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Classical solutions for a class of degenerate
elliptic operators with a parameter

By

Reiko Sakamoro

Boundary value problems are generally investigated for elliptic differential
operators, degenerating on the boundary of a domain ([1], [2], [3], etc.), which
are well posed in appropriate Hilbert spaces. On the other hand, classical solutions
seem little investigated except for equations of second order ([4], [5], etc.). In
this paper, we consider a class of degenerate elliptic differential operators with a
positive parameter, and we seek classical solutions, restricting the parameter small
enough.

In §1, the regularity of solutions are considered for F-type operators, analog-
ously in [6]. In §2, two types of half space problems are set for F-type operators
corresponding to the location of the invertible zone. In §3, the existence of solu-
tions for half space problems is considered for F-type elliptic operators with a
parameter, using the energy estimates for adjoint operators ([7]). In §4, some
examples of 4th order operators are given.

§1. Regularity for F-type operators.

1.1. F-type operators. Let x=(x1, %s,..., %)= (%1, *') ER", and let
A(x; D)=2a,(x)D»=§)aj(x; D’) Di,
v j=
where

D=(Dy, Dy..., Du)=(Dy, D), Dy=D.y=—ir,
xj

ay(x) EB=(R"), am(x; &)3£0 near x,=0,
and a;,(0, x’; §)70 for some j,(0< j,<m). Let /; be an integer such that
Diaj(0, x'; &)=0 for (=0, 1,..., [j—1,

and
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Di#a;(0, x'; §')£0,
where we denote

m’=mjax (J=1;) 0=m' <m).

Then we say that A is of order (m, m’) on x;=0.

Let A be of order (m, m’) on x,=0, then we have
A5 O)=2b5(x; &) (180) = b (x) (mé)"€",
where b,(x)e#=((—1, 1) X R*1), therefore we have
m—m’ ., om=1 3
Alx, §)= 2 bjum (x; &) (xi) &+ 3 a5(x; &8
Hence we have
m—m’ . , m' -1 .
A(x, D)= jzjo Bjsm (%, D’)(x1 D) Dy + Z_.:)aj(x, D"\ D
=%(x; x1:D1,D') D"+ C(x; D),
where
;.Bjnn'(x; E,)Ej=2bj+m’(x§ 5’)/7‘(51))
M) = (E+i(T— 1)) (E+i(S—2)) - (Gr+1)én.
Let us say that P(x, §)eg,, if
P(x; $)=§:py(x)5”=jépj(x; &8,
where p,(x)eZ=((—1, 1) XR*"1), then we have
Lemma L.1. Let A be of order (m,m’) on x,=0, then it is represented by
A(x; D)=%(x; x.D;, D')DY +C(x; D),
where Z(x; ) EF m-m and C(x, &) EF -1
Let A be of order (m, m’) on x,=0, that is,
A(x; D)= (x; x.D.D") D +C(x, D) (BEFm-m, CEFm-1),
then we denote
(x5 §)=2(0, «'; £),

and we call it a characteristic polynomial of A on x,=0. Moreover, we say that
the interval (ai, @) is an invertible zone of the characteristic operator @(z’; D,) if,
for any a€(a;, ay), P« (2'; D,) is invertible in L2(R™) and there exists ¢>>0 such
that
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[Pa(z’s Da)ulleacrny = cll|lzacn
for ue H= (R"™), where
Oq(2'; O)=0(2'; Citia, T').

We say that A is a F-type operator on x,=0 of order (m, m’), if there exists an
invertible zone (&, a;) of @®(z’; D,).

Lemma 1.2. Let A be of order (m, m’) on x,=0 with a characteristic poyynomial
@, then DA is of order (m+hm’+h) on x,=0 with a characteristic polynomial @y (h=
0, 1, 2,...). Namely,

DiA=0_y(x; x.Dy, D')Di*" 4%, 8(x; %Dy, D')D*™ +C(x; D),
where F(x; 0) EF mom: and Cx, &) EFhim1.

Proof. Denoting ¢=x; and z={;, we write

m'—1
A=4(t, tDy) D’ + kz‘:) cr(t)Df,

and
g(ﬁ(l’ t):D{g(t’ T), Cﬁj)(t)=chk(t).
Remarking
Dt(tDt)k=t_l(tDt)ktDt=(l.Dt—i)th’
we have
tt ; . m' -1 h h . L
DfAu:on( ) VB8, tDt)D:"’+Ju+k20:jzo( . )cgh—,)(t)D;,, +iy,
=0 ) 2 2l
4 Lind L ; bas h+m’'—1 3
=Z(1, tDy)D;*" u+j20(‘)3?(_",-‘”(t, tDy) D *u+ 3 ¢i(t)Diu
=07 j=0
=Il+12+13,
where

Ii=8_4(0, tD;)Di*™u+tg'(t, tD) D™y,
h—=1 h m—m' . s
Iz=j§)(j) E‘:. B9 (t) (¢Dy—1ij)kDr +u

h—1 m—m’

___E 2 ,Bjk(t)t’ﬂDf*""”u
j=0 k=0

h=1 m—m’ h—1 h—1—j
— 2 (t tlec+m'+ju L (t)thDEY™ 5,
jgo k§_jﬁ.7k( ) t +§) = .Bjk( ) t u

h+m’—1 )
=t4" (1, tD) D} u+ 3 ¢}’ (t)Diu,
j=m'

where we have only to set
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B=B'+B", Ti=c\+c .
1.2. Regularity. Now, let us say that ue Hi(R}) (s=0, 1, 2,---, beR) if
FrizDye L2(RY) (Iv|<s),

where #;€%#> (R) is an increasing function satisfying

X1 if x1<l,

%1={
2 if x1>2.

Lemma 1.3. Let s, k be positive integers (s=k), and let supp [u]C {x;<1}.
i) Let ueH?,,(RY), then we have ue HE(R) and

Diul,-0=0 (0< j<k—1).
i) Conversely, let us H*(R,) and let

Diul=0=0 (0 j<k—1),
then ue H3k 10 o(RY) for any €>0.

Proof. 1) First, since

tDueL(RY) (1v|<K),

we have Duel?(R}) (lv|<k). Next, denoting
uj=Diul 0,
we have
| Diu(xs, ) —tjlleernny < CRHPO0< j<k—1).

If u;2=0 for some 0< j<k—1, then we have

I Dju(x1, +)lzacrn-n =¢(>0)
near x;=0. Therefore, we have

| 27 Diulrcrpy = + oo,

which is a contradiction.
i1) There exists C>>0 such that

| D*u(x1, )|zocrnn < CRE—12
if uLk—1, [v|<s—k, and we have
| Dru(x, *)ezrn-n = C
if v; >k, |v|<s—k. Hence, we have

(37 D || riy <40 (e2>0)
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if [v|<s—k, that is,
u€ HZ, fpie(RY).

Proposition 1.4. Let A be a F-type operator of order (m, m’) on x%=0 with
characteristic polynomial ®. Let (a1, ap) be an invertible zone of ®@. Let supp [u]C {x:<1},
Au= feHy(R}) in Ry and ueHy_,.(RY) (s: large), where ay<a < p<lay and B—a is
an integer, then we have Due Hy M ®-9(RY), where M is the differential order of A.

Proof. From Lemma 1.2, we have
O_y(tD) DI+ " u=D" f—tH(1, tD)D,""""u—h:%_lgk(t)D{‘u.
Hence, multiplying ¢°** on the both sides of the equality, we have
O, (1Dy) 1A DI " = 1=+h { D! f — 151, tDt)Dﬁ"“""u—,'+§0_12‘k(t)D’,‘u}.
First, let o=8—1, then we have
Dg_1 (1D tA-1*h DI+ u=1B-1*h (D! [ — 151, tDt)Df"””'u—h:é’_l'c'k(t)Dfu} e Hy "
if B—1=a, therefore we have

I/B-l-&-hl):t-!—m’ueHs-M——lz‘
Next, let 6=p—2, then we have
, ~ , ls+m’—l__
Do (tD) B2+ D™ y=B-2+1{D} f —tH (¢, tDy) DI*" u— 2‘,0 er(t) Dy e Hy M-
k=
if B—2=a, therefore we have
ZB—2+}LD:1+""UEHg—ZM—h.
In the same way, we have
Ia+hD:l+m’uEHg-(/:!-a)M—IL.
Hence we have Due H: #-oM,

Collorary. Besides the assumptions in Prop. 1.4, we assume a<ll, then we have

Diuc*(Ry) (0< j<m'—1).

§2. Boundary value problems for F-type operators.

2.1. Condition(®). Let A be a F-type operator of order (m, m’) on x=0
with symbol

Alx; €)= {2bu(x) (1) }é" + 2‘—'—,‘”,6"(")8’

where b,,c,€%=((0, 1)XR"1). Let @ (x'; {) be the characteristic polynomial of A
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and let (a1, ;) be an invertible zone of ®. We assume
Condition (9). 0€(ay, a,), i.e. ;<0<a,.
Now, denoting

Alx; D)={Sb(x)5 DD} D + 3 () D”
= {Z8,x) (nD)"D"} Di'+ 3 () D”

=@(x; 7Dy, D/)Dr'+'"i',:cj(x; D\Di,
=
we have
s A(x; D)=Bm (x; x.D1, D')t™ (x,D;)
ml-l : .
+ 3 Ci(x; DT~ (D)= (x; Dy, D),
=
where
Bj(x; O)=4(x; L+, O).
Lemma 2.1. We have the asympiotic expansion of o :
A (x5 2Dy, D')~aty(¥'; 2:D1,D") +x1001(%"; $1D1,D") +x3ats(x"5 x1D1, D)+,
where of j(x'; O EF m,
lo(x'5 ) =P (x5 C)t™ (1),
and
Ai(x'y —ih, {)=0 (j=0, h=0, j+r=m'—1).
Proof. 1In the expression
m =1 s
(x5 x.D1,D") =B (x; 2D, D)™ (x:Dy) + -20 Ci(x; D)7~ (x0.Dn),
=
we take the asymptotic expansions near x;=0:

B (33 O~ ZBD(5 O,

Ciws O)~ZCR (5 O,
then we have
o (x; O~8D (x5 §).a™ (81) +xl{g$r}’)(x,; C)JW(CI)+C§3?—1(’C/§ C,)v//ml_l(CI)}
+3H{BP (x5 O)ut™ (L) +CP_ (x5 )™ (&)

+Cf,??_2(x’; C/)/m'_z(ﬁ)}*’ ......
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~sto(x'5 O)tada(x'; ) +alala(x's )+,
where
Ai(x'5 Q=B (x5 O™ (&)
+CIR (5 O)d™ M G+ + O3 )™ 3(G1)
if 0 j<m’—1, and
(x5 Q=8P ; O™ (1)
+CI ("5 &)™ HE) A+ CF (25 €)
if j=m’. Especially, we have
Ao(x'; O =0 (x5 )™ (&)
On the otherhand, since
M (—ih)=0 (h=0, I,..., j—1).
we have
(x5 —ih, )=0 (h=0, 1,....m"—j—1).

2.2, Half space problem. Let us consider the following two types of half
space problems. The first problem is a problem with no boundary data on the
boundary, that is, the first problem (P-I) is to find a solution ue H¥(R?) satisfying

Au=f in R,

for any feH"(R%}). The second problem is a problem with full boundary data
on the boundary, that is, the second problem (P-II) is to find a solution ue H¥(R?%)
satisfying

Au=f for xe R,
{D{u=¢j (0= j<m’y  for x,=0, ' €R"!
for any fe HV(R}) and ¢;e HV(R™1) (0 j<m').
Let u and f be smooth enough, satisfying 4 u= f, that is,
o (x5 2Dy, D)u=x7"f,

and let
u~Nxfu;,  f~3xif;,
then we have

u~Dx( et (x5 —ik, D' )uy,
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because x.Dixf=—i kxf. Hence, remarking

2i(x'; —ik, D')=0 if jk=1<m’,
we have

S (s —ik, Dug=f1om il (=m0,

J+k=1
that is,
Lo(x"; —im', D Vum+oty(x"; —i(m' —1), D ume—qt+-reee
+ (x5 0, D Yup=Ff\,
()8 Ao(x"; —i(m' +1), D’ )umesr+1(x"; —im’y, D )ugrt-e--
F A (2 —i, DYu= f1,

............

Now, we set ¢;=0 (0</<m’—1) (apparent boundary values) in case when
we consider (P-I). First, we set u;=¢;(0<!{<m’—1), then, since o, (x’; —il, D’)
is invertible for m’'<I<m'+|ay|, {u; (m’ <I{<m’+]|ayl)} are defined by (%), using
{$ (0SI<m)} and {f (0= i<la])}.

Lemma 2.2. For any N>0, there exists N’ >0 as jfollows. For any feH (R™)
and ¢;€ HV (R 1) (0 j<<m'), there exists uc HN(R™) such that

Di(f—AR)=0 (0= j<|as]) for x»=0, ¥R,
Diju=¢;(0< j<m') for x,=0, x’€R".

Proof. We define
u= S xfud(x),
0=j<m’+|ai]

where XeC7(R) and X=1 near x,=0. Then, defining
g=f—Au~3xigj,
we remark
£i=0 0= j<lal).

From Lemma 2.2, the problems (P-I) and (P-II) can be reduced to the
problems (P’-I) and (P’-II), where (P’-I) is to find a solution u€ H¥(} R) satisfying

Au=f in R},
and (P’-II) is to the problem to find a solution ue H¥(R}) satistying

{Au:f for xeR?,
Diu=0 (0< j<m') for x;=0, x*’€R"!
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for any feHY (R}) satisfying
Dif=0 (0 j<|la]) for =0, ¥ER"1

Moreover, remarking Lemma 1.3, the problem (P’-I) and (P’-II) are reduced
to (P”’-1) and (P’’-II), where (P’’-I) is to find a solution ue H¥(R}) and (P//-1I)
is to find a solution ueHY,, ,,,(R%), satisfying

Au=f in R},

for any feHY (R}) (a>ay).

§3. Elliptic problems.

3.1. Assumptions. Let us consider F-typ e operators which are elliptic with
a small positive parameter £, degenerating on the boundary of a half space:

Ri={x= (%1, &); .0, x'=(x3,..., x)ER"1}.
We assume the following conditions (A.1) and (A.2).

Condition (A.1). There exists §=(dy, 6s,..., 0,) such that

. = min 8:>0

i) 9= min 5;>0,

ii) A(x, x5 D)= 3 a,(x, &) (s*D)?,
vi=m

where a,(x, £)eg=(R7 % (0, 1)) and D=—1d,,
iii) for any >0, there exists ¢>0 such that

| A(x, 0; )= c(E+1)"
for e<x,<+0, 'R, E€R".
Condition (A.2). There exist m’ and o=(0y,..., 6,) satisfying the following
1) ~iii).
i) 0=Z=m<m, o,=1, 6,20 (j=2,..., n).

ii) A A(x, £ :°)=|v12smxi"'a,,(x, x)g”=]vEma£(x, K) (x;’?)"

= 3 d(x, F=4(x, 5; 8,

lvism
where a)(x, £) is bounded in R% X (0, 1) and
E=x7E=(x71..., ¥E,).

iii) There exists a non-zero zone (B, B;) of A’. Namely, for any B (B, B)
there exists ¢>0 such that

1470, ¥, 0; Ey+ip, &) =c(El+1)"
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for gER”, x'eR"1,

Rema.rk 1. Let Be(B, Be), then m/2 of the roots of A’(0, x’, 0; 5) 0 satisfy
Im $1<ﬁ and the others satisfy Im El>19 if E’ R™1, owing to the ellipticity of
(0, %, 0; 8.

Remark 2. It holds m’<m/2, because the multiplicity of the root §1=0 of
40, ', 05 &, 0)= 3 a0, ¥, 0)F=
j=m’
is not smaller than m’.

Remark 3. 0 does not belong to (B, B2) if m">0, because A4’(0, x’, 0; 0)
=0.

Remark 4. m’<o¢ m, owing to the ellipticity of A’(0, #’, 0; ?), where

g=min g;.
i

We say that 4 is of O-type if m’=0, 4 is of I-type if (81, B2) [0, =), and 4
is of II-type if (B1, Bz) ©(—co, 0]. We consider the problem (P-I) if 4 is of 0-type
or of I-type, and consider the problem (P-II) if 4 is of II-type.

Example. Let us consider
A=3(xD1)*—1b(kD;) +Xi(£D;)2+1,

where b is a non-zero reai constant and n is a non-negative integer. Let us see
that it satisfies (A.2). Setting

§=K5, §1=x1§1, §e=x§"“)”§z,
we have
=& — b€ +&+x,
near x;=0, where the zeros of 4’(0; ?) are
Ei=g (b (048D

Hence, (0, b) is the non-zero zone of A’ if $>0, and (b, 0) is the non-zero zone
of A’ if b<0. Moreover, if n is odd, L is invariant under the change of the
variable #; into —ux;.

Let us denote
e(Z)=(€(Zl), Z2yeeny Zn):
where ¢(z;) is a strictly increasing function satisfying

et if z2;<—1,
e(zl) ={ i
21 if Z1>1.
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Moreover, we define
Au(x)= (| Da +1)""2u(e(2) le=mco
for ueCy(R:). Then we have

Lemma 3.1. ([7]) Assume the conditions (A.1), (A.2). Let B;<B<Bs, and let s
be real, then there exist kg >0, C>0 such that

S e #Bu| < C 1372 E R A(x, &5 D)ul
lv|=m

Jor 0<e<lny, u€HZF(R%), where B=pe=> and D=r*D.
3.2, Existence theorem. Let 4* be the formal adjoint operator of 4 in L?
(R:). Namely, let
A=3a,(x, x)ﬁ",
then
A*=Dva,(x, £).

Assume that the conditions (A.1) and (A.2) are satisfied for 4, then they are also
satisfied for A* with the non-zero zone (—f8;, —pf:). Hence we have from [7]

Lemma 3.2. Let us assume the conditions (A.1) and (A.2). Let B satisfy B1<B
<B: and let s be a real number, then there exist ky and C such that

B NEe DR P S C A P A
if ue H7%(R%}) and 0<x<x,.
Let us denote
Au(x) = (1D P +1)*"*u(e(2))ls=ecor
and
Au(x) = {D%,+ (¢'(21)2D,)*+ -+ + (€' (21) " Dia)* + 1}%u((2) ) o=omicr
for ueCy(RY).

Setting s and £~ large enough, we define a Hilbert space H with an inner
product:

(w0, )= (ATV2A-S3T B A¥w, RTVEASZT ™ A%G) L,
then weH is equivalent to
3724 A=337 Baw || < 4 co.
Proposition 3.3. Assume (A.1) and (A.2). Let Bi<<B<Be, 550, 0<u<ry, and
1371724453 f || < -0,
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then there exists a solution satisfying
Au=f inR",
and
|22 | <o,
Proof. Let
1372474538 f | <+ oo,
then we have for g H
I(fs = 425 £, 3722 A-557Fg)| S| 8P -m a3 1) 1l
Owing to Riesz’ theorem, there exists we H such that
(fs )=, @)u= (A7 PA-FF+m Ak, 37124537 F 4 A%g).
Let
U= PO AR AR B e,
then we have
Au=fin R
and
RN =37 VNS5 F Axwe LA (R™).

3.3. Regularity. From the condition (A.2), 4 is of order (m, m’) on x=0
and

Az, 53 B) = 2 bl (xfel)"%’"%;"'+w<2‘.m, ay(x, £)E

=B(x, ;5 x&1, EVE +C(x, x5 ),
where b,(x, £)e#=(R, X (0, 1)). Denoting
Alx, £; D)y=a(x, r; x:D,, D)D" +C(x, x; D),
we have
20, , 0; H=B(0, ', 0; &),
which we denote @(x’; f) Let g;=-=0,=0<0+1 < ---< 04, then
o(x'; =40, ', 0; &, Coy.r, &y O,..., 0),
therefore
D(x'; §)#0 if fi<Im T <py, T'ER™.

Moreover, if m’>0, then ¢>>0, therefore @(x’, Z) is independent of ¢/, which we
denote @ (x’; El) Now, we assume
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Condition (A.3).
i) In case when m’>0, there exists (a1, ;) such that

Oe(al’ az)’ (ﬁl: ﬁz)c(ah a2)>

and O(x'; &) #0 if a;<Im &<as.
ii) In case when m’'=0, 0€ (B, Bs).

Setting (ay, a;)=(p1, Bz) when m’=0, we have
Lemma 3.4. Assume (A.2) and (A.3), then (@, ap) is an invertible zone of @(2';
D) for 0<x<ro, where

di=rdaj (j=1,2).

Theorem 3.5. Assume that the conditions (A.1)~(A.3) are satisfied. If A is of
O-type or of I-type, then, for N >0, there exist £, >0 and N'>0 such that there exists a
unique solution us HY(R%) of the half space problem (P-1), satisfying

Au= feH" (R%)in R,

if 0<e<lry. If A is of Il-type, then, for N >0, there exist £,>0 and N'>0 such that
there exists a unique solution us HV(R%) of the half space problem (P-1I), satisfying

Au=feHY(R,) in RY,
{D{u=¢jEHN'(R"‘1) on {x;=0} XR"1 (j=0, 1,..., m"—1),
if 0<ue<lro.
3.4. Whole space problem. Let us consider 4 in the whole space R":
A=Sa,(x, 0D, a(x, £)eg=(R"x (0, 1)).
Let us say that the conditions (A.1)~(A.3) are satisfied in RLURZ, if (A.1)~
(A.3) are satisfied not only for 4 but also for 4, where
A(x, &3 D)=A(—x, #', &; —Dy, D).
We remark that 4 and 4 are of the same type, because
A0, «, 0; &, 0)=4(0, ', 0; &, 0).
Remarking Lemma 2.2, we have

Proposition 3.6. Assume that (A.1)~(A.3) are satisfied in R, UR", and assume
that A is of I-type. Then, for N>0, there exist £,>0 and N'>>0 such that there exists
a unique solution u€HN(R%) of the whole space problem with datas on a intermediate

hypersurface:

{Zu= FeHY(RY)  in R",
u=g; e HV(R™)  on {x=0} XR"* (j=0, L,..., m'—1),

if 0<e<lno.
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Remarking the freedom of the choice of {¢;}, obviously we have

Corollary. Let A satisfy the assumptions of Prop. 3.6, then there exists £y >0 such
that A is not hypoelliptic on x,=0 if 0<a<r,.

§4. Examples.
Let
P(B)=af*+ b+ cf*+dp+e

be a polynomial of 8, where a(>>0), b, ¢, d, e are real. Let us assume that zeros
of P(B) are real, where we denote

4
P(B)=all (B+b5), bi=bs<bi=bs.

Lemma 4.1. Assume
by = b2 <bs < by,
then we have by€ I, where
bo=(b2+bs)[2, I=(bs, bs) N[(b1+53)[2, (ba+b4)/2].
Moreover, let BE1, then
Re P(i{) =a(|Re C[*+d%)%  for Im {=4,
where 6=min(B—b,, bs—pB) (>0).
Proof. Let {=§+1i8, then
P(i0) =all(iC+b;) =all( —1b;) =all(6+iB—1b;).
First, let us prove the inequality for §<0. Let us denote
ibj— (§+18)=1;(§)e%® (r;>0, 16;1<x/2),
then r;j(&), 6;(¢) are continuous functions of §(=0), and satisfy
ri(§) Z (1§ +0%)1,
—7/256;(6)<0 (j=1, 2), 0<0,(§) ==/2(j=3, 4),
and 6;(§)—0 as &—— —oco. Since
(b1+b65)[2< B= (b2+b4)/2,
we have
(b1=B)+(bs—8) <0, (ba—B)+(bs—8) 20,
that is,

0,+0;=<0, 0,+6,=0.
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Therefore we have
—7/2<L6,<01+0s < 0,+65+03+0,=<0,+0,<0,==/2.
Remarking that §;—0 as é—— —c, we have
16:+0:+05+0,| <07 (<Zx[2).
Hence we have
Re II(r;e%) = (IIr;)cos(61+0;+0;+0.) = (cos &) (|§[2+0%)%.
The rest of the proof for £>0 is shown just in the same way as for §<0.
Example 1: (m, m’)=(4, 0). Let us consider
A=ax{3i+ b33+ cxldi+ dxidy +e+0) (0<x:<1),
where a(>0), b, ¢, d, ¢ are rea constants and 9j=xd;. Then
A(x, &) =axiB—ibalf] —cxlEi+idni1+e+E}
— Bt ibE Bl + i+ e+ Ei=A' ().
Let us denote

0B+ b cft+df+e=all (B+0)),
1

where we assume
b1 S 5, <bs = by
) {Oe(bg, bs) N[(b1+63)[2, (be+b4)[2].
Then (A.2) and (A.3) are satisfied. In fact, let
BeE (be, bs) N[(b1+bs)[2, (ba+b4)/2],
then we have from Lemma 4.1

Re A’(61+iB, &:)=Re {al;l($1+iﬁ—ibj)+$§}25(5f+52)2+€$ (6>0)

for (&1, &)ER:
Example 2: (m, m’)=(4,1). Let us consider
A=ax$3t+ bx233+ cx10t +doy + 03 (0<::<1),
where a(>>0), b, ¢, d are real constants. Then we have
nA(x, B)=axtEl—ibalfl — ol +idridi+ miE
= ot —itf— B +idEs +E= ' (B).
Let us denote

3
af*+bp*+cf+d=all (B+5)),
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where we assume
i) 6{<0<b;<b;
(%) or

i) o' < b;<<0<Lb;.
Then (A.2) and (A.3) are satisfied, setting

(b3, b) in case of i),

e
(b7, b3)  in case of ii).
In fact, we remark that b,=b;/2€ (a;, a;) and we have from lemma 4.1
Re A’(§1+ibo, €2) Z6(§1+0%)2+¢; (9>0)
for (&, &)ER:.
Example 3: (m, m’)=(4,2). Let us consider
A=ax23! +bx,03+c02 403 (0<x,< 1),
where a(>0), b, ¢ are real constants. Then we have
RA(x, &)= axtBi—ibalE —cxiBl+ it = Bt — ibE— cBi+ 4=/ ().
Let us denote
a132+bﬁ+c=ajljl(ﬁ+b§’),
where we assume
i) 0<by =07
(%) or
i) by <56y <0.

Then (A.2) and (A.3) are satisfied, setting

(—o0, b)) in case of i),

o a=f e

(b5, +) in case of ii).

In fact, setting

0=
byY/2  in case of ii),

{b{’/Q in case of i),
we have by (a;, a2) and
Re A'(§1+1bo, &) =6(£1+0%)2+&; (9>>0)

for (&1, &)ER.
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