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On the positivity of the fundamental
solutions for parabolic systems

By

Ken'ichi OTSUKA

§ 1 . Introduction and resu lts .

It is well known that the bounded solution u (t, x ) of the heat equation

{

4 - -  A )u (t, x)=-0, O < tS  T (< 0 0 ), xeR n,

u(0, x).--u o (x)

is nonnegative i f  so is the initial data u 0 (x ) in  C 7 (R n ) . This follows from the
fact that u (t, x ) is given by

u(1, x)=SE(t, x— y)u o (y)dy,

where E (t, x)=(47rt) - "/ 2exp(—Ix1 2 / 4 t )  is  the fundamental solution o f th e  heat
equation.

It is shown in  K im ura-O tsuka  [3 ] that this property never holds for the
single equation of higher order in x  with constant coefficients.

In  this paper we will deal with parabolic systems of the first order in t, and
give a  necessary and sufficient condition for the positivity in  this sense (see
Theorem 1.2 and remarks below).

Let us consider the Cauchy problem

aa(1.1) 'L u = u(t, x) A aa (t, x )( u (t, x )=0, to< t
at aX XE It',

(1.2) u ( to, x ) =u0(x ),

where u(t, x) = (t, x ), u 2 (t, uN (t, x )) and uo (x)= t(uo,i (x), uo,N(x)) are
N-dimensional column vectors and

(1.3) Aa(t, x)=(aa,i,k(l, x))isf,te N

are N x N  matrices. We assume that:

( i )  a a ,i ,k (t, x ) are real-valued, bounded functions which a re  uniformly continuous in
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(I, x )  and uniformly Hader continuous in  x  with exponent a.
(ii) L  is parabolic, that is , there exists a positive constant O  such that the real part

of  each solution 2(t, x ; ie) of

(1.4)d u t  [21—A 2 0 ,  x ;  i e ) ] = 0

is smaller than —5 ley- f o r any (t, x , e) e  [0 , T] X Rtm x RI', where

(1.5) Ap(t, ie)-- =1p . / 1 ( t ,  x)(ie)".

U nder these conditions, E id e l'm a n  [2 ]  constructed the fundamental solution
E(t, s, x , y )=(ei,k (t, s, x , y ))1 j, k5N of the Cauchy problem:

1L t,xE(t, s, x , y )= 0 , (0 ___)s<t _ T (<00), x , yeRn

(E(s-1-0, s, x , y)=6(x— y)l.

where I is the N>< N  un it m atrix . Then he show ed the following theorem on
the wellposedness of the Cauchy problem.

Theorem 1 .1  (see E id e l'm an  [2 ] Chap. 3  Theorem 5.3). Fo r any uo (x)
C ( 2 " " (F tn )  an d  0 <t o < T  th ere ex ists a  unique so lu tion  u (t„ x ) o f  (1.1)—(1.2) in
C ( 2 " '" ' ) ([t 0, T ]X li,a), and  this solution is given by

(1.6) u(t, x )=S E (t, to, x, y)uo(y)dy.

H ere Co'" , °)(R n) i s  th e  space of all functions defined on  Rn which have
bounded a n d  uniformly Holder continuous derivatives with exponent a  up to
order 2 m .  A nd Co'n , crm a t o, T] x  Iln )  i s  th e  space o f all functions defined on
[to,  T] x IV whose x-derivatives up to order 2m  a r e  bounded, uniformly contin-
uous in  (t, x )  and uniformly Holder continuous in  x  with exponent a.

Now let us define the positivity of the operator L.

Definition 1.1. We say that the operator L  has the positivity if  it has the following
property:

I f  u o ,i(x) f o r  a n y  1 N ,  th en  ui(t, x) .0  f o r any

(1.7) to _ t T  and xE It ', where u(t, x ) i s  the unique

solution of (1.1)— (1.2) and 0 _t o <T .

This is equivalent to the positivity of each element of the fundamental solution:

Definition 1.2. W e say that the fundamental solution E(t, s, x, y) has the positivity
i f

(1.8) ei,k(t, s, x , y )_ 0 f o r x, 1 j ,  k <N .

Then our result is the following.

Theorem 1.2. The fundamental solution has the positivity if and only if
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(i) m=1,

(ii) A a (t, x ) i s  d ia gona l if

and (iii) ao ,i,k(t, x) if j* k .

R em ark s . ( i ) The m axim um  principle holds for parabolic systems satisfy-
ing these conditions (see Protter-Weinberger [6]).

(ii) In  M iyajim a-O kazaw a [5] and  Miyajima [4 ] , similar results a re  obtained
for single equations with coefficients independent of t.

(iii) For single equations of th e  second order, we have th e  following estimate
from below:

Theorem 1.3 (see Aronson [1] for exam p le ). There exist some positive constants
s o a n d  ao su ch that

e(t, s, x , y )  _30(t—s)-"12exp Eo i x 

fo r  a n y  0 <s <t_ T ( <0 9 ) ,  X ,  y  R " .

(iv) It is easily seen that i n  the proofs below we can rep la c e  (1 .8 )  by the
weaker condition as follows:

F or any (s, y )  i n  [0 , T) x R", there ex ists a

(1.9) positive constant ro such that

ei,k(t, s, x, 0  if s< t< s+  r o a n d  ix—y I < r o .

Thus, i f  (1.9) holds, then conditions (i)—(iii) of Theorem 1.2 hold . So  (1.8) also
holds by this theorem. That is , condition (1.8) is equivalent to (1.9).

We will prove Theorem 1.2 in  several steps as following.

Proposition 1 . 1 .  I f  (1.8) holds, then m =1 and the principal pa rt A 2 (t, x ; ie) is
diagonal.

Proposition 1 .2 .  Assume that m =1 and Ay (t, x ; ie ) i s  d ia g o n a l .  I f  (1.8) holds,
then the first ord er term  A i (t, x ; iE) is  a lso  diagonal.

Proposition 1 .3 . Assume that 171=1  and A p(t, x ; ie) (p=1, 2 )  are d ia gon a l. I f
(1.8) holds, then ao ,j ,k (t, x )__0 unless j-=k.

Proposition 1 .4 .  I f cond ition s (i), (ii)  and (iii) o f  Theorem  1.2 are fulfilled, then
(1.8) holds.

We will prove Proposition 1.1 in  § 2 , Proposition 1.2 in an d  Propositions
1.3 an d  1.4 in  §4.

Notations. In  the following, we will often denote various constants b y  the
same letter such as C , while the constant c  will remain unchanged throughout
this paper.

The integration with no indication of the domain will be extended over the
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whole space Rn ,  and (270 - nde will be abbreviated as de.
If a  cap ita l letter such as A  or A a (x ) denotes a  matrix, then its matrix

element will be often denoted by the corresponding small letter with suffix like
a • k  or a, • k (x) And IA will denote max laidd.

Acknowledgments. T h e  author is deeply indebted to Professors Sigeru
Mizohata and Norio Shimakura for valuable discussions and encouragement.

§ 2 . Proof of Proposition 1.1.

Let E(t, s, x ,y) be the fundamental solution of Eidel'man for the system (1.1):

E (t, s , x , y )=E 0 (t, s, x , y )+E i(t,  s, x, y).

Here

E0(t, s, x , y )=G(t, s, x — y , y ) ,

G(t, s, x , y )=S ex p(ix e)Q(t, s, e, y )de, de= (27) - nde

and Q (t, s, e , y )  is the solution of the ordinary differential equation

(2.1)
{ 

Q (s, s, e, y)=-1. 

d
d

t Q (t, s, e , y )=A 2 ,,(t, y ; ie)Q (t, s, e, y), s< t< T ,

The second term E' i (t, s, x , y )  is obtained as

E'i (t, s, x , y )=S tsdrSE°(1' 
7 , ..1 " , Z )P (7 , s , z , y )d z ,

where 0(t, s, x , y )  is the solution of the integral equation

Ss
t drS H (t, r, x , z )0 (r, s , z , y )dz =H (t, s , x , y)0(t, s, x , y )—

with

H (t, s, x , y )=— L E 0 (1, s, x, y)

a a =(A2„,(1, x ;  4 .—x.)— A 2 .( t ,y ; ax )}E o(i, s, x , y)

2,71-1 aE Ap( ax)t, x; E0(t, s, x , y ).
F=0

This integral equation is solved by successive approximation (cf. "6 (t, s, x , y ) in
the next section). According to Eidel'man [2], we have the following estimates.

Lem ma 2 .1  (see [2] Chap. 1 §3).

(i) I Q(t, s, e, ex p (— co(t— s)Ier),
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(- 1
5

3-x--Y E o (t, s, x , y ) <C(t—s) - ("+ 1a1)/2"' exp (—cp(t—s, x—y))

  

12,./r )11(2,.-0,fo r 2m, where C, c, c o a re positive constants and p(r, ( z

10 (t, s , x , exp (—cp(t—s, x— y)),

s, x , y )i-<C(t— s) - ( "- T) 1 2 "exp (— cp(t— s, x—  y)).

Now le t u s fix any point (t o , xo)  in  [0 , T) x lIn  and put

F(t, x )=tni 2 '"E(1 0 4-t, to, x0+t 112 '"x, xo)•

Then we have the following proposition.

Proposition 2 .1 .  A s t tends to 0, F(t, x) converges uniformly to the function

F o (x)=Se' 4  exp (A2m(t0, xo; ie)) de.

P ro o f  Without loss of generality, we may assume that 10 = 0  and  x0 = 0 .  Let
us put

Fi(t, x )=1"/ 2"E i( t , 0, t 112 'nx, 0), j=0,1.

First, from Lemma 2.1 (ii), we have

IF i (t, x)i._<Ct°1 2 " exp (— cp(1, x))_<C1 2 "r.

So F i (t, x )  converges uniformly to 0 as I — *  +0.
As for F 0 (1, x ), we can write as

F o (t„ x)=SeixEQ(1, 0, t - '12 ,  0 )  tie.

So we have

(2.2) IFo(t, x)— Fo (x )1_< 1Q(1, 0, t - 1 1 2 "'e, 0) —exp(A 2 (0, 0; ie )) iie .

Then the proposition follows from th e  next Lemma 2.2. In  fact, from Lemma
2.1 (i) an d  (2.3), th e  integrand in  th e  right-hand side o f (2.2) is smaller than
C exp(—c o ie n .  so we can apply Lebesgue's dominated convergence theorem to
(2.2).

L e m m a  2.2.

(2.3) lirn Q (t, 0, t - '/ 2 '"E, 0) =exp (A 2 1 ,(0, 0; ie)).

Proof  Q (t, e )=-=-Q(t, 0, $, 0) is the solution of the integral equation

(2.4) Q(t, e)=1-1-S t  A2 m (r, 0; ie)Q (r, e) dr.

So Q (t, e )  is constructed in  th e  form

(2.5) e),
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Q0(t, e)=I

and

Qt(t, e)= So
t A2.(r, 0; e) dr

=tS
1

A2 ,n (tr, 0 ; ie)Q1_ 1 (tr, e) dr,1 > 1 .

By induction, we can show that Q i (t, e) is homogeneous in e of degree 2m1,  and
has the estimate

e)1__(Cot ielyn) 1//!,

where C o is independent of 1, t and e. So the right-hand side o f (2.5) converges
uniformly in t and satisfies the equations (2.4) and (2 .1 ) . Since

Qi(t, t - '1 2 '"e) = Ç1A2 .( t r , 0 ; ie) Q1_1 (tr, (tr) - 1 1 2 '"e)rl - idr,. o 

we can easily show by induction that

Qt(t, t - '1 2 "'e)I.-- (Co ie r)//1!

and

11M  Q./(t, t - 1 / 2 " ' e) = (A2m(0, 0 ;  ie))///!.
[44-0

-
Thus E  (23 (t, t - '/ 2"'e) converges absolutely and uniformly in  t, and again by

1=0
Lebesgue's theorem, (2.3) holds.

Proposition 2.2.

11 if  a=0,
(2.6) SeF0(x)dx=

0  if  0< la l< 2m .

Pro o f . In order to simplify the notation, let us assume that t0 = 0  and x0 =0.

It follows from Proposition 2.1 that

(2.7) SxF0(x)dx=--(i-a Y[exp (21 2 m(0, 0; ie))]1=o.

By definition, we can write as

exp (A 2 ,„(0, 0; ie))=I+A2,,(0, 0 ; ie)A'(e),

where A1 (e) is analytic in e .  So it is easily shown that the right-hand side o f (2.7)
is equal to /  if r= 0 , and equal to 0  if 0< la  <2m .

Proof of P roposition  1.1. We may assume t 0 = 0  and x0 = 0 .  Let us assum  that
m >  2 . From Proposition 2.2, we have

(2.7) S f 0, j,i(x)dx= 1
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and

SI x12 f 0,i ,i (x)dx=--0

for the diagonal elements f  0, j,;(x), 1 N. T h is  implies that f  0,i,i(x ) is some-
where negative. So if t  is sufficiently small, ei ,i (t, 0, x , 0) is somewhere negative,
too. Thus, the condition (1.8) never holds unless m=1.

Now let j * k .  Then we have from (2.6) that

$io,i,k (x )dx=0.

On the other hand, f o ,j,k(x) is nonnegative if (1.8) holds. So f o ,i,k(x) should be
identically zero. Thus, from the condition (1.8) it follows that F o (x ) is diagonal,
and so is exp (A2m(0, 0; iE)) for any ee lln . Then, it is easy to show that

d  A 2„,(0, 0; ie ) is also diagonal. In fact, from the formula d t  exp (tA )=A  exp (tA),

we can write A 2,2 (0, 0; ie ) as

dA 2,,(0 , 0 ; ie)=exp (—tA 2 m (0, 0; ie)) exP (1,4 2m(0 ,  0 ; je)).

But the right-hand side is diagonal because of the homogeneity of A 2 m (t, x : ie)
with respect to E. Thus A 2 ,4 (0, 0; ie) itself is diagonal and the proposition is
proved.

§ 3 .  Proof of Proposition 1.2.

In  this section we w ill assume that m=1 and the principal part A 2 (t, ie)
is diagonal. Let us rewrite the operator L  into the following form:

L = w -a — A (t,x ; ) - - B ( t ,x ; a
a
x ),

where

A (t, x ; ie)=diag [ai (t, x , ie),..., a ni(t, x ; ie)],

ai (t, x ; x;

B (t, x ; ie)=(b i ,k (t, x ;

(3.1) bi,k(t, x; iE)=a i ,j,k(t, x; te)-F-ao,i,k(t, x) if j * k

and

x;

(see (1.5) fo r  definition o f  ap,i,k). We will construct a  fundamental solution
É(t, s, x , y )  in a slightly different form from that of Eiderman [2], and then we
will show that É (t, s, x , y )  coincides with E(t, s, x , y ):
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É(t, s, x, y)=. -Éo (t, s, x, y)-1-Ê i (t, s, x, y ) ,

where

t o (t, s, x, y)=diag[e i (t, s, x, y )  eN(t, s, x, y)3

a ais the fundamental solution for the operator w —A(t, x; w ). That is,

and

(

a
a 

at a i ( t , x ;  a x ))ei(t, s, x, y)=0, x, yeRn

lim s, x, y)=6(x—y)
t4s+o

for each j= 1 ,..., N .  ei (t,s ,x,y ) is constructed in Eiderman [2] (see Introductory
section of Chap. I) :

(3.2) ei(t, s, x, y)=gj(t, s, x—y, • )-1-sbi(t, s, x, y ) ,

where

(3.3) gi(t, s, x, y)-=$exp [ixe+S t
sa2,i, i (r, y ; ie) dr]fte,

and Oi(t, s, x, y )  is obtained by an analogous way to E i (t, s, x, y )  discussed in
the previous section. Here we have the following estimates.

L em m a 3.1. ( i)
(

)agi(, s, x, y) C(i—s) al)/2exp c Ixt

   

lod_<2.

(ii) YOi(t, s, x, y ) < C (t exp clx—YI 2

)

t — s

i f

In  order th at È(t, s, x, y )  i s  a  fundamental solution, we will construct
Ri(t, s, x, y) in the form:

t i (t, s, x, y)= $tdrSt o (t, r, x , z )(r , s , z , y )  dz,

where -6.(t, s, x, y )  is the solution of the integral equation

-6(t, s, x, y) S $'(', 7 ,  x ,  z)". (r, s, z, y)dz=1---1(t, s, x, y )

with

171 (t, s, x, y)= s, x, y)=13(t, x; -aa v )E 0 (t, s, x, y ) .

So s, x, y )  is obtained by iteration of
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-6(t, s, x, s, x, y ),

61(t, s, x, y)= fi (t, s, x, y)

and

430 , s , x , y )= S t
sdrS17-i (t, r, x, z) .&1-1(r, s, z, y )  dz

fo r  / > 2 . Then we have the following lemma.

L e m m a  3 .2 .  ( i )  There exist some constants C  and Co such that

/ -
(3.4)I  'd)1 (t, s , x , y )I<C r(--2 -" )  

1

 C01(t—s)(/-n-2)/2exp c lxt ys 12  ) .

(ii)E  (t, s, x, s, x, y).

P ro o f  ( i )  It is not difficult to show

(3.5) ((t (p— s)) - 4 2 Sexp c  I xti z
t !  c l z

rl Ys
12 d z

/ \ n/2
= (t — S) — "/ 2  e X p ( X 12 

t — S

if s< r < t .  So (3.4) follows from the formula

S:(t_r)— /2( r _ s ) u - 2 2 a  =_Ai r ( i ) r ( 14 -
2 ' ) 1(t—s ) " -1)12.

(ii) In  the same way as Eidel'man, we can show that this :8- (t, s, x, y ) is a
fundamental solution which gives the unique bounded solution for the Cauchy
problem (1.1)-(1.2) (see (1.6)). Thus t(t, s , x , y )  has to coincide with E(t, s,
x, y ) discussed in previous sections. We will leave the details to the reader.

Now let us fix  (t o ,  xo)  in  [0 , T ) x R "  and put

P (t , x)=t ( "- 2.-Éi(tod-t, to, x0-1-012x, xo).

Proposition 3.1. I f  j * k ,  th e  (j, k)-element f  j,k (t, x ) o f  P (t ,  x )  converges to
the function

(3.6) fo,i,k(x)=--Seixejoexp(a(r, E))dria i ,j,k(t o , x o ;  i e ) f t e

as t + 0 , where

(3.7) a(r, e)=re22,i,i(to, xo; ie)+(l—r)a2,k,k(to, xo;

Pro o f . We may assume that 1 0=0  and x0 = 0 .  Let us put

P(t, x)+P2(t, x),

where

where
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Pz(t, x )= t ( " - 1 )1 2 St drS -É c.(t, z, l'I 2x, (r, 0, z, 0)dz.

Then we have

P2 (t, ,C) CI ( " -
1)12St drS! Ê r, 1112x ,  z ) i i2 I& (z, 0 , z , 0 ) dz

< cr i b t2S
t  

((t — r) r) -""drSexp c t
2 x (2

 c

I z12  )

dz

= Ch/th/2 exp ( —clx12).

So P 2 (t, x ) converges to 0 a s  t tends to 0.
As for P i (t, x )— ( i i , i ,k ( t , ,c ) )1 i , k 1 v ,  we have

a(3.8) I i ,j,k(t, dzSei(t, z, t' 12x, z)bi,k(z, z; H e k (r ,  0, z
'
 0)dz

• o az '

where bj,k are defined by (3.1). Then the proposition is proved by applying to
(3.8) the Lemma 3.3 below, which we will prove in the latter half of this section.

L e m m a  3 .3 .  Let

= t(n —1)/2S odrSe a
g o ( t , y  r , z)b(z, z) w: ek(r, 0, z, 0)dz

and

q1 (t, = 1(.-2 )/ 2S tdzS ei(t, r, t' 12x, z)b(r, z)ek(r, 0 , z, 0)dz,

w h er e  b (r ,  z ) i s  a  bounded  a n d  unifornzly con tinuou s fun ction  o n  [0 , 7 ] x R n  and
1< p < n .  Then we have

lim q0 (t, x)=b(0, 0)S
o

drSexp (ixe+a(r, C))iC dC
i_)+0

and

(3.9) lirn qi (t, x)-=b(0, 0)S drSexp (ixe+a(r, e))de,
0

where a(r, e) is d efin ed  b y (3.7).

P roo f o f P roposition  1.2. Let us assume that (1.8) holds. Since f o (t, s, x, y)
is diagonal, we have j o ,i,k(x) 0 if j * k .  On the other hand, (3.6) implies that

fœo,i,k(x) is an odd function. So fo,j,k(x) must be identically equal to zero. That
is, ai,i,k(to, xo; Thus the proposition is proved.

P roof o f  Lemma 3.3. Introducing new variables r= t -  Li-, = t " 2z and w= t"2,
we have

(3.10) 90(t„ x)=S:d r S[onei(t , tr, wx, coC)]b(tr, oiC)

x[con+'(- a
z ek)(tr, 0, o4, 0)]
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From Lemma 3.1, we have the estimates

Ico"e j (t, Ir , wx, (4)1 ISCcu"(t — ti) - f12 exp c  1 w x  —" 12
t -  tr

= C(1 —r) 0 Ix —Cl2
- 7  exp c 1 —r

and

 

. Cr - ot+ 1)12 e x p (_ c 1Cr 12 ).

 

a
wn+ , e k ) ( t r ' 0, (4, 0)ax, 

   

So the integrand o f (3.10) is bounded by an integrable function

ix — CII C 1 2C(1— r)-lor-(n+"12exp( c
'

1 —)

Similarly, we have

qi(t, x)=S:drS[wnei(t, I r , wx, a,C)]b(tr, a4)[aPek(tr, 0, (4, 0)]dC.

and this integrand is bounded by

C( (1 — r) r) - n/2 exp ( c l x

1
c 1 C 1 2 —r r

Using Lebesgue's Theorem and the following Lemma 3.4, we have

a r-rFloq ° ( t ' x ) = SOd r  S[Se x P
 Ii(x—C)Çd- (1 —r)a2,i ,i (0, 0 ; ie)} del

b (0, 0)[Sexp {ice+ ra2, k ,k (0 , 0; ie)} ie4e]dc,
and

lim x)=
0 
drS[Sexp ti(x— )E+-1- (1 —002,i,i(0, 0; ie)} de]

x b (0 , 0)[Sexp {iCe+ra 2,k,k(0, 0; ie)} de dC.

Then the lemma follows from the formula

[Seixu(e).‘a] [feixv(e)del dx=Su(e)o(—e).de.

L e m m a  3.4.

lim cone j (tr, ts, wx, coy) =Sexp {i(x—y)e+(r—s)a 2 ,i,i(0, 0 ; iC)}dCt4-1-o

j )(tr, ts, (ox, wy)=Sexp {i(x— y)e

+(r—s)a2 ,3,3(0, 0; ie)}

l i m  0 , 1 1 - ' 1

(  a
+0 a
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prov ided O s < r . l .

Pro o f . From (3.2), we have

oPei(tr, ts, cox, wy)=0)ngi(tr, is, a )(x— y), coy)

+wnSt

trs

dzSgi(tr' r, z)çbi(r, ts, z, coy)dz

First, using Lemma 3.1 and (3.5), we have

( lz_tr
1 2I _5. C con  (tr —  r) - "(r —ts)-(8+2-I2dri.exp

_c wx_ z  12 c 00,12
)dz

ts tr —r T—tS

=C ' t' 12 (r — s) - n)I2 e x p (  cl x  -Y 12 - - r  0r —s

as t +0.

As for I I , it follows from (3.3) that

ii=con SexP fiw(x — Ae+S t
t r
sa2,i,i(r, (

0 .Y; ie)dr}it

--=Sexp{i(x—y)ri+S:a 2,i,i(tp, wy; iri)dp}14,

where we put v =we and p = t - lr. Then, by Lebesgue's Theorem, we have

lim /1=Sexp {i(x— y) + (r —s)a2,i,j(0 , 0 ; i>2)}17).
t ÷ -1- 0

Thus (3.11) is proved.

W e can show (3.12) in the same w ay . In  fac t, we have

con+q -6 gi)(tr, ts, o)(x—y), wy)=a)n+iSexp fia)(x—y)e

±S
t r

- a2,i,i(r) (0Y; ie)drlie„dets

=1.exp Ii(x— a2j,;(tp, o)y; iri)dp} ivatri

--÷Sexp {i(x— y))2 (r — s)a 2, j, i(0, 0; ir))} i72„.dri

as t +0.

§ 4 .  Proof of Propositions 1.3 and 1.4.

I n  th is  section w e  w ill  assume th at m = 1 an d  A p (t , x : ie ) (p=1, 2) are
diagonal. A nd as in  the preceding section, let us write
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a A e aL = , B(t,

where A (t, x ; ie) is diagonal, B(t, x)-=(bi,k(t, x))isi,k N is  a  matrix of functions
acting as an operator of multiplication and

bi,i(t, 1 N.

The proof of Proposition 1.3 is parallel to that of Proposition 1 .2. Let us

construct a  fundamental solution

(4.1) E(t, s, x , y )=E-
0 (t, s, x , • ) +E i (t, s, x , y),

where R o (t, s, x , y )  was defined in  §3, and

Pi(t, s, X , y )=S t
sdr$É0(1, r, x , z )&(r, s, z , y )  dz,

.6(t, s, x, y)= i(t, s, x , y ),

S, x , y )=B (t, x ). -É o (t, s, x , y)

and

C t, s , x , y)=S:drSC(t, r, x , z )01-1(r, s, z , y )  dz

for l> 2 .
Then we can easily prove the following lemma similar to the Lemma 3.2.

L e m m a 4 .1 .  (i) There exist some constants C and C0 such that

S, x ,  y ) I <c r( o - ic o l(t_s)i - i - (71/2 ) exp e  x — Y 12

t — s / •

(ii) k t, s, x , y )-=E(t, s, x , _y).

Now let us fix (t o, x0 )  in  [0 , T )x R n  and put
p( t ,  x ) r_ t cn-2)/2R,(to -Ft, to,  xo-Ft"x , xo ).

Then we have the following proposition.

Proposition 4 .1 . If  j=/c , the (j, k )-elem ent j,k (t, x ) o f  P(t, x ) converges to the

function

(4.2) bi,k(t0, x0)S i
odrSexp [ix e+a(r, )]de,

as t +0, where a(r,e) is defined by (3.7).

Proo f . We may assume that 4= 0 and x0 = 0 . Let us put

P(t, x )=F i (t, x )+P 2 (t, x),

where



132 Ken'ichi Otsuka

t(n-ovoydz.SÉ0(i. 0 / 2 x ,P,(r, z)C7, 0 , z , 0)dz .

Then we have

I F2 ( 1,  x )  I C t  - 2)/2ft dr$1E 0 ( t, r, t 1 , 2 x, i t(r, 0 , z , 0)1dz-'O1 = 2

zici tc/-2)/2S ((t — r)r) - ni 2 rdrSexp c 2 t _  r z 1 2  )dz

=C "t exp ( —c I xi') .

So P 2(t, x )  converges to  0  as t +0.
As for 1 -

1 (t, x ), we have

f i ,  k (t , x) = t -  2 ) / 2  drS ei(t, r, 0/2x, z )bi,k (r, z )ek (r, 0 , z , 0)dz .

Then this proposition follows from (3 .9 ) of Lemma 3.3.

Proof  of  Proposition 1.3. L e t  us assume th a t (1 .8 )  h o lds . Th en  w e have

f o,i,k(x) >  0 if j  * k .  On the other hand, Sexp (ix +a(r, e))de is  positive a t x-=

fo r  a n y  0 r  1. So it follows from  (4 .2 ) that bi,k(t o ,  xo) O. S in ce  (t o, xo)  is
an arbitrary point in  [0 ,  T ) X IV, the proposition is proved.

Proof of Proposition 1.4. Under conditions ( i ) , ( ii)  o f th e  Theorem  1 .2 , the
fundamental solution E (t, s , x , y )  is constructed in the form  ( 4 .1 ) .  Then, under
the condition ( i i i ) ,  the elements - i,j,k (t, s, x , y ) o f each (-PO , s , x , y )  are non-
negative, because ei(t, s, x , y )  ( j= 1 , . . . ,  N )  are nonnegative (see Theorem 1.3).
So ei,k(t, s, x , y ) a re  also nonnegative. Thus the proof is completed.
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