J. Math. Kyoto Univ. (JMKYAZ) 28-1 (1988) 111-118

Rings of constants for k-derivations in $k[x_1, ..., x_n]$

By

Andrzej Nowicki and Masayoshi NAGATA

In this note we give several remarks on the rings of constants for a family D of k-derivations in the rings of polynomials over a field k.

1. Preliminaries.

Let us recall at first ([1]) that if $k[x_1,..., x_n]$ is the ring of polynomials over a commutative ring k and $f_1,..., f_n \in k[x_1,...,x_n]$ then there exists a unique k-derivation d of $k[x_1,...,x_n]$ such that $d(x_1) = f_1,..., d(x_n) = f_n$. This derivation d is defined by

$$d(h) = (\partial h/\partial x_1) f_1 + \dots + (\partial h/\partial x_n) f_n,$$

for $h \in k[x_1, ..., x_n]$.

Let k be a field, A a commutative k-algebra with 1, and D a family of k-derivations of A. We denote by A^{D} the set of constants of A with respect to D, that is,

$$A^{D} = \{a \in A; d(a) = 0 \text{ for any } d \in D\}$$

If D has only one element d then we write A^d instead of $A^{(d)}$. It is clear that $A^p = \bigcap_{d \in D} A^d$.

The set A^p is a k-subalgebra of A containing k. If A is a field then A^p is a subfield of A containing k.

Assume now that A has no zero divisors and A_0 is the field of quotients of A. Denote by \overline{D} the set $\{\overline{d}; d \in D\}$, where \overline{d} is the k-derivation of A_0 defined by

$$\bar{d}(a/b) = (d(a)b - ad(b))b^{-2},$$

for a, $b \in A$ and $b \neq 0$. In this situation we have two subfields of A_0 :

 $(A^{D})_{0}$ = the field of quotients of A^{D} ,

 $(A_0)^{\bar{D}}$ = the field of constants of A_0 with respect to \bar{D} .

The following example shows that these subfields could be different

Received, Oct. 23, 1986

Example 1.1. Let char(k)=0 and let d be the k-derivation of A=k[x, y] such that d(x)=x and d(y)=y. Then $(A^d)_0 \neq (A_0)^{\overline{d}}$.

Proof. It is easy to show that $(A^d)_0 = k$ and $x/y \in (A_0)^{\overline{d}} \setminus k$.

Proposition 1.2. If D is a family of k-derivations in a k-domain A then

(1) $k \subseteq A^{D} \subseteq (A^{D})_{0} \subseteq (A_{0})^{\overline{D}} \subseteq A_{0},$

(2)
$$(A^{D})_{\mathfrak{g}} \cap A = (A_{\mathfrak{g}})^{\overline{D}} \cap A = A^{D}.$$

The proof is straightforward.

2. The case char(k)=0.

In this section k is always a field of characteristic zero.

Lemma 2.1. If D is a family of k-derivations in a k-domain A then the ring A^{D} is integrally closed in A.

Proof. Let $a \in A$ be an integral element over A^{p} and let

$$a^{n}+c_{1}a^{n-1}+\cdots+c_{n-1}a+c_{n}=0$$
,

where $c_1, \ldots, c_n \in A^p$ and n is minimal. If $d \in D$ then

0 = d(0) = ud(a),

where $u=na^{n-1}+(n-1)c_1a^{n-2}+\cdots+c_{n-1}$. Since $u\neq 0$ (because *n* is minimal and char(k)=0), d(a)=0 and hence, $a\in \bigcap_{d\in D} A^d=A^p$.

As an immediate consequence of Lemma 2.1 we obtain

Proposition 2.2. If D is a family of k-derivations of $A=k[x_1,..., x_n]$, where k is a field of characteristic zero, then the ring A^p is integrally closed in A. In particular A^p is normal.

Note the following well known ([3] p. 177)

Lemma 2.3. Let $L \subseteq K$ be a separable algebraic extension of fields. If d is an L-derivation of K then d=0.

This lemma implies

Proposition 2.4. If D is a non-zero family of k-derivations of $A=k[x_1,...,x_n]$, where k is a field of characteristic zero, then $\operatorname{tr.deg}_k(A^D) \leq n-1$.

Proof. Let $s=\text{tr.deg}_k(A^p)$, $K=k(x_1,\ldots,x_n)$ and $L=(A_0)^{\bar{p}}$. It is clear that $s \leq n$. Suppose now that s=n. Then $L \subseteq K$ is a separable algebraic field extension. If $d \in D$ then \bar{d} is an L-derivation of K so, by Lemma 2.3, $\bar{d}=0$ and hence d=0; that is, D=0 and we have a contradiction to our assumption.

Now let us recall a result due to Zariski ([9], see [5] p. 41)

Zariski's Theorem 2.5. Let k be a field and let L be a subfield of $k(x_1,...,x_n)$

112

containing k. If tr.deg_k(L) ≤ 2 then the ring $L \cap k[x_1, ..., x_n]$ is finitely generated over k.

As a consequence of the Zariski's Theorem, Propositions 2.4 and 1.2(2) we obtain the following

Theorem 2.6. Let D be a family of k-derivations of the polynomial ring $k[x_1,...,x_n]$ over a field k of characteristic zero. If $n \leq 3$ then there exest polynomials $f_1,...,f_s \in k[x_1,...,x_n]$ such that $k[x_1,...,x_n]^D = k[f_1,...,f_s]$.

The next result is due to Zaks ([8], see also [2]).

Zaks' Theorem 2.7. Let k be a field. If R is a Dedekind subring of $k[x_1,...,x_n]$ containing k then there exist a polynomial $f \in k[x_1,...,x_n]$ such that R = k[f].

By Zaks' Theorem and Theorem 2.6 we have

Thorem 2.8. Let char(k)=0 and let D be a non-zero family of k-derivations of k[x, y]. Then there exists a polynomial $f \in k[x, y]$ such that $k[x, y]^{p} = k[f]$.

Proof. Let $R=k[x, y]^p$ and $s=\text{tr.deg}_k(R)$. We know, by Proposition 2.4, that $s \leq 1$. If s=0 then R=k, so R=k[f], where for example f=1. If s=1 then, by Proposition 2.2 and Theorem 2.6, R is a Dedekind subring of k[x, y] containing k and hence, by Zaks' Theorem, R=k[f], for some $f \in k[x, y]$.

3. Closed polynomials in characteristic zero.

Consider the following family \mathcal{M} of subrings in $k[x_1,...,x_n]$:

$$\mathcal{M} = \{k[f]; f \in k[x_1, \dots, x_n] \setminus k\}.$$

If $\operatorname{char}(k)=0$ and $k[f]\cong k[g]$, for some polynomials $f, g \in k[x_1, \ldots, x_n] \setminus k$, then $\operatorname{deg}(f) > \operatorname{deg}(g)$ and hence, we see that in the family \mathscr{M} there exist maximal elements.

We shall say that a polynomial $f \in k[x_1, ..., x_n] \setminus k$ is closed if the ring k[f] is integrally closed in $k[x_1, ..., x_n]$.

Lemma 3.1. Let char(k)=0 and $f \in k[x_1,...,x_n] \setminus k$. Then f is closed if and only if the ring k[f] is a maximal element in \mathcal{M} .

Proof. Let f be closed and assume that $k[f] \subseteq k[g]$ for some $g \in k[x_1, ..., x_n]$. Then $f \in k[g]$, that is,

$$f = a_s g^s + \dots + a_1 g + a_0,$$

for some $a_0, \ldots, a_s \in k$ with $a_s \neq 0$. Hence

$$g^{s} + a_{s}^{-1}a_{s-1}g^{s-1} + \dots + a_{s}^{-1}a_{1}g + (a_{s}^{-1}a_{0} - f) = 0$$

and hence g is integral over k[f]. Since k[f] is integrally closed in $k[x_1,...,x_n]$, k[f]=k[g] and we see that k[f] is maximal in \mathcal{M} .

Assume now that k[f] is a maximal element in \mathcal{M} and denote by E the integral closure of k[f] in $k[x_1, \ldots, x_n]$. Then E is a Dedekind subring of

 $k[x_1,..., x_n]$ containing k so, by Theorem 2, 7, E=k[h], for some $h \in k[x_1,..., x_n]$. Now, by the maximality of k[f] in \mathcal{M} , k[f]=k[h]=E and so, f is closed.

Proposition 3.2. Let D be a family of k-derivations in $A=k[x_1,...,x_n]$, where k is a field of characteristic zero. If the ring A^{D} is finitely generated over k (for example, if $n \leq 3$) then $A^{D}=k$ or there exist closed polynomials $f_1,...,f_s \in A$ such that $A^{D}=k[f_1,...,f_s]$.

Proof. Assume that $A^{p} \neq k$ and let $A^{p} = k[h_{1},...,h_{s}]$ for some $h_{1},...,h_{s} \in A-k$. Let $f_{1},...,f_{s}$ be polynomials in $A \setminus k$ such that $k[h_{i}] \subseteq k[f_{i}]$ and $k[f_{i}]$ is a maximal element in \mathscr{M} , for i=1,...,s. Then there exist polynomials $u_{1}(t),...,u_{s}(t) \in k[t]$ such that $h_{i}=u_{i}(f_{i})$, for i=1,...,s. We may assume that the polynomials $u_{1}(t),...,u_{s}(t)$ have minimal degrees. Now, using the same argument as in the proof of Lemma 2.1, we see that $f_{1},...,f_{s} \in A^{p}$. Hence $k[f_{1},...,f_{s}] \subseteq A^{p}=k[h_{1},...,h_{s}] \subseteq k[f_{1},...,f_{s}]$, that is, $A^{p}=k[f_{1},...,f_{s}]$ and, by Lemma 3.1, $f_{1},...,f_{s}$ are closed.

Proposition 3.3. Let D be a non-zero family of k-derivations in k[x, y], where k is a field of characteristic zero. Denote $R=k[x, y]^p$. If $f \in R \setminus k$, then R is the intergral closure of the ring k[f] in k[x, y].

Proof. If $f \in R \setminus k$ then $R \neq k$ and, by Theorem 2.8 and Proposition 3.2, R = k[h], for some closed polynomial $h \in k[x, y]$. Hence $k[f] \subseteq k[h]$, k[h] is integrally closed in k[x, y] and k[h] is integral over k[f]. This means that R = k[h] is the integral closure of k[f] in k[x, y].

Theorem 3.4. Let k be a field of characteristic zero and let A be a subring of k[x, y] containing k, such that A is integrally closed in k[x, y]. If Krull-dim $(A) \leq 1$ then there exists a k-derivation d of k[x, y] such that $A = k[x, y]^d$.

Proof. Let s = Krull-dim(A). If s = 0 then A = k and we have $A = k[x, y]^d$, where, for example, d is such k-derivation of k[x, y] that d(x) = x and d(y) = y.

Assume that s=1. Then A is a Dedekind subring of k[x, y] containing k (see [2] Theorem 1) hence, by Theorem 2.7, A=k[h] for some closed polynomial $h \in k[x, y] \setminus k$. Consider k-derivation d of k[x, y] such that $d(x)=\partial h/\partial y$, $d(y)=-\partial h/\partial x$. Then $h \in k[x, y]^d \setminus k$ and we see, by Proposition 3.3, that $A=k[x, y]^d$.

4. The case $\operatorname{char}(k) = p > 0$.

Throughout this section k is a field of characteristic p>0.

Denote $A = k[x_1, ..., x_n]$, $R = k[x_1^p, ..., x_n^p]$. It is well known that A is a free R-module on the basis (p-basis)

$$\{x_1^{i_1}\cdots x_n^{i_n}; i_1 < p, \dots, i_n < p\}$$

and hence, in particular, A is a noetherian R-module.

If D is a family of k-derivations of A then $R \subseteq A^p$ and so, A^p is an R-submodule of A. Therefore we have

Proposition 4.1. If D is a family of k-derivations of $A=k[x_1,...,x_n]$, where k is a field of characteristic p>0, then there exist polynomials $f_1,...,f_s \in A$ such that

Rings of constants for k-derivations

$$A^{D} = k[x_{1}^{p}, ..., x_{n}^{p}, f_{1}, ..., f_{s}].$$

If char(k)=2 and n=2 then the following proposition shows (if $D\neq 0$ and s is as in Proposition 4.1) that s=1.

Proposition 4.2. Let k be a field of characteristic two and let D be a non-zero family of k-derivations in k[x, y]. Then there exists a polynomial $f \in k[x, y]$ such that $k[x, y]^{D} = k[x^{2}, y^{2}, f]$.

Proof. If $k[x, y]^{p} = k[x^{2}, y^{2}]$, then $k[x, y]^{p} = k[x^{2}, y^{2}, f]$, where f = 1. Assume that $k[x, y]^{p} \neq k[x^{2}, y^{2}]$. Let f_{1}, \ldots, f_{s} be as in Proposition 4.1, and let $f_{i} = a_{i}x + b_{i}y + c_{i}xy + u_{i}$, where $a_{i}, b_{i}, c_{i}, u_{i} \in k[x^{2}, y^{2}]$, for $i = 1, \ldots, s$.

We may assume that

(1) f_1,\ldots,f_s do not belong to $k[x^2, y^2]$,

(2) $u_1 = \cdots = u_s = 0.$

Moreover, we may assume that

(3) there is no elements $v_i \in k[x^2, y^2] \setminus k$ such that $v_i | f_i$, for i = 1, ..., s.

In fact, if for example $f_1 = vg$, where $v \in k[x^2, y^2] \setminus k$ and $g \in k[x, y]$, then for any $d \in D$, $0 = d(f_1) = vd(g)$, that is, d(g) = 0 and hence $g \in k[x, y]^p$ and we have $k[x, y]^p = k[x^2, y^2, g, f_2, ..., f_s]$.

Denote by L the field $k(x^2, y^2)[f_1, ..., f_s]$ and let $m = [L : k(x^2, y^2)]$. Then m=4, 2 or 1. If m=4 then L=k(x, y) and we have a contradiction to the assumption that $D \neq 0$. If m=1, then $k[x, y]^{D} = k[x^2, y^2]$.

Assume now that m=2. Then $L=k(x^2, y^2)[f_i]$, for some i=1,..., s (since $k(x^2, y^2)[f_i]$ is a two-dimensional subspace of L over $k(x^2, y^2)$), and, in particular, we have $af_1=bf_2+c$, where a and b are non-zero elements in $k[x^2, y^2]$ and $c \in k[x^2, y^2]$. But c=0, by (2), hence $af_1=bf_2$. Let $u=\gcd(a, b), a=ua', b=ub'$, for $a', b' \in k[x, y]$. Then $a'f_1=b'f_2$, $\gcd(a', b')=1$ and it is easy to show that $k \sim \{0\}$. $k[x^2, y^2]$. This implies that $a' | f_2, b' | f_1$ so, by (3), a' and b' belong to $a', b' \in$ Therefore $f_1=cf_2$, for some $c \in k \sim \{0\}$ and we have

$$k[x, y]^{D} = k[x^{2}, y^{2}, f_{2}, f_{3},..., f_{s}].$$

Repeating the above argument we see that $k[x, y]^{D} = k[x^{2}, y^{2}, f_{s}]$.

If char(k) = p > 2 then the assertion of Proposition 4.2 is not true, in general.

Example 4.3. Let char(k) = p > 2 and let d be the k-derivation of k[x, y] such that d(x) = x, and d(y) = y. Then there is no polynomial $f \in k[x, y]$ such that $k[x, y]^d = k[x^p, y^p, f]$.

Proof. Suppose that $k[x, y]^d = k[x^p, y^p, f]$, for some $f \in k[x, y]$, and consider the monomials $x^{p-1}y$ and xy^{p-1} . We see that these monomials belong to $k[x, y]^d$. Therefore

$$x^{p-1}y = u(f)$$
 and $xy^{p-1} = v(f)$,

for some polynomials u(t), $v(t) \in k[x^p, y^p][t]$, and we have

$$-x^{p-2}y = (\partial/\partial x)(x^{p-1}y) = u'(f)(\partial f/\partial x)$$

Andrzej Nowicki and Masayoshi Nagata

$$x^{p-1} = (\partial/\partial y) (x^{p-1}y) = u'(f) (\partial f/\partial y)$$
$$y^{p-1} = (\partial/\partial x) (xy^{p-1}) = v'(f) (\partial f/\partial x)$$
$$-xy^{p-2} = (\partial/\partial y) (xy^{p-1}) = v'(f) (\partial f/\partial y)$$

where u'(t), v'(t) are derivatives of u(t) and v(t), respectively. This implies, in particular, that $u'(f) = ax^{p-2}$, for some $a \in k \setminus \{0\}$. Hence $x^{p-2} \in k[x^p, y^p, f] = k[x, y]^d$. But it is a contradiction, because $d(x^{p-2}) = -2x^{p-2} \neq 0$.

Observe that if n=2 and p=2 then, by Proposition 4.2, every ring of constants is a free $k[x^p, y^p]$ -module. Now we shall show that it is also true for an arbitrary p>0 and $D=\{d\}$.

Theorem 4.4. Let k be a field of characteristic p>0 and d a k-derivation of k[x, y]. Then the ring $k[x, y]^d$ is a free $k[x^p, y^p]$ -module.

Before the proof of Theorem 4.4 we recall a few facts for M-sequences in regular local rings (see [6]).

Let R be a commutative ring and M a non-zero R-module. We denote by hd(M) the projective dimension of M. An element $r \in R$ is called a zero divisor with respect to M if there is a nonzero element m of M such that rm=0.

Assume now that R is a regular local ring with the maximal ideal \mathfrak{m} and $M \neq 0$ is a finitely generated R-module.

We say that a sequence $t_1, ..., t_n$ of elements of m is an *M*-sequence if t_i is not a zero divisor with respect to $M/\sum_{j=1}^{i-1} t_j M$, for each i=1,...,n. It is known (see [6] p.97) that all maximal *M*-sequences have the same length, this length we denote by s(M).

Note the following theorem which is due to Auslander, Buchsbaum and Serre (see [6] p.98)

Theorem 4.5. Let (R, \mathfrak{m}) be a regular local ring and M a finitely generated R-module different from zero. Then

$$hd(M) = Krull - dim(R) - s(M).$$

Proof of Theorem 4.4. Denote $R=k[x^p, y^p]$, A=k[x, y], M=d(A), $K=k[x, y]^d$ and consider the following exact sequence of R-modules:

$$(1) 0 \longrightarrow K \longrightarrow A \xrightarrow{a} M \longrightarrow 0.$$

Let \mathfrak{m} be a maximal ideal of R. Then the sequence (1) induces the exact sequence of $R_{\mathfrak{m}}$ -modules:

(2)
$$0 \longrightarrow K_{\mathfrak{m}} \longrightarrow A_{\mathfrak{m}} \xrightarrow{a_{\mathfrak{m}}} M_{\mathfrak{m}} \longrightarrow 0$$

Since R_m is a regular local ring and M_m is a finitely generated R_m -module different from zero, we have (by Theorem 4.5)

$$\mathrm{hd}(M_{\mathfrak{m}}) = 2 - s(M_{\mathfrak{m}}).$$

But $M_{\mathfrak{m}}$ is contained in the ring $A_{\mathfrak{m}}$ which is an integral domain and so, $s(M_{\mathfrak{m}}) \geq 1$. Therefore $hd(M_{\mathfrak{m}}) \leq 1$ and hence, by the sequence (2) (since $A_{\mathfrak{m}}$ is a free $R_{\mathfrak{m}}$ -module), $hd(K_{\mathfrak{m}})=0$ and we have $hd(K)=\sup_{\mathfrak{m}} hd(M_{\mathfrak{m}})=0$. This implies that K is a projective R-module and hence, by [7] (see [4]), $K=k[x, y]^d$ is a free $k[x^p, y^p]$ -module.

The next example shows that if $n \ge 3$ then the assertion of Theorem 4.4 is not true, in general.

Example 4.6. Let $\operatorname{char}(k) = p > 0$, $n \ge 3$, and let d be the k-derivation of $k[x_1, \ldots, x_n]$ such that $d(x_i) = x_i^p$, for $i = 1, \ldots, n$. Then the ring $k[x_1, \ldots, x_n]^d$ is not a free $k[x_1^p, \ldots, x_n^p]$ -module.

Proof. Denote $R = k[x_1^p, ..., x_n^p]$, $A = k[x_1, ..., x_n]$, M = d(A) and $K = A^d$. Let m be the maximal ideal of R generated by $x_1^p, ..., x_n^p$ and consider the exact sequences (1) and (2) as in the proof of Theorem 4.4. We shall show that $s(M_m) = 1$.

Let $t_1 = x_1^p/1, ..., t_n = x_n^p/1$. The elements $t_1, ..., t_n$ generate the maximal ideal $\mathfrak{m}R_{\mathfrak{m}}$. Observe that t_1 is not a zero divisor with respect to $M_{\mathfrak{m}}$, and $t_1 \in M_{\mathfrak{m}} \sim t_1 M_{\mathfrak{m}}$ (since $l \notin M$). If u is an arbitrary element of $\mathfrak{m}R_{\mathfrak{m}}$, then $u = a_1 t_1 + \cdots + a_n t_n$, for some $a_1, ..., a_n \in R_{\mathfrak{m}}$ and we have

$$u = a_1 d_m(x_1/1) + \dots + a_n d_m(x_n/1)$$

= $d_m(a_1(x_1/1) + \dots + a_n(x_n/1)),$

that is, $u \in M_{\mathfrak{m}}$ and hence, $t_1 u \in t_1 M_{\mathfrak{m}}$.

Therefore t_1 is a maximal M_m -sequence and hence (since all maximal M_m -sequences have the same length), $s(M_m)=1$. Now, by Theorem 4.5, $hd(M_m) = n-1 \ge 2$ and hence, $hd(K_m) \ge 1$. This implies that $hd(K) = \sup hd(K_m) \ge 1$, that is, $K = k[x_1, ..., x_n]^d$ is not a free $k[x_1^o, ..., x_n^o]$ -module.

Remaek 4.7. Using the same argument as in the proof of Example 4.6 we may prove that if $n \ge 3$ and $d(x_i) = x_{v(i)}^p$, where v is a permutation of $\{1, ..., n\}$, then the ring $k[x_1, ..., x_n]^d$ is not a free $k[x_1^p, ..., x_n^p]$ -module.

INSTITUTE OF MATHEMATICS COPERNICUS UNIVERSITY TORUN, Poland and DEPARTMENT OF MATHEMATICS SHINSHU UNIVERSITY and DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- [1] N. Bourbaki, Elements de Mathématique, Algébre Commutative, Chapter 2, Herman, Paris, 1961.
- [2] P. Eakin, A note on finite dimensional subrings of polynomial rings, Proc. Amer. Math. Soc., 31 (1972), 75-80.
- [3] N. Jacobson, Lectures in Abstract Algebra, Vol. 3, Van Nostrand, Princeton, N. J., 1964.
- [4] T.Y. Lam, Serre's Conjecture, Lect. Notes in Math., 635, 1978.
- [5] M. Nagata, Lectures on the Fourteenth Problem of Hilbert, Tata Institute of Fundamental Research, Bombay, 1965.
- [6] M. Nagata, Local Rings, Interscience Tracts in Pure and Appl. Math., No. 13, Interscience, New York, 1972.
- [7] C.S. Seshadri, Triviality of vector bundles over the affine space K², Proc. Nat'l. Acad. Sci. U.S.A., 44 (1958), 456-458.
- [8] A. Zaks, Dedekind subrings of $k[x_1,...,x_n]$ are rings of polynomials, Israel J. Math., 9(1971), 285-289.
- [9] O. Zariski, Interpretations algebrico-geometriques du quatorzieme probleme de Hilbert, Bull. Sci. Math., 78 (1954), 155-168.