Rings of constants for \boldsymbol{k}-derivations in $k\left[x_{1}, \ldots, x_{n}\right]$

By

Andrzej Nowicki and Masayoshi Nagata

In this note we give several remarks on the rings of constants for a family D of k-derivations in the rings of polynomials over a field k.

1. Preliminaries.

Let us recall at first ([1]) that if $k\left[x_{1}, \ldots, x_{n}\right]$ is the ring of polynomials over a commutative ring k and $f_{1}, \ldots, f_{n} \in k\left[x_{1}, \ldots, x_{n}\right]$ then there exists a unique k-derivation d of $k\left[x_{1}, \ldots, x_{n}\right]$ such that $d\left(x_{1}\right)=f_{1}, \ldots, d\left(x_{n}\right)=f_{n}$. This derivation d is defined by

$$
d(h)=\left(\partial h / \partial x_{1}\right) f_{1}+\cdots+\left(\partial h / \partial x_{n}\right) f_{n}
$$

for $h \in k\left[x_{1}, \ldots, x_{n}\right]$.
Let k be a field, A a commutative k-algebra with 1 , and D a family of k-derivations of A. We denote by A^{D} the set of constants of A with respect to D, that is,

$$
A^{D}=\{a \in A ; d(a)=0 \text { for any } d \in D\}
$$

If D has only one element d then we write A^{d} instead of $A^{(d)}$. It is clear that $A^{D}=\bigcap_{d \in D} A^{d}$.

The set A^{D} is a k-subalgebra of A containing k. If A is a field then A^{D} is a subfield of A containing k.

Assume now that A has no zero divisors and A_{0} is the field of quotients of A. Denote by \bar{D} the set $\{\bar{d} ; d \in D\}$, where \bar{d} is the k-derivation of A_{0} defined by

$$
\bar{d}(a / b)=(d(a) b-a d(b)) b^{-2}
$$

for $a, b \in A$ and $b \neq 0$. In this situation we have two subfields of A_{0} :

$$
\begin{aligned}
& \left(A^{D}\right)_{0}=\text { the field of quotients of } A^{D} \\
& \left(A_{0}\right)^{\bar{D}}=\text { the field of constants of } A_{0} \text { with respect to } \bar{D} .
\end{aligned}
$$

The following example shows that these subfields could be different

Example 1.1. Let $\operatorname{char}(k)=0$ and let d be the k-derivation of $A=k[x, y]$ such that $d(x)=x$ and $d(y)=y$. Then $\left(A^{d}\right)_{0} \neq\left(A_{0}\right)^{\bar{d}}$.

Proof. It is easy to show that $\left(A^{d}\right)_{0}=k$ and $x / y \in\left(A_{0}\right)^{\bar{d}}>k$.
Proposition 1.2. If D is a family of k-derivations in a k-domain A then

$$
\begin{align*}
& k \subseteq A^{D} \subseteq\left(A^{D}\right)_{0} \subseteq\left(A_{0}\right)^{\bar{D}} \subseteq A_{0}, \tag{1}\\
& \left(A^{D}\right)_{0} \cap A=\left(A_{0}\right)^{\bar{D}} \cap A=A^{D} . \tag{2}
\end{align*}
$$

The proof is straightforward.

2. The case $\operatorname{char}(k)=0$.

In this section k is always a field of characteristic zero.
Lemma 2.1. If D is a family of k-derivations in a k-domain A then the ring A^{D} is integrally closed in A.

Proof. Let $a \in A$ be an integral element over A^{D} and let

$$
a^{n}+c_{1} a^{n-1}+\cdots+c_{n-1} a+c_{n}=0,
$$

where $c_{1}, \ldots, c_{n} \in A^{D}$ and n is minimal. If $d \in D$ then

$$
0=d(0)=u d(a),
$$

where $u=n a^{n-1}+(n-1) c_{1} a^{n-2}+\cdots+c_{n-1}$. Since $u \neq 0$ (because n is minimal and $\operatorname{char}(k)=0), d(a)=0$ and hence, $a \in \cap_{d \in D} A^{d}=A^{D}$.

As an immediate consequence of Lemma 2.1 we obtain
Proposition 2.2. If D is a family of k-derivations of $A=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field of characteristic zero, then the ring A^{D} is integrally closed in A. In particular A^{D} is normal.

Note the following well known ([3] p. 177)
Lemma 2.3. Let $L \subseteq K$ be a separable algebraic extension of fields. If d is an L-derivation of K then $d=0$.

This lemma implies
Proposition 2.4. If D is a non-zero family of k-derivations of $A=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field of characteristic zero, then $\operatorname{tr}^{2} \operatorname{deg}_{k}\left(A^{D}\right) \leqslant n-1$.

Proof. Let $s=\operatorname{tr} . \operatorname{deg}_{k}\left(A^{D}\right), K=k\left(x_{1}, \ldots, x_{n}\right)$ and $L=\left(A_{0}\right)^{\bar{D}}$. It is clear that $s \leqslant n$. Suppose now that $s=n$. Then $L \subseteq K$ is a separable algebraic field extension. If $d \in D$ then \bar{d} is an L-derivation of K so, by Lemma 2.3, $\bar{d}=0$ and hence $d=0$; that is, $D=0$ and we have a contradiction to our assumption.

Now let us recall a result due to Zariski ([9], see [5] p. 41)
Zariski's Theorem 2.5. Let k be a field and let L be a subfield of $k\left(x_{1}, \ldots, x_{n}\right)$
containing k. If $\operatorname{tr} . \operatorname{deg}_{k}(L) \leqslant 2$ then the ring $L \cap k\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated over k.
As a consequence of the Zariski's Theorem, Propositions 2.4 and 1.2(2) we obtain the following

Theorem 2.6. Let D be a family of k-derivations of the polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ over a field k of characteristic zero. If $n \leqslant 3$ then there exest polynomials $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $k\left[x_{1}, \ldots, x_{n}\right]^{D}=k\left[f_{1}, \ldots, f_{s}\right]$.

The next result is due to Zaks ([8], see also [2]).
Zaks' Theorem 2.7. Let k be a field. If R is a Dedekind subring of $k\left[x_{1}, \ldots, x_{n}\right]$ containing k then there exist a polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $R=k[f]$.

By Zaks' Theorem and Theorem 2.6 we have
Thorem 2.8. Let char $(k)=0$ and let D be a non-zero family of k-derivations of $k[x, y]$. Then there exists a polynomial $f \in k[x, y]$ such that $k[x, y]^{D}=k[f]$.

Proof. Let $R=k[x, y]^{D}$ and $s=\operatorname{tr} . \operatorname{deg}_{k}(R)$. We know, by Proposition 2.4, that $s \leqslant 1$. If $s=0$ then $R=k$, so $R=k[f]$, where for example $f=1$. If $s=1$ then, by Proposition 2.2 and Theorem 2.6, R is a Dedekind subring of $k[x, y]$ containing k and hence, by Zaks' Theorem, $R=k[f]$, for some $f \in k[x, y]$.

3. Closed polynomials in characteristic zero.

Consider the following family \mathscr{M} of subrings in $k\left[x_{1}, \ldots, x_{n}\right]$:

$$
\mathscr{M}=\left\{k[f] ; f \in k\left[x_{1}, \ldots, x_{n}\right] \backslash k\right\} .
$$

If $\operatorname{char}(k)=0$ and $k[f] \subsetneq k[g]$, for some polynomials $f, g \in k\left[x_{1}, \ldots, x_{n}\right] \backslash k$, then $\operatorname{deg}(f)>\operatorname{deg}(g)$ and hence, we see that in the family \mathscr{M} there exist maximal elements.

We shall say that a polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right] \backslash k$ is closed if the ring $k[f]$ is integrally closed in $k\left[x_{1}, \ldots, x_{n}\right]$.

Lemma 3.1. Let $\operatorname{char}(k)=0$ and $f \in k\left[x_{1}, \ldots, x_{n}\right] \backslash k$. Then f is closed if and only if the ring $k[f]$ is a maximal element in \mathscr{M}.

Proof. Let f be closed and assume that $k[f] \subseteq k[g]$ for some $g \in k\left[x_{1}, \ldots, x_{n}\right]$. Then $f \in k[g]$, that is,

$$
f=a_{s} g^{s}+\cdots+a_{1} g+a_{0},
$$

for some $a_{0}, \ldots, a_{s} \in k$ with $a_{s} \neq 0$. Hence

$$
g^{s}+a_{s}^{-1} a_{s-1} g^{s-1}+\cdots+a_{s}^{-1} a_{1} g+\left(a_{s}^{-1} a_{0}-f\right)=0
$$

and hence g is integral over $k[f]$. Since $k[f]$ is integrally closed in $k\left[x_{1}, \ldots, x_{n}\right]$, $k[f]=k[g]$ and we see that $k[f]$ is maximal in \mathscr{M}.

Assume now that $k[f]$ is a maximal element in \mathscr{M} and denote by E the integral closure of $k[f]$ in $k\left[x_{1}, \ldots, x_{n}\right]$. Then E is a Dedekind subring of
$k\left[x_{1}, \ldots, x_{n}\right]$ containing k so, by Theorem 2, $7, E=k[h]$, for some $h \in k\left[x_{1}, \ldots, x_{n}\right]$. Now, by the maximality of $k[f]$ in $\mathscr{M}, k[f]=k[h]=E$ and so, f is closed.

Proposition 3.2. Let D be a family of k-derivations in $A=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field of characteristic zero. If the ring A^{D} is finitely generated over k (for example, if $n \leqslant 3)$ then $A^{D}=k$ or there exist closed polynomials $f_{1}, \ldots, f_{s} \in A$ such that $A^{D}=k\left[f_{1}, \ldots, f_{s}\right]$.

Proof. Assume that $A^{D} \neq k$ and let $A^{D}=k\left[h_{1}, \ldots, h_{s}\right]$ for some $h_{1}, \ldots, h_{s} \in A-k$. Let f_{1}, \ldots, f_{s} be polynomials in $A \backslash k$ such that $k\left[h_{i}\right] \subseteq k\left[f_{i}\right]$ and $k\left[f_{i}\right]$ is a maximal element in \mathscr{M}, for $i=1, \ldots, s$. Then there exist polynomials $u_{1}(t), \ldots, u_{s}(t) \in k[t]$ such that $h_{i}=u_{i}\left(f_{i}\right)$, for $i=1, \ldots$, s. We may assume that the polynomials $u_{1}(t), \ldots, u_{s}(t)$ have minimal degrees. Now, using the same argument as in the proof of Lemma 2.1, we see that $f_{1}, \ldots, f_{s} \in A^{D}$. Hence $k\left[f_{1}, \ldots, f_{s}\right] \subseteq A^{D}=k\left[h_{1}, \ldots, h_{s}\right]$ $\subseteq k\left[f_{1}, \ldots, f_{s}\right]$, that is, $A^{D}=k\left[f_{1}, \ldots, f_{s}\right]$ and, by Lemma $3.1, f_{1}, \ldots, f_{s}$ are closed.

Proposition 3.3. Let D be a non-zero family of k-derivations in $k[x, y]$, where k is a field of characteristic zero. Denote $R=k[x, y]^{D}$. If $f \in R \backslash k$, then R is the intergral closure of the ring $k[f]$ in $k[x, y]$.

Proof. If $f \in R \backslash k$ then $R \neq k$ and, by Theorem 2.8 and Proposition 3.2, $R=k[h]$, for some closed polynomial $h \in k[x, y]$. Hence $k[f] \subseteq k[h], k[h]$ is integrally closed in $k[x, y]$ and $k[h]$ is integral over $k[f]$. This means that $R=k[h]$ is the integral closure of $k[f]$ in $k[x, y]$.

Theorem 3.4. Let k be a field of characteristic zero and let A be a subring of $k[x, y]$ containing k, such that A is integrally closed in $k[x, y]$. If $\operatorname{Krull}-\operatorname{dim}(A) \leqslant 1$ then there exists a k-derivation d of $k[x, y]$ such that $A=k[x, y]^{d}$.

Proof. Let $s=\operatorname{Krull}-\operatorname{dim}(A)$. If $s=0$ then $A=k$ and we have $A=k[x, y]^{d}$, where, for example, d is such k-derivation of $k[x, y]$ that $d(x)=x$ and $d(y)=y$.

Assume that $s=1$. Then A is a Dedekind subring of $k[x, y]$ containing k (see [2] Theorem 1) hence, by Theorem 2.7, $A=k[h]$ for some closed polynomial $h \in k[x, y] \backslash k$. Consider k-derivation d of $k[x, y]$ such that $d(x)=\partial h / \partial y, d(y)=$ $-\partial h / \partial x$. Then $h \in k[x, y]^{d} \backslash k$ and we see, by Proposition 3.3, that $A=k[x, y]^{d}$.

4. The case $\operatorname{char}(\boldsymbol{k})=\boldsymbol{p}>\mathbf{0}$.

Throughout this section k is a field of characteristic $p>0$.
Denote $A=k\left[x_{1}, \ldots, x_{n}\right], R=k\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$. It is well known that A is a free R-module on the basis (p-basis)

$$
\left\{x_{1}^{\left.i_{1} \cdots x_{n}^{i_{n}} ; i_{1}<p, \ldots, i_{n}<p\right\}}\right.
$$

and hence, in particular, A is a noetherian R-module.
If D is a family of k-derivations of A then $R \subseteq A^{D}$ and so, A^{D} is an R-submodule of A. Therefore we have

Proposition 4.1. If D is a family of k-derivations of $A=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field of characteristic $p>0$, then there exist polynomials $f_{1}, \ldots, f_{s} \in A$ such that

$$
A^{D}=k\left[x_{1}^{p}, \ldots, x_{n}^{p}, f_{1}, \ldots, f_{s}\right] .
$$

If $\operatorname{char}(k)=2$ and $n=2$ then the following proposition shows (if $D \neq 0$ and s is as in Proposition 4.1) that $s=1$.

Proposition 4.2. Let k be a field of characteristic two and let D be a non-zero family of k-derivations in $k[x, y]$. Then there exists a polynomial $f \in k[x, y]$ such that $k[x, y]^{D}=k\left[x^{2}, y^{2}, f\right]$.

Proof. If $k[x, y]^{D}=k\left[x^{2}, y^{2}\right]$, then $k[x, y]^{D}=k\left[x^{2}, y^{2}, f\right]$, where $f=1$. Assume that $k[x, y]^{D^{D}} \neq k\left[x^{2}, y^{2}\right]$. Let f_{1}, \ldots, f_{s} be as in Proposition 4.1, and let $f_{i}=a_{i} x+$ $b_{i} y+c_{i} x y+u_{i}$, where $a_{i}, b_{i}, c_{i}, u_{i} \in k\left[x^{2}, y^{2}\right]$, for $i=1, \ldots, s$.

We may assume that
(1) f_{1}, \ldots, f_{s} do not belong to $k\left[x^{2}, y^{2}\right]$,
(2) $u_{1}=\cdots=u_{s}=0$.

Moreover, we may assume that
(3) there is no elements $v_{i} \in k\left[x^{2}, y^{2}\right] \backslash k$ such that $v_{i} \mid f_{i}$, for $i=1, \ldots, s$.

In fact, if for example $f_{1}=v g$, where $v \in k\left[x^{2}, y^{2}\right] \backslash k$ and $g \in k[x, y]$, then for any $d \in D, 0=d\left(f_{1}\right)=v d(g)$, that is, $d(g)=0$ and hence $g \in k[x, y]^{D}$ and we have $k[x, y]^{D}$ $=k\left[x^{2}, y^{2}, g, f_{2}, \ldots, f_{s}\right]$.

Denote by L the field $k\left(x^{2}, y^{2}\right)\left[f_{1}, \ldots, f_{s}\right]$ and let $m=\left[L: k\left(x^{2}, y^{2}\right)\right]$. Then $m=4,2$ or 1 . If $m=4$ then $L=k(x, y)$ and we have a contradiction to the assumption that $D \neq 0$. If $m=1$, then $k[x, y]^{D}=k\left[x^{2}, y^{2}\right]$.

Assume now that $m=2$. Then $L=k\left(x^{2}, y^{2}\right)\left[f_{i}\right]$, for some $i=1, \ldots, s$ (since $k\left(x^{2}, y^{2}\right)$ [$\left.f_{i}\right]$ is a two-dimensional subspace of L over $k\left(x^{2}, y^{2}\right)$), and, in particular, we have $a f_{1}=b f_{2}+c$, where a and b are non-zero elements in $k\left[x^{2}, y^{2}\right]$ and $c \in k\left[x^{2}, y^{2}\right]$. But $c=0$, by (2), hence $a f_{1}=b f_{2}$. Let $u=\operatorname{gcd}(a, b), a=u a^{\prime}, b=u b^{\prime}$, for $a^{\prime}, b^{\prime} \in k[x, y]$. Then $a^{\prime} f_{1}=b^{\prime} f_{2}, \operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$ and it is easy to show that $k \backslash\{0\} . k\left[x^{2}, y^{2}\right]$. This implies that $a^{\prime}\left|f_{2}, b^{\prime}\right| f_{1}$ so, by (3), a^{\prime} and b^{\prime} belong to $a^{\prime}, b^{\prime} \in$ Therefore $f_{1}=c f_{2}$, for some $c \in k \backslash\{0\}$ and we have

$$
k[x, y]^{D}=k\left[x^{2}, y^{2}, f_{2}, f_{3}, \ldots, f_{s}\right] .
$$

Repeating the above argument we see that $k[x, y]^{D}=k\left[x^{2}, y^{2}, f_{s}\right]$.
If $\operatorname{char}(k)=p>2$ then the assertion of Proposition 4.2 is not true, in general.
Example 4.3. Let $\operatorname{char}(k)=p>2$ and let d be the k-derivation of $k[x, y]$ such that $d(x)=x$, and $d(y)=y$. Then there is no polynomial $f \in k[x, y]$ such that $k[x, y]^{d}$ $=k\left[x^{p}, y^{p}, f\right]$.

Proof. Suppose that $k[x, y]^{d}=k\left[x^{p}, y^{p}, f\right]$, for some $f \in k[x, y]$, and consider the monomials $x^{p-1} y$ and $x y^{p-1}$. We see that these monomials belong to $k[x, y]^{d}$. Therefore

$$
x^{p-1} y=u(f) \text { and } x y^{p-1}=v(f),
$$

for some polynomials $u(t), v(t) \in k\left[x^{p}, y^{p}\right][t]$, and we have

$$
-x^{p-2} y=(\partial / \partial x)\left(x^{p-1} y\right)=u^{\prime}(f)(\partial f / \partial x)
$$

$$
\begin{gathered}
x^{p-1}=(\partial / \partial y)\left(x^{p-1} y\right)=u^{\prime}(f)(\partial f / \partial y) \\
y^{p-1}=(\partial / \partial x)\left(x y^{p-1}\right)=v^{\prime}(f)(\partial f / \partial x) \\
-x y^{p-2}=(\partial / \partial y)\left(x y^{p-1}\right)=v^{\prime}(f)(\partial f / \partial y),
\end{gathered}
$$

where $u^{\prime}(t), v^{\prime}(t)$ are derivatives of $u(t)$ and $v(t)$, respectively. This implies, in particular, that $u^{\prime}(f)=a x^{p-2}$, for some $a \in k \backslash\{0\}$. Hence $x^{p-2} \in k\left[x^{p}, y^{p}, f\right]=$ $k[x, y]^{d}$. But it is a contradiction, because $d\left(x^{p-2}\right)=-2 x^{p-2} \neq 0$.

Observe that if $n=2$ and $p=2$ then, by Proposition 4.2, every ring of constants is a free $k\left[x^{p}, y^{p}\right]$-module. Now we shall show that it is also true for an arbitrary $p>0$ and $D=\{d\}$.

Theorem 4.4. Let k be a field of characteristic $p>0$ and d a k-derivation of $k[x, y]$. Then the ring $k[x, y]^{d}$ is a free $k\left[x^{p}, y^{p}\right]$-module.

Before the proof of Theorem 4.4 we recall a few facts for M-sequences in regular local rings (see [6]).

Let R be a commutative ring and M a non-zero R-module. We denote by $\mathrm{hd}(M)$ the projective dimension of M. An element $r \in R$ is called a zero divisor with respect to M if there is a nonzero element m of M such that $r m=0$.

Assume now that R is a regular local ring with the maximal ideal m and $M \neq 0$ is a finitely generated R-module.

We say that a sequence t_{1}, \ldots, t_{n} of elements of \mathfrak{m} is an M-sequence if t_{i} is not a zero divisor with respect to $M / \sum_{j=1}^{i-1} t_{j} M$, for each $i=1, \ldots, n$. It is known (see [6] p.97) that all maximal M-sequences have the same length, this length we denote by $s(M)$.

Note the following theorem which is due to Auslander, Buchsbaum and Serre (see [6] p.98)

Theorem 4.5. Let (R, \mathfrak{m}) be a regular local ring and M a finitely generated R-module different from zero. Then

$$
\operatorname{hd}(M)=\operatorname{Krull}-\operatorname{dim}(R)-s(M)
$$

Proof of Theorem 4.4. Denote $R=k\left[x^{p}, y^{p}\right], A=k[x, y], M=d(A), K=k[x, y]{ }^{d}$ and consider the following exact sequence of R-modules:

$$
\begin{equation*}
0 \longrightarrow K \longrightarrow A \xrightarrow{d} M \longrightarrow 0 \tag{1}
\end{equation*}
$$

Let \mathfrak{m} be a maximal ideal of R. Then the sequence (1) induces the exact sequence of R_{m}-modules:

$$
\begin{equation*}
0 \longrightarrow K_{\mathrm{m}} \longrightarrow A_{\mathrm{m}} \xrightarrow{d_{\mathrm{m}}} M_{\mathrm{m}} \longrightarrow 0 \tag{2}
\end{equation*}
$$

Since R_{m} is a regular local ring and M_{m} is a finitely generated R_{m}-module different from zero, we have (by Theorem 4.5)

$$
\operatorname{hd}\left(M_{\mathrm{m}}\right)=2-s\left(M_{\mathrm{m}}\right)
$$

But M_{m} is contained in the ring A_{m} which is an integral domain and so, $s\left(M_{\mathrm{m}}\right)$ $\geqslant 1$. Therefore $h d\left(M_{\mathfrak{m}}\right) \leqslant 1$ and hence, by the sequence (2) (since A_{m} is a free R_{m}-module), $h d\left(K_{\mathrm{m}}\right)=0$ and we have $\operatorname{hd}(K)=\sup _{\mathrm{m}} \operatorname{hd}\left(M_{\mathrm{m}}\right)=0$. This implies that K is a projective R-module and hence, by [7] (see [4]), $K=k[x, y]^{d}$ is a free $k\left[x^{p}, y^{p}\right]$-module.

The next example shows that if $n \geqslant 3$ then the assertion of Theorem 4.4 is not true, in general.

Example 4.6. Let $\operatorname{char}(k)=p>0, n \geqslant 3$, and let d be the k-derivation of $k\left[x_{1}, \ldots, x_{n}\right]$ such that $d\left(x_{i}\right)=x_{i}^{p}$, for $i=1, \ldots, n$. Then the ring $k\left[x_{1}, \ldots, x_{n}\right]^{d}$ is not a free $k\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$-module.

Proof. Denote $R=k\left[x_{1}^{p}, \ldots, x_{n}^{p}\right], A=k\left[x_{1}, \ldots, x_{n}\right], M=d(A)$ and $K=A^{d}$. Let \mathfrak{m} be the maximal ideal of R generated by $x_{1}^{p}, \ldots, x_{n}^{p}$ and consider the exact sequences (1) and (2) as in the proof of Theorem 4.4. We shall show that $s\left(M_{m}\right)=1$.

Let $t_{1}=x_{1}^{p} / 1, \ldots, t_{n}=x_{n}^{p} / 1$. The elements t_{1}, \ldots, t_{n} generate the maximal ideal $\mathfrak{m} R_{\mathrm{m}}$. Observe that t_{1} is not a zero divisor with respect to M_{m}, and $t_{1} \in M_{\mathrm{m}}$ > $t_{1} M_{\mathfrak{m}}$ (since $\left.1 \notin M\right)$. If u is an arbitrary element of $\mathfrak{m} R_{\mathfrak{m}}$, then $u=a_{1} t_{1}+\cdots+a_{n} t_{n}$, for some $a_{1}, \ldots, a_{n} \in R_{\mathrm{m}}$ and we have

$$
\begin{aligned}
u= & a_{1} d_{\mathrm{m}}\left(x_{1} / 1\right)+\cdots+a_{n} d_{\mathrm{m}}\left(x_{n} / 1\right) \\
& =d_{\mathrm{m}}\left(a_{1}\left(x_{1} / 1\right)+\cdots+a_{n}\left(x_{n} / 1\right)\right),
\end{aligned}
$$

that is, $u \in M_{\mathrm{m}}$ and hence, $t_{1} u \in t_{1} M_{\mathrm{m}}$.
Therefore t_{1} is a maximal M_{m}-sequence and hence (since all maximal M_{m} -sequences have the same length), $s\left(M_{\mathrm{m}}\right)=1$. Now, by Theorem 4.5, hd $\left(M_{\mathrm{m}}\right)$ $=n-1 \geqslant 2$ and hence, $\operatorname{hd}\left(K_{\mathrm{m}}\right) \geqslant 1$. This implies that $\mathrm{hd}(K)=\sup \operatorname{hd}\left(K_{\mathrm{m}}\right) \geqslant 1$, that is, $K=k\left[x_{1}, \ldots, x_{n}\right]^{d}$ is not a free $k\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$-module.

Remaek 4.7. Using the same argument as in the proof of Example 4.6 we may prove that if $n \geqslant 3$ and $d\left(x_{i}\right)=x_{v(i)}^{p}$, where v is a permutation of $\{1, \ldots, n\}$, then the ring $k\left[x_{1}, \ldots, x_{n}\right]^{d}$ is not a free $k\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$-module.

Institute of Mathematics
Copernigus University
Torun, Poland
and
Department of Mathematics
Shinshu University
and
Department of Mathematics
Кyoto University

References

[1] N. Bourbaki, Elements de Mathématique, Algébre Commutative, Chapter 2, Herman, Paris, 1961.
[2] P. Eakin, A note on finite dimensional subrings of polynomial rings, Proc. Amer. Math. Soc., 31 (1972), 75-80.
[3] N. Jacobson, Lectures in Abstract Algebra, Vol. 3, Van Nostrand, Princeton, N.J., 1964.
[4] T.Y. Lam, Serre's Conjecture, Lect. Notes in Math., 635, 1978.
[5] M. Nagata, Lectures on the Fourteenth Problem of Hilbert, Tata Institute of Fundamental Research, Bombay, 1965.
[6] M. Nagata, Local Rings, Interscience Tracts in Pure and Appl. Math., No. 13, Interscience. New York, 1972.
[7] C.S. Seshadri, Triviality of vector bundles over the affine space K^{2}, Proc. Nat'l. Acad. Sci. U.S.A., 44 (1958), 456-458.
[8] A. Zaks, Dedekind subrings of $k\left[x_{1}, \ldots, x_{n}\right]$ are rings of polynomials, Israel J. Math., $9(1971)$, 285-289.
[9] O. Zariski, Interpretations algebrico-geometriques du quatorzieme probleme de Hilbert, Bull. Sci. Math., 78 (1954), 15j-168.

