J. Math. Kyoto Univ. (JMKYAZ)
98-1 (1988) 119-132

On the positivity of the fundamental
solutions for parabolic systems

By

Ken’ichi OTtsuka

§1. Introduction and results.

It is well known that the bounded solution u(¢, x) of the heat equation
(2—a)ult, =0, 0<IST(<), xR,

u(0, x)=u,(x)

is nonnegative if so is the initial data #,(x) in C&(R"™). This follows from the

fact that u(t, x) is given by

u(t, ) =[E(t, v 3)u(5)d,

where E(t, x)=(4nt) "%exp(—|x|?/4t) is the fundamental solution of the heat
equation.

It is shown in Kimura-Otsuka [3] that this property never holds for the
single equation of higher order in x with constant coefficients.

In this paper we will deal with parabolic systems of the first order in ¢, and
give a necessary and sufficient condition for the positivity in this sense (see
Theorem 1.2 and remarks below).

Let us consider the Cauchy problem

=9 _ _0\* _ <t T
(1.1) {Lu_at ult, x)= 5 A, %)) u(t, =0, R

(1.2)

u(to, x)=uy(x),

where u(t, x)=t(u(t, x), us(t, x),..., un(t, x)) and wuy(x) =1(ue,1(x),..., uo,n(x)) are
N-dimensional column vectors and

(1.3) Aa(t, x)=(aaj,k(l, x))1=j, k=N
are N X N matrices. We assume that:

(1)  @aj(t, x) are real-valued, bounded functions which are uniformly continuous in
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(t, x) and uniformly Holder continuous in x with exponent o.
(i) L is parabolic, that is, there exists a positive constant & such that the real part
of each solution A;(t, x; i€) of

(1.4) det [Al —Azm(t, x; 16)]=0
is smaller than —o8|&1*™ for any (1, x, §)€[0, T]1XR™XR", where
(1.5) Ap(t, x; i£)=|a|2=pAa(t’ x) (ig)e.
Under these conditions, Iidel’'man [2] constructed the fundamental solution
E(t, s, x, )=(ej.2(t, 5, %, »)1<j, k<N of the Cauchy problem:
Ly E(t, s, x, 9)=0, (0Z)s<t< T(<Lo), x, yeR”
{E(5+0, s, x, y)=0(x—yp)1.

where I is the N XN unit matrix. Then he showed the following theorem on
the wellposedness of the Cauchy problem.

Theorem 1.1 (see Eidel’'man [2] Chap. 3 Theorem 5.3). For any uy(x) in
C®(RY) and 0K, T there exists a unique solution u(i, x) of (1.1)-(1.2) in
C@man(ty, TIXR"Y), and this solution is given by

(1.6) u(t, ) =[E(t, to, % y)u(2)d.

Here C@mo(R") is the space of all functions defined on R" which have
bounded and uniformly Hoélder continuous derivatives with exponent ¢ up to
order 2m. And C@»9([t,, T]XxR™ is the space of all functions defined on
[t, T]1xR"™ whose x-derivatives up to order 2m are bounded, uniformly contin-
uous in (¢, x) and uniformly Hoélder continuous in x with exponent g.

Now let us define the positivity of the operator L.

Definition 1.1. We say that the operator L has the positivity if it has the following
property.
If uj(x)=0 for any 1< <N, then u;(t, x) =0 for any
(1.7) IS SN, (,<t< T and xeR", where u(i, x) is the unique
solution of (1.1)—(1.2) and 0=<t,<T.
This is equivalent to the positivity of each element of the fundamental solution:

Definition 1.2. We say that the fundamental solution E(t, s, x,y) has the positivity
i
(1.8) eik(ty s, x, ) =0 for 0=s<t<T, x, yeR", 1 < j, k< N.

Then our result is the following.

Theorem 1.2. The fundamental solution has the positivity if and only if
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(i) m=1,
(ii) Aq(t, %) is diagonal if |alzz1,
and (i) aoe(t, x) =0 if j#k.

Remarks. (i) The maximum principle holds for parabolic systems satisfy-
ing these conditions (see Protter-Weinberger [6]).
(ii) In Miyajima-Okazawa [5] and Miyajima [4], similar results are obtained
for single equations with coefficients independent of .
(iii) For single equations of the second order, we have the following estimate
from below:

Theorem 1.3 (scc Aronson [1] for example). There exist some positive constants
& and 8y such that

— 2
e(t, s, x, p) =80(t —s)""? exp (—eol—xl—_ysl—>
Jor ay 0 s<t < T(<0), &, yeR™

(iv) It is easily seen that in the proofs below we can replace (1.8) by the
weaker condition as follows:

For any (s, ) in |0, T)XR", there exisis a
(1.9) positive constant ry such that
e k(ly s, 2, 9) 20 if s<t<ls+r, and |x— y|<r,.

Thus, if (1.9) holds, then conditions (i)—-(iii) of Theorem 1.2 hold. So (1.8) also
holds by this theorem. That is, condition (1.8) is equivalent to (1.9).

We will prove Theorem 1.2 in several steps as following.

Proposition 1.1. If (1.8) holds, then m=1 and the principal part A,(t, x; i€) is
diagonal.

Proposition 1.2. Assume that m=1 and A,(t, x; i€) is diagonal. If (1.8) holds,
then the first order term A,(t, x; i€) is also diagonal.

Proposition 1.3. Assume that m=1 and Ap(t, x; (&) (p=1, 2) are diagonal. If
(1.8) holds, then aqg,j (¢, x) =0 unless j=k.

Proposition 1.4. If conditions (1), (ii) and (iii) of Theorem 1.2 are fulfilled, then
(1.8) holds.

We will prove Proposition 1.1 in §2, Proposition 1.2 in §3, and Propositions
1.3 and 1.4 in §4.

Notations. In the following, we will often denote various constants by the
same letter such as (, while the constant ¢ will remain unchanged throughout
this paper.

The integration with no indication of the domain will be extended over the
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whole space R”, and (2z)-"d¢ will be abbreviated as 4¢.

If a capital letter such as A4 or Au(x) denotes a matrix, then its matrix
element will be often denoted by the corresponding small letter with suffix like
aj,k OF dajk(x). And |A| will denote n}ztx |aj.kl.

Acknowledgments. The author is deeply indebted to Professors Sigeru

Mizohata and Norio Shimakura for valuable discussions and encouragement.

§2. Proof of Proposition 1.1.
Let E(t,s, x,») be the fundamental solution of Eidel’man for the system (1.1):
E(t, s, x, y)=Ey(t, s, x, ) +Ei(t, 5, x, ¥).
Here

Et, s, x, »)=G(t, s, x—3, ¥),
G(t, 5, %, 9)=[exp(ix)Q(t 5, & e, de=(2n)"dt
and Q(t, s, & ») is the solution of the ordinary differential equation
Q1 5. & D) =il 75 QUL 5, §9), LT,

Qs s, & y)=1.

The second term E,(¢, s, x, ») is obtained as

(2.1)

Eit, 5, x, y):Sidr Eol, 7, x, 2)0(c, s, 2, 9)dz,
where @(t, s, x, ) is the solution of the integral equation
0(t, 5, %, )~ de[H(t, 7, %, 0, 5, 2, 9)dz=H(1 5, x, )
with
H(t, s, x, y)=—LE(t, 5, %, »)

={Am<l, x; ‘%)'_A:%m(t:yS %)}Eo(h S, X%, ¥)

2m—1

.9
+ EoAp<t, X5 )Eo(t, S, X, ).

This integral equation is solved by successive approximation (cf. @(t, s, x, y) in
the next section). According to Eidel’man [2], we have the following estimates.

Lemma 2.1 (see [2] Chap. 1 §3).

(1) 1Q(t, s, & NS C exp(—a(t=3) I€FT),
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K%)an(t, 5, %, ) | S C(t—s)~+labiem exp (—cp(t—s, x—3))

Sor || < 2m, where C, ¢, ¢, are positive constants and p(z, z)=(|z[*"[z)"E =D,
(i1) [@(t, s, x, ) | S C(t—s) " @+2m-mexp (—cp(t—s, x— 1)),
Es(t, 5, %, )| S C(t—s)~ =/ exp (—cp(t—s, x—)).
Now let us fix any point ({y, x,) in [0, T)XR" and put
F(t, x)=1"2"E(ly+1, lo, Xo+1"72"x, %,).
Then we have the following proposition.

Proposition 2.1. As ( tends to 0O, F(t, x) converges uniformly to the function
Fo(x) =o€ exp (dun(ta, 205 i€)) e

Proof.  Without loss of generality, we may assume that /,=0 and x,=0. Let
us put

Fj(t, x)=t"E;(1, 0, 1Y%, 0),  j=0,l.
First, from Lemma 2.1 (ii), we have
[Fy(t, x)| S Crettmexp (—cp(l, x)) < CGrer,

So Fy(t, x) converges uniformly to 0 as { — +0.
As for Fy(l, x), we can writc as

Fo(l, ,\‘)=Se"fQ_(t, 0, (=g 0) de.
So we have
(2.2) [Fo(t, x)—Fo(x)léng(I, 0, t=12m¢, 0) —exp(Azn(0, 0; i€)) | 46.

Then the proposition follows from the next Lemma 2.2. In fact, from Lemma
2.1 (i) and (2.3), the integrand in the right-hand side of (2.2) is smaller than

C exp(—¢|€]*™). So we can apply Lebesgue’s dominated convergence theorem to
(2.2).

Lemma 2.2.

(2.3) lim Q (1, 0, t=1/2¢, 0)=exp (Agm(0, 03 i&)).

t>+0
Proof. Q(t, £)=0Q(t, 0, &, 0) is the solution of the integral equation
t .
(2.4) Q(t, =1+ Aun(z, 05 i£)Q(s, &) de.

So Q (¢, &) is constructed in the form

(2.5) Q. O=2Qu(t, §),



124 Ken’icht Otsuka
Q.O(t: E) =1
and

Qult, &)= Aun(s, 0; #)Quni(s, €) de

=lS:Azm(lT, O; iE)Q,l-l(tr, 6) df, 121'

By induction, we can show that Q,(t, £) is homogeneous in & of degree 2m/, and
has the estimate

1Qu(t, 1= (GotEF™)LL,

where C, is independent of /, { and & So the right-hand side of (2.5) converges
uniformly in ¢ and satisfies the equations (2.4) and (2.1). Since

Qut, 1-11278) = Aun(tr, 05 i8) Quus(tr, (1r)=1008) -,

we can easily show by induction that
1Qu(t, 712mg) | < (Gol§ 1)1
and
111)1110 Q(t, t=12E)=(Am(0, 0; 18))¢/L).
Thus :%Q;(l, t~V2mg) converges absolutely and uniformly in ¢, and again by
Lebcsgl—xe’s theorem, (2.3) holds.
Proposition 2.2.
I if a=0,
0 if 0<|al<2m.

Proof. In order to simplify the notation, let us assume that t,=0 and x,=0.

(2.6) Sx“Fo(x) dx={

It follows from Proposition 2.1 that

.0 \% .
(2.7) Sx”Fo(x)dx=(za—$) [exp (42™(0, 0; i£))] 1.
By definition, we can write as
€xp (AZM(O: 0’ lf))=I+A2m(0, 0; ZE)A/(E),

where A’(€) is analytic in &. So it is easily shown that the right-hand side of (2.7)
is equal to I if a=0, and equal to O if 0<|a|<2m.

Proof of Proposition 1.1. We may assume {,=0 and x,=0. Let us assum that
m>=>2. From Proposition 2.2, we have

(2.7) j Fogi(x)dx=1
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and

(1l s x)de=0

for the diagonal elements fy,;,;(x), 1 <j<N. This implies that f, ; ;(x) is some-
where negative. So if ¢ is sufficiently small, ¢;;(¢, 0, x, 0) is somewhere negative,
too. Thus, the condition (1.8) never holds unless m=1.

Now let j#k. Then we have from (2.6) that

S Fojx(x)dx=0.

On the other hand, f,; (%) is nonnegative if (1.8) holds. So f (%) should be
identically zero. Thus, from the condition (1.8) it follows that Fy(x) is diagonal,
and so is exp (Aym(0, 0; t€)) for any é€R”  Then, it is easy to show that

Ao (0, 0; 7€) is also diagonal. In fact, from the formula %exp (tA)=A exp (t4),
we can write Ay, (0, 0; &) as
Ayn(0, 0; i&)=exp (—tdzn(0, 0; i£)) j—t exp (1A4z:m(0, 0; 78)).

But the right-hand side is diagonal because of the homogeneity of Agn(t, x: i€)
with respect to §. Thus A,,(0, 0; i¢) itself is diagonal and the proposition is
proved.

§3. Proof of Proposition 1.2.

In this section we will assume that m=1 and the principal part 4,(¢, x; i§)
is diagonal. Let us rewrite the operator L into the following form:

1«=‘§7‘A<l’ x; aix>—B(t, x5 %}

where
A(t, x; i&)=diag [a(t, x, 1€),..., an(i, x; 18)],
2
aj(t, x; i5)=ﬁ§)ap,,~,j(t, x; 16),
B(t, x; i€)=(bjk(t, x; 1))1<j, k=N,
(3.1) bjk(t, x5 16)=ay;k(t, x; 16) +aoj(t, x)  if j#k
and

bij(t, x5 i8)=0, 1<j<N

(see (1.5) for definition of ap ;). We will construct a fundamental solution
E(t, s, x, ) in a slightly different form from that of Eidel’'man [2], and then we
will show that E(t, s, x, ») coincides with E(t, s, x, ):
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E(t, $, X, y)=E'0(t, sox, ) FE(L s, x, 9),
where
E(t, s, x, y)=diag[ei(t, s, x, ¥)..... en(l, 5, %, 9)]

is the fundamental solution for the operator —aat——A<t, x; —%) That is,

<-(%—a,~<t, x; —%—))e;(t, s, x, ¥)=0, 0<s<t< T, x, yeR™
and

lim ¢;(t, s, %, y)=0(x—y)

t>s+0

for each j=1,..., N. ¢;(t,s,x,7) is constructed in LEideI’'man [2] (see Introductory
section of Chap. 1):

(32) e}'(t) S5 X, y) :g.’i(t: S, X0, )’) +¢j(t: 5, X, .y)’
where

. t .
(3.3) gi(t, s, x, ) =Sexp [sz-i—Ssaz,j,,-(t, y; 1€) dr]dé,

and ¢;(t, 5, x, ») is obtained by an analogous way to E(t, s, x, ») discussed in
the previous section. Here we have the following estimates.

Lemma 3.1. (i) ‘(-%)agj(t, 5, %, 9) |§C(t—s)‘<"““"”exp(—C,IL_D
if lal<2.
(i) K—aa;>a¢j(t: 55 % 9) ‘g C(t—s)-@riai=al2exp (—clx%sm
if lal< 1.

In order that F(t, 5, x, ) is a fundamental solution, we will construct

E,(t, s, x, ») in the form:
~ t ~ ~
Byt 5, % 0)={'ac[Eo(t, o 5, )8(z, 5, 2,9) dz,
where @(t, s, x, ) is the solution of the integral equation
- ¢ ~ ~ ~
oL, s, x, 9) —S dts'H(l, 7, x, 2)0(c, 5, 2, y)dz=H(, s, %, »)
s .
with
9

At s, x, y)=—LEy(, s. x, )*):B(t, x; ax)E‘o(z, 5, %, ).

So Gs(t, s, %, 3) is obtained by iteration of H:
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60: S5 X, .y) :,gél(l’ 5 % —y)’
where
61(t; 5, X, )}):ﬁ(t, 55 %, y)

and
-~ t ~ -
Di(t, s, x, ) =Ssdz-SH(l, T, %, 2)0i-1(7, 5, 2, ) dz

for [=2. Then we have the following lemma.

Lemma 3.2. (1) There exist some constants C and C, such that

(3.4 |a)l(t, 5, X, y)lgCI”(%)_IC(J(:——s)(“'"”/z exp(——cl—fl_—__);l—z-)
(ii) E(tJ s’ x’ y)EE(t’ ‘Y) x) y}'
Proof. (i) It is not difficult to show
(3.5) ((t=2) (=) fexp (— A =20 12=0E) 4,
S e

if s<z<t. So (3.4) follows from the formula

S:(t_,)—'/2(1._x)a—z)/sz:‘/;p(_é_)p(%) _l(t_s)(:—n/z'

(i) In the same way as Lidel’'man, we can show that this E(f, s, x, y) is a
fundamental solution which gives the unique bounded solution for the Cauchy
problem (1.1)—(1.2) (see (1.6)). Thus E(t, s, x, ») has to coincide with E(1, s,
x, ) discussed in previous sections. We will leave the details to the reader.

Now let us fix (to, %) in [0, T)XR" and put
F(t, x)=19-D2E (1,41, 1y, x+1"%, x,).
Proposition 3.1. If j#k, the (j, k)-element f;i(t, x) of F(1, x) converges fo

the function

(3.6) Fosle)= et {"exp (alr, @) dr | avin(to, w0 i8)de
as t —> +0, where
(3.7) a(r, &) =ray,;,i(to, xo; 16)+ (1 —1)azri(to, x0; 18).
Proof. We may assume that ¢,=0 and x,=0. Let us put
F(t, x)=F\(t, x)+Fs(t, x),

where
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Fu, x):tw—wﬂfzdrfﬁo(t, e, 1%, 2)Bi(z, 0, 2, 0)dz.

Then we have

B, x)|ga<~—1>/2S‘d1 |Bo(t, =, 05, 2) D1, 0, 2, 0)]dz
0 =

< 010! (122 de fexp (—el ET2E 12l Yo,
0 -

=C"1"2 exp (—clx[?).
So Fg(t, x) converges to O as ¢ tends to 0.
As for F(t, x)=(f1;(t, *))isi k<N, we have

(3.8) fl,j,k(t, x)=t("—1)/2(:dTSej<l, 7, t'2%x, Z)bj,k(‘l', z; %)ek(f, 0, z, 0)dz,

where b;; are defined by (3.1). Then the proposition is proved by applying to
(3.8) the Lemma 3.3 below, which we will prove in the latter half of this section.

Lemma 3.3. Let
t
g, x)=t<"‘1)/2sodz-Sej(t, o V2%, 2)b(r, Z)‘aaz—, e(r, 0, 2, 0)dz
and
t
na x)=1("‘2)/2sodr‘s‘ej(t‘ e, V%, 2)b(e. 2)ex(s, 0, 2z, 0)dz,

where b(r, z) is a bounded and uniformly continuous function on [0, T]XR™ and
1<v<n. Then we have

lim gu(t. %) =b(0, 0)§:drSexp (ixé+a(r, £))it,de
and
1
(3.9) lim ¢,(t, x)=(0, O)Sodrgexp (ix+a(r, €))4E,

where a(r, &) is defined by (3.7).

Proof of Proposition 1.2. Let us assume that (1.8) holds. Since Ey(t, s, x, »)
is diagonal, we have fy,;;(x) =0 if j#k. On the other hand, (3.6) implies that
Ffo.jk(x) is an odd function. So fojk(x) must be identically equal to zero. That
is, ay;jk(te, %o; 16)==0. Thus the proposition is proved.

Proof of Lemma 3.3. Introducing new variables r=t¢"'z, {=¢"Y2z and w=112,
we have

(3.10) wlt, x)= S:drS[w"ej(/, ir, wx, o0)]b(ir, )

X[a)"”(—(%%)(h, 0, Wi, 0)] 4C.
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From Lemma 3.1, we have the estimates

lwe;(t, tr, wx, of)| < Ca™(t—1r)~"* Cxp<_c|w’::;1;uz>

M )]
=C(1—r)™exp (——c_——-l"l —Cr‘ )

and

2
(), 0, o8, 0 S Grrneo cxp el
So the integrand of (3.10) is bounded by an integrable function
—p) -2y =D/ _dx=CE G
C(l—r) M2y 2exp( = >
Similarly, we have

alt, x)=S:drS[w"ej(t, tr, wx, wl)]b(tr, of)[wex(tr, 0, wl, 0)]dC.

and this integrand is bounded by

C((1=r)r)-"r exp(_fﬁ—ﬂi_cl_cli)

1—r r

Using Lebesgue’s Theorem and the following Lemma 3.4, we have
1 . .
:lll}loqo(t’ x)=SodrSUexp {i(x—8)&+ (1 —r)as,;;(0, 0; zE)}déil

% b(0, O)Uexp{ice+m2,k,k(o, 0: ie)}ie,de]dc,

and

lim g:(/, x)=S:drS|:Sexp {i(x—0)e+(1=1)az, 350, 0; i€)} ¢

ot
x5(0, 0)| fexp (ite+raria(0, 03 ie)}ds]dc.
Then the lemma follows from the formula
([fermeuterae][ femeoierat | dr=futeyo(~¢)ae.
Lemma 3.4.
(3.11)  limares(tr, s, wx, @ 9)={exp {i(x— )&+ (r—s5)as50, 0 i€)} ¢
and

(3.12) lim o"*1(~2

1> +0 Xy

e,-)(tr, Is, wx, wy):Scxp {i(x— )¢

+(r—‘y)(12'j»j(0’ O; Zé)} 161'45

129
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provided 0<s<r< 1.
Proof. From (3.2), we have
olej(tr, ts, 0¥, y)=a"g;lr, is, o(x— ), wy)
+w"§::dr g;i(tr, T, wx—2z, 2)¢;(z, ts, 2, wy)dz
=I+1,.

First, using Lemma 3.1 and (3.5), we have

tr — 2 _ 2
LIS Car | (ir—2)mi2(e—ts)ros-orde fexp (—el =2l l2med By,

— ol — ¢\ o-n)/2 _ lx—pP
C'1ol(r —s)@-n cxp< L )—-—»O

as t — +0.

As for I, it follows from (3.3) that

I,=o"\exp {i(u(x—y)5+5;:a2,j,j(r, wy; i€)dr} 4¢

=\exp{i(x— )9+ aa;;(tp, wy; in)dp}dy,
s

where we put y=wé and p=t"'r. Then, by Lebesgue’s Theorem, we have

lim I;= |exp {i(x— )9+ (r—5)as;;(0, 0; iy)}dy.

t>+0
Thus (3.11) is proved.

We can show (3.12) in the same way. In fact, we have

w"”( aivgJ-)(tn ts, w(x=3), wy)=w“*‘Sexr> liw(x= )¢
+ Y ansite, wy; )deticiae
={exp {ite= )0+ [(aasto, wps in)dp} indy
— fexp (i(x= )7+ (r=9)a13,5(0, 03 in)} inudy

as t — +0.

§4. Proof of Propositions 1.3 and 1.4.

In this section we will assume that m=1 and Ap(¢, x: i§) (p=1, 2) are
diagonal. And as in the preceding section, let us write
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L=—aaT—A<t, % -%)-B(z, %),

where A(t, x; i€) is diagonal, B(¢, x)=(b; (¢, ¥))1<j,2<n is a matrix of functions
acting as an operator of multiplication and

bj,5(t,.x)==0, 1< /<N
The proof of Proposition 1.3 is parallel to that of Proposition 1.2. Let us
construct a fundamental solution
(4.1) E(t, s, x, y)=Eo(t, 5, x, y)+FEa(t, s, x, 9),
where E,(t, s, x, y) was defined in §3, and

Bt 5, % 9)={ de(Eo(t, v, % 2)0(z, s, 2, 3) dz,

Qs(t, s, X, y)=12=103¢(t, S, X, ),

Dy(t, s, x, y)=B(t, x)Eo(1, 5. x, y)

and
- t - -
DL, s, x, 9) =jlsd1: O:(t, 7, x, 2)P1-1(z, 5, 2, ) dz

for [ =>2.
Then we can easily prove the following lemma similar to the Lemma 3.2.

Lemma 4.1. (i) There exist some constants C and C, such that

|Bu(t, 5, % 2)|S CT () Cl(t—s)-1-0 exp (2720,

(if) E(t, s, x, 9)=E(L, s, x, 3).

Now let us fix (g, %) in [0, T)XR" and put

F(t, x)=t=P2E (to+1, to, Xo+1Y2x, xo).

Then we have the following proposition.

Proposition 4.1. If j#k, the (j, k)-element f; (¢, x) of F(t, x) converges to the
Sunction
(4.2) Foin(x)=b.ulta, x0) [ drfexp [ixe+atr, &)ae,
as t —> 40, where a(r,£) is defined by (3.7).

Proof. We may assume that t,=0 and x,=0. Let us put

F(t, x)=F\(t, x)+Ft, x),

where
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Fu(t, x):tw-z)/zj:df Eot, =, 1%, 2)y(z, 0, z, 0)dz.
Then we have

- 1 ~ o _
|Falt, )| S Cenor def | Ealt, v, v, 2)|DBu(e, 0, 2, 0)dz

<c’ t"f""’/zj‘t((t —17)7) '"’%a’z-j‘exp (—c——l ix— 2 —cmz—>dz
0

t—t T
=C"texp (—c|x|?).

So F,(t, x) converges to O as { —> +0.
As for Fy(t, x), we have

_ t
Franlt, x)=t‘”‘2)"zs'odrSej(t, T, 1Y%, 2)bii(r, 2)es(r, 0, 2z, 0)dz.

Then this proposition follows from (3.9) of Lemma 3.3.

Proof of Proposition 1.3. Let us assume that (1.8) holds. Then we have
fo.ik(x)=0 if j#£k. On the other hand, Sexp (tx€+a(r, £))d¢ is positive at x=0

for any 0=r=<1. So it follows from (4.2) that b;s(to, %) =0. Since (¢, %) is
an arbitrary point in [0, T)XR", the proposition is proved.

Proof of Proposition 1.4. Under conditions (i), (ii) of the Theorem 1.2, the
fundamental solution FE(t, s, x, ) is constructed in the form (4.1). Then, under
the condition (iii), the elements Qsl,j,k(t, s, x, ) of each (I.);(t, s, X, y) are non-
negative, because e;(t, s, x, ) (j=1,..., N) are nonnegative (see Theorem 1.3).
So e;k(, 5, x, ») are also nonnegative. Thus the proof is completed.
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