(O, as2)-iie(0)1-1
<1 g' (0) 1-1 1e ( 0 )1- 1 =-- 151 '( 0 )1- ', hence the assertion follows.

-1The following theorem shows that in the definition of Bil .0  it is enough to
take the supremum over some family of "tame" conformal maps. Let B ,= {CeR:
pR(z, C)<rR(z)} and 0z  : D  - - ) B z the conformal map such that 0,(0)=z.

Theorem 2 .  Let R  b e a  Riemann su rfa ce w ith  un iversa l covering D , then f o r  every
function f  o f  11,(R ) we have

sup II f  oçb, 1113MO(D,m)<II f f r ik ( R, no<A sup II f 0Ø, (IBMO(D,
z e R z e l?

where A >1  i s  a  universal constant. In  other words f  belongs to  B M O(R , m ) i f  a n d  only

i f  su p  m(B) - 1 SE lfor — f  orc(B , m)Idrn(=-M )<+ co ,  a n d  M <II f M,

where 77 : D R  is a  un iversa l covering m ap and the supremum  is tak en f o r  every disk
B  in  D  su ch  that n o tw o p o in ts  o f B  is equivalent and A '>1  i s  a  universal constant.

Lem m a 2 .  For a R iem ann surface R  w ith un iversa l covering D , we have

{CER R (z , C)<12 -1 }OEB,, zEl?,

where faR(z, C)denotes th e  generalized quasi-hyperbolic distance betw een  z  and C.

P r o o f .  L e t  ./3?=-- {CER : pR(z , ()<2 - 'rR(z)1 an d  z 'E R I th en  rR (e)<rR (z )+
2- irR (z)=- (3/2)rR(z) hence l(r R (z '))<l((312)rR(z))<(312)l(rR(z)) and so by Lemma 1
we have 3 (z ')>4 - i 1(rR(z')) - 1 ,0R(e)>6 - 'l(rR(z)) . - l pR (e). It follows that  R (z, abl,)>
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6- 1 1(r R (z)) --1 (2 - ir R(z))=12 - 1 rR(z)l(r R(z)) - '>12 - 1 , which implies the assertion.

P roof o f  Theorem 2. The first inequality is trivial. Next, let 0  be a conformal
map of D  into R . By Proposition 1 it suffices to estimate the mean oscillation of
fo95 on every disk B  in  D  whose hyperbolic radius is less than 12 -1 . Then the
radius of 0 (B ) with respect to the generalized quasi-hyperbolic metric is less than
12 -1  and so 95(B) cB for some zE R  by above lemma. Hence the assertion follows
from Proposition 2.

Next we give some characterization for BM O  functions.

Theorem 3 . (1 ) BMO(R, m)OEBMO(R, m) f o r  ev ery  R iem ann surface R  with
universal covering D .
(2) L et Q b e a plane dom ain, then f o r  every function f  on Q,

J m)<11 f  I f -3-M- e)(S2,m)<Ail f IIBM0(f2,

where A > 1  i s  a  universal constant, especia lly BMO(Q, m)=-BMO(Q, m).

(3) A harmonic function h  on  an  arbitrary R iemann surface R  belon gs to  BMOH(R, m)
if and on ly i f  there ex ists a  constan t M > 0  su ch  tha t I 'V h (z )l< M R (z ), zeR .
( 4 )  An analytic function f  on  a n  arbitrary R iem ann surface R  having universal covering

D  belongs to B1 0A(R, ni) i f  and on ly i f  th e Riemann su r fa ce  o f th e inverse function o f

f  does not con ta in  arb itra ry la r g e  schlicht d isk , esp ecia lly  it h o ld s th a t BM 0A(R, m )=
BM0A(R, m).

P r o o f .  L e t R  be a Riemann surface having universal covering map 7r : D
R  and f E B M O (R , m ). Let 0  be a  conformal map of D  into R  and Q0 one

of the components of 7c- ' (0 (D ) ) .  Since r -1 00 : D Q0 is conformal, we obtain

IIf  °6 1, 1,BMO(D, m)=I1(f or) o (7r-100) no<C2 (
 1) II f °  LiB m o u h ,  n o <C 2 (  1) f ilsmo(R,m)

b y  Proposition 2. It follows that I fII -7=7'nk (R m)<C 2( 1 )11 f  11Bmo(R,m), hence BMO

(R, m )cB il -k (R , 7 n ). In case Q  a plane domain, the first inequality in  (2 )  is
trivial and the second one is a  consequence of Proposition 2 . Note that the con-
dition i n  ( 3 )  is equivalent to the condition sup {sup(1 —I z A (hoir)(z) K M ,

çi zED
where sup is taken for every conformal map 0 of D  into R , hence the assertion

(3) follows from Proposition 3  and the definition of B M O . Finally, the assertion

(4) follows fom the fact that an analytic function g  on D  belongs to Bloch space

R (D ) ( =B M 0 A (D , in ) )  if and only if the Riemann surface of the inverse function
of g  does not contain arbitrary large schlicht disk (see [2]).

Q.E.D.

Here we show a removability property.

Theorem 4 . 'Let {z„} 1 b e  a  hyperbolically separated sequence on  D , tha t i s ,  there
exists a constant a>0 such that po(z7, zi)>a (i# j). Let D '= D -----U {z„} and f  a function

'o f  BMO(D', 777), then f E B M O (D , m ) a n d  IV Ilkiio(D, (a)11 BMO (D,m) where
C(a)>1 i s  a constant depending only on a.
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Remark 2 . This result was shown in  [31 when f  is harmonic on D.

Remark 3 . Since D  is  a  uniform domain, above theorem implies that D'
is a uniform domain (cf. [5]).

P r o o f  By Proposition 1, it suffices to show that if f  belongs to BMO(D---.{0}.
m), then f eBMO(D, m ) and urB M O(D m Ilsmo.tol,m) with some universal

, 

constant A>0. Note that it is known that if g  belongs to BMO(C -----(0), m) then
geB M O (C , m ) and 11 g 1113'31-0 ( c ,„,) <A'llg II.13 MO(C---, to) , m )  w ith  a  universal constant
A '>0  (see [12] 5p), and the same argument is valid here.

Let {z„} 1 b e  a sequence on Riemann surface R  such that pR(zi , zi)>a>0
(i4 j ) ,  and g5 aconformal m ap o f D into R , then the sequence 0- 1 ( U {z })  is  a
hyperbolically separated sequence on D  having the same constant a, hence we
have

Corollary 1 . Let R b e an arbitrary Riemann surface, tz„) 1 a  generalized quasi-
hyperbolically separated sequence on R such that PR (zi, zi)>a>0 (i# j), and R' =R\ U {zfi }.
Let f  b e  a  fu n c t io n  o f  B11-4- -0(R/ , i n ) ,  t h e n  f e fill10 (R , in) a n d  11 f  , n o <
C(a)11 f w here C(a)>1 i s  a constant depending only on a.

Th e next corollary is a generalization of Proposition 4 (1).

Corollary 2 . Let R  b e a  hyperbolic Riemann surface, then

A<I1gR(• , e)1 , eeR

where A, A '>0  are universal constants.

P r o o f  W e can show the existence of the constant A by considering the mean
oscillation of gR (- , C) on a sufficiently small local disk containing C. Next, let /5
be a conformal map of D  into R\ {C} and f  the analytic function on D such that
Re( f(z ))=  g R (0(z), C), then the Riemann surface of the inverse function of f  does
not contain a schlicht disk whose radius is larger than rc. Therefore, by Theorem
3 (4), we have 11 gR(• C)161

- 6( R .., ( c ) . . ) < A "  for some universal constant A">0, and
the assertion follows from Corollary 1.

Finally we need the following lemma to prove our main theorem below.

Lemma 3 . Let R b e a R iem ann surface havin g un iversa l coverin g D , B, a loca l
disk on R and set R0=k----,B0, then we have
(1) F or any f eBM O(R o ,  m ), th ere  ex is ts  a  fu n c t io n  g  o f  BMO(R, m) such that

Ro = f.
(2) For any g e BMO (R, in), the function f -= glR o b e lon g s  to  BMO(R o , m).

P r o o f  Let B1 b e  a local disk on R such that P oc h . '  and set 2a=pR(aBo, a B i ) .
Let q : D  be a conformal map such that q(B.

 0) = {I z I < ro } (0<r o<1 ). Let f
be in  B- - "M- 0(R 0, m), then f oq - l eB M 0(fro< iz i<11 , m ). Since {ro<1 z1<l} is  a



148 Y asuhiro Gotoh

uniform domain (see [51), there exists a function kOEBMO(D, m) such that k  fro
z  < 1 1 = f  or ' .  Let g  be a function on R  such that g=k oq on B o, g = f  on Ro.

We show that g  belongs to B M O(R , no). Let 95 be a conformal map of D  into R
and B  a disk in  D  whose hyperbolic radius is less than a. First we assume 95(B)
n 1 3 0 +0 . Then, since .0(B )cB 1 an d  qoqi is conformal, w e  h a v e  goo  LIBmou3,m)‹
C2 - s w (p, on) by Proposition 2 .  Next we assume o(B ) nB o = 0 .  Then çb(B)cR o(1)110
and so Igo,  ( (D, m )<  f oby definition of B M O . It follows by Pr-I

position 1 th a t g o s b i l k i t o (D ,  ,n ) <C  (a) max {C2(1)1 Is 11-
m-'0 0 ) , n i) , II f 11.131-v}- 6(R0,,,,)} , hence

g  belongs to B M O(R, m ).
Next we assume g  be a function of B M O (R , m ). Let 7C D R  and r o : D

- R , be universal covering maps. Let j : R , R  an inclusion map and 3 D
- D  its lift. Then  I D D-41-1(Bo) is a  universal covering map, and there
exists a  constant b> 0  such that for every disk B  in  D  whose hyperbolic radius

is less than b , the map 3 B — >3(B ) is conformal. Hence by Proposition 2, °
11 g°7ri Bmo(7(B). no<C ( 12 )1i IIgo7 „Bmo(D, m) - -<S  ( 12 )11 g B M O (R , ni)• i t7ro lIB M O (B ,m )‹ . (7 2( 1)

follows by Proposition 1 that If !1BMO(Ro,
Q.E.D.

Now we can prove the following result.

Theorem  5 .  For a R iem ann surface R  havin g un iversa l coverin g D , the fo llow in g
conditions are equivalent;

B M O(R , m )=B M O(R , m ),
in f rR (z )>O , th a t i s ,  th ere ex ists a constant 114> 0  su ch  tha t f o r  ev ery  CER, th e
z e R

dom ain fzER : pR (z , C )<M }  is simply connected,
(3) T h ere ex ists a  con s ta n t L > 0  s u c h  t h a t  R (z )<L pR (z ), z eR .
Further i f  R  is hyperbolic, th e next condition is also equivalent;
(4) sup 11 g ( , -.)43m0(R,m)<+°°.C 12

P r o o f .  " (2)( 3 ) "  is a  consequence of Lemma 1 and "(2) (1) follows
from Proposition 1. In  case R  is a hyperbolic surface, "(1) (4 )"  is a  conse-
quence o f Corollary 2  and closed graph theorem and "(4) (2)" follows from
Proposition 4 (2).

Next we prove "(1) ---> (2)" in case that R  is not a  hyperbolic surface. Let

B , be a local disk on R  and set R 0 =R----,330 .  Let f EB./1-10(R 0 , on), then by Lemma

3 (1) there exists a function g  of B M O(R , m ) such that gIR 0 =  f  Since B M O(R,

m)--=13M 0(R , m ), it follows by Lemma 3  ( 2 )  that f  belongs to BM O(R o ,  m).
Therefore Ro is a hyperbolic surface satisfying the condition (1) and so Ro satisfies
the condition ( 2 ) .  Here we remark that inf rRo(z) =2 -1  inf{/R0(a) : a  is a  closed

zERe
curve on R o which is not homotopic to a point}, where lR o (a)  denotes the hyper-
bolic length in  R o o f the curve a. And further by Schwarz's lemma, it holds that
l(a)pR o (z )<pR (z )<pR „(z ) on IpR (z , 130)>a} . Hence R  also satisfies the condition (2).

Q.E.D.

f(b)C 2 (1)11 g  B m o ( R o n ) .

(1)
(2)
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For arbitrary Riemann surface R  having universal covering D , the inclusion
B M O(R , 2)cB M O(R , m) holds, where B M O(R , 2) is the B M O space on R  with
respect to the hyperbolic measure d2 (c f .  [ 6 ] ,  [ 9 ] ,  [ 1 2 ] ) .  I f  R  is compact, we
have B M O(R , 2)=B M O(R , m ) ( s e e  [9]), hence

Corollary  3 . For arbitrary R iemann surface R  w ith  un iversa l coverin g D . it ho ld s
that

BMO(R, 2)c BMO(R, m)c 11M0(R,  in ),

an d  if R  i s  com pact, w e have

B M O(R , 2)=B M O(R , in)=B - -m— O(R, m).

§3 . Some extension property fo r B M O  functions on Riemann surfaces.

Let Q  be a  quasi-disk, that is, Q is a  domain in  C  surrounded by a simple
closed curve a and there exists a quasi-conformal hemeomorphism f  o f  '6=C  U {09}

which maps Q  onto and keeps a pointwise fixed. For a function gEBM 0(f2,
m) we define the function k  on C  by k (z )=g(z ) on Q and k(z)-= g( f(z)) on
Since the 2-dim. measure of a  vanishes, k is well defined as a function of LL(C).

Then k  belongs to B M O(C, m ) a n d  k l L yo ( c ,„, )<C(K)II P II MO(Qmp where C(K).,B , 
> 1  is a constant depending only on the maximal delation K  of f  (see [8]). In
this section we prove the corresponding result for compact Riemann surfaces.
First we prove the following simple lemma.

Lem ma 4 . Let Q be a plane domain, .S2,.=S2 n lim  z>01 and Q_=-Q n {lin z<0}.
Let f  b e a fu n ction  on  Q  su ch  th a t (1)11 f I f  IIBMOU L. m )< M ' (2) f o r  every
poin t zEf2 su ch  that .-z'Ef2, it holds that f ( -Z)= f ( z ) .  Then f  belongs to BMO(Q, m) and
I f  IIB M OM , rn)< A M , where A >1  i s  a  universal constant.

P r o o f .  First we remark that in  the definition o f B M O, we can replace the
word "disk B "  by "square Q  whose sides are parallel to the coordinate axes"
(see the proofs o f Hilfssatz 2 in  [12] and Lemma 2 . 3  in  [ 8 ] ) .  Further by Pro-
position 1, it suffices to estimate the mean oscillation on the square Q  in Q such
that side(Q)<d(Q, aQ ) and Q  n  R + 0 , where side(Q) denotes the length of the
side o f Q . L et (xo,y 0)  be the center o f Q , and Q ' the square with center (x, side

(Q ) /2 )  and side( U = s id e ( Q ) .  Then Q ic .Q .,  hence m(Q) - 'SQ lf  —  f (Q , m)Idm

< 2 7 n(Q) - 1 SQ 1 f — f (Q ', m )Idm = sQ „+ +  S „._<47n(Q!)-1S 42,1 f —  f (Q ,  , m)idm and

so the assertion follows.

Theorem  6. L et R  b e  a  com pa ct R iem an n  su r fa ce  w ith  u n iv er sa l co v er in g  D,

aj(1 <j<n )  disjoin t sim ple closed  cu rves on R  such that consists o f  two componentsr=i
R 1 , R 2  and f  a quasi-conformal homeomorphism o f  R  w ith  maximal dilatation K  which
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maps R1 on to  R2 and keeps Li a i pointwise f ix ed . Set b=max{l R acrip :1<j<n} , where
R ( [ cri]) denotes the hyperbolic length of the geodesic [a i ]  in the homotopy class of a '.  Fo r

a function g on R1 , we define the function k on R  b y  k(z)= g(z) on R1 , k(z)-= g( f (z))
on R 2 , then
(1) I f  g  b e lon g s  to  B MO (R i ,  in ) , th en  keB M O (R , m ) and liki1B-7----" , „ , ) <C (K )

gls-itib(Rbm), where C(K )>1 is  a constant depending only on K.
(2) I f  g  belon gs to  BMO(R 1 , m ), then keBMO(R, m ) and IlklIB m o ( R ,„,) <C(K, b)

gi Bmo(Ri,m), where C(K, b)>0 is  a constant depending only on K  and b.

P r o o f .  Note that there exists a compact bordered Riemann surface Rf and
a conformal map si o f  Rf onto R 1. T h en  si  has a  continuous extention to  Rf.
Let R ' be the double of RI', j  its anti-conformal involution and M = j(R f ).  We
define a map s on R ' by s(z)-=s i (z ) on Rf, s(z )= f(s i ( j ( z ) )  on R ,  then s i s  a
quasi-conformal map having the maximal dilatation K .  By Wolpert's theorem
(cf. [1] 52p), we have l R , (s- 1 (ai ))-=-lR qs - 1 (a i)])<K l R ( [a i ])  <Kb . It follows by
Proposition 2, we can assume from the beginning that R i is  a compact bordered
surface, R its double and f  its anti-conformal involution.

Let g  be a function o f g i b  (R i , m). Let H  be the upper half plane, r i : H
R1 the universal covering map and E the limit set of its covering transform-

ation group. We can assume 00 eE. Then the map in induce the covering map

: --> R naturally. Let 0 be a conformal map of D  into R . Let D be one
of the components o f 7rTi(0(D)), then ni  : ç (D ) is a  conformal map. Set

B) , 611
= Q  n  H ,  D_=Q n L , where L--=C22:-/m o, :ten  b y  Proposition 2, II kori

1I(k00) 0 (0-1 0 7r1)11ik(f2. m)<C2( 1)11 k
0

1 (7 , , (Q . ) ) ,  n o < C 2  ( 1)11 g 11 B-
( R i .

 m ) .  Since the
same estimate holds on D_, it follows by Lemma 4 that II lor i 1 B MOM m ) -< A C  2 ( l )

gilif-
ak ( R i , . ) . Hence by Proposition 2, we have II k0011B

-z o ( D ,n,) <C 2(1)11 k07411B m o ( Q ,,,)

<AC2(1) 2 11gIlh-m- b(R,,,,,,) and so Ilk Ilblie-
N R,„„) <AC2(1) 1 f i l

0 m)•

Next we prove the assertion (2). Let g  be a function o f BMO(R i , m), iv1 : D
- - - ›R 1 and it : D -- - ›1 ?  the universal covering maps, j  : R1 — ÷ R  the inclusion
m ap and : D--->/) its lift. Note that by the collar lemma (cf. [1] 95p), there
exists a constant a>0, which depends only on B, such that for each a5 the domain
U5= {zER : pR (z, a i) < a }  becomes a  collar neighborhood of a5. L e t  7- 1 (a i) =

la5,111=1,2,... be the decomposition into the component. Let B be a disk in D whose
hyperbolic radius is less than a/2. First we assume that B n aj ,t çb  for some
We can assume a 5 ,1 is the interval ( - 1 .  1 ) .  S e t  = {zED : pD(z , ii) ,t)<a}
Q n H , Q-=S2nL, then BcI2. We can assume 7r(S2+ ) cR 1. Set Q0=3 - 1 (Di.). Since

is a conformal map of D  into D , the map j : f20    Q , is conformal, hence by
Proposition 2 we have II kor 11Bî r o ( Q .,,,,o <C 2 (1)11kor0311B m o ( u o . . ) =C 2 (1)11 gor i  I1B m o u j0 ,

<C2( 1 )11g Ilsmo(R,,m)• Since the same estimate holds for ,(2_, it follows by Lemma
4 that II k wrilsmo(B,m)<Ilk'ilBmo(Q..)<AC 2(1)11 gl,IBMO(RI, m)• Next we assume that
B nai ,t --=0 for every -65,1, then we can assume r (B )cR i .  W e set Q1 =1 - 1 -(B ), then
j :  B  is a conformal map. Therefore by Proposition 2, we have II kor f i r30(B,
<C 2 ( 1)11 kart' 0 IIBmom my = C2( 1 )11 g 'i r l  IIHB M 0(fli,m )<

C; 2(
1 )11 glIBMO(R,,m)• SummarizingI , 
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above, we obtain II kog B M O (B n i)<
A C

 2 1
)1

1
gl1BM0(121m)( for every disk B in D  whose. , , 

hyperbolic radius is less than a/2. Hence the assertion (2 ) follows by Proposition

1. Q.E.D.

The following example shows that in the assertion (2 ) of above theorem, we
can not replace the constant C(K , b) by some constant "C(K )".

E xam p le . Let w-=r0 (z ) be a  Möbius transformation such that (w —2)/(w +2)
= t 0 ( z -2 ) / ( z + 2 ) , where t o> 0  is asufficiently small constant, and w =rt(z ) a Möbius
transformation such that (w -1)/(w +  I) =  t(z -1 )/(z+  1 ), 0 < t< 1 0 - 1 .  Set G= <10, It>,
then the Riemann surface R 1 ----HIG becomes a compact bordered surface having
three boundary components. Let B o ,  B  and B t, 13' be the disks surrounded by
the isometric circles for To and  rt  respectively. The domain N 0 =11-----(B0 u k o uB t
U ki )  is a fundamental domain for R1 . We define a function g  on N o b y  g(z )=
log I z - 1  I on N o n {Re z > 0 ) ,  g(z) =log I .z+1 I on N o n {R e  z < 0 } . Then g belongs

to BMO(N o ,  m )  and its BM O(N o ,  m ) norm is bounded above fo r  0 < t< 1 0 - '.
Since g  takes the same value on every equivalent point on AIT0 , g define a function
on R . Set I=  {7(N 0 ) : 7 G}. L e t  N i ,  N i e l  have a common boundary arc in H,
y the reflection with respect to this a r c .  Then fo r  every point ze  N i  such that
v(z)E N ,  it holds that g(z)-= g(r(z)). Further we remark that there exists a  con-
stant a > 0  such that for every t(0 < t< 1 0 - 1 ) ,  each disk B  in  H  whose hyperbolic
radius is less than a intersects with at most two domains of I. Hence Proposition
1, 2 and Lemma 4  show that the BMO(R i , m ) norm of g (0 < t< 1 0 - ' )  is bounded
above. Let 7r1 : R I be the universal covering map, R  the double of R I and
k  the function in Theorem 5 . The map x i induces a covering map 7z-i  :
R , where E  denotes the lim it set o f G . Then N o ,  {ze C : . E.Aro }  and the free
boundaries o f N , makes a fundamental domain for this cvoering map, which we
denote by N .  For every 6 > 0  there exists a  constant 11> 0  such that .00 = {s<

z —  1  < 2 - 1 } c g o fo r  every t(0 <t<t 1 ) .  Let Qi = {log a< R e  z < lo g  2 - 1 } , and define
the map p S20 by p(z) =ez+ I, then p is a  universal covering map. Hence
we can regard the domain f21 as a  subdom ain of the universal covering D  o f R,
and so it suffices to show that Ilk b II”Bmocai . m) + 0 0  as t 0. Let Q-= {z=x
+iy  : log s< x< log  2 - ',  0 < y < lo g  2 - 1 E- '} c(2 1 . Since kop=-Rez, we have m(Q) - '

$ ikop—kop(Q, m)Idm=4 - 1  lo g  2 - '6- 1 ' +00 as  E 0  an d  so the assertion

follows.

D E P A R T M E N T  O F  M A T H E M A T IC S
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Added in  proof.
T h e  equivalence of the condition ( 1 ) ,  ( 3 ) ,  ( 4 ) ,  ( 5 ) ,  ( 6 ) ,  in  Theorem  1  has been proved

by B. G . Osgood [1 3 ]. O ur proof is partially different from his and gives other new equivalent

conditions.


