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Rings of constants for k-derivations
in  k[xi, xn]

By

Andrzej NOWICKI and Masayoshi NAGATA

In  this note we give several remarks on the rings of constants for a family
D  of k-derivations in the rings of polynomials over a field k.

1. Preliminaries.

Let us recall at first ([1 ]) that if x n] is the ring of polynomials over
a commutative ring k  and f n e k [x 1 ,.. .;x 0 ] then there exists a unique
k-derivation d  of xn] such that d(x1)=f1,..., d ( x ) = f .  This derivation
d is defined by

d(h)=(ahlax i )f id- •••+ (ahla.vn ) f „,

for hek [x i ,..., x id•
Let k  be a field, A  a commutative k-algebra with 1, and D  a  family of

k-derivations of A .  We denote by A D the set of constants of A  with respect to
D , that is,

A D = tae A ; d (a)=0  for any dED ).

I f D  has only one element d then we write A d instead of A(d). It is clear that
A D= f l  Ad .

deD
The set AD is a k-subalgebra of A  containing k. If A  is a field then AD is a

subfield of A  containing k.
Assume now that A  has no zero divisors and A o is the field of quotients of

A . Denote by h the set f il; d e D I ,  where if is the k-derivation of A o defined by

d(alb)=(d(a)b— ad(b))b - 2 ,

for a ,  b e A  and b O. I n  this situation we have two subfields of A o :

(AD) 0 =the field of quotients of AD,

(A 0) 15=the field of constants of A o w ith respect to b.

The following example shows that these subfields could be different
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E x a m p le  1.1. L et char (k) = 0  an d  le t d  be the k-derivation of  A =k [x , y ]  such
that d (x )= x  and d (y )= - y . Then (A(1) 0 (A 0 )J.

Pro o f . It is easy to show that (Ad) 0 = k  and x/ye(A 0 )cr---k.

Proposition 1.2. I f  D  is  a fam ily  of  k-derivations in  a k-domain A  then

(1) kgA"g(21")0g(A0) gAo,

(2) (AD)on A = (A 0 ) 1). n A=AD.

The proof is straightforward.

2 . The case char(k)=0.

In  this section k is always a field of characteristic zero.

L e m m a  2.1. I f  D  i s  a fam ily  o f  k-derivations in  a k-domain A  then the ring A " is
integrally closed in A.

Proo f . Let a E A  be an integral element over AD and let

a n+ c i a n_t +•••-1-c, 1 a-Pcn =0,

where c„EAD and n is m inimal. If d e D  then

0 = d(0) =ud(a

where u=nan - 1 4-(n—l)c1an - 2 4-•••+c,- 1. Since u + 0  (because n  is  minimal and
char(k)= 0), d (a )=0  and hence, a e n A d— A D.

(J E D

As an immediate consequence of Lemma 2.1 we obtain

Proposition 2.2. I f  D  is  a fam ily  of  k-derivations o f  A =k [x i ,..., x ],  where k
is  a f ield of  characteristic zero, then the ring A D is integrally closed in  A .  In  particular
A D  i s  normal.

Note the following well known ( [3 ]  p. 177)

L e m m a  2.3. L et L g K  be a  separable algebraic extension of fields. I f  d  is  an
L-derivation of  K  then d=0.

This lemma implies

Proposition 2.4. I f  D  is a non-zero fam ily  o f  k-derivations o f  A =k [x i ,..., xn],
where k is  a field of characteristic zero, then tr.degk(A ))< n-1.

P ro o f  L e t s=tr.degk(AD), x n ) and L = (A 0 ) . It is clear that
s < n . Suppose now that s = n . Then L g K  is a separable algebraic field extension.
If d E D  then d is an L-derivation of K  so, by Lemma 2.3, 1 = 0  and hence d=0;
that is, D = 0 and we have a contradiction to our assumption.

Now let us recall a result due to Z arisk i ([9 ], see [5] p. 41)

Zariski's T h e o r e m  2.5. Let k  be a f ield and let L  be a subfield of k(xi,•••, xn)
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containing k . I f  tr.degk(L)<2 th en  th e  r in g  L n k k i , . . . ,  xn ]  is fin ite ly  gen era ted  over k.

A s a  consequence o f the Zariski's Theorem, Propositions 2 .4  and 1.2(2) we
obtain the following

Theorem  2 .6 .  L e t  D  b e  a  f a m i l y  o f  k -derivations o f  t h e  p o l y n o m ia l  ring
k[x l ,..., x n ]  over a f i e ld  k  of chara cteristic z ero . I f  n < 3  th en  th ere exest polynomials
f i,•••, x d  such that k [x i,..., x ii] l ) •=k[fi,• • •,

The next result is due to Z aks ([8 ], see also 12]).

Zaks' Theorem 2 .7 .  Let k  be a f i e ld .  I f  R  is  a Dedekind subring o f  k[x i , .. .,x n ]
containing k  then there ex ist a polynomial f x n] such that R =k [f ].

By Zaks' Theorem and Theorem 2 .6  we have

T h o rem  2 .8 . Let char (k) = 0  and  let D  b e a non-zero fa m i l y  o f  k-derivations o f
k[x, y ] .  Then there ex ists a polynomial f E k [x , y ]such  tha t k [x , y ]D =k [f ].

P r o o f  L et R =k [x , AD and s= tr .d e g k (R ). We know, by Proposition 2.4,
that s < 1 . If s= 0  then R =k , so R = k [f ] ,  where for example f  - = 1 .  I f  s = 1  then,
by Proposition 2 .2  and Theorem 2 .6 , R  is a Dedekind subring o f k[x , y ]  con-
taining k  and hence, by Zaks' Theorem, R = k [f ] ,  for some f  e k [x ,  y ] .

3 .  Closed polynomials in  characteristic zero.

Consider the following family of subrings in x . ] :

=  I k [f ]; f

I f  char(k )= 0  and k [f ] k [g ],  for some polynomials f , then
d e g (f )> d e g (g )  and hence, we see that in the family there exist maximal
elements.

We shall say that a polynomial f  ek[x 1, ..., x ]---,k  is closed  if the ring k[ f  1 is
integrally closed in

Lemma 3 . 1 .  Let char (k )= 0  and f Then f  is closed if and only
i f  th e ring k [ f ]  i s  a maximal elem ent in  d

P r o o f  Let f  be closed and assume that k [f ]g .k [g ] for some g ek [x i,— , x7 ] .
Then f  e k [g ],  that is,

f=asg0+•••-1-aig+a0,

for some an,..., a s E k  with as-- 0. Hence

g s+ e G ia s _i g s_1+ ,...f a ; la i g +  (a;la o f )  = 0

and hence g  is integral over k [ f ] .  Since k [ f ]  is integrally closed in x711,
k [f ]= k [g ] and we see that k [ f ]  is maximal in

Assume now that k [ f ]  is a maximal element in  di/ and denote by E  the
integral closure o f k [ f ]  in x „] .  Then  E  is  a Dedekind su b rin g  of
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xn ]  containing k  so, by Theorem 2, 7 ,  E =k [h ], for some hEk[x i ,..., x n ].
Now, by the m axim ality of k [ f ] in k[ f ] = k [h]= E and so, f  is closed.

Proposition 3 .2 .  Let D  b e a  fam ily  o f  k-derivations in  A =k [x i , . . . ,  'en], where k
i s  a f ie ld  o f  characteristic z ero . I f th e  r in g  A D is finitely generated over k  (for example, i f
n < 3 ) then AD =k  or there exist closed polynomials f , e A  such that A D=k [f i ,..., f ,].

P r o o f .  Assume that A D+k  and let AD-=- k[h i , . . . ,  h ,] for some h1, . . . ,  hs eA—k.
Let f ,  be polynomials in A k  such that k [h ]ç k [f i ]  and k [f i] is a  maxi-
mal element in for i =1 ,..., s . Then there exist polynomials ui (t),..., u s (t) k[t]
such that h i=u i( f i) ,  fo r  i = 1 ,..., s. W e m a y  assume that the polynomials
ui (t),..., u s ( t )  have minimal degrees. Now, using the same argument as in the
proof of Lemma 2.1, we see that f ,E A D . Hence k[f i,•••, f s ] g A D = k [ h i , • • • ,

f , ] ,  that is, A D =k [f i,..., fs ]  and, by Lemma 3.1, f ,  are closed.

Proposition 3 .3 .  L et D  b e a non-zero fa m i ly  o f  k-derivations in  k[x, y ] ,  where
k  i s  a fie ld  o f  characteristic z ero. Denote R=k[x, y]D. I f  f  then R  is  the intergral
closure o f th e r in g  k [ f ]  in  k[x, y ] .

P r o o f .  I f f then R + k  and, by Theorem 2 .8  and Proposition 3.2,
R =k [h], for some closed polynomial hEk [x , y ] .  Hence k [f ]ç k [h ], k [h ] is inte-
grally closed in k[x, y ]  and k [h] is integral over k [ f ] .  This means that R =k [h]
is the integral closure of k [f ]  in k[x, y ] .

Theorem 3 .4 .  Let k  b e  a  fie ld  o f  characteristic z e r o  a n d  le t  A  b e a  subring o f
k[x, y ]  containing k , su ch  that A is  in teg ra lly  c lo sed  in  k[x , y ] .  I f  K rull-dim (A)<1
then there ex ists a  k-derivation d  o f  k[x, y ]  su ch  that A =k[x , y ]d.

P r o o f .  Let s= K ru ll-d im (A ). I f  s= 0  then A =k  and w e have A =k [x , y ]d,
where, for example, d  is such k-derivation o f k [x , y ] that d(x )=x  and d(y )=y .

Assume that s = 1 .  Then A  is a Dedekind subring o f k [x , y ] containing k
(see [2 ] Theorem 1) hence, by Theorem 2 .7 , A =k [h] for some closed polynomial
hEk[x , Consider k-derivation d  o f k[x , y ]  such that d(x )=ahlay , d(y )=
—ahfax. Then hEk[x , y]d - ---k and we see, by Proposition 3 .3 , that A =k[x , y ]d.

4 .  The case ch ar(k )= p > 0 .

Throughout this section k  is a field of characteristic p>0.
Denote A =k[x i , . . . ,  xn ], It is well known that A  is a free

R-module on the basis (p-basis)

;  ii<p,. .., i n<p}

and hence, in particular, A is a noetherian R-module.
I f D  is a family of k-derivations of A then R c AD and so, AD is an R-sub-

module of A .  Therefore we have

Proposition 4 .1 .  I f  D  i s  a fa m i ly  o f  k-derivations o f  A =-k[x ,,..., x n ] ,  where k
i s  a fie ld  o f  characteristic p>0, then there exist polynomials f sE A  such that
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A " =k [4 ,- ,  f a ] .

I f char(k)=2 and n = 2  then the following proposition shows (if D + 0  and s
is as in Proposition 4.1) that s=1.

Proposition 4 .2 .  Let k  be a f ield o f  characteristic two a n d  le t  D  be a non-zero
fam ily  o f  k-derivations in  k[x, y ] .  Then there exists a polynom ial f  e k [x , y ]  such that
k[x, y]D=k[x 2 , y 2 ,  f ].

P ro o f  If k [x , y ]°=k [x 2 , y 2 ] ,  then k[x, y]D = k[x 2 , y 2 ,  f ] ,  where f 1 .  Assum e
that k [x , y ]°+k [x 2 , y 2]. Let f s  be as in Proposition 4 .1 , and let fi= a ix+
biy-l-c i xy-Fui, where ai, bi, c i , uiEk [x 2 , y 2 ],  for i=1 ,..., s .

W e m ay assume that

(1) f ,  do not belong to k[x 2 , y 2 ],
(2) ui =• •• =u s = O.
Moreover, we may assume that
( 3 )  there is no elements vi Ek[x 2 , y 2 ]- ,k  such that vil f i ,  for i =1 ,..., s .
In fact, if for example f i =v g, where vEk[x 2 , y 2 ] -----k and g ek [x , y ] ,  then for any
d e D , 0 - d (  f i )--=vd(g), that is, d(g) =O and hence gEk[x , A D and we have k[x , y]°
=k[x 2 , y 2 ,  g , f2].

Denote by L  the field k(x 2 , f , ]  and  le t m =[L  :k (x 2 , y 2 )]. Then
m =4, 2  o r  1. I f  m = 4  then  1,-=k(x, y )  and w e  have a contradiction t o  the
assumption that D = 0 .  I f  m =1 , then k[x , y ]n=k[x 2 , y 2 ].

Assume now  that m = 2 . Th en  L =k (x 2 , y 2) [f i ] ,  for som e i= 1 ,. . . ,  s  (since
k(x 2 , y 2 ) [ f i ]  is a two-dimensional subspace of L  over k(x 2 , y 2 ) ) ,  and, in particu-
lar, we have af i =b f2 d-c, where a  and b  are non-zero elements in  k[x 2 , y 2 ]  and
cEk[x 2 , y 2 ]. But c = 0 , b y  (2 ), hence afi =b f2 . Let u=gcd(a, b ), a=u a', b =u b ',
fo r a ' ,  b/ Ek[x, y ] .  Then a f i =b 'f2 ,  g cd (a ', b ')= 1  and  it is  easy to  show that

k[x 2 , y 2 ]. This implies that a 'l f2 ,  b ' f i  so, b y  (3), a '  and b ' belong to
a ', b'ETherefore f i =cf2 ,  for some cek----101 and we have

k[x, =k [x 2 , y 2 , f 2 , A . • . f d •

Repeating the above argument we see that k[x, y]D=k[X 2 , y ', f ,].

I f char(k)=p>2 then the assertion of Proposition 4.2 is not true, in general.

Exam ple 4 .3 .  L et char(k) =p>2 a n d  l e t  d  be th e  k-derivation o f  k[x , y ]  such
that d(x )=x , and d ( y ) .  y .  Then there is no polynom ial f  E k [x , y ]  such that k [x , y ]d
-=k[xP, yP, f].

P ro o f  Suppose that k [x , y ]d=k [x P, y P, f ], for some f  ek[x , y ], and consider
the monomials xP- 'y  and xyP- '. We see that these monomials belong to k[x, y]d.
Therefore

x P-iy =u (f )  and xyP- 1 =v ( f ) ,

for some polynomials u(t), v (t)ek [x P, _3,P][t], and we have

-xP - 2y=  (alax)(xP - iy )=u' (f )(af lax )
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xP- ' =(alay)(xP - iy )=u'(f )(af lay )

yP - 1 =(alax)(xyP - 1 ) =z1(f)(af lax)

- - xYP - 2 =(al 3y)(xY P - ') =v '(f )(af lay ),

where V (t), v i(t)  are derivatives of u ( t)  and v (t), respectively. This implies, in
particular, that u'(f )=ax P - 2 ,  for some aek----{0}. Hence xP- 2 e k [x P, y P , f ]=
k [x , y ]d . But it is a contradiction, because d(xP- 2 ) =-2 x P - 2==O.

Observe that i f  n = 2  and p = 2  then, by Proposition 4 .2 ,  every ring of
constants is a free k[xP, yP ]-m odu le . Now we shall show that it is also true for
an arbitrary p > 0 and D= {d}.

Theorem 4.4. L et k  b e  a  f i e ld  o f  characteristic p > 0  and  d  a  k-derivation o f
k[x, y] . Then the ring k [x , y ]d is a free k[xP, yP]-module.

Before the proof of Theorem 4 .4  we recall a  few facts for M-sequences in
regular local rings (see [6]).

Let R  be a commutative ring and M  a non-zero R -m o d u le . We denote by
hd(M ) the projective dimension of M . An element r e R  is called a zero divisor
with respect to M  if there is a nonzero element in o f M  such that rm =0.

Assume now that R  is a  regular local ring with the maximal ideal nt and
M + 0  is a finitely generated R-module.

We say that a sequence tn  of elements of nt is an M-sequence i f  t i is

not a zero divisor with respect to  M/E tiM ,  for each n. It is known
J=1

(see [6 ] p .97 ) that all maximal M-sequences have the same length, this length
we denote by s(M ).

Note the following theorem which is due to  A uslander, Buchsbaum and
Serre (see [6] p.98)

Theorem 4.5. L et (R , nt) be a  regular lo ca l r in g  a n d  M  a  finitely generated
R-module different from zero. Then

hd(M )=Krull-dim(R)— s(M ).

Proof o f  Theorem 4 .4 .  Denote R=k[xP, y P], A =I[x , y ], M =d(A ), K =k [x , A d
and consider the following exact sequence of R-modules:

(I)

Let nt be a maximal ideal o f R .  Then th e  sequence (1 ) induces the exact
sequence of Rm-modules:

(2) - - " P  A m O.

Since Rm i s  a  regular local ring and M m  is  a  finitely generated Rm -module
different from zero, we have (by Theorem 4.5)

hd(M m ) = 2 —s(Mm).
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But M m is contained in the ring Am which is an integral domain and so, s(Mm)
> 1 .  Therefore hd(Mm)<1 and hence, by the sequence (2 )  (since A m i s  a free
Rm-module), hd(Km ) 0  and w e  have hd(K )= sup  hd(M m )-= 0 . This implies that

K  is  a  projective R-m odule and hence, by [ 7 ]  (see [4 ]) , K  1 [x , y id  is  a  free
k[xP, yP]-module.

The next example shows that if n > 3  then the assertion of Theorem 4 .4  is
not true, in general.

E x a m p le  4.6. L et c h a r ( k ) = p > 0 , n> 3 , a n d  l e t  d  b e  th e  k-derivation o f
xd  such that d(x i ) —xf, fo r  i=  1, n. T h e n  th e r in g  k[x l , x ]d  is  n o t a

fr e e  k[xf,..., 4,]-module.

P ro o f  Denote R= xfj, A = M = d(A) and  K= Ad . L et m
be the maximal ideal of R generated by x„P and consider the exact sequences
(1) and (2) as in the proof of' Theorem 4.4 . We shall show that s(Mm)=1.

Let t i = 4 /1 ... . ,  t,,= 4 / 1 . The elements t1 ,..., In generate the maximal ideal

mRm. Observe that t 1 is  not a  zero  divisor with respect to  M m , and t i eMm - ---
t i Mm (since 1 E M ) . I f  u is an arbitrary element of mRm ,  then u=aiti+•••+antn•
for some ane Rm  and  we have

u = ai dm(xi l 1) + • • • + a„dm(x„I 1)

-= dm (a l  (xi / 1 ) + • • • -I- an (x„I 1)) ,

that is, ueM m  and hence, t l uE t i Mm.
Therefore t1 i s  a m axim al Mm-sequence and hence (since all maximal Mm

-sequences have the same length), s(M m ) = 1 .  N ow , by Theorem  4.5, hd(Mm)
=n — l>2 and  hence, hd(K m )> 1. This implies that hd(K )= sup hd(K m )>1, that
is, K=k[x i ,..., xn ]d  is not a free x]-module.

Remaek 4.7. Using the same argument as in the proof o f Example 4 .6  we
may prove that if n 3  and d (x i)=4 , ) ,  where y  is  a permutation o f 11,..., nl,
then the ring xdd is not a free k[xf,..., x„] -module.
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