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Logarithmic transformations on elliptic
fiber spaces

By

Yoshio FujimoTo

Introduction.

In [6], Kodaira introduced the notion of logarithmic transformations and showed
that any elliptic surface possessing multiple singular fibers can be reduced to an
clliptic surface free from multiple fibers by means of logarithmic transformations. In
this paper, we will generalize this logarithmic transformations on an elliptic thre-
efold.

The difficulty is that we cannot perform logarithmic transformations along
arbitrary divisors on the base spacc. So the following problem is fundamental.

Problem. Given an elliptic threefold f: X — § over § and a divisor ¢ on
S, define “logarithmic transformations along C” and give necessary and sufficient
conditions to perform logarithmic transformations along C.

Such an attempt was first done by Perrson [8] and later developed by
Nishiguchi [7], Ueno [9] and the present author. They used logarithmic trans-
formations to construct strange non-Kiahler degeneration of surfaces. In [3], the
author found the simpler method to construct them.

In §1, we shall review the theory of logarithmic transformations on an elliptic
surface. In §2, we shall define logarithmic transformations along divisors and
give partial answers to the above problem. In §3, as an application of theorem
(2.1), we shall construct examples of non-Kdihler degenerations of elliptic surfaces.

In §4, we shall consider logarithmic transformations in the case where the
divisors have only normal crossings. And we shall construct an elliptic threefold
which has a multiple fiber of type m/, and a singular fiber of type I along the
divisor which are crossing normally.

The author wishes to express his sincere thanks to Professor K. Ueno and Pro-
fessor A. Fujiki for useful advices and to the referee for many useful suggestions.

Notation and convention.

By an elliptic fiber space f: V— W, we mean that fis a proper surjective
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morphism of a complex manifold ¥ to a complex manifold W, where each fiber
is connected and the general fibers are smooth elliptic curves. In particular, when
W is a surface and V is a three dimensional complex manifold, we say that V is
an elliptic threefold over W. Here, ‘“‘surface” means a two dimensional (not
necessarily compact) complex manifold.

For a compact complex manifold X, we use the following notation.

b;(X): the i—th Betti number of X.
£(X): the Kodaira dimension of X.
Kx: the canonical bundle of X.
Pn(X)=dim, H*(X, 0(mKx)).
Ny/w: the normal bundle of V in W, where V is a submanifold of I~
h?i=dim HI(X, 2%)
¢(X)=dim,H'(X, Ox)
e=exp (2zy—1 [m)
If D is a divisor on X, we set
[D]: the line bundle on X determined by D
[D]*: the dual bundle of [D]

(D, D): the self-intersection number of D

§1. Logarithmic transformations.

In this section, we review the theory of logarithmic transformations on an
elliptic surface by Kodaira. (c.f. [7], [8])

Let f: S — C be an elliptic surface. Assume that f is smooth on f-'(U), where
U is a neighborhood of the point a€C with a local coordinate z. Each fiber is
a smooth elliptic curve and we can normalize periods of each fiber in the form
(1, o(z)), where w: U — H={z€C; Im(z)>>0} is a holomorphic mapping. Define
an automorphism g(k, /) of UXC by

gk, ) : UXC —> UXC
(z, &) ¥ (7, CHko(r)+])

Put G=<g(k, I); (k, )€Z* and X=UXC|G. Then X is smooth and by a natural
morphism ¢ : X —> U, (z, {) —> 7, X is an elliptic surface over U. Here, by the
symbol (z, [{]), we denote the point on X corresponding to a point (z, {)e U X C.
We infer readily that f:S|f~@y — U and ¢ : X—— U are isomorphic as elliptic
fiber spaces over U. Take the m-sheeted covering U of U:U={t| <™} —>
U={r|<Le}, ==t™

Define an analytic automorphism Z(k, ) of UxC by
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(1) gk, D) : (¢, Q) ¥—> (¢, CHko(t™)+])
and put X=UXC/(g(k, 1); (k, [)eZ?.
Next, define an automorphism g of X as follows.

g: X — X
w w

(t, [€]) == (emts [C+1/m])
Put Y=2X/{g>. There is a natural holomorphic mapping
h:Y — U
w LU

(&, [€)] — 1™,

where we denote the point on Y corresponding to a point (¢, [(])eX by the
symbol [¢, [{]]. Y is an elliptic surface over U.

Since h*(r)=[mkE], where E is a divisor on Y defined by ¢{=0, ¥ has a multiple
fiber of type ml, at the origin. By (1); there is an isomorphism A defined by

A :Ylg"(U*) ™~ X|¢;}‘(U*), where U*=U/{a}.

1 (o, [e-20)

Now we patch together S| f-1(C/{a}) and Y|U by the isomorphism A, and obtain
a new elliptic surface §* over C. By our construction, the elliptic surface $* —
C has a multiple fiber of type ml, at aeC, and S*|C/{a} is isomorphic to S|C/
{a}. We write S*:=L,(S) and call L, the logarithmic transformation.

Theorem (1.1). (Kodaira [5]) Let f: 8 —— C be an elliptic surface and assume
that S has multiple fibers of multiplicity m; at P;eC (i=1, 2,...,1.) i.e. f*[Pi]=[m;:E;]
where E; is a reduced divisor f~1(P;).

(1) Then S can be obtained from the basic member B —— C by twisting and successive
logarithmic transformations, that is,

S=LpLp,++Lp,(B"), where B is obtained by twisting B—— C by ye H'(C, 0(B})).
(2) (The canonical bundle formula)

The canonical bundle of S has the following form.
Ks=f*(Kc— f)+32(m;—1)[E;], where f is a divisor on C with deg (f)=—x(0s).

Let f: V—— W be an elliptic fiber space.
Put 3 : ={weW| f is not smooth over f~(w)} and let F be an irreducible com
ponent of 3§ with dim F=dim W-1. For a general point x of F, there exists a
curve Z in W such that Z meets F transversally and f-!(Z)—Z is non-singular.
Then f-!(x) is a singular fiber of the elliptic surface f: V| — Z and the multi
plicity of f~1(x) is independent of the choice of Z and x. So the multiplicity of the
multiple fibers along F are well-defined.
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§2. Logarithmic transformations along a divisor.
We first state our main theorem in this section.

Theorem (2.1.) Let S be an arbitrary surface (not necessarily compact) and C a
compact smooth curve on S such that its tubular neighborhood is analytically isomorphic to a
neighborhood of the zero section of Ncis. Let m be an arbitrary integer which divides the
self-intersection number (C.C). When ne HY(S, O(E)) is given (E is a smooth elliptic
curve), there exists an elliptic threefold X over S which satisfies the following conditions.

(1) Xlse =5 (SXE)]ssc.
(2) X has multiple fibers of multiplicity m along C.
If we put =0 in theorem (2.1), we get the following corollary.

Corollary (2.2). Under the same conditions as in theorem (2.1), there exists an
elliptic threefold X over S which satisfies the following conditions.

(1) Xls)c5(S|C) X E, where E is a smooth elliptic curve.
(2) X has multiple fibers of multiplicity m along C.

Corollary (2.3.) If C is a compact smooth curve on S such that (C.C)<4—4g (g
is the genus of the curve C), theorem (2.1) holds automatically.

Proof of Corollary (2.3). By Grauert [4], if H!(C, Oc®, Ng%')=0 for every i >0,
the tubular neighborhood of C is analytically somorphic to the neighborhood of
the zero section of N¢s, where Oc is the sheaf of germs of holomorphic vector
fields. In particular, when (C.C)<4—4g, this is the case. qg.c.d.

To prove theorem (2.1), we need the following lemma.

Lemma (2.4.) We assume the same conditions as in theorem (2.1). Then there
exists a line bundle L on C which is a m-th root of Ns.

Proof of theorem (2.1) By assumption, we can identify the neighborhood of the
zero section of N¢;s with the tubular neighborhood of C and we call it U. Take
an open covering {U;}ier of U with local coordinate (z;, {;) such that U;NC is
defined by {;=0, and {; is a fiber coordinate of N¢is. Then U= {(zi, wi); wr={;}
is an m-sheeted cyclic covering of U; ramified only along C N U;. Now take a line
bundle L as in lemma (2.4). The transition functioin of N¢/s (resp. L) is expressed
by {fi;} (resp. {gi;}) and ne H'(U, 0(E)) expressed by a cocycle {;;} with respect
to the covering {U;} of U. As f;;=g5, {i=w!, and §;=f;;{; it follows from
lemma (2.4) that w;= g;;w; and U:u U; is well patched.

Then U —> U is an m-sheeted cyclic'covering of U branched along C.
v u

(25, wi) — (25, wf")
Next, identify (z;, wi, [7:])€ UiXE with (zj, wj, [p;])€U;xE if and only if
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;=2
(1) w;= gijl;
k
[vi]=[vj+ﬁlog(gij)+vij], k€Z, (k, m)=1

We can easily see that (1) is well-defined. By patching I;x E’s in this way, we
obtain an elliptic threefold M over .
Define g;€ Aut(M |7,) as follows.

(2) gi: Mg, — Mg,
w U]

((ziJ Wi, [711'])) Lad ((Zia eqli, [77$+k/m]))

gi is compatible with the above patching and defines ge Aut(M).
Put M =M|.,. The group <{g> acts on M freely and properly discontinuously.
Hence M is smooth. There is a natural holomorphic map

o: M — U
v w

((Zi, Wi, [771])) = ((ziv w?'))’

where we denote the point of M corresponding to a point ((z;, w;, [7:])) €M |5,
by ((zi, wi, [7:])). By this morphism, M is an elliptic threefold over U.

We have @*[C]=[mE;] as divisors on M, where E, is the support of @-1(C),
so M has multiple fibers of multiplicity m along C.
By (1) and (2), there is an isomorphism

A: Mlye 2 [UJC)XET"
@ o) > (23, ey [ i gmrlog i) ])
In fact, by (1) an d(2), we have
(15— g tog (i) | = nj— g frlog 0) + 5 .

By patching M |yc and [(§/C)X E]” by the above isomorphism 4, we obtain an
elliptic threefold X over §, which satisfies the properties (1) (2).

q.e.d.

Remark (2.5.) In corollary (2.2), if (C.C) 20, by theorem (11.9) in Kodaira
[6] iii, 6;(Y) is odd. Hence the elliptic surface ¥ over C is non-Kéahler. Conse-
quently, if C is a rational curve (resp. a smooth elliptic curve,) Y is a Hopf
surface. (resp. a Kodaira surface.) (cf. Kodaira [5]) In particular, X is not in the
class € in the sense of Fujiki [1]. That is, X cannot be bimeromorphic to any
compact Kahler manifold.

Remark (2.6.) As pointed out by the referee, the above theorem also holds
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for the case where there exists a holomorphic retraction a : U — C. This can be
easily checked by rewriting the proof without coordinates.

Definition (2.7.) In the proof of theorem (2.1), we patch M |yc and ((S/C)
X E)" by the isomorphism 4, and obtain an elliptic threefold X — §. We call
this process a logarithmic transformation along C.

Theorem (2.8) Let f: X —— S be an elliptic threefold over S. (S is not necessarily
compact.) Assume that X has multiple fibers of multiplicity m along C, where C is a compact
smooth curve on S. Then

(1) we have the following exact sequence.
©(S/C) — Z/m — 0.

Moreover, if we put (C.C)=d, we have m|d.
(2) The elliptic threefold X can be obtained by performing logarithmic transformations along
C to an elliptic bundle over S.

Proof. Take a sufficiently fine open covering {Ux}x of § and C is locally defined
by é=0. Put E=Supp (f-1(C)), f“(Ux)=thU7,.,, and E is locally defined by
{g=0n}.

As we have f*[C]=[mE], we can take an m-sheeted cyclic covering X of X defined
by X=U{r= SF*éh= ()™}, where {{x} is a fiber coordinate of the line bundle
[E]). Take the normalization X* of X. Clearly X* — X is an m-sheeted unramified
covering of X.
By our construction, the number of the connected components of each fiber of
X* — 8 is m outside C. So take the Stein factorization of
X —5 X*— .

N/
From our construction, it is clear that §—— . is an m-sheeted cyclic covering
ramified only along € and § is irreducible.
Therefore we have the following exact sequence.

0 (S/C) — Z/m — 0.

Combining this with the following lemma (2.9), we can find an m-sheeted cyclic
covering of the tubular neighborhood of C branched along C.
The arguments of Kodaira [6], p. 571, 572 implies the theorem.

Lemma (2.9.) (Wavrik [11]) Let M —— W be an k-sheeted cyclic covering of W
branched along C. Then we can find a line bundle F on W so that, over a suitably fine
covering {V;} of W, M may be identified with the submanifold of F defined by the equations
&:=¢;, where &; is the fiber coordinate of F over V;, and ¢;=0 is the equation of Cin V.

q.e.d.

Corollary (2.10) Let f: X—— P? be an elliptic threefold over P* with constant
moduli. Assume that f is smooth over f-' (P?*/C), and X has multiple fibers of multiplicity
m along C, where C is a smooth curve of degree d in P2,
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Then we have m|d. In particular, there is no elliptic threefold that has multiple fibers along
a line in P2.

Proof. This follows from theorem (2.8) and the fact that =,(P?/C)~Z/d.

Corollary (2.11.) Let C be a smooth curve of degree d(=2) in P Then any
tubular neighborhood of C is not isomorphic to that of the zero section of Ny

Proof. Assume the contrary. We have (C.C)=d?, so from theorem (2.1), there
exists an elliptic threefold over P? that has multiple fibers of multiplicity 42 along
C. But corollary (2.10) implies d%|d.

This contradicts d=>2.

q.e.d.

§3. Degeneration of elliptic surfaces.

Let f: X—> A be a surjective, proper morphism from a three dimensional
complex manifold X to the unit disc A={t€C; |t|<l}. Assume that each fiber
is connected and f is of maximal rank on f-!'(A*), where A*=A/0. We call f:
X —— A a degeneration of surfaces, X;:=f1(t), te A*, the general fiber, and the
divisor X, on X defined by f=0 the singular fiber. We decompose X, into irreducible
components and put X,=31r;S;. By litaka [5], we have x(X;)=#(Xy) for any ¢,

t’e A*. The following conjecture is well-known.
Conjecture. £(S;) <x(X;) for all i, teA*.

By Ueno [12], the conjecture holds when X is bimeromorphic to a Ké&hler
manifold, and when £(S;) =1, it holds if we do not assume that f is a ¢-morphism.
On the other hand, it does not necessarily hold if we consider the non-Kahler
degenerations. (Sec Nishiguchi [9].)

In this section, we will give another counter examples to the above conjecture
by means of logarithmic transformations defined in §2.

Example (3.1.) There exists a degeneration of elliptic surfaces @ : X — C,
(that is, there exists a proper surjective morphism from a three dimensional com-
pact complex manifold X to a curve C) which satisfies the following conditions.
(1) X*=0"1(C/0) —> C/0 is isomorphic to SX (C/0), where § is an elliptic surface

with k=—c0 and O is a point on C.

(2) The singular fiber of ¢ over the point O has the following form. X,=Z,+
QZZH—E;:Z’ where Z; is an elliptic surface with £=0, or 1, and Z/s and Z’s
are Hopf surfaces.

Construction.

Step 1. Let C be an arbitrary smooth curve and let £ be a smooth elliptic
curve with the period (1, ), Im (z)>>0. For any element e H'(P!, 0(E)) we
put §=(P'XE)". That is, § is obtained by twisting P!X E—P* by »={y;;}. By
Kodaira [5], [6], if » is an element of finite (resp. infinite) order of H(P, 0(K)),
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then S is an elliptic ruled surface. (resp. Hopf surface)
Clearly #(S§)=—oo.

Step 2. Next, by a natural projection p : P*XC— C, P!XC is a P!-bundle
over C. Take any fiber of p (say, f) and n points on f. (say, pi, pz, - pa) We blow
up P'xC at the points p;(i=1, 2,..., n).

And we obtain exceptional curves of the first kind E;(i=1, 2,..., n).
Secondly, take an arbitrary point Q; on each E;, again blow up at each Q;.
(i=1, 2,...., n), and we obtain exceptional curves of the first kind A;.
(=1, 2,...., n). Finally we thus obtain a new surface Y.
ie. Y=00006 00,0505 Qp.(P'XC). (See Figure 1.)
Here we denote by f (resp, E;) the strict transform of f (resp, E;).
Step 3. Now, we shall try to perform logarithmic transformations along each

I
P B P'XC
1
Pat g points
P.+
|
(1) —sC
blow up at P,
E - R *---
P, Q. take one point Q, at the
E, --—-—“-P--< —————— 6( --- exceptional curve of the
2
E, -------m- S _,(.f__ first kind E,
P. Qn
i c arain blow up at Q
0
f
— VA
E \
_l P, . vQ
E, S Q.
i P, \ \a, We call this new surface
P ‘\\\ Qn Y.
a,
1
I
i
+ »C
0

Figure 1.
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Ei(i=1,2,....., n) on Y. yelI'(P', O(E)) can be naurally textended to an element
p€H(S, O(E)) by taking pull-back. ILiach E; is a smooth rational curve with
(E;)?=—2, so the assumptions of corollary (2.3) are satisfied. Therefore, by corollary

(2.3), there exists an elliptic threefold g : X — Y over Y which satisfies the fol-
lowing properties.

(1) X sty S {(Y [ B[+ [ En) X E}r neHY(Y, O(E))
(2) X has multiple fibers of multiplicity 2 along Es.

g

Step 4. By the natural morphism X —— Yi» C, we consider X as a fiber
space over the curve C. Put ¢=pog.
We have S=(P'x E)7, ye H!(P!, 0(E)) in step 1.

And from (1) in step 3, it follows that
X p-croy 58 % (C/0)

where f'=¢1(0), 0€(.

Therefore the general fiber X:(i12:0) of ¢ is isomorphic to § and we have
£(X1)=x(S)=—oco for ¢==0.
On the other hand, the singular fiber X, can be written as

X=2Z,+232Z;+3Z;,

where Z, (resp. Z;, Z;) is an elliptic surface over flresp. E;, A).

On Y, the curve f intersects each E; transversally and in view of (2) in Step
3, the elliptic surface Z, over f(=~P!) has multiple fibers of multiplicity 2 at each
P;(i=1,2,..., n).
Therefore by the canonical bundle formula in theorem (1.1), the Kodaira dimension
of Z, can be calculated as follows.
If n>4, x(Z,)=1.
If n=4, we have x(Z,)=0.
By remark (2.5), the elliptic surface Z; over E;(i=1,2,...., n) is a Hopr surface.

Remark (3.2). In Step 2, it does not matter how many times we blow up. In
this respect, we can construct infinitely many examples like this.

Example (34).

(1) Let E,, E, be any smooth elliptic curves. When peH'(E,, 0(E,)) is given
arbitrarily, we twist an elliptic surface E;XE, — E, by p={y;} and get a
new elliptic surface S. i.e. S=(E,XE,)". By Kodaira [7], [8], if 5 is of finite
(resp. infinite) order in H!(E,, 0(E.)), S is an abelian surface. (resp. a Kodaira
surface.) The same method as in example (3.1) can be applied to this situation.
Then an elliptic surface with k=0 degenerates into an elliptic surface with k=1.

(2) Similarly we can easily construct examples such that a hyperelliptic surface
degenerates into an elliptic surface with ¢=1.

(3) In the same way, we get a degeneration of an elliptic K3 surface or an
Enriques surface.
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§4. Some examples.

In this section, we consider an clliptic threefold which has multiple fibers
along simple normal crossing divisors. First, we work in a local situation. We
consider generalized logarithmic transformations on the polydisc.

Proposition (4.1.) For an arbitrary integer 2=2, let (my, my,...., my) be a A-tuple
of positive integers with m;=2 for all i. and assume that any two of them are relatively
prime. Put Di={z;€C :|z;|<e}, i=1,2,.... 2. Then there exists an elliptic fiber space X
over D:=D;XDyX -+ XDy which satisfies the following conditions.

(1) X|ptxptxexpt >D¥ X DFX -+ X D¥ X E,
where D¥={z;€C; 0<|z;1<e} and E is a smooth elliptic curve with the period (1, 7),
Im ()>0.

(2) X has multiple fibers of multiplicity m; along {z;=0} for each i.

Moreover, f: X — D is flal.

Proof. Let D;={t;€C; |t;| <"} — Dj={z,€C; |z;| e}
w w

1; — ™

be an m;-sheeted cyclic covering of D;. (1<i<2)
Put D‘I::D",XDZX---)(DX. Then from the assumption,

D=DxDyx--XDy —> D=D;XDyX XDy
w w

(Liy tgaeeey B) — (U714, 157 ..., 1Y)
is the mym,---my-sheeted cyclic covering of D, and we have
Gal (D/D)™~Z|m®Z[m®---DZ|mx.
Now, let us consider an analytic automorphism g of Dx E defined by
g:Dlxﬁzﬁ'-‘xﬁxxE—»[)lxijzli(mxf)xxE
(t1y laseeens, By [E]) ¥ (e,,,,t,, emlaee...y Emybr, [C+WD,

where ey, is a primitive m;-th root of unity.
Put X :=DXE/{g>. The automorphism g acts on DXE freely and properly dis-
continuously, so X is smooth. There is a natural holomorphic map

f:X — D=D;XDyX-- XDy
w U}

(tis laeeeey by [C]) ¥ (170, 3l 139),

where by (t1, ts,..., t, [{]) we denote the point of X corresponding to a point
(F1, 12yeeey oy [€]))eDxE. By this morphism, X is an elliptic fiber space over D.
Clearly X has multiple fibers of multiplicity m; along {z;=0}. There is an
isomorphism
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A X | ptxoys st > DFXDEX - X D¥XE
w w

(t1y Layonn, b, [C]) (z;"*, [T ALY [C—ﬁ Qn_j’il—-vlog(t,-)])

where a;(1 <i<<{2)€Z are defined as follows.

By the assumption, there exists q;€Z(1 <7<{2) such that
(¥)  aiymymg---th;---my=1 mod m; for each i.

Take such afs and fix them.

q.e.d.
Next, we shall give a generalization of proposition (4.1).

Proposition (4.2.) Let 2=>2 be an arbitrary positive integer and let (my, ma,..., ma)
be a A-tuple of positive integers with m;=2 for all i, and assume that any two of them are
relatively prime. Put Dy={z;€C; | z;|<e} i=1, 2, and take A affine lines (say, l;, 1<
i<<2) on DX D,, where the arrangement of lines is arbitrary. Then there exists an elliptic
threefold X over D=D;X D, which satisfies the following conditions.

(Here line denotes the divisor defined by linear forms.)

Y
(1) Xlip &1, >5(D]UL) X E, where E is a smooth elliptic curve.
i=1 i=1

(2) X has multiple fibers of multiplicity m; along each ;.
Moreover, if the lines are in a general position, (that is, if they have no multiple points
of multiplicity more than two,) X — D is flat.

Proof. We may assume that /, [, are defined by z;=0, z,=0, respectively.
Besides D, and D,, we take (2-2) discs.
(say, Dy={2,€C; | 25| <e},..., Dh={a2€C; |aa|<e}.

A
By proposition (4.1), there exists an elliptic threefold ¥ over HlD, which satisfies

the following conditions.

(1) Yot pfxwxy > D¥X D¥X -+ X D¥XE

(2) Y has multiple fibers of multiplicity m; along z;=0 for each 1.
Now, let /{s(3<<i<2) be defined by f;(z1, z2)=0 respectively.
Define a submanifold V of D;XD,X--- XD by

V= {Zs=f3(Z1. Zz),..., szﬁ(51, Zz)}.

By a natural projection onto D;XD,, V is isomorphic to D:=D;xD,. We
restrict the elliptic fiber space Y — D;XD,X---X D, over V, and by projecting
over DX D,, we finally obtain an elliptic threefold Y|, over D;X D;. If the lines
are in a general position, Y|, is smooth. However, if they have multiple points
of multiplicity more than two, Y |v has one-dimensional singularities along a fiber.
So, take a non-singular model X of Y|y, then X — D, X D; is the desired elliptic
threefold.

by
(1) By (1) in proposition (4.1), X is trivial over D/U/;.
i=1
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(2) By (2) in proposition (4.1), X — D has multiple fibers of multiplicity m,, ms,
Ma,..., my along z;=0, 2,=0,

ly= {fs(zl, Zz) =0}

h={fi(z1, 22)=0}  respectively.
q.e.d.

Remaek (4.3.) If X— D is flat, the relative canonical bundle is given as

A
follows. KX/D=2,:(m,~-l)Ei, where f*[l;]=[m;E;].

Remark (4.4.) Proposition (4.2) is still true if we replace lines by any
divisors with normal crossings as is clear from the proof.

Proposition (4.5.) Let D,, D, be discs, D,={xeC; |x|<e}, D,={yeC;
| y|<e}. Let m, n=>=2 be arbitrary integers. Then there exists an elliptic threefold X over
DX D,, which has regular fibers over D¥ X D¥, multiple fibers of multiplicity m along x=0
and those of multiplicity: n along y=0. Moreover, if m and n are relatively prime, f:X
— DX D, is flat. Otherwise it is not flat.

Proof. (1) If m and n are relatively prime, the assertion follows from Pro-
position (4.1)

(2) Next, we consider the case when m=n.
Define an automorphism g of C? by g : (21, 22) > (em21, €,'2;). Then, C?/{gd has
a cyclic quotient singularity of type (m, m—1) at the origin, and C?/{g) is
isomorphic to {(w, x, ) €C?®; w™—xy=0} The minimal resolution of this singularity
is given as follows.
Let U;(0<i<m—1) be m copies of C? with coordinates (u;, v;) respectively.

N m—1
We construct a complex manifold U=UU; by patching U/s in the following way.
i=1
(w1, v1)=(u", ugpy) on UyNU,
(g, v2)= (w2, v7*) on U;NU;

(us, vs)=(uz", udvy) on U,NU,

{7 is a minimal resolution of C2/{gd> with (m—1) exceptional curves defined by
l)°=111=0, u1=u2=0, """ .

m

(l) (lU: X, .y)=(u0v05 Uy

l);)"—l, vO)

m=2

— -1 2
= (w01, w2, uloy)

m—3

= (uav, uy "0y 3, ujvd)

m—4

_ -3 4.3
= (ugvs, u3' 07 °, uzs)
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= (Um-1Um-1, Um-1, Um_1Um—y) if m is even
(Um-10m-1, Um-1, Un_iUm_y) if m is odd
Now, put U= {w™=xy}. By the natural holomorphic mapping
U—> DiXDy, (w, %, 3) — (%, ),

U is an m-sheeted cyclic covering of D, XD, branching along {x=0} and { y=0}.
Let E be a smooth elliptic curve with the period (I, r) Im(z)>>0 and define an
automorphism of UXE as follows.

g:UXE — UXE
w w

(w) X5 J» [c]) = (e,,.w, x5 D5 [c+l/m])

U has a cyclic quotient singularity at the origin, and the minimal resolution U
of U is given above.

By an easy calculation, g can be extended to an automorphism g* of UxE
in the following way.

(2) g*: t?U>J<E — waE
(o5 vo, [€]) ¥ (emito, vo, [€+1/m]) on UoXE
(w1, 01, [€]) ¥ (€50, €htn, [§+1/m]) on UsXE
(g, v2, [C]) > (€uz, €700, [C+1/m]) on Uz XE
(us, vs, [€]) > (en'us, €03, [(+1/m]) on Usx E

if m is even, (upm-1, Om-1, [£]) = (em¥m-1, Um-1, [E+1/m])

if mis Odd, (um_l, Um-1, [C]) — (um-l, emUm-~1, [C+1/m])
{g*> acts on UXE freely and properly discontinuously, so the quotient space X:=

n Um-le

Ux E|{g*> is smooth. Then we have the following commutative diagram.

g* acts

UXE X=UxE[Kg*
projection
g* acts
U e |)
minimal resolution
U g acts UKg>>3Dyx D,

By the natural holomorphic mapping f: X — D;XD,, X is an elliptic threefold
over D;XD;. Let E, (resp. E;) denote the divisor on X defined by u,=0 (resp.
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Um-1=0 or v,-,=0) and S, S,,..... , Sm-1 denote the divisors on X defined by v,=
n=0, yy=u,=0,..... respectively.
Then Supp (f~1(0))=8,US U--USp-1,50 f: X —> D, XD, is not flat at the origin.

From (1),
(f*x)=mEi+ (m—1)S1+(m—2)S:+ - +Sm-
(f*»)=814+28+ -+ (m—1)Sp-1+mE,

(*(0)) =m(Bat Ext . 55)

Let {x;=0} (resp. {7;=0}) be the local defining equation of the y-axis (resp. x-
axis) with the origin deleted. Then we have (f*x;)=mD (resp. (f*y;)=mD) as
the divisor on X.

In this sense, X — D;X D, has multiple fibers of multiplicity m along the x-axis
and the y-axis. g* acts on (m—1) exceptional curves and accordingly we gct (m—1)
rational curves, (:‘1, C?z,..., ém_,. And

in (2), put =0, vy=0v,=0,---. FEach §; is an elliptic surface over C',-, and has
multiple fibers at the two points where C; intersects ;- and Ci,y. (See Figure 2.)

u=0

the proper transform of x=0

multiple fibers of um_, =0 (or vu-,=0)

A
S, = C

the proper transform of y=0

Figure 2.

(3) We treat the case when m and n(=2) are arbitrary integers.
Let d be the greatest common divisor of m and n, and put m=m’d, n=n'd, where
m’ and n’ are relatively prime. Let

Di={seC; |5| <™} —> Di={xeC; |x|<e}, x=s"
Dy=1{teC; 1| <™} —> Dy=1{yeC; | y|<e}, y=t™

be an m’-sheeted covering of D; and an n’-sheeted covering of D, respectively.
Then Dyx Dy — DyxDy: (s, t) > (s™. t™) is an m’n’-shected cyclic covering
with the Galois group = Z/m'@Z/[n’.

Now, put U= {wd=st}. By the natural morphism U — DIXDZ, (w, s, t) —
(s, t), Uis a d-sheeted cyclic covering of Dyx D, branching along s=0 and ¢=0.
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Define an automorphism g fo UXE as follows.

g: UXE— UXE
v w

(w, s, t, [£]) — <pw, emeS, €nt, [C+_1__]>

m'n’d

2ry - . . N
Here, p=exp<%> and from the assumption, there exists a primitive m’-th

(resp. n’-th) root of unity e, (resp. e,) such that pd=enepn.
The minimal resolution I/ of U is given in (2). g can be extended to an
automorphism g* of Ux E as follows.

g* : (uy, 0oy [£]) — (%uo, enVo, [C+l/m’n’d]) on UyXE
2
(us, o1, [€]) — (%ul, ep_w”" [---]) on U;xE
3 v -
(ug, v2 ,[E]) — (p—'uz, %vz, [~-J> on U;XE

én

if d is even, (ug-1, v4-1, [(]) — (;‘o—lud_l, emVd-1, []) On Uy XE

if dis odd, (ug-1, va-1, [C]) — (em,ud_l, ei,,.,”d-l’ [...])

g* acts on UXE freely and properly discontinuously, so the quotient space X is
smooth. There is a following diagram.

g* acts
UxE —X
projection 1

g acts
—UKg®

Se——

J minimal
resolution

By the natural morphism f: X —— D;XD,, X is an elliptic threefold over D, XD,
which has the desired properties. q.e.d.

Remaek (4.6.) The relative canonical bundle is given as follows.
m—1
In case (2), we have Kx,olxp,g(m—l)[gl} S;i+E.+E;]
-1
In case (3), we have Kx,p=(m——l)E1+(n—l)E2+zE{m—l—i(m’—n’)}Si.

, where we use the same notation as in case (2). In both cases, we have

Kx/D=f*(—m“—lx+ n—1 )’)

m n
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Proposition (4.7.) Let Cy, C; be smooth curves on S crossing normally. Assume that
there exist line bundles on S such that [Cy]~L®™, [Cy)~LP". Then there exists an
elliptic threefold X over S which has multiple fibers of multiplicity m (resp. n) along C,
(resp. Cg).

Proof. Let d be the greatest common divisor of m and n, and put m=m’'d,
n=n’'d, where m’ and »n’ are relatively prime. We have [n/C,+m’C;]= (L,L,)®"?¢,
So there exists the m’n’d-sheeted cyclic covering of §, branching along C; (resp.
C;) with multiplicity m (resp. n). So the problem can be reduced to the local
case, and proposition (4.5) implies proposition (4.7).

Now, we shall perform logarithmic transformations along a divisor with
singularities.

Example (4.8.) Let D,={xeC; |x|<e}, D,={yeC; | y|<e} be discs, and
let E be a smooth elliptic curve. Let M :={z=—(x*+ »?)} be a six-sheeted cyclic
covering of D;X D, branching along C={(x, )€ DX D,; y*+x*=0}.

Define an automorphism g of M X E as follows.

g MXE — MXE
w w

(x, )’, 2, [C]> - (x) _y: €2, [C+1/6])

M has a simple elliptic singularity at the origin and the minimal resolution M
of M is given as follows.

Let o be the infinite point on the elliptic curve X34Y2+1=0.

Take the line bundle [—oo], the dual bundle of [], and let M be obtained by
contracting the zero section of it. Then we have (x, y, 2)=(t2X, t*Y, t), where
tis a fiber coordinate of [—]. geAut (M XE) can be extended to an autom-
orphism g* of MXE as below.

(x, 3, 2 [D)=(2X, Y, ¢, [(D— (& X, ¥, [])

le le*

(5, 3 eo2, [C+1[6])= (12X, (3 ¥, est, [C+1/6]) = (est, EX, ¥, [C+1/6])

g* acts on M X E freely and properly discontinuously, so X:=M X E[{g) is smooth.
We have the following diagram.

g* acts
MXE M XE[(g*>=X
pI‘Q]CCllOﬂ
g* acts
Mi<g*> f

mmlmal

resolution

g acts

M[(gy>5D; X D,
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By the natural morphism f: X +—> DX D,, X is an elliptic threefold over DX D,
and has multiple fibers of multiplicity 6 along C. And it is not flat at the origin.
The special fiber X,=f-1(0)=[t=0] is a hyperelliptic surface. X is an elliptic
surface over P! and has 3 multiple fibers of multiplicity 2, 3, and 6 respectively.

Next, we shall construct an elliptic threefold which has a Kodaira singular
fiber (c.f. [8]) and a multiple fiber of type ml, along the divisors that are crossing
normally.

Example (4.9.) Let D,={xeC; |x|<e}, D;={yeC; | |<e} be small discs.
Let D= {seC; |5s|<e¥?}, D,={teC; |t|<e"?} be double coverings of D; and D,
respectively. i.e. x=s%, y=t=
Let E be a smooth elliptic curve with the period (1, 7), Im(z)>0.

We define analytic automorphisms 4, g of D;x D,X E as follows.

D xDyxE —> D\xDy;x E
V] w

I (j) L [C]) — (_J) t; [_C])
g:(s, &, [E]) V> (s, —¢ [€+1/2]).

Let G be the finitc group gencrated by /% and g, and form the quotient space
X :=D;xD,xE|G. G acts on X properly discontinuously but not freely, so X is
a normal complex space with singularities. f has four fixed loci (s, ¢, [{])=(0, ¢, 0)
(0, ¢, 1/2) (0, t, £/2) (O, ¢, 1/2+47/2) and gh=hg : (s, ¢, [{]) — (—s, —¢, [—C+1/2])
has four fixed points (s, ¢, [{])=(0, 0, 1/4) (0, 0, 3/4) (0, O, 1/4++</2) (0, O, 3/4
+7/2).

Next, we construct a resolution of X.

(1) On the neighborhoods of the four fixed locus of 4, blow up D;xD,XE at

the center of t-axis, so that the action of f can be extended there.

(s, ¢, O)=(uo, ¢, v)=(v', t, W'v') where w'=1, v'=w

(U’, { u/) (5) l C) < (u, {, Z))
h
(=v, t,u) — (=5, 1, =) «— (u, t, —0)
Put w=0?, w’=v? then we have w’=u*w, uu’=1, and this is a minimal resolution
of X.

(2) At the 4 fixed points of hg=gh, in terms of local coordinate (x, ¢, ), hg=gh
1s represented in the form

ti(x, t, Q) (—x, —t, —0).

So X has cyclic quotint singularities.
Let G be the cyclic group of analytic automorphism of C? generated by
g (21, 22, 23) = (— 21, — 22, —23). The resolution of singularities of X can be given
as follows. Let U;, i=1, 2, 3, be 3 copies of C* with coordinates (w}, w?, w?).

3
We construct a complex manifold M= UU; by patching U/s as follows.
i=1
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wh=wf_,|wi_y, k=xi—1, 1
wiTl=1[wi_,
w;= (w]_,)*wiZ{
Meromorphic mappings Ty, : C* — U; i=1, 2, 3

4 Zi-
(Zl, 22, Zs) > (z_:)"-’ ;il ) (zi)zv

Zi+ 23 )
Z .—‘zi

induce a meromorphic mapping T :C}/G — M.

3 .
Put E-—-E/l' {w;=01n U,}, then E is isomorphic to P? and the meromorphic mapping
T gives an isomorphism 7 : C3/G~{0} > MJE.
Therefore M is a non-singular model of G/G. q.e.d.
From the above remark, we obtain a non-singular model X of X.

By a natural holomorphic mapping f: X —— D;XD,, X is an elliptic threefold
over D;XD,. In terms of local coordinates, f is given by

(vPw, %)
(%, 2)=(s% t2)={ —(1)
(w?, t%)
(w}, wi(w})?) on U,
(%, 3)=(s? %) =1 ((wh)*w}, w}) on U, —(2)

((w3)?w3, (wf)*wi)on U,

We denote by §; and E; (1 <i<(4) the exceptional divisors in (1) and (2) res-
pectively. E; is analytically isomorphic to P? and is defined by wj=0. Let Z, and
Z, be the strict transform of {s=0} and {¢t=0} respectively. Then we have, as
divisors on X,

4 4 4
(f*¥)=2Z,+ 28+ BE;, (f*)=2Z:+3E;.
The singular fiber X, over the origin (¥, y)=(o, 0) can be written as
4 4
X‘,:2(s=t:0)+21‘,(w=t=0)+g‘iE,-,

so f: X— D, XD, is not flat over the origin.

By the construction, f: X — D, xD, has multiple fibers of multiplicity 2 along
the x-axis and singular fibers of type I¥ along the y-axis. The relative canonical
bundle of f: X — D;x D, is as follows (c.f. [10]). (See Figure 3.)

4
. m
When m is even, we have mK}/Dl,DZ=mZI+2——2 E;.
i=1
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P]
f acts
4 fixed
locus of f
S x
t
P)
g acts
X T .
_— —_— p X =the non-singular
model of X
resolve
? > singularities
' E, =P*

7
,
,

<
<L~
>

where * denotes the 4 fixed points

of g
Figure 3.
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