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Some remarks on the C~—Goursat problem
By

Yukiko HAsecawa

§1. Introduction.

Let us consider the following partial differential operator with constant coeffi-

cients.
(1.1) L= > aijaDiDID%, t =0, xeR!, yeR",
i+jt+lal=m
.0 _.a (. .9 . d
Dt——zﬁ—, Dx——l’(—;p .Dy—( z——ayl, z——ayz,..., zayn)

@ije: constant.

In this paper we assume that the hypersurface t=0 is s-tuple characteristics,
namely

i) aije=0 for i+ j+|a|=m, i>m—s, and
(A)
i

i) X am-s,jalin?#0.

j+ial=0

Under the assumption (A), we consider the following problem. (We say Goursat
problem for ¢=>0)

Lu=0 t=0, xR, yeR"
(P) Diu(0, x, 9)=¢i(%, ) Ebury 0Sism—s—1

Diu(t, 0, )=¢j(t, ) E€u.y» 0= j<s—1, =0
where we impose among {¢;} and {¢;} the following compatibility condition;
(C) Digi(0, 3)=Dig5(0, 5), 0<i<m—s—1, 0= j<s—1, yeR".

We say that the Goursat problem (P) is &-wellposed if for any data {¢;}, {¢;}
with compatibility condition (C), there exists a unique solution u(¢, x, ») E&«
t=0.

T. Nishitani [4] had considered the following operator:
(N) P= 3  0;jaDiDID5, an-s,s,0%0.

itj+lal=m
isSm-s
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And he had obtained a necessary and sufficient condition for the &-wellposedness.
For this operator (N) we obtained a Levi condition [2].

Let us call the operator (N) which was treated by Nishitani N-type. We have
the following conjecture:

Conjecture 1. If the Goursat problem for (P) is #-wellposed then operator
L is N-type.

In this paper we are going to show that under some assumptions this con-
jecture 1 is true.

Remark 1.1. “Operator L is N-type” means that the coefficient of D;*~°D;

doesn’t vanish and the order of D; is at most m—s, namely ap_s;507#0 and a;;o=0
for i>m—s.

Remark 1.2. If the Goursat problem is &-wellposed then the linear mapping
{{gi}, {¢;}}—u(t, x, ») is continuous from [I&¢.» X1 Ey, into (¢, x, y).

§2. Result.
Firstly we show the following theorem:

Theorem 1. If the Goursat problem (P) is &-wellposed then am-s,5,0+0. Where
Am-s.5,0 15 the coefficient of Dy~D; in (1.1).

Proof. Let us show that assuming am-s,5,0=0 there exists Goursat data {g;},
{¢;} such that (P) has no solution in &.
Consider the Goursat data:
Diu(0, x, »)=0 0<i<m—s—1
(2.1) { . -
Diu(t, 0, y)=t""°g;(y) 0=j=s-1.

For any g;(y) €&y, this Goursat data satisfy compatibility condition (C). Letu be
the solution of Lu=0 with (2.1). Because of am-s,50=0, we have

(2.2) Lultgu=_ 3 dm-s.jua Djg;i( »)-
i<s
Therefore
_s.5aD%g;(»)=0.
(2.3) o2 D3gi(y)
j<s

By the assumption (A), (2.3) is some restriction {g;(»)}. So if we take {g;(»)}
which does not satisfy (2.3) then (P) has no solution. q.e.d.

According to Theorem 1, if (P) is #-well posed then L is the following:
(2.4) L= 3  a;uDiDID3,

T irilal=m

am-5,50%0, a;ja=0 for i+ j+|a|=m and i>m—s
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Let L, be the principal part of L,
(2'5) Lm(T’ § 7/)= P aijafifjﬁa-

i+r+|al=m

Because of assumption (A),
(2.6) Ln(t, & 0)=8 5 @i moi,eri6™ 7%

By Theorem 1 Ly(z, & 0) is the polynomial of ¢ of degree m—s. Let the roots of
Ly(z, & 0)=0 be {a;§; i=1, 2,..., m—s}. Where {a;} are the roots of Ly(z, 1, 0)
=0. We have the following;

Therem 2. If the Goursat problem (P) is &-wellposed then the roots of Ln(z, §, 0)
=0 are real for EERY, i.e. {a; i=1,..., m—s} are real.

Theorem 3. If the Goursat problem (P) is &-wellposed and the roots {a;§, a;#0}
of Ly(z, & 0)=0 are real and have same sign then L is N-type.

Remark 2.1. In the case where the roots {a;; a#0} of Ly(z, 1, 0)=0 are
real and have different sign we can not show that the conjecture 1 is true. But
under some strong assumptions the conjecture 1 is true. About this case we study
in §6.

Let us assume

(2.6) a;#0 i=1,2,..., m—sy, a;=0 i=m—sy+1,..., m—s, 5,=>5.

§3. The properties of the roots of L(z, &, 0)=0.

Here we give a rouch sketch of the proof of Theorem 2 and Theorem 3. Assu-
ming that the conclusion of Theorem does not hold we construct a sequence of
the solutions of (P) which shows the continuity from Goursat data to solutions
does not hold. '

Firstly we consider the differential operator L(D;, D,, 0). Let us write

3.1 L(Dy, D,, 0)=I"(Dy, D,).
(3.2) I'(Di, D)= 3 a;;DiD;,
i+jism

where a;;=a;jin (2.4), a;;=0 for i+ j=m and {>m—s, ap_ss#0.

Notice that if I'(z, §)=0 for some (z, §) then exp(irt+iéx) is the solution of I'u=0.
In this section we investigate the properties of the roots z(&) (oré(z)) of I'(z, £§)=0
considering that I'(z, &) is the polynomial of ¢ (or £).

By (3.2) we can write

(3.3) I(z € =,_=;%_3:+11i {m;gi;laijej} +3 e {gauef}, n-s,s#0

Let us consider the roots of z(¢) of I'(z, £)=0 and it’s Puiseux expansion in the
neighborhood of é=+o0. Let
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(3.4) r=cl,§Pl+52§Pz+...’ P1>P2>"‘, ¢c#0.

By the “Newton’s polygon construction” we have the following (refer to A. Lax

(3D).

Lemma 3.1. The roots of I'(z, £)=0 have the following properties:
1) the number ¢f roots with py=1 is m—s, and they have the Puiseux expansion of (3.5)

(3.5) (€)= a6+ ca jEP Iy, 6P I+ o,
1>>05,;>ps,5>> j=1,2,..., m—s,
i) the number of roots with py<1 is so—s, let us write them
(3.6) th(8) =1, kP E+Cp kPR,
1>p01,6>006>, k=m—so+1,..., m—s.

Remark 3.1. When p,=1, the coefficient ¢; (in (3.4)) is determined by
Tg:c{a,-,m_,cO. So we have (3.5).

Next, we consider the roots &(z) of I'(r,§)=0 and it’s Puiseux expansion in
the neighborhood of r=oo. Let
(3.7) E=by7o+ byt oo, 01 >0 >, by #0.
By the “Newton’s polygon construction” we have the following:

Lemma 3.2. The number of roots with 0,<1 or £&=0 is 5. Let them be

(3.8) fj(f)=b1,j‘t”1vf+b2,j'l‘”2sf+"', 01,j<l,j=l, 2,000y $1
01,j>02,j>‘”,
(3.9) §i(0)=0, j=s1+1,..., 5, 51 =s.

Here we consider the case where I'(D;, D,) is not N-type. In this case there
exists ap such that

ap#0 for A>m—s, k=0, k+hlm
(3.10) a;;=0 for i>h

ap;=0 for j >k
Then I'(z, &) becomes (3.11)
(3.11) I(r, &) =th(ap k4 +an -1+ +an,0)

a;, 6} + E‘usf i {Eiai. #£9}.
i=0 =

j=0

h—1 m—i—1
+ X2 {3

i=m—s+1 j=0

Lemma 3.3. If (3.10) holds then there exists a root &(n) of I'(en, §)=0 such that
(3.12) &(n) =bynf+ bynfr+ bgns+ -+,



On the C=-Goursat problem 41
06,1, 6,>60,>0,>---, Im 5,<0 for e=1 or e=—1.
Proof of Lemma 3.3 Let
A={(1, j); a:;#0}.
By (3.2) and (3.10) it holds
(m—s, s), (h, k)€A, K>m—s, h+k<m.

Consider Newton’s polygon. Namely consider the convex hull of 4. There exists
(p, 9) € 4 and ¢ (0<6<1) such that

p+Hqg<lm, p>m—s, p+0g=m—s+0s,
319 {i+0j§m—s+0s for Y (i, j) e A.
We put
A={(, j); i+0j=m—s+0s, (i, j) €A, (i, j)#(m—s, 5)}.
Let the formal solution of I'(en, £)=0 be (3.14).
(3.14) E=cinl+ean® e o, 00" >0 >

Substitute (3.14) in I'(en, £)=0 and notice the coefficient of n™-+%.

(3.15) Am-s. €™+ 3 a;,jeic]=0.
(i,/)e4,

Let us write

(3.16) g= max j, p+0g=m—s+0s.
(i,7)€ A,

Then (3.15) becomes the following;
(3.15%) Am-s,5€™ 6]+ ap,qebc{+ aprqe?’c] +---=0
S>q>q >
By (3.13) we have (3.17).
(3.17) b(s—g)=p—(m—s) = 1.
Because of the fact that p—(m—s) and s—gq are integer and 0<6<1, we have
(3.18) s—q=2.
Differentiating (3.15") ¢ times by ¢; we have
(3.19) ¢+ ajep~"-0=0, ai#0.

Firstly we show that (3.19) has a root ¢; with Im ¢,;<{0. When s—¢=3, it is
obvious. Let us consider the case where s—g=2. In this case p—(m—s)=1. In
fact because of p+¢g<m—1 it holds p— (m—s) <m—1—g—(m—s)=s—g—1=1. Then
(3.19) becomes (3.20).
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(3.20) 24-aie=0, aj+0.

(3.20) has a root ¢; with Im ¢,<{0 if we take ¢ with a’e# —1.
Because of Lemma 3.4, (3.15) has a root ¢; with Im ¢<0. q.e.d.

Lemma 3.4. Let P(z2) be the polynomial of degree m. Let the roots of P(2)=0 be
21y Z2ye-es Zm and M be the convex hull of {z;;i=1, 2,..., m}. Then the roots of-j—z-P(z)

=0 are contained in M.

§4. Proof of Teorem 2.
Suppose that a; is a root of Lp(z, 1, 0)=0 with Im a;#0. In (3.5), put
(4.1) E=ne/, =1 or —1,

where we determine &/ with Im a;¢’<0.

We put

(4.2) t(n)=t1(ne’) =ae’n+o(n).

And substitute this z(n) for z in (3.8) and (3.9).

(4.3) &i(z(n)), j=1, 2,..., s.

By Lemma 3.2

(4.4) &i(z(n))~cnovi, ap;<l, for 1< j< 5

£j(z(n))=0 for si+1< <.
Firstly we assume that &;(z(n)) (j=1, 2,...,5) are distinct for large n. Let
ul=exp(ine’x+iz(n)t)

ul=exp(i(z(n))x+1ic(n)t)

(4.5)

u,=exp(i&(z(n))x+ir(n)t)
And let
(4.6) Un=1’+ Ayul + A’ + -+ A,

where 4;(i=1,2,..., s) are constant which depend on n. u(i=0, 1,..., s) are
solutions of L(Dy, D,, Dy)u=I"(D;, D,)u=0, therefore u, is the solution, too. We
define {4;} as follows;

(4.7) Duy(t, 0)={exp (iz(n)t)} {(ne’)e+ (&s(z(n)))kds+ -+ -
+(&5(z(n)))kA4s} =0, k=0, 1,..., s—1.

A;(n) has at most polynomial order with respect to n. We have
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Dty (0, x)=(z(n))*{exp(ine’x) + Arexp (i1 (c(n))x) + -+
(4.8) + 4sexp(i&(z(n))x), k=0, 1,..., m—s—1.
Diu,(¢, 0)=0, j=0, 1,..., s—1.

So the order of data with respect to n is polynomial(of n)Xexp(cn®) (0<o<1,
¢>0). On the otherhand the order of u, is exp (¢'at) (¢/=|Im (a:¢’)]). Then the
continuity of data to solution does not hold.

In the case where I'(z, £)=0 has multiple roots, for instance &(r) is p-tuple roots,
we put

ub=xk-1 exp (i61xXic(n)t), k=1, 2,..., p—1.

And the nearly same way as the first case we can show that the continuity of
data to solution does not hold.

§5. Proof of Theorem 3.
At first we remark that.

Remark 5.1. When L(D;, D,, Dy) is not N-type without loss of generality we can
consider that L(Dy, Dy, 0) is not N-type.

In fact putting
(5.1) u(t, x, y)=o(t, x, y)exp(ipy)
where p is a parameter, then

L(D;, D,, Dy) u(t, x, y)=exp(ipy) L(D;, D,, Dy)v

=exp(ipy) L(Dy, Dy, p)v+ 3 @ijaDiDiD%.
itj+asm
a1l
So
(5.2) L(Dy, D,, 0)=L(Dy, Dy, p).

When L(D;, D,, Dy) is not N-type, for suitable p, L(D;, D,, p) is not N-type. We
consider L.(Dy, Dy, Dy)o=0 instead of L(D;, D,, Dy)u=0. By (5.2), L(D;,D,,0) is
not N-type for suitable p.

Suppose that the roots of Ln(z, 1, 0)=0 are real and negative or 0. Moreover

we assume L(D;, D,, Dy) is not N-type. Because of Remark 5.1 we can assume
that (3.10) holds. Let us recall (3.12).

(3.12) §(n) =b1n® +byn + byn®+ -,
0<60:<1, 0,>60,>0;>--, Im b,<0.

Substitute this &(n) for £ in (3.5) and (3.6)

(3.5) 7i(§(n)) =as€(n) +c2.5(€(n)) "+ -
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=byanfi+cy jnloi4 -
Im b,0;>0, 6,>>05;>, j=1, 2--+, m—s,
(3.6 t(§(n)) =c1,6(6(n)) %+ o (E(n) ) P4 -o
=T, g+ gk 4o,
0 >oLE w5 >, k=m—s,+1,..., m—s.
At first we assume that 74(€) (k=1, 2,..., m—s) are distinct for large n. Let
u)=exp {ient+1&(n)x}
53) u,=exp ity (§(n))t+i&(n)x}

uy  =explitm-s(&(n)) t+16(n)x}

(5.4) Un=ut)+ Byl + -+ Bp_ur".
We define the coefficient {By} as follows.
(5.5) Diun(0, x)= {expi&(n)x}{(en)k+ By(z:(€(n)) )+ -+

+ B (-5 (6(1))) 8} =0,

k=0,1,2,..., m—s—1.
By(n) has at most polynomial order of n. We have
Dhu, (0, x)=0, k=0, 1,..., m—s—1

(5.6) Diuy(t, 0)=(&(n))7{exp(ient) + Biexp(iti(E(n))t) + -+

+ Bp-sexp(itm-s(€(n))t)}, j=0, L,..., s—1

Because of :=0, the order of data with respect to n is polynomial (of n)Xexp
(¢'n®), w<b;.
On the otherhand the order of u, is exp(cn®x) (¢>>0). Then the continuity of
data to solution does not hold.
When I'(z, £§)=0 has multiple roots we treate in the same way as §4.

In the case where the roots of Ly(z, 1, 0)=0 are real and positive or 0 we
take &(n) with Im #,>0 in Lemma 3.3. There exists such £(n) is proved in the
same way as Lemma 3.3.

§6. Remaining Case.

Finally we consider the remaining case. Suppose Ln(r, 1, 0)=0 has real roots
with different sign. In this case we don’t know that the conjecture is true or false.
Here we consider the simple example.

6.1) P=a0t—0i+3, where 4=-0, =2,
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Let the principal part of P be Py;
(6.2) Py(z, &)=r22—¢4

The roots of P(r, 1)=0 are r=1 and zr=—1. And obviously this P is not N-type.
Concerning this example, the conjecture 1 is true. Namely

Proposition 6.1. The Goursat problem for P is nct &-wellposed.

Proof. We prove this proposition by making the sequence of solutions of Pu
=0 which does not hold the continuity of data to solution.
Let us consider the following Goursat problem.

(6.3) Pu=0
(6.4) u(t,0)=exp(—1In), d,u(t, 0)=0, u(0, x)=1, 9u(0, x)=—n.

We remark that this Goursat data satisfy compatibility conditions. Let the formal
solution of Problem (6.3)—(6.4) be the following:

(6.5) un=2b{u§f',3/j!k!}tjx’°.

s
Substituting (6.5) in (6.3) we have
(6.6) U kee= —WPs et WRes . K=0.
By (6.4) it holds
ud=(—n)3, uf}=0 for j=0,
(6.7) {
uiR=0, u{?=0 for k=>1.

Concerning «{%, we have the following lemma.

Lemma 6.1. It holds i), ii) and iii).
i) By (6.6) and (6.7), {u{?} are determined unique, and formal solution (6.5) converge
in (t,x)eR2.
i) w?=0 when k is odd.

i) ufp= —l)’.{nj+’°+:2:p§j’”nj*’°“s} Sor j =2, where piP =0.
Let us notice 9%u,(0, x). By (6.5) and Lemma 6.1,

(6.8) Fun(0, 3) =Sk = S/ (2K) .

Using Lemma 6.1 again, we have

(6.9) u§l = n*k,

Then for x>0 it holds

(6.10) Zu™(0, x) ZZ{ntk|(2k) 1 %
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=”2§3(~/7x) 2k[(2k) 1> (n?/2)exp (Y n x).

Consider the sequence of solutions {u,}. By (6.4), when n—oo the order of n of
Goursat data is at most polynomial. But by (6.10), the order of solution is
exponential. This show that the continuity of data to solution does not hold. q.e.d.

Proof of Lemma 6.1. 1) Suppose {ujr; j+k<p+q or j+k=p+gq, j<pt are
determined then by (6.6) up,q is determined unique. The convergence of the
formal solution is obvious (refer to [1]).

2) Goursat data (6.7) satisfy ii). Notice (6.6). If £+2 is odd then k£ and k+4
are odd. So by induction we prove ii).
3) By (6.6), we have

(6.11) U o 42= — U e U D

By (6.7)

(6.12) u44=0 for j=0, 1,
(6.13) Uy o= (—n)i*3=(—=1)*3pd*s j>0,

then u{?, , has the form of iii) in Lemma 6.1. Suppose u{}; 5 has the form of iii)

and u{,,, has the form of iii) or zero, then uf};;,, becomes the following;
o j j j+3+k(‘a)'s~s
Upn, e =—(—1)73{n*3 k4 21 AR CASMI
=
L jek+2 )
(= 1) (omivbest 5 ook
s=1
=(_1)j+2{n(j+2)+(k+1>+(P§f+3.k)+p)nj+z+k
i G+3, k) Gy k+2)) j+f+3-8
+ 22 (ps] ’ +ﬁs—,l )nJ k }
o

where p=0 for j=0, 1, p=1 for j=2.

Putting
p§i+3.k)+P=p§i+Z.k+l)
(6 12) C(j+3,k) Cisk+2) CG4+2,k+1)
psl+ ’ +psj-'1 =st ’
Then
. . j+2+k+1 GHam. i s
(6.13) u§"+>2.2k+2= (.—- I)J+2{n(3+2)+(k+l)+ gx ps.} y n]+k+s_ }.

So u{?, 54, has the form of iii). q.e.d.

Next, let us consider the following example.

(6.14) P=d9—o'—3°
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About this operator P, we don’t know that the conjecture 1 is true of false. But

we have
Proposition 6.2. The Goursat problem for P is not &-wellposed for t<0. Namely
Pu=0 xeR', <0
diu(0, x)=4¢;i(x), i=0, 1
dlu(t, 0)=¢;(t), j=0, 1
918:(0)=dig;(0), i=0, 1, j=0, 1

(6.15)

the problem (6.15) is not &-wellposed.
Proof. Let t=—t', Proposition 6.2 is reduced to Proposition 6.1.

Hereafter assuming &-wellposedness for {=>0 and <0 we consider the con-
jecture:

Conjecture 2. If the Goursat problem (P) is #-wellposed for =0 and ¢t=0,
then the operator L is N-type.

Remark 6.1. When ¢=0 is simple characteristic, the operator is always
N-type.

Remark 6.2. In the case where the order of differential operator is 3, the
conjecture 1 is true (because of Theorem 2, Theorem 3 and Remark 6.1).

Let us consider the operator of order 4 with double characteristic.
(6.16) M=00" — {ad}+ 60,0 +cd*+ > a;;00]} a;;; real constant.
i+7<3
i=2

We are going to show that the cinjecture 2 is true for M with b#0 and a;; small.
The characteristic equation of principal part of M is

(6.17) 722 =phrE3+cLh

Suppose the roots of r2—br—c=0 are real and have different sygn.
Then

(6.18) c>0.
Here we assume
(6.19) a#0 and b+0.

Without loss of generality, under the assumption (6.19), we can consider a>0,

b>0 in (6.16) if necessary replacing {——t¢ and x——x. Let
(6.20) M=30— {adi+ b33 +cd'+ 3 aioidi—
i+j53 i+]

ES a;0,0%}, a,b,c>0, a}; =0, a5 =0.
J<3
=3

where 4} and aj are the following;
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when a;;2>0 we put af=a;; a;=0
when 4;;<0 we put ¢} =0, a;;=—a;;.

Concerning the coefficient a;; we impose the following assumption;
2
23a,,0{8/(ab")}* " +a;,(2/b) < a2,
3

(6.21) Z}d&s{‘}/(ab)}“‘sé"p and

a1 {4/(ab)}?+ a7, {4/ (ab)} +a;,(2/a) < b/2.
Theorem 4. If a,b,c>0 and (6.21) hold then the Goursat problem for M Jort<0
s not &-wellposed.

§7. Proof of Theorem 4.

Suppose that the Goursat problem for i is &-wellposed. Let us consider the
following Goursat problem;

Mu=0,

u(t, 0)=exp(n?t)— {1+n?t+ (n2t)2/21},
(7.1) du(t, 0)=n{exp (n2t)—(1+n2t+ (n't2)/21)}

1(0,x) =0,

(0, x)=0.

Let u, be the solution of (7.1), and (7.2) be the formal solution of (7.1).

(7.2) un(t, x)=j2k{ujk/(j!k 1)} tixk

By (7.1) we have
uo,k=0, ul,]g=0 fOI‘ kgo,

(7.3) { . .

ujo=n, uj =n**! for j=3.

Substituting (7.2) into ATu=0 it holds

(74) uj+2,k+2=auj+3,k+buj+1.k+s+0uj.k+4+ +§‘éz(a:s"a:s)uj+r,k+s for ja k=0.
T
<2

Here we remark that by (7.3) and (7.4) the formal solution (7.2) is determined
unique.

Lemma 7.1. If a,b,c>0 and (6.21) hold then the following four estimates hold
for large n and for j, k=0.

(75) uj+2,k+2g (a/2)[(k+2)/2]n2(j+2)+k+2

(76) uj+2,k+2£(a/2)uj+s,k
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(7.7) Ujaz vz = (0/2) U541, k43
(7.8) Ujrn, ke = (€[2)Uj kase
We prove this lemma later. By (7.2) we have
(7.9) afun[t=o=k§0uz,kx’°/k!.
By Lemma 7.1 we have the following estimate;

(7.10) 9%un (0, x)>§} (a]2) [k+D/2lpt*k+2xk k! for x>0.
=2

This shows that d%:(0, x) grows with exponential order of n for x>0. On the
otherhand the Goursat data of (7.1) have polynomial order for t<X0. Therefore
the Goursat problem for M is not &-wellposed for t<0.

Proof of Lemma 7.1. At first we remark that ujy is the polynomial of n of
degree at most 2j+k. We rewrite (7.4).

(7.4") Ujra,kee= (@]2)Ujsa, b+ {(0/2) a1, b4+ (6/2) ) kes

+ +3253a:suj+r'k“+ (0/2) uj+s,lc+ (b/2) Uj+1,k+3
T >
rs2

+ ("‘/2)14]'-’“4_r+52§3ar—.suj+r,k+s}~
rs2
Let us write §¢; the term {----- }in (7.4).
(71 l) Sj,k=(a/2)uj+3,k+(b/2)uj+1.k+s+(6‘/2)“j,k+4— +82§3d,_'3u]'+7-,k+3.
r
12

Suppose wj.g,k+2 With j+k<p+q or j+k=p+q, j<p satisfy Lemma 7.1. We shall
show that up,s g4 satisfy Lemma 7.1.
If Sp,¢==0 then up.s 4+ satisfy Lemma 7.1. So we want to show Sp¢=>0.
Case 1. p+q< N where N is some finite number.
By the assumption of induction

(7.12) (a)2)upys > (al2) (a+D121p2p+a+6

And 334, upsr,q+s is the polynomial of degree at most 2p4-¢+5. Then for sufficient

large n we have Sp¢>0.
Case 2-1. where p+¢>N and p=0.
By (7.3) it holds

(7.13) So.0=(a]2)us,q— (a3 ohg, g+ a5, 1Usz,94+1)

By the assumption of induction

(7.14) U, g1 (2/6)us,q

(7.15) s, 0 = (2/b)us,a-1 = (2/6) (2/a) .01 = (2/) (2/6) (2/a) us,o.
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By (6.2) and (7.13), (7.14), (7.15) it holds

(7.16) So,0= {(a/2) —(2/b)a;,— (8ab?)az o} us,¢>0.
Case 2-2. where p+¢ >N and ¢=0 or ¢g=1.

2
(7.17) Spq= {(a/Q)ums.q—EaZoupw.q}

+ { (b/Q)uPH.th»a - (al—:luﬁ+1.(l+l+ ﬂl_,zllb+1,q+z+ az—:1up+2,q+l)}

3
(121004~ 20 0} =Sy S P S

Here S% stands for the first {------} in the right handside of (7.17), and S, stands
for the second {:-----}, S, stands for the last {------}. First, we consider S§,. By

(7.3) we hauve

(7.18) Upry,q=n2P*T* for ¢=0 or ¢=1.
Then

2
(7' 19) Sf»‘,)q= (0/2) Up+s,gq —E)ar—,oumr.q

— (a/Q)nz(p+s)+q_éa,—onz(/ﬁrnq
r=0 '
2
=n2<p+s)+q{(a/2) _EaZOnZ(T_S)}'
r=0

So for large n we have
(7.20) S >0.

Next, we consider §§,. By the assumption of induction we have

(7-21) up+1,q+1§(Q/a)uﬁ.qﬂé(2/0)(2/b)up+1,q+2
= (2/a)(2/6)(2/b)ups2,a+1= (2/a) (2[b) (2/b) (2/a) up+1.a+s
In the same way we have

Uper,gr2 (4/ab)up+1.q+s, Uprsge1 (2/a)uﬁ+1.q+s-

Therefore

(7.22) SP, =[(2/5) — {aii (4/ab)*+ai3 (4]ab) + a5(2/a)} Jupagos.
Then by (6.21) it holds

(7.23) S50

Lastly we consider S§. By the assumption of induction we have
up,q+s <= (4/ab)up,qrs, Up,aea(4/ab)?up,arss up01= (4/ab)’up,q.s

Then by (6.21) we have
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Sivu= {(c/2) —ag5(4]ab) — a5 5(4]ab)* — a5 1 (4] ab)*} up,q44 2 0.

Case 2-3 where p+¢g>N and p=1, ¢=2.

In this case we separate Sp,q¢ into three parts in the same way as Case 2-2. We
can estimate S&, and S, in the very same way as Case 2-2. By the assumption
of induction we have

S0, ((a]2) ~ Zeno(8/abt)* T upas:

Because of (6.21), it holds
§50e>0.
Thus we complete the proof of Lemma 7.1.
Remark 7.1. In (6.21) we can replace 4/b% by 2/c.

Remark 7.2. When =0 we don’t know that the conjecture 2 is true or
false except special case (c.f (6.1), (6.14)).
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