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Supplements to my previous papers;
a refinement and applications

By

Masahiko TaANIGUCHI

Introduction.

This article is supplements to my previous papers [2] and [3]. In §1, we
give a refinement (Theorem 1) of a fundamental variational formula ([3, Theorem
1]), which leads us more precise formulas than those in [3, Theorems 2-4] and
also gives another proof of [2, Theorem 2]. (See §2.) As direct applications of
Theorem 1, we show in §3 a variational formula for the modified canonical
injection, and in §4 formulas under variation by connecting boundary arcs.

§1. A refinement of the variational formula.

In this paper, we use the same notations as in [3], and show the following
refinement of our previous formula in [3, Theorem 1].

Theorem 1. Under the same notations and assumptions as in [3, Theorem 1]
(also ¢f. Remark at the end of [3, §1]), it holds that

§5 s = 0§ N9 4 2520, 3(0,.0(0) 43, (0) F 0,,0) b, (0))
Fo(t+3] 5%,
j=1

where ¢, =a; (2;,)dz;,;, and ¢=b; (2; )dz; on Uj'k={|,:j,k]<l} Sor every j and k.

Proof. In the proof of [3, Theorem 1], we have shown that

S‘YR'; s = I”SSK Po,0" #/\*P

+ 35, anFo@)- (—s2-(7F) - (N2ndznm + o),

where V,;={0<]z;,|<1/2} U {0<] z;,I<1/2} for every j.

Set al-s(z‘j'k»tvs)="§man.j,k.t.s'zj.lc.t,sn on {s;<|2; 44,1 <1} and b;,(z;,)=

ﬁobn'j,k-zj,k" on [—Jj_,c for every j and k. Fix j and k, then
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5= ot s FuslD) (= si2) (15) (11 2z
= (0 (F o (10%) (= 5312) (679]7) (2b3.0(2) yrdrde

1/2 27 oo
=—s; S S O iktss® (F (1) -€0)" Ebm‘1 e rmeim0 e drdg

0 n=—o0

=—27‘L’S Ebn]L A_p- 2)/»2«5 ( /F (7)"+2)dr

Here by [3, Lemma 2-i)], g, (2) is uniformly bounded on {s;<|z;,,|<1/2},
we can find, by Cauchy’s integral formula, a constant M such that |a, ;.. |<

M|s} for every negative n. And since r<{F, (r) and Sllz(sj/Ft,s(r)z)dr=l, we have

—2mhy ;p ag kit 0(§ 51*%)

=—2mb; 1(0) a_y ; 1, F0(s%).

i =g 2 .
Now since z;,,,=7;532;,1, on {s3<|z;;, <1}, where g (z) is well-
defined and holomorphic, we can see that

a-z,j,/c,t,sz_’lj'-‘?"ao,js—kw
And since a,;,, ; converges to a; +(0) by [3, Lemma 2-ii)], we conclude that
Iy =2mn;-s5b;1(0)-a;,4_(0) +o(s?).

Summing these /;, up, we have the desired formula. q.e.d.

§2. Remarks on the formulas of Schiffer-Spencer’s type.

First, using Theorem 1 instead of [3, Theorem 1] in the proofs of [3, The-
orems 2-4], we can see the following

Remark 1. In [3, Theorems 2, 3 and 4], respectively, we can replace
o(|(¢, s)Il) by the following more precise quantities

(Th2) 2 Rel S 735 (24,0,1(0)-a4,2(0) + 841,0(0) z,,1(O)] + ot ),
(Th3) 25 1m[ 7453 g (004180 + By 4(0) -0, (OD)] + (11, ), amd
(Th) R[S 7,53 (8001(0)bypo0) + by pa(0) by (0] + o(l(t, S)I):

Here we set 8(d”, Ro)=ay004,1(23. 1)z and (¢, R)=bgey 4 1(24.1)d2y ), ON
U, for every h and &,
X={hel[l, n]: C, is essentially trivial}

(which we have assumed to be coincident with {m+1, ..., n} in [3, §2]), and
finally
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Now note that ¢(g, R,) in [3] is identical with —i-¢(g; R;) in [2], and that
the classical Schiffer-Spencer’s variation in [2] is a special case of pinching
deformation, where g#,=0, n=1, and U and the parameter s=s, are chosen in a
special manner. In particular, we see that

10(C;. Ry ), =flog(1}s).
Using this fact instead of [3, Theorem 5], we can realize the following

Remark 2. The formulas in [2, Theorem 2] can be shown by Theorem 1
and the same argument as in the proofs of [3, Theorems 2-4].

§3. A formula for the modified canonical injection.

In this section, we use also the notations in [1]. Fix (¢, s) arbitrarily, and let
H, (®) be the projection of H; () to the orthogonal complement I,  of
IR, Ry in I'(R,,, R), and set

Ay (o) =Hy(0) +i*H, ()

t,s

for every wel',(R,). Also denote by I' (R, , R,) the real Hilbert space consisting

of all square integrable holomorphic differentials ¢ on R, such that S<p=0 for
c

every ce L(R, ,R,). Then we have the following

Proposition. The linear map A, is a (real) isomorphism between I',(R,) and
I' (R, R,) for every (t, s). Moreover, it holds that

[ Re 4y 0) = o

Jor every o€, (Ry) and 1-cycle d on Ry.

Progf. It is clear that I', ( is isomorphic to I'y(R, ,, R,)/I"\(R,,, R,). Hence
by [1, Theorem 1-i)], H, is an isomorphism between I'; - and I",(R,).

Next a€l'; ; if and only if a€l'y(R,,, R;) and —(*a, a(c))r, =(a, *a(c)) s,
=0 for every ceL(R;,, R,) by definition, which is equivalent to the conditio'r:
that Sc*a=0 for every ceL(R
r',(R

1o R,). Hence acl'y, if and only if ati*ae

1o &), which shows the first assertion.

Finally, since Sd*a(c)=0 for every ceL(R,,, R,) and l-cycle d on R, we

have the second assertion by [l, Lemma 5]. q.e.d.
Now by Theorem 1, we can show the following

Theorem 2. For every l-cycle d on Ry and wel',(R,), it holds that

[ 1m 4, @)= [ 1m 4,40) = - 1m({ 4,(0) 2A%00, R)
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+ 27r-Im[i;:njsﬁ(aj‘l(()).ad‘j_Z(O)—i—aj’Z(O) “a4;,(0)] + o(t+}§s§-),

where 4, (0)=w+*o=a;,(2;,)dz;, on Uj,kfor every j and k.

Proof. TFix a l-cycle d and wel",(R)). We set §, =*H; (w)—i-Hy (0) and
¢o=—1+4; (w). Then, letting (a;, )j-, be the unique solution (cf. [3, §4]) of
the equations

n
Scj*Hf,,s(”’) =k§ak;t.s'j~cj¢(("k* Ry (j=1..... H).

it holds that
H ,
(pl,szaf.s_j}:]]aj;l.s'(ﬁ((‘j’ Rt,s)'

Here recall that 6 converges to ¢,, strongly metrically as |(¢, 5)| tends to

0 (cf. the proof of [1, Theorem 4]). In particular, every Sc*Hf‘ .(w) converges
’ ]

to Y *»=0, hence so does every a as | (¢, s)| tends to 0. Hence by [3.
Jej

Jitis
Theorem 6]. ¢, converges to ¢, , strongly metrically as [ (¢, s)| tends to 0. And

since
14, (@) lr;, 211 H, (o) llr, = 2]| Hy (o),

{14, (@)l } is bounded by [I, Lemma 3]. Thus we conclude that ¢, satisfies
the conditions 1)-3) in [3, Theorem 1].

Now set ¢=0(d, R,), then it is clear that ¢ satisfies the conditions A) and B)
in [3, Theorem 1]. And recalling that

If,,s(lm @1,5)= _If,,s(Hf,,>(w)) =—w=Im ¢,

by [1, Lemmas 6 and 7]. we can show similarly as in [3, §4] that

Sd %’S—Sd §00,0=Sd Im 4, (o) _Sd Im Ao.o(“’):ReSSR3 Sof.soft_.;/\*‘/'-

Hence by Theorem I, we conclude the desired formula. q.e.d.

§4. Variation by connecting boundary arcs.

Let {S;}/., be a finite set of Riemann surfaces with (not necessarily closed)
boundary, and P={pj.k};’=|_,f=1 be a finite set of mutually disjoint boundary
points of them such that §;NP=#¢ for every i. Fix a neighborhood W, of p, .
and a local coordinate z;, on I; such that (W =W={z1<l, Im z=0}
and z;,(p;)=0 for every j and k, where we also assume that W, are mutually
disjoint.

Let g, be a Beltrami differential on S, — 11", where VV:,H Wi, and S, is

I
the interior of U §,. satisfying the conditions a) and b) in [3. §1] with R;=S
= .
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and U=MW. Let f, be the quasiconformal mapping of S, , onto another §, ; with
the complex dilatation g,. Set §,, be the union of Riemann surfaces with
boundary obtained from S§,, by deleting f02;4({|z|<sj; Im 2=0}) from S, , and
identifying the newly resulting borders by the mapping 2}4%(—s%/2;,(p)) for every
(t, s) with =0 and s;€[0, 1/2). Here we assume that Sl,s is connected when
every 5,2>0.

Now set B;,=z;}({lz|<l; Im z=0}) for every j and £, and let Rj be the
double of §;, with respect to U B;,, and R, be the Riemann surface with nodes
resulting from Rf by 1dent1fyljng p;, with p,, for every j. Then we see that
above variation of § , by connecting boundary arcs is nothing but pinching
deformation of R, in [3] (, where U;, is the double of IV, with respect to B,
—{p;} for every j and k, and g, and f; are the natural symmetric extension of
the above g, and f,). Here, for every (4, s), 0(d, S,,) and ¢(q. S, ,) can be
extended to meromorphic differentials on R, , and it holds that

0(d, S,,)=0(d, R,,)+0(1,,(d), R,,), and
$(q, Si.5)=9(q, Rt.s)_¢(1t.s(q)’ R, )

for every l-cycle d and point ¢ on §,, where [,  is the canonical anti-conformal
involution of R, ; onto itself fixing the border of §,  pointwise. Hence we can
see the following

Theorem 3. i) Let d and d’ be l-cycles on S ,, then it holds that
§oo@ $10=J, o(d S0 = 2eRef[ 0(d, 8,010 S,
—Qﬂ'RC[E'lf?(ad.j.l(O) “ay ;,(0)+ay;,(0) a4 ;,(0))] + ot +j2=15§)~

ii) Let q be a point on S, —W. Let d be a l-gycle on S, ,—{q} and assume that
u; =0 on some neighborhood of q on S,. Then it holds that

[ xde( . ria@)=§ da(, ) =201 ([ g(g S40) %04, S,.0)

2 Im[ )53, 54(0)43.4(0) + by 54(0) 0, ()] + o(t+335).

iii) Let q and q' be distinct points on S, ,—W, and assume thal p,=0 in some
neighborhood of {q, ¢’} on S,,. Then it holds that

SR, fia) —ea's 9) = (Um)-Ref [ 9(g, S0.0)-uA*S(d's Soa)
—Re[E (b, 51(0) by ;a(0)+b,50(0) by 51 (0))] + o(t+ 335,

where 6(d, S, ) =a,0 ;4(2;,)d2;, and $(q¢. S, ) =beo,j.1(2;,,)d2; ), on Uj'k Jor every
Jan d k.

Proof. Since I(C;)=—C; for every j and 0(d, R, )ol=0(l(d), R,;) for every
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(¢, s) with I=1;,, we have

Sc,e(d’ S,,s)=§cjo(d, Rys)+o(d, R,_S)01=SC o(d, Ri)=0 for every j.

g+ Cp

Similarly, since ¢(q, Ry,s)ol=¢(I(q), Res), we have Sc.gb(q, S4,5)=0 for every j.

Hence Theorem 1 and the same arguments as in the proofs of [3, Theorems
2-4] gives the desired formulas. q.e.d.
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