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Some remarks on the positivity of fundamental
solutions for certain parabolic equations with
constant coefficients

By

Masahiro KiMura and Ken’ichi OTtsuka

§1. Introduction and results.

It is well known that the fundamental solution (4xt)-"? exp(—|x|2/4t) of the
heat operator —g—t—A is nonnegative. In this note we will show that this property
does never hold for the parabolic equations of higher order with respect to the
space variables. Here we will restrict ourselves to the case of single equations
with constant coefficients. The general case of parabolic systems with variable
coefficients will be treated in the other paper by the latter author.

Let us consider the Cauchy problem

3 3\@
(L) Lu=-2uft, x)—lnlgzmaa(ﬁ) u(t, 1)=0 0<t< T(<), xeR",

(1.2) u(0, x)=u,(x).
We assume that:

(¢) m is a positive integer and aa are real constants,
(1) L is parabolic, i.e. there exists a positive constant & such that for any EER™ we have

Am(iE)ElaEmaa(if)aé —al&pm.

We say that E(t, x) is a fundamental solution of L if it satisfies
LE(t, x)=0 0<t< T, x€R",
and  lim E(t, x)=0(x),
t>+0

where d(x) is Dirac’s delta. Since the coefficients of L are constant, one of the
fundamental solutions is explicitly given by means of the Fourier transform:

Eq(t, x) =Scxp {ix6+1{Aom (1) + A’ (1)) } dE,
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I A (16)= (1),
where (&) |a|§2ma (28)

4&=(2z)~"d¢ and the integration is extended over the whole space R".

There are many works on the uniqueness of the solution of the problem
(1.1)-(1.2). Here we only mention the following theorems.

Theorem 1.1 (Ticklind. See [1] Chap. 3 Sec. 2.). Let u(t, x) be the solution
of (1.1) with initial data u,(x)=0, and satisfy the inequality

ogstlgr lu(t, x)|<exp(lxlh(lx]))

where h(r) is a continuous function such that the integral S:h(r)l“””dr diverges.  Then u(t,

x) is tdentically equal to zero.

It follows from this thecorem that for each initial data wue(x) in CF(R"), there
exists a unique solution of (1.1)—(1.2) which is bounded in [0, T]XR".
As for the distribution solution, we can easily show the following theorem.

Theorem 1.2 (See [2] Chap. 5 Sec. 2). For each uy(x) in &', there exists a
unique solution u(d, x) of (1.1)—(1.2) which belongs to C*([0, T); &’). Here &’ is the
space of temperale distributions.

In each case, the unique solution is given by

u(t, x)=E,(t, x) * u(x)ESEo(t, x— p)uo(y)dy.

So, E,(t, x) is the unique fundamental solution which gives the unique solution
in each space mentioned above. And it is ecasily shown that FEy(f, x) is real-
valued, because the coeflicients of L are real constants.

Now our main result is the following.

Theorem 1.3. If m=2, then E\(t, x) is not nonnegative. More precisely, there exist
positive constants to and c, such that for any t in (0, t,) there exists some x€R" which
satisfies

Ey(t, x) < —ct™™%™,

§2. Proof of Theorem 1.3.
In order to prove Theorem 1.3, let us introduce an auxiliary function
F(t, x)=t"*"E (¢, 11/*"x), O0<t< T, x€R".
Then we have following propositions on this F(t, x).
Proposition 2.1. As ¢ tends to 0, F(, x) converges uniformly to the function
Fy(x)=exp[ixn+Aen(in)]dy.

Proposition 2.2. F(x) satisfies
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SFo(x)dx=l,
and [xeFo(x)ax=0 if 0<jal<2m.
Proof of proposition 2.1. Introducing new variables »=¢/?"¢, we have

F(t, x)= t"/z'"Sexp[it‘/z"‘xe+ t{Aem (16) + A’ (16)} ] 8¢

= flexplizn-+ Aun(in) + 14! (i) .
Now, there exists some constant M such that
[tA (18 -12mp )| << M (| P-4 1) if 0<e<L1.

So, using the estimate |¢*—1|<|z]e'?! with zeC, we have
|F(t, x) —Fo(x)lggl exp(Azm(in))| exp{t4’ (it=1/*™y)} —1 |4y

S M (1714 1) expl—8 |7 7+ M {7 7=+ 1) Ty,

=M/tl/2m,

where 0<t<{1 and M’ does not depend on (4, x). Thus, F(t, x) converges uniformly
to Fy(x), as ¢ tends to 0.

Proof of proposition 2.2. By the formula of the Fourier transformation, we have
.0 \* .
(2.1) §xeFo(x)de= (i) "exp {Aum(i€) .

On the other hand, we can write as

() “exp (Aun(i€)} = pa(&)exp {Aim(ic)},

where po(¢) is a polynomial in & of degree (2m—1)|a|. It is easily shown by in-
duction that p.(£) is the linear combination of monomials of degree 2mj—|a| with
J=1,2,..., la|. So it does not contain the constant term unless |a|=2km, k=0, 1,
2,---. That is, the right hand side of (2.1) is equal to 0 if 0<|a|<2m, and equal
to 1 if |a|=0.

Proof of Theorem 1.3. From the Proposition 2.2, it follows that

SFo(x)dx=l

and (1x0F(x)dx=0

if m=2. So Fy(x) must change its sign, i.e. there exist two points x® and x© in
R"™ and a positive constant ¢, such that
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Fo(x®) < —2¢y and Fo(x®) = 2¢,.

Since Fy(x) is continuous and F(¢, x) converges to Fy(x) uniformly, there exist
some ¢ >0 and ¢, >0 such that

Fo(t, x) < —¢p for 0<t<ty, |x—x@| <.
Then

Eo(t, x)=t""2ME(t, ¢-12My) < — b =m2m
if 0<t<ty, |x—1/2™x®| g2, Thus our theorem is proved.
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