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A comparison theorem for Riccati equations
and its application to simple hyperbolic

boundary value problems

By

Sadao MIYATAKE

§1. Introduction.

In this paper we deal with a certain comparison theorem for Riccati equations
and apply it to construct an integral representation of forward progressing solutions
of simple hyperbolic boundary value problems. This integral representation enables
us to see that the forward progressing solution preserves its order o f singularities
along characteristic curves. (See (P. 1) and (P.2) below.)

Let us explain our comparison theorem (Theorem 2.1). Let q(x ) be a smooth
function defined on [0, 00) taking its values in C— (— 00, 0]. By / q ( x )  we denote
a root of q(x ) with positive real part. It is evident that, if q(x) is constant q, the
equation w'=q— w 2 has solutions .s/q and .  Here — 4/4- is an unstable solution,
,177 being stable. In general case it is interesting to seek for the solution w(x) of
w' = q(x)—w2 , which stays close to — /q (x )  for all xŒ [O, 00). W e  suppose that
(log q(x ))' is not so large as compared with R e  q (x ) . More precisely under the
assumption

( 1. 1) D (q) = csu< pt
(

 (

x ) I  Re }<4 ,qx )

we can show that there exists a solution w (x ) of w' = q(x) — w2 satisfying

w(x) — ( i/q(x))  (1.2) < ri, for all xe [0, 00),w (x) —  (x)

where r i  stands for a roo t of r+ 1 =  8 l e s s  t h a n  1 ,  i . e .r D (q)

1 8  (1.3) ri+ — = ri<  
D  ( q )

4 < l .ri D  (q) ' 

In  order to apply the above result to the boundary problem stated below, we
take q(x)-= —1-2 a(x), where a(x ) is a positive valued smooth bounded function and
r--=a— ir, aE R , r > 0 .  Then D (q ) can be made arbitrarily small if we take the
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14 Sadao Miyatake

parameter r sufficiently large. Hence from (1.2) and (1.3) the equation =
—r2 a ( x ) - 0  has a solution w (x , r )  close to —zr . Put

(1.4) v(x , r)-=exp(S xow (y , r)  dy).

Then v(x , r )  will give a unique solution of

f
v"-= —D2a(x)o in (0 , co)

(1.5)
tv(0, r) = 1, lim v(x, z-)=0.

Now we can make a solution of

f  a2  

ax ,  u—a(x)  at ,  u = o , x>o, t ER,a2 

to ,  t) =g(t), t e R .

in the following form;

(1.6) u(x , t)=e 7 tP[v(x, 1-)F[e - Tsg(s)]],

which is independent of r> 7 0 0 , if e- 7 2 g(s) belongs to .9" for r - › r . We can say
that the solution u(x , t) defined by (1.6) is the forward solution, since the following
(P .1) can be verified. We can prove also ( P .2 ) .  (See Theorem 3.1)
(P.1) in f  su p p  u (x , t )  propagates along the forward characteristic issued from

(0, inf supp g(t)).

(P.2) Singularities of u(x , • )  propagate along forward characteristics, keeping the
order of singularities which is defined below by (1.9). More precisely it holds

(1.7) O rd S ing ( g ;  s)-=Ord S in g  (u(x , •); t x (s)), for all s e R  and xE (0, co),

where tx (s )=s+S oVa(y)4Y.

Here the order of singularity of f ( t )  at a point to is defined as follows. First we
put

(1.8) Ord S ing(f )=-inf  f rE R : lin d (a ) (1 -H a )  - D .= 0} ,

for f  E.9" satisfying :f (e) E LL . U s in g  (1.8) we define for f  E

(1.9) Ord S ing(f ; t)--=lim  Ord Sing(a„f),

where {an } is a sequence of functions in satisfying an (to) * 0  and suppan - - )Itol.
In Section 4  we show that a finite number or — co corresponds to the right hand
side o f (1.8) independently of the choice of Here we point out some of the
properties of O rd S ing (f ;  t o) :
(S.1) Tan - 1  (O rd  S in g (f ; t) )  is an upper semi-continuous function and satisfies

Ord Sing( f ) -= m ax  Ord S ing(f ; t) , if f  E S'.
t e  snppf

(S.2) I f  Ord S ing(f ; t 0)<— (k +1 ) holds, then f ( t o)  is k  times continuously differe-

(P)
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ntiable in  a  neighbourhood of to. On the other hand Ord S ing (f ;  t o ) >—k i

implies that f ( t )  is not k1 times continuously differentiable in any neighbourhood
of to.

(S.3) Ord S ing (f; t)<— (k+1 ) on a compact set K  implies that f ( t )  is k times
continuously differentiable in a neighbourhood Qk of K.

(S.4) f ( t )  is a C -  function in an open set Q if and only if Ord S ing (f; t)=— oo
holds for all t E Q .  And we have

sing suppf= { t ;  Ord Sing(f; t)>—oo} .

( S .5 )  I f  Ord S in g (f; 0 = -0 0  holds on a compact set K , then we can say that
f ( t )  is a C°' function on K  since (S.3) holds for all integer k>0.

Now remark that O rd S ing (f; t)=  —  on does not imply tEEsing supp f. Denote
the set

It: t  e s in g  supp f ,  Ord Sing(f; 0=-001

by C R (f ),  (critical regular points of f ) .  From (S.4) we can verify

C R (f)=  It : m a x  Ord Sing (f; s)>— 00 for e > 0 ,  l im  m a x  Ord Sing(f; s)= — 00} .
Is-tis

Hence we can point out easily examples o f functions satisfying C R (f )* 0 ,  (see
Section 4).

Now we consider an example of the forward solution in a simple case where
q (x) = 1 . Remark that g i (t—x)±g 2 ( t+ x ) satisfies (P )  whenever g(t)= g i (t) g 2 (t)
holds. In  this case the forward solution u(x, t) is equal to g (t— x ). We can also

asay that u(x, t) is uniquely determined by Cauchy data u(0, t) = g (t) and --G -u(0, t)

a=— g'(t). However it is not so easy to find the value T i u(0, t )  in general case.

In  fact its Laplace-Fourier image is w (0, r) g (r ),  where w (0 , r )  is determined
depending on all the value a(x), x>0.

Historically speaking, the propagation of singularities o f this type was con-

sidered in  [11] in the case where - j--g (t ) has the discontinuity of the first kind.

However if singularities are more general, it is suitable to consider them using
Laplace-Fourier inversion formula. In fact we write the solution u(x, t) given by
(1.6) in the form

(1.10) u(x, t) = lim  lim f fe  tr(t—s)+Sfp(y,r)d
Ye — r r 'gE (s )d s c lr ,

6 4 0  6,40

where go(s) E g  and e- 7 tge ( t )  converges to e- Tig(t) in as e tends to 0. Especially
we remark that there exist positive constants C, ro and 0 satisfying

(1.11) v r)I C for Tm r < - °  and xE [0, co].

In the proof o f (P .2) we will see that the estimate (1.11) plays an important role
together with the definition of the order of singularities (1.9).

The author consulted Friedlander [3 ], H 8 rm a n d e r  [4 ], Nirenberg [5 ]  and
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Melrose-Sh6strand [6] to justify the interest of the problem studied here and the
method used here, and refered also to Mizohata-Yamaguti [10] and Picard [11].

§2. C om parison theorem  fo r  Riccati equations.

As is well known, v"=q(x )v  is reduced to

(2.1) w'=q(x)— w2,

if we put w =v //v  in the case v=0. conversely for any w satisfying (2.1),

v(x)=-- expSo ze)(y) dy

satisfies v"=q (x )v  and v (0 )=1 . Now let us consider another transformation of
(2.1) supposing the following condition
(C) 0 q (x ) is a continuous function defined on [0, 00] with values in C — ( 00, 0].
D enoting by (x ) the root of q(x) with positive real part, we put

w(x)+41q(x)(2.2) z (x )= w ( x )  _ v q ( x )  

I f  q(x) is constant q, then (2.1) is equal to z '= 2 4 z .  In this case we have (log i z
=2ReVq>0, if z=0 i.e. w= -.4,- . This implies that w= -4  is an unstable solu-
tion . v=exp(--rq- x ) is  the unique solution o f  v "= q v  in  (0, 00), v(0)=1 and
lim v(x)=0. We will extend this argument to general q (x ). At first let us introduce

N otation . w (x; xo , wo)  stands for the solution o f (2.1) satisfying w(x 0)-=w o .
W e put

 

W + q(x )  < r 1
— Vq(x)

Q(x, r)-=(we C,

 

Then we have the following theorem, an ameliolation o f some results in  [5]
and [6].

Theorem  2.1. Suppose that q(x) satisfies (C) 0 and (1 .1 ). Then there exists a solution
of  (2.1) satisfying w(x)e,f2(x, ri ) f o r all where ri is given in  (1.3).

In the process of the proof of Theorem 2.1 we use

Proposition 2.1. A ssume the same condition as in Theorem 2.1. L et xo e (0, 00)
and wo e C  satisfy we eaQ(x o , r i ). Then we have w(x; x o ,  wo )OES2(x, ri) f o r 0<x<xo,
and w(x; x o , w o) EEt2(x, r i ) f o r xo < x .  It holds the same result replaced r i  by

R em ark 2.1. From (1.3) and (2.2), lz(x)I ri  yields

w(x)+Vq(x)2 r 1 2 D ( q )  
Vq(x) 1—ri 4—D(q)

E xam p le . Let q(x)= —r 2 a(x), v = a — ir, ae R  and r > 0 .  Suppose that 0<m



<C 1T
'  

for r>ro=2(mi/m312),(2.3) w(x)+ trAta(x)
ri,ta (x)
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< a (x )< M  and I a' (x)I < M i  hold for all x _ 0 .  Then we have D(q)<(M1m 3 1 2 ) 3  and

which tends to zero as r tends to co.

The estimate (2.3) will be used later.

Proof of Proposition 2.1. First remark that (2.1) and (2.2) make

(2.4) f±log z=2
q x) g'(x)dx 4 q(x) •

d d Using I z— z I +1 z I and Rew log z(x) -= d x  logz (x)J, w e have

d 1(2.5) —
d x

log z(x) l_ -_2ReVq(x) — 4 (I zld- lz

The condition (1.1) implies that the right hand side o f (2.5) is non-negative if z

satisfies lz Ir=r i o r I z 1= -
1

. Hence we have Proposition 2.1.

Proof o f  Theorem 2.1. Let us put

F 0 =lw (0 , n, IN); woŒQ(n, ri)}.

The family of set {F } satisfies F n =-Fn , F n Ef2(0, r i ) and F D F , i +t, for any integer n
> 0 .  Therefore F .  converges to a non empty set F =  nFn.  Let wo belong to F,

0=1

then wo ŒF„ for all n> 0 . Therefore in view of Proposition 2 .1  the solution w(x)
=w (x; 0, w o)  belongs to f2(x, r i )  for all xŒ[0, n ], n=1 , 2, 3,.... Hence w(x) be-
longs to S2(x, ri )  for all xe [0 , co).

§ 3 . F o r w a r d  p r o g r e ss in g  solution o f  the p r o b le m  (P).

In  this section we state our results concerning forward progressing solution
of (P) described in Introduction. The proof is given in  later sections. First let
us introduce

D efin it io n  3 .1 .  g (t) is said to belong if e t  g ( t )  belong to .9"' for all
r > r o ER. limge=g in means lime - Tt gE(t) =e - Ttg(t) in .9"/ for all r > re .

840 8+0

R e m a rk  3 .1 .  Let Xs ( t )  and Os(t) be functions in g  satisfying limXs(t) =1 and
640

lim0E(t)=63in Thengs=Os *(X5g) satisfies l im  ge(t) -=g ( t )  in  .9°'7 , for any g(t)
840 6+0

E Y ' yo .

W e suppose that the boundary data of (P) belongs to Y' 70. Now we can
state a characterization of .9".,, .

L e m m a  3 .1 .  g  belongs to .9".,,,  if  and only if  the fo llow ing ( i )  and (ii) hold.

qt(x)
q(x)
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(i) 7g(r)=F[e - 7 tg ] is analytic in  {DEC: Im r<
(ii) (a —ir) belongs to .9"(c) f o r  a ll r> r .  For given  e>0 there exist positive constants
C and k satisfying

—ir)I c( 101+ 1) k , f o r  a ll (re R  and ro-F-6<r<ro+ 1E1 .

Now the coefficient a(x) in  (P ) is assumed to satisfy the following condition.
dk(C k,) a(x) is a C- -function satisfying 0<m <a (x )<M <oo and a (x ) <M k <codxk

for all x>0 and all integer kE[1, k1], where k1 is  a given positive integer.
(C ) a (x ) satisfies the above conditions for all 1.

Proposition 3.1. Suppose that a(x) satisfies the above condition (C1 ) ,  i.e. (C k,) with
k1 = 1 .  Then the problem  (1.5) has a unique solution v(x, r) f o r  a ll r  belonging to

Tm r<—r ol ,  where To i s  a positive n um b er . The solution v(x, r) is analytic in
r  and satisfies the following estimates: There exist positive constants C and 6+ such that we
have f o r  all 0 and a ll rEE T,

r)! <C,

r -

I v(x, r)12 .1x
1 r ( Y' r )1 2  d Y C I •

In view of Lemma 3.1 and the bove estimate (i) we see that implies
u(x, .) E,99'7° fo r all x>0, where u(x, t )  is defined by (1 .6 ). Now we can state
Theorem 3.1 using the above v(x, r).

Theorem 3.1. Assume (C ). Suppose that g  belongs to Y i  To, 10=2(M1M 3 1 2 ) .  Then
u(x, t) defined by (1.6) is  a  smooth bounded function in x e [0 ,  c o )  w ith  values in
together w ith all its dervatives. u(x, t) i s  the forward progressing solu tion  of the problem
(P) in the sense that (P.1) holds. u(x, t) satisfies also (P.2) i f  inf supp g>—co holds.

In  order to verify (P.1) and (P.2) we use some detailed properties of the
solution w(x, r) of the following problems.

(3.1) rR
) ,  =— r2a(x)— te, x>0,

e.S.:w(y, r) dy= —co.

Proposition 3.2. Assume (C k,). T hen the prob lem  (3.1) h a s  a unique solution
zv(x, r) satisfying the follow ing ( i )  and (ii):
(i) w(x, r) is analytic in rE 70 , f o r  a ll x
(ii) For each integer ke [0, k1-1 ], there exist positive constants C k and rk such that w e
have, f o r  a ll r {r eC; I m r < — r k }  and

laj,cw (x , +i/a(x) r)ISC k T
r

 m
il

 r
i  1,  0  S i, 0 j,

Rem ark, we can show that w (x, r ) has an analytic continuation into E =
IrEC ; Im r<0}, if we apply the method used in [8].



A  comparison theorem f o r Riccati equations 19

Incidentally we state another estimate o f  u (x , t )  defined by (1. 6) as a
corollary. A t first let us introduce

Notation , g  is said to belong to I-1;, if e t  g  belong to H k , fo r rER and

k E R . e - 7 t glIk is equivalent to +1,1)2k1k(r)12 d r )1/2 .

C orollary 3 .1 .  Suppose gOEIP, kER , in  Theorem 3.1. Then the solution u(x, t)
is a continuous function in  x  with values in F i

k satisfying the following estimates:

(3.2)
i= 0

a 
*) klgilk5 f o r 1>10 and x >0.

   

(3 .3) S(il u (x, *)112k,../±
a

—a7xu ( x ' * )

2s

ci)c C kT, II gllc
'

7, f o r 1> 10,

  

§ 4 . O rd er of singularities.

Here Definition (1.9) is shown to be reasonable and we verify some basic
properties of Ord Sing (f ; t ) ,  which are used later. First we state a fundamental
lemma concerning the definition (1.8).

Lem m a 4 .1 .  For any f E d"(R ) and ae g (R ) , we have

(4.1) Ord S ing(f) O r d  Sing(af).

Proo f . For any r satisfying Ord S ing(f)f ) < r ,  (1.8) yields

(4.2) 1.1.(a)1 C,(1+1471)T for o-E R.

From /a f ( a ) = -T Sj"(a — p)&(p) dp and (4.2) it follows

(1+ la 1)- rQ (a ) (  C rf  (1 ti
l
+
61+

0,11) 69.1)r ia(P)i d p  CrSi Er(6)1(1 +I P d P < C °.

Hence we have Ord Sing (a f ) r, which implies (4.1).

From Lemma 4.1 we have immediately

(4.3) Ord Sing(a f) Ord S ing (13 f )  holds for f (R),

if aE9 and p E g (R )  satisfy suppPc It; a(t) *01.

By virtue o f (4.3) we see that the right hand side o f (1.9) corresponds to a finite
number or —co independently o f {a ,i (t)} . Now remark that Lemma 4.1 is true
even if we replace g J ( R )  and g (R ) respectively by g ' (Rn) and g (Rn) and extend
(1.8) to

( 1.8) ' Ord S ing(f )=inf  {r E R : in -11f (e)(1+IeI) - r = 0} , for f  y '  satisfying f ( )  ELL.

Thus the definition (1.9) can be extended to

Definition 4 .1 .  For f (Rn) we define the order o f singularity of f  at a
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point x=x 0 by

(4.4) Ord Sing( f; x o ) =lim  Ord Sing (a k  f) = inf Ord Sing(a f
aEg..(x0)#0

where fa k} is a sequence of functions in g  satisfying a k(x0) * 0  and suppa—*{x0 } .

In fact Definition 4 .1  is reasonable since it holds Lemma 4 .1  replaced the
space R  by R n . Now  w e have the following lemma concerning the order of
singularities of distributions in R ," n > 1.

L e m m a  4.2. We have f o r any f e e ,  f  l E e  and f 2Eg '

(4.5) Ord Sing( f; x) O rd  S in g (  f ) ,

(4.6) Ord Sing( f 1 + f  2 ; X) max Ord Sing( f  i; x),

(4 .7 )  Ord Sing( f l + f  2 ; =  max Ord S ing( f  x ), if  Ord S ing( f  1 ; x) Ord S ing( f  2 ; x).

Lemma 4.2  is verified directly from Definition 4.1 . We prepare another Lemma
concerning Ord Sing( f).

L e m m a  4 .3 . For any f  E 6 "  we have

fin ite
(4.8) Ord Sing( f) =m ax Ord S ing (ail . ) ,  if  E  ai= 1  on supp f , a j e g .

(4.9) Ord S ing( f )<—  (k+n) im plies that f  is a C" function f o r non-negative integer k.

(4 .1 0 )  Ord S ing( f )> —lc im plies that f  is not a  CI function f o r non-negative integer k.

Proo f . From Lemma 4 .1  the left hand side of (4.8) is not less than the right
han dside o f  ( 4 .8 ) .  On the other hand the definition (1.9)' yields the counter
estimate. Thus (4.8) holds. If f  satisfies the condition of (4.9), then (1 +i e Dr" (e)
is bounded, r =k+n +E. Therefore (1+1 el) k f (e) E D .  Hence we have f ( x )  C k
Similarly from Ord Sing( f)<—  k follows that e VG/ (e) is not bounded. Therefore

ksince supp f  is compact, -
d

f ( t )  is not continuous. Thus we have Lemma 4.3.

Now we state

T h e o r e m  4 .1 .  L et f  be a distribution in R I n>1. T hen  O rd  S ing( f ; x ) has the
same properties as  we have stated in Introduction in the case of  n=1. Namely we have
(S .1) replaced t by  x , (S.2) replaced t o , —  (k +1) an d  t respectively by x o , —  (k +n) and
x , (S.3) replaced t and —  (k + 1) by x and — (k+n) respectively, (S.4) replaced t by x and
(S.5) replaced t by x.

Proo f . The upper semi-continuity of Tan - 1  (O rd  S ing  (f ; x ))  follows directly
from Definition 4.1 . Let us take the following series of partitions of unity of

fin ite

supp f :  E a k,i(x) = 1 on supp k= 1, 2, 3 „ . . . ,  where ak ,j are functions in satisfy-
,

in g  max {diameter o f su p p  ak ,i} --0  as k—> co . B y virtue o f (4 .8 ) there exist

numbers nk , k= 1, 2, 3,..., satisfying
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(4.11) Ord Sing( f ) = Ord Sing(ai ,„, f ) = Ord Sing(akf), ,

where ak = 11 a i,„,. Remark that supp ak converges to a point xo esuppf. Therefore
1-1

by the definition (1.8)' it follows Ord Sing( f ; x o ) O rd S ing (ak f). From
k -k c .

(4.11) and (4.5) we have Ord Sing( f ) =  m a x  Ord Sing( f ;  x ) .  Thus (S.1) holds.
xsupp f

Now suppose Ord Sing( f ; x0)<—  (k  + n). Then Ord Sing(af)<—  (k + n) holds for
some a(x) e g  satisfying a(x0) * O .  Therefore from (4.9) o f  Lemma 4.3 we see
that f (x )  is a Ck functien in  a  neighbourhood of xo . Similarly Ord Sing(f; xo)>
—k1 im plies that f ( x )  is n o t  k1 times continuously differentiable in  any
neighbourhood of xo . We next remark that (S.3) and (S.4) follow from (5.2), the
definition of sing suppf and the Heine-Borel theorem. (S.5) is an interpretation of
Ord Sing( f ; x 0)<—  (k+n) for all k>0 in use of (S .2). Thus the proof of Theorem
4.1 is complete.

Now we consider concretely some examples o f Ord Sing( f ;  t )  in R  and show
an example of the function satisfying CR (f)= { t; t esuppf, Ord Sing( f ; t)= — co}
*95.

E xam ple 4 .1 .  Let C(t) be equal to e- i/t for t>0  and zero for t<0 . Put a(t)
=C(t+1)C(— t+ 1) and a ( t ) = a ( n t ) .  Then {a ( t ) }  is a sequence o f functions in g
satisfying the condition in the definition o f  (1.9) for t0 =0, i.e. a ( t ) E ,  an (0)*0
and lim supp an = IC  D en o te  b y  t7  the function defined by 0' for t>0 and zero

PE-->00

for t<0 .  From (5.2) t7 EC?' implies Ord Sing(t7 ; 0) —  (m + 1) and t7eCm - ,  implies
Ord Sing(t7; 0)<—  (m-1). Now we can show by a direct calculation Ord Sing (t!; 0)

= — (m+ 1) as follows. Since it holds F[a n t7_1(6)= F [ a t ] ( - - ) ,  we have

Ord Sing(an t7)= Ord Sing(at7)=1im  Ord Sing(an t7)= Ord Sing(t7; 0).
”4-

So it suffices to prove Ord Sing(at7)= — (m+ 1). For a#0 it holds

) s
( a ( t ) t m ) d tF  [ a t ]  ( a )  =  S e-itŒot(t)tmdt=

m+l1 d
(±6-, o dt dtm

_  m! a(0) (m + 1) a' (0)1
( ) m + 2 .rj •  d m + 2

( i a ) m +
1( ) m + 2 o e - " a  d t

„ (a(t)tm)dt

Therefore we have Ord Sing (at7)= —  (m +1). Hence Ord Sing(t7; 0) — (m+1).

E xam ple 4 .2 . Using the above function a(t)  we denote f  n (t)=a(4n 2 t) tl.

Put f ( t)=e - ilt Ef (t - -A-) . Then from Example 4.1 we have Ord S ing(f n (t — I
n

) ;  I )n n

= — (n + 1) . Remark supp f  n (t j n--) n supp f „,(t — 7
1
7 = g S  fo r n* m  an d  IP,k ) (t)1

kn2k  fo r any fixed integer 1 Therefore for any k>0, f ( t )  is  Ck in a
neighbourhood of the origin. Thus C R (f )= {0} #95.

Incidentally from microlocal viewpoints it will be suitable to define
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Definition 4 .2 . Using (1.8)' we define the order of the singularity off egi(R n)
at (xo, ° )  ER nx S n - 1

(4.11) Ord S ing(f ; x o , e 0 ) =11m Ord Sing(fik(D)akf),

where {ak} is the same one as in Definition 4.1  and {pk } has the following pro-
perties; pk E C - are homogeneous o f degree zero in e, 1 , satisfying p k (e0) * 0
and

lirn supp pk Is" -- {V)}

We can verify that Ord S ing(f ; x , e) has similar properties as Ord Sing( f; x).
We give some comments in Appendix relating to [1 ] , [4 ] , [9 ]  and [12].

§ 5 . Proof of Theorem 3.1.

In  this section we prove Theorem 3 .1  admitting Propositions 3 .1  and 3.2,
which are proved in the next section. First let us confirm

N otations. We say that u(x ,t) belongs to Ck([0, ce); I-Py) if  e - 7 1  u ( x ,  t )  is k
times continuously differentiable in  x  on  [0 ,  co) with values in H i. u (x , t )Œ
Ck  ( [0 , co) ;  .11.7) means u(x , t)E C k ([0, co); Hsi) )  for all j > 0 .  u (x , t)  is said to
belong to Ck([0, ce); .96' )  if e- - 7 t u((x , t) belongs to Ck([0, ce); .91 for all r>ro.

From the expression (1.6) and Proposition 3.1 we have directly

Proposition 5.1. A ssume (C) in Section 3 .  If  gE 1 -1;, f or some r>ro, then u(x, t)
is  a solution o f  (P ) satisfy ing (3 .2 )  and  ( 3 .3 ) .  M oreov er gEH7 im plies u(x , t)e
C 2 ([0 , co); H 7) f or r>ro, and u(x , t)EC 2 ([0 , co); follows from gŒ.9',.

Proo f . From Propositions 3.1 and 3.2  the solution v(x , r )  satisfies

(5.1)
at
axk v ( x  r ) klz-lk, rE E 70,  k =0 , 1 .

   

By virtue of Lemma 3 .1 , (5 .1 )  and the Lebesgue theorem we have Proposition
5.1.

Let us put

(5.2) 95=0(t, r ,  s; x )=z -(t-s)— ife w (y , r )  dy.

Then the integral representation (1.10) becomes

(5.3) u(x , t)=1im  lim dsdr,
E ÷ 0  6 ,4 0

where g6 (s) E 9  satisfies e- YtgE (t)—>e - Ttg(t) as s -÷ 0 . Remark that (5.3) follows from
(1.6) if we take care of the continuity of Fourier transformation. Use the relation:
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(5.4) eio= (4-r- k=1, 2, 3,...,

in (5 .3 ) . Then we have

(5.3)' lim  lim Sfeio( 1.01 , 0 I r i ) k e - e r r 'g , ( s ) d s c l r ,
c3o c i-)o

if (t , x ) satisfies the following condition for some r > r o :

(5.5) inf 195,(t, r, s; x)1>0.
sEsupp g , Im r=— r

Now remark that 0 , approximates to t—tx (s ) as r tends to co, where t i (s ) equals
r

s+S 0 a(y) d y . In fact 56,— (t— tx(s))=-- i
x

oar(w(y,r) -Fir4/a(y) )  d y  and Proposition 3.2

yield

(5.6) I — (t — ti  (s)) I S C 1-f i m
x  -171,  for (t, s, r , x)ER 2 xE - r i x (0 , co).

(5.7) Ia45(t, r, s; x )1
C h x l I m r 1 '  

k .2 ,  for (t, s, r , x )E R 2 X E yk x (0, co)

follows also from Proposition 3 .2 .  Here we put

(5.8) P k ( t,  r , s: x, 6 1) =e 5 fr'( — i o
l

Here we collect some estimates concerning 0 , and Pk, which are used later.

Proposition 5 .2 . L et F  be a closed set in R . Suppose that at (x o , t o) e  (0, co) xR,

(5.9) to—tx0(s)*0, fo r  all sEF,

holds. Then we can find a neighbourhood U  of  (x o ,  to), positive constants j-k and C k, k=1,
2, 3,..., such that the following (5.10), (5.11) and (5.12) hold.

(5.10) inf {1 (t, r , s ;  x ) I ;  ( x ,  t )  U, seF, Im r< -7 - 11>0,

(5.11) sup lipk (t, r , s ; x , e )i; (x , t)E U , sE F , Im r< -7 k , 0 < e< 1 1

^ C k kri5 Irii,k 1 ,

(5.12) sup Ile pk(t, r ,  s; x , 6)1; (x , t) ELT, seF, 0<s<11

kll (s7.2 )k)e6 7 11r1 - k,

P ro o f  (5.10) follows from (5.6) and (5.9), i f  we take 7-1 sufficiently large.
(5.11) holds with 7k=max Irk, i l l ,  if we use (5.7), (5.8) and (5.10). In  order to
obtain (5.12), we employ the following inequality: For rE  {r:— Im r=r>0} it holds

f4i(j/e) i , if IReri_4/ -Tr,

t4i (sr') je E , if I Re r

From (5.11) and (5.13) we have (5 .12 ). Thus the proof is complete.

(5.13)
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Now we can prove that the solution u(x, t) in Proposition 5.1 has the property
(P.1).

Proposition 5.3. A ssume (C ) .  Suppose that the boundary d ata g  belongs to .9'fy ,

and satisfies inf supp g=s 0>  -  CO . Then the solution u(x, t) of  (P) given by (1.6) vanishes

in  Z(s 0)---((x , t ): t< t x (so ) =s 0 +S  a (y ) d y ).

P ro o f  In the expression (5.3) we can suppose that supp g, converges to supp g
as e tends to zero . Especially lirn  in f supp  g5 = so . L et (xo ,  to )  be an arbitrary
point in Z(s 0). Then there exists a positive number so such that for F = U s u p p  g,

w e have (5.9). Applying Proposition 5 .2  we can find a  neighbourhood U  of
(x0,  to)  satisfying (5.10), (5.11) and (5 .1 2 ) . Especially we use (5.11) rewriting e

1by el .  Now in  (5.13) put e =- -e 1, then we have (5.12) replaced e, and Ck

erespectively by ei ,  e
'

and E'k. From (5 .3)' and (5.8) it holds

(5.14) u(x, t) =lim limSS(ei
_

e )(e
_

o pk)g,(s)dsdr, r > i i„ 1,
5 4 0  5,40

for (x, t) E U . Let us estimate the integrand of the right hand side of (5.14). Now

it suffices to consider R e ( i 0 - -
1

al e ). F ro m  Proposition 3.2 we have2

(5.15) R e ( ig 5 - -2
1 e i r 2) <T(t— tx (s ))+C x ( l a  r

i+ r)
 - 61 ( 6 2 -2 1 2 )  < r (t—tx(s))

(1 -4r  )1) .

By virtue o f (5.15) and the modified (5.12) we can see that it is suitable to put
r  as

Then for (x , t ) E U , se (0, e o)  and seF , there exists a constant C k  such that it
holds

integrand o f (5.14)1 ke7 ( t- t m irl - klge (s)1, k

Remark t — t x (s) <  —3<0 in this case and make e l tend to 0 , then we see u(x, t)
= 0  in  U .  Thus the proof is complete.

Proposition 5 .4 . Suppose the same conditions as in Proposition 5. 3. Then u(x, t)
defined by (1.6) satisfies

(5 .1 6 )  tx (s)Esing supp u(x, •) if  and  only  if  s sing supp g, f o r xE (0 , 00).

P ro o f  Suppose sEsing s u p p  g .  We decompose g  in  th e  following form:
g= gi+ g2+ g3, where g i EC-, supp g i c  (s-2 3 , s+ 23), supp g2 c (s+3, co) and supp g3

C ( - 0 0 ,  s —o) for some positive number 3. Denote by uk the solution u defined
b y  (1 .6) with g=gk, k= 1 , 2 , 3 . Remark g k e .n .  It holds u-=u i -Fuo -Fuo . From
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Proposition 5.1 u 1 is in C -  and Proposition 5.3 says that u2 vanishes in  a  neigh-
bourhood of tx (s ) . Remark g3 E e '  from our assumption in f supp  g >  c o  .  So we
can write

d i  g3i E  n supp g3 i c  (so -1  , s -5 ) .g 3 = i.id ti g 3 i '

Then we have u3 = E u 3i ,  where

u3i=e 7 tP[v (x , r)(ir)iF[e - Tsga i(s')]]-=1Eim$Sei 4'e - 6 '-'(ir)ig s i (st)ds'dr.

Differentiate h-times in t ,  then it holds

( t-19 )
h
it3 i (x , 1)=1im ..S.Seioqk, i ,h (t, r ,  s'; x , e)g s i(s')ds'dr, h>0, k— j— h>1,

640

where yk,i +h,(t, r ,  s '; x ,  e ) =( - - 7
1
Ç-T r - 47.

5 —  (toI  ) k (e -e ''( ir) i+ h). Similarly to the proof

of (5.12), we have the following estimate; For any fixed x  there exists a  neigh-
bourhood V  of t i (s) such that for k it holds

I qk,i+h I (,12))k +p-heerlIr I --k+ j+ r>74,

where C and j-k are certain positive constants. Therefore we can see that u3 i

is infinitely differenciable in t  in a neighbourhood of tx (s). Thus sEsupp g implies
t (s) sing supp u(x , •) fo r a ll (s, ER x  (0 , co). S im ilarly w e can  prove the
converse, if we use the expression:

(5.17) g(s)=e7sFi  v ( x . ,
1 F[e - 7 tu(x , t)]1=lim SSe - toe- E'zu,(x, t)dtdr,

6÷0

where u(x , t)  satisfies lirn e- 7 tu5 (x , t)=e - 7 tu (x , t)  in .9 "  and 116 ( x ,  t ) Œ g  for fixed
x>0.

Using Proposition 5.4  and the estimate ( i)  in Proposition 3.1  we can exhibit

Proposition 5 .5 . Suppose the same conditions as in Proposition 5 , 3 . Then we have
(P .2) in Inroduction.

Proo f . For any fixed xE (0, co) denote u(x , t) simply by

u(x , t)=T g=e 7 tF[v (x , t)F[e - 7 sg(s)]].

The definition (1.8) and the estimate (i) in Proposition 3.1 yield

(5.18) Ord Sing(e - 7 t Tg)-=Ord Sing(e - Ttg), for g E .9 1 , and r > r o .

Note e- 7 t g  simply by g 7 , then it holds

(5.19) Ord Sing (g 7 ; s)=O rd S ing (g; s).

Let functions fin  be identically 1 in a neighbourhood of s ,  satisfying lim  supp  fin
= {0 } .  Put g =p n g-i--(1 — fin )g= g n ,i + Proposition 5 .4 , (4 .5 ) , (4 .7 )  and (5.18)
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yield

Ord Sing (Tg; t x (s))-=Ord Sing (( Tgn o ) y ; tx (S)) ‹  Ord S ing ((TPng)r)

=Ord S ing (( 9„g) 7 ),

which converges to Ord S ing ( g ;  s) in view o f (5 .1 9 ) . Therefore we have

Ord S ing (u(x , •); t x (s)) Ord Sing ( g ;  s), for x  (0 , C O ) ,  seR .

If we take care (5.17) we can also prove the reverse inequality. Thus the proof
of Proposition 5.5  is complete,

We obtain Theorem 3.1 and Corollary 3.1 from Propositions 3.1, 3.2, 5.1, 5.3
and 5.5.

§ 6 . P ro of o f L em m a  3.1, Propositions 3.1 and 3.2.

Proof o f  Lemma 3 .1 .  Let a(t)  be a  C -  function with value 1  in (1 , 00) and

0  in  (— co , —1). Let r belong to (n , 12) ,  where r 1 = r 0 + 6  and r 2 = r 0 +  for any

fixed ( 0 ,  1 ) .  Put g i =a(t)g  and g2 = (1 — a(t))g. We consider (r)=F[e - Itg(t)]
corresponding to the decomposition:

e - 7 ig = e te - Yltg i + e - CY- Yz)te - Ygg 2.

Remark gkEY'-'y, and e- Yktg k e Y ', k =1 ,2 . By virtue of Riesz Theorem we have

e- - -rogk= c i + o ) — au k ,  k =1, 2,

where f  k eL 2 ,  supp f  c  (  — 2, C O )  and supp f  2  C  ( — C O ,  2 ) .  Rewrite this equality
as

2nt
e- 7 "gk= i :)&(1+t 2) 2171 f k  j ,

where f k i  have the same properties as f k and satisfy

e
-cr-rot(i+t2)2mf k i e . v . for Te(ri, 12), k-- -- 1, 2 and j= 1 , 2m.

Remark the relation:

F[e - ( 7 - Yotaii(1 +0) 2mf k i ] —i1) —rkliF[e-(7-70' (1 + t 2) 2 m f k J ].

Then we can see that l ( r )  is analytic in  { p :  Im r< -7 . 0} .

Now suppose that k(r) satisfies ( i)  and (ii) in Lemma 3.1 . Put g7 -=e7 iF[(r)]
for r> ro. Then it holds

<gy , 0>=<e - 7g7 (t), ersb(t)>=Q(a— ir), "(— c— ir)>, for çbeg.

Since the last expression is independent of r , we have g(t)=g y (t)EY :,,. Thus the
proof of Lemma 3.1  is complete.

Here we introduce a  notation on projection mappings concerning oblique
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coordinates in  complex plane C.

N otation . Let a and p be a pair of complex numbers satisfying Im(a -
18)*O.

Then any w E C  can be represented as w=-POE,8(w )a+Q a , (w)13, where

im(wi) Im(wer) p a ,(w )_ _a.  a n d  Q a .i3 (w )=  i(
18«) •Im(aA) m

Q a ,R(w) as well as P,,,,s(w) satisfies

(6.1) Qa,o(Erkw k)=ErkQa,(3(w ), for rk E R , wk eC .

Especially we denote R e r # 0 ,  simply by Q ,(w ). Then it holds

(6.2) Q,(w)-= Im(w•r2),(Rer)Irl 2

(6.3) Q ,(r2 )= 0 , Q ,(— ir)= 1 and Q,(1)=2(Im r)lir 1 2.

Using the above notation we can state the following lemma, which is applied
repeatedly in this section.

L e m m a  6.1. Suppose that w (x ) satisf ies w '=q(x )— w 2 , q (x ) be in g  a  continuous

function defined on  [0 , 00) with values in  C . P u t v(x)=v 0 expS
x

w (y ) dy , v o * 0 ,  which

satisfies v"_—q(x) v and  v (0)=v 0 . F or some r E C  satisfying R e r # 0  and Im r< O , we
assume Q ,(q (x ))<0  on  [0, 00) and that w(x) is bounded on [0, 00). Then in f  Q,(w(x))

> 0  im plies lim  v (x )=0 and sup Q,(w(x))<0 implies lim Iv(x)1-=00.

Proo f . Integrate v"i)=-q(x)Iv1 2 by parts on [0 , x i, then

(6.4) w(x) i v(x)12—w(0)1v(0)12=So v i CY P elY + ) oq ( A ! v (Y )1 2 4 Y .

Operate Q .  to both side o f (6.4), then

( 6 .5 )  Q,(w(x))1 v(x)12 — Q,(w(0))1 v(0)12= 
Q ( l ) $ X

 Iv' (y)12 dy+S x
0 Q ,(q(y ))v (y )I 2 dy.

Remark Q ,(1 )< 0  from (6 .3 ) , v '(y )=w (x )v (x ) and 0<c i <iw(x)1<c 2 o n  [0 , c ( )).
Then we can see that (6.5) gives the desired results. This completes the proof of
lemma 6.1.

Now we can show

Proposition 6.1. Assume (C 1 ). Then th e  so lu tion  v (x , r)  o f  th e problem  (1.5)
2M 1 1replaced lim v(x, r)--=0 by  lim lv (x , 1)1< 0 0  is unique for r e t r e C ;  — Imr>T0= -•  m3 / 2  j •

C o ro lla ry  6.1. Suppose (C 1) .  Then th e so lu tions v (x , r) o f  (1.5) and w (x , r) o f
(3.1) are unique.

Proof of P roposition 6 .1 .  Denote by fi)(x, r)  the solution of w '=  —r2 a(x)—w 2 and
w(o, r )= ir ,/a (0 )  (= 12(0, 1/r i ) .  Proposition 2.1 says iv(x, r) Q(x , 1/n) for all x>0.
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Namely we

(6.6)

From (6.6),

(6.6)'

Sadao Miyatake

have from (1.3) and Example in Section 2

ib(x,r)-Ezr41a(x)  > 1
ii.,(x,r) -ir,la(x ) —  r1

i f  -Im r= r> r o, where rt< f : - -1
7
-2

similarly to (2.3) we have

1 ib(x, r) - m la(x )  I . ,--1--ro, c1 )  l±, 1 , for r>ro.

1Let us operate Q, to  (6.6)' taking account o f (6.3) and max Q,(w) -= I R e  D I , then
Iwist

we have

3  1 (6.7) --2-i/a(x) <Q,(11(x, r ) ) < - a(x), if I Re r I _r>ro.

Remark Q„( - r 2 a(x)) =O. Then from Lemma 6.1 V(x, r) satisfies limr6(x, r)i=co
x-)-

x
in this case if we put î(x , r)=exp $

o
rv(y, r)  d y .  I f  1Rer , 1<r, we take the real

part of (6 .6 )'. Then it follows

 2,FT IRe rv (x , r)-rVa (x ) i<  7  roa(x) , If I Res- I <T, r>ro.
Ari-n This implies ,/a(x)7/2<Rell(x, r) <3 a(x )  712, thus v(x, r)>exp ( 2 r x )  This com-

pletes the proof of proposition 6. 1.

As for the existence of solutions v(x, r) of (1.5) and w(x, r) of (3.1) we state

Proposition 6.2. The solutions w (x , r) of  (3.1) and v(x, r) of  (1.5) exist uniquely
and satisfy the following estimates f or x e  [0, co) and - I m r> r o ,  i f  (C1)  is supposed.

(6.8) 1 w(x, r) - Fir+la(x) 1 4  1-.°—r  I ri,

(6.9) I v(x,r)I <3 4 (0)1a(x) ,

(6.10) a(x ) 1
m  r1 v(x,1 ,-)12j: 1 v(Y, ,-)12dy < 3

Proof . Apply Theorem 2.1 to the equation w'= - r 2 a(x )-w 2 and denote by
w(x, r) the solution belonging to S2(x, r1)  for all x>0 . Namely

(6.11) 1(w +ir,ITI(x 7)1(w -lr,1a(x ))1<ri<*,' , r>r, x>0.

Similarly to the proof of Proposition 6.1, we have (6.8) and

(6.12) +I a(x)1r112<iw(x , r) I < 3 4(x) 1 r1/2,

(6.13) ,Ja(x) 12<g,-(w (x , r))<3.4( 12, if I Re z- 1 >r ,

(6.14) -34./Y(.T:) r/2<Re w(x, r ) < - J(x) 7'12, if I Re r I <r•
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From (6 .4) and (6.14) we have (6.9) and (6.10) if 1R e r 1 < r .  In the case where

1Re r 1 w e integrate by parts of v , , f ) =  —r2 c1(x)ivr and operate Q . to obtain

(6.15) Q,(w(x o, r))1v(x o, r)1 2 =Q,(w(x, r))1v(x, r)1 2 — Q,(1)Ç 01v/(y, r)12dy,

for any xo and x  satisfying 0 ._x o< x .  Here we have used (2_,(r2) -=0 in  (6 .3). Put
x0=-0. Then (6.15) and (6.13) yield (6.9), because Q,.(1) is negative. (6.10) holds
from (6.15), (6.12), (6.13) and (6.3). T h e  proof of Proposition 6.2  is complete.

As for the analyticity of w (x , r )  and v(x , r )  with respect to r  we state

Proposition 6 .3 . Suppose (C 1) .  Then the solution w(x, r) of  (3.1) is analytic with
repect to r f o r every fixed x. The solution v (x , r) of  (1.5) has the same property.

P ro o f  First we verify the continuity in r  of w(x, r ) .  Suppose —Imr o> r o and
lim  r i= r o .  Since the set {w(0, ri)}  is bounded, we can suppose that w(0, r i ) con-
verges to wo if  we replace fr i l  by a subsequence. Denote by wo (x, ro) the solution

of w'=. —rga(x)—w 2 and w(0)=w o . Put vo (x , ro)=S o w o(y , ro)d y . Then (6.9) yields

I ve(x , vo)i 3M/m, for all x>0.

Proposition 6.1 says that vo (x, r o) =v(x, r o)  for all Hence wo -=w(x, r o) . Thus
w(x, r )  is continuous in r  for all fixed x > 0 . Therefore v(x , r )  is also continuous
in r .  In order to prove the analyticity, we consider wh(x, r)-= (w(x, r+ h) — w(x , r))/h,
where h  is a complex number in a neighbourhood of the origin. From the equation

—
d

wh= —  (2r + h)a(x)—  (w(x, r+h)+w(x, r))w h,,dx

it follows

d(6.15) (v (x , r+h)v (x , r)w h(x , r))= — (2r+h)v (x , r+h)v (x , r)a(x ).dx

Integrate (6.15) from x  to co and tend h to zero. Then from Proposition 6.2 we
have

a r)=2rv (x , r) - 2 S  a(y )v (y , r) 2 dy.dr

Hence we have Proposition 6.3.

By virtue of Propositions 6 .1 , 6 .2  and 6 .3  the proof of Proposition 3 .1  is
complete if we verify the following

Proposition 6 .4 . Suppose (C 1) .  Then the solution v(x,r) of  (1.5) satisfies

M 1-H IM +16M 312  

(6.16) 1v(x, r)1> -1
5

3  V a(0)/a(x ) c", f o r x >0 , r>ro, where 0=

d2

P ro o f  Let us describe in short L = +r 2 a(x ) and v e=ex v . Then Lv =0dx2
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means (Lv)e-Lene-=-(--d
d
x  —0) 2110+ r2a(x)vo =0. Then we have

(6.171 /=2Ret(Love)(-c4y -0 )v o )=  (—d
d-;c- —0) te2exj, _ )/ e2 8 H„.(x)=0,

where J,-(x) v'12 +a(x)Irv1 2 , H,.(x)=a'(x)Irv1 2 -21m{2ra(x)rt,61.
Put X = / a (x ) iv  and Y =v', then J.,(x)= XX + yj) and

2i/7/
II, (X) = "tz XX + 2ra(x) (XY— YX)= (X Y )H ( f ) ,  H = ( a /  / 2a

i v 7 i r  0 ) .

Since the eigen-values of H are (a'±- ,./d 2 +16a 3r 2)/2a, we havew {e20x J,.(x)}>0 from

(6.17) if we take O as in (6 .16 ). Hence it holds J„.(x)>e - 2 °xJ.,(0), which yields
(6.16) from (6.12). Thus the proof of Proposition 6.4 is complete.

Finally we show the following Propositions 6.5 and 6.6, which give Proposition
3.2.

Proposition 6.5. Suppose (C k,). Then there exist positive constants C k  and rk ,  k-=-
0, 1, 2,..., —1 such that we have

(6.18) lail(w(x,r)-1-zr i/a (x ) Ch IvIIT f o r xe [0, c '°) — Im r=r>rk, 0 < k k 1-1 .

Proposition 6.6. Suppose that f o r  any fixed integers k > 0  and h > 0  there exist
positive constants C j  and T i j ,

 fo r  i =0,1,..., k+1, j = 0,h - 1  and also f o r  i= 0, 1,...,
k —1, j=h in  the case of satisfying

(w(x r)+ir4 a(x)(6.19) I aiai ,, 11-ilr, for x e  [0 , 0 0 ) ,

f o r  all above ( i ,  j ) .  Then we can find positive numbers Ck h, and rkh satisfy ing  (6.19) fo r
i = k  and j-=h.

Proof of Proposition 6 .5 .  For k = 0 (6 .1 8 )  corresponds to (6.8). Suppose that
(6.18) is true for k=0, 1, j —1 —2. For simplicity let us put

tw_ = w_ (x, r) = —zri/a(x) , W =  W(x, r) -= w(x, r) —w_ (x, r).

ww=aixcw_ ,  w(k) = ,91kw

Then we can use

(6.21) C k  I, for xE  [ 0 ,  0 0 ) ,  -  Im r> r o,

(6.22)I  W
1
17, 1

 , for xe [0 , 00), —  Im r>rk , 0  k

From the equation w ' — r 2a(x)—w 2 it follows

(6.23) d ._ i v y =dx

Using w2 —w 2 _  =  W 2 + 2  
Ww_ we can represent a'x (w2 —w2 )  as follows.

(6.24) a.,x(w2—w2_)=2wW(P+gi+Ri,

(6.20)
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where Q i  does not contain WO and R i excludes both W ( i)  and More
concretely from

j-2
&ix ( W2) = E i C ic WCO WCj—k) = 2 ( w w 0 +  C

i
 frvcDpri-n) + z i c k wcowo-k) ,

k=--0 k=2

aix (2 Ww_) = 2 ( Pri)w_ +iC1W ( i - 1 ) 0_!) ) +2iCk Wcow (L') ,

we get

(6.25)

(6.26)

(

Q i =2 Ww (_!) ,  Q 2 =  (2 W( 1 ) +4 w ) W " ) ,  Q s = 6( W" ) + wT) W ( 2 ),

Qi= 2j( W" ) -1- 02 ) ) Wci - ' ) , j_ . 4,

RI = 0, R 2=2  Ww (2) ,  R 3 = 2 (3  W ( nwT 4- Ww ( 3 ) )  and(

Ri=EiCk(W ( k) +2wT) W ( j - k) -F 2 2i jC  kW °)(1—  k ) ,4 .
k =  — 1k=2"

j-2

Now put

(6.27) 7?i=Ri-Fai;"w_.

Then the equation (6.23) is written in the form

(6.23)' d  wci)_ _2 w  wo _ Q i
dx

Taking account of —i
d

l im  v(x, r)=0 and (ii) in Proposition 3.1, we havex

(6.28) 1 -
W c i) (x ' r ) =  v (x , r) 2 Sxv ( Y '

since (6.21), (6.22), (6.25), (6.26) and (6.27) yield

(6.29) I Qi I I ri2 /7", rfii I r F/T, for x e  [0 , co ) and r>r j - i =  m ax r ip
0 < k < j - 1

Hereafter for convenience we denote by C i various constants depending on j  and
1 a(x). Substitute v(y, r)2= 2w(y, r) ay v ( y ,  r) 2 into (6.28) and integrate by parts to

have

(Q + ) 1 -v  (  ,,, w a y (  2 w   H-  2 w  )ay.Qi h i  .1(6.30) W(i)(x'
(Q

r )
— 2 w v(x, r) 2

From (6.12), (6.21), (6.22), (6.25) and (6.26) the first term of the right hand
side of (6.30) is estimated as follows:

(6.31) Q i± h ir  , for xE [0, 00),2w

As for the integrand of the second term of (6.30) we have

ay(
Ri a y h'i wa)± w T ) 7,

2 w  
) =  

2 w  2w2
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Q i \ ( w a . ) ± w ( 0 )  n  a y Q ;aY  2w ) = 2w2 v -i+  2 w  '

Similarly to (6.31) the following estimates hold:

 

Q (

 W (1 ) w  (1))
2w2

 

(6.32) —1=1
i r

, for x E  [0, c o ) ,  — IM r>rj-i.

  

yQ.; We rewrite 2w as

a
Y
(2-i =ri Pri)+T i ,2w

where ri  and 7 ,  do not contain WO and from (6.25) they satisfy

(6.33) I ri  I C i ,  7i I C ., I r ,  for x  [0 , co), —

Now we put

(6.34) aY( ) = r jW + Tj

Then it holds

(6.35) ,  for x e [0 , co),

Substitute (6.31), (6.34) and (6.35) to (6.30) and remark that

(6.36) K i(x , r)=sxu<pv j W(i ) ( y ,  r)i

is a monotone function in x , then it follows

K i (x , r) <C3-11-1 ±(K i (x, r)+ C 3
 1

;

1
) 2 s: (y, r)rdy.

Here we use (ii) in Proposition 3.1. Then we see that

K i (x , r) < e-1--L I  for x e [0 , co), —Imr=r>7,r '
holds for sufficiently large and 3. Therefore we have (6.18) for k= j. Thus step
by step we can prove (6.18) for any j / s 1- 1 .

P roof of Proposition 6.6. In order to calculate the right hand side of

(6.37) ddx a rha : ( w _ w  ) _  m a t ( w 2 _ w 2 ) _ a i; a t +i

we use
 w 2 — w _ _  W2+2w_ W and

k h
(6.38) 1a i ,ot(1172) = E  EkCi h c o jw (0 ,9 h - iw ( k - i)

1=0 j=0

h

(6.38)2 a:akx(W- W )= E E k C  h C
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We can denote

(6.39) Qkh+ Rkh,Mat(W 2  — 0_)=2w a l,i147< k) +

where Qkh, contains arhw q -"  and Rkh involves neither arkw(k) nor a: W(k - " .  Denote

Qkh=rkha:W ( k - " , Pkh=Rkh+a:a h; " W -.

Then there exists a positive constant Ck such that we have

(6.40) rkhl <C kh3 114hl<Ckho for x E [0, oo), —1m 1 > 3 ; k h =  
max

(i.heSkh

where Skh is the set of all pair of integers belonging to

{ [0, k + 1]X [0 , h-1 ]1 U {[0, k —1]x {h}} .

For convenience let us write rkh precisely using the notation (6.20)

troh=0, rih= 2 ( 
w w +  u(1),

rkh=2k(W w+wT), for k>2.

Similarly to (6.28) and (6.30) we have from (6.37), (6.38), (6.39) and (6.40)

(6.42) al, W(k) = Q kh+ -k  kh 
2w .rv(-Y, 

27)2(  2rkh 
x w arhwq0+14h}dy, ,

z.
where

—kh

R k h =   kay( 2 u , )a, wa- 1)+a  Y( 12kwh )* Similarly to (6.31) and (6.35) we have

Qkh-Fii kh,r  i r I" r k h  ‹ C k h ,  and
(6.43) 2w r  '  2w

-
z

iRkh,I <Ckh(11- 11 - h /r), for x E [0, m), —Tmr>"ikh.

Here Ckh stands for suitable positive constants depending on k  and h . Now put

K kh(X, r) =sup I ai,..W(k)( y ,  r)i.
xsy

Then we have from (6.42) and (6.43)

K kh (X , ) r kh "
' for x E [0, co), — Inip>rkh,I" r 

i f  we choose positive constants Ckh and rkh, sufficiently large. Thus we have
Proposition 6.6.

Appendix.

Here we give some comments on the order of singularity at (x, e.) and its
historical back-ground. First we remark that the following theorem holds similarly
to Theorem 4.1.

(6.41)
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T h eorem  A .  Let f  e g i (1 r) , Then Ord Sing (f ; x , e) defined on Rn  x  S  - 1

satisfies the following (A.1) — (A.3).

(A.1) T a rr ' (Ord Sing (f ; x ,  e)) is an upper semi-continuous function on 10><Sn - 1 ,

(A.2) Ord S ing (f ;  x)=m ax Ord S ing (f ; x , e ),

(A .3) W F(f )={ (x , e): Ord Sing (f ; x , e)> —  co} , for f  g'.

R e m a r k  A .1 . For f eg i (R n), let us denote

CR( { (x , e )  Rn x Sn - 1  : (x , e) E W F( f ), Ord S ing (f ; x , E)= —001.

Then as in Example 4.2, there are examples of f  g '  satisfying CR(

In order to discuss further Ord Sing (f ; x ,  e) we use

Notation. Let us denote a(x, if  a(x , e)Es7,0 is homogeneous in
for CI 1 and supp a(x, e)I.Rxs.-1 is compact.

R e m a r k  A .2 . For f e g ' ( 1 r )  Ord S ing (f ; x o , e°) is equal to

lim  Ord Sing (at f)--= inf Ord Sing(a* f),
k->.0 a e

-
4o, a (Xo, E0 )# 0

where a k e n o , ak(x , eo) o, lim supp ak= (X0, e
°
)  and a* f  is defined by

0-0 =, 1E1=1
,  r

a * J  (2z )ni2 33e i ( x - "a(Y , A Y )dy de ,

this integral being interpreted as an oscillatory integral as in (1,10). Moreover
we have for f  E S /

(A.5) Ord Sing (f , x o , e°)=1im Ord Sing (ak(x, D)f = inf Ord Sing (a(x , D)f )
a e.73;,0, a(x0, e0)#

where ak (x , D ) are the usual pseudo-differencial operators with the same symbols.

We shall prove elsewhere Remark A.2 and other properties of Ord Sing (f; x , e)
together with suitable applications.

Finally we give a historical comment on the micro-localization and the order
of singularity in order to clarify the viewpoint of Definition 4.2 and Remark A.2,
although it is limited to author's knowledge and references are not complete in
any sense. In Mizohata [9] the following micro-localizer p„(D)a(x) was introduced
in order to discuss the necessary condition for Cauchy problem to be well-posed.
a(x ) is a function in C r  with support contained in  {x; Ix —

Xol <ro} and 1 on Ix;

I x — xo I r o/21. a(e) is another function of the same type with its center xo replaced
by e°, and a i,(e)=--a(eln). It is remarkable that not only  p ( D )  a(x )  but also
i3(„P) (D )a (o) (x ) are used in  [9 ] to prove Lax-Mizohata theorem. Fl6rmander [4]
used pseudo-differential operators as localizers in order to define the wave front
set, whose projection to R" is the singular support. This micro-localization makes
it clear to discuss the propagations of singularities of solutions to equations with
variable coefficients. Now we can observe that the notion of the order of singularity

(A.4)
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exists surely behind that of the singular support, since sing supp f 9.x.0 means that
for any N > 0 there exist CN and a (x )E C ,  a (x )* 0  satisfying I afl C„(1-1-1e1)N.
As sing supp f is the compliment set of an open set indicated above, there appears
a little difference between sing supp f and the set

{x :  f (x ) is not infinitely differenciable a t x } = {x :  O rd S ing (f ;  x ) > — co}.
The former is strictly larger than the latter if C R (f )*O . However from the proof of
Proposition 5.5 we can guess that the notion of the singular support is indispen-
sable in order to discuss the order o f singularities for hyperbolic equations with
variable coefficients. On the other hand as for equations with constant coefficients,
the fundamental solution for Cauthy problem were considered by many authors,
relationg to the order of singularity. For example Duff [2 ] showed the order of
singularities o f fundamental solution in a neighbourhood o f th e wave surface.
Though the exact definition of the order is not given in [2 ] , we can recognize

1that the order of acn- "  and v.p. —F ., in R l are said in  [2 ] both to be n -1 , which

1coincides the order given in Definition 4.1 . (Remark that the order o f v.p.—
x  

as

distribution is not zero.) Tsuji [12] developed the argument in [2] and introduced
the definition of the order of singularity in the following D  sence:

(A.6) s.o.(f; x o ) =-1im supp {o(uib);sbeC(x, e)}, for f  e g'(Rn),540

where o(v)=supp fls; v(x) eHk(R 3 )}  and CT (x, e) = fsb ; supp Oc fx; x — xo l<e} ,
sb(x0) =01. Now we notice that the above s.o.(f; x ) is equivalent to

(A.6)' s.o.(f; x o ) =inf {—r; Of elir, OeC7(Rn),0(x 0) 01,

since it follows that ue H r  (R n ) implies OuEHr(Rn) for Oe Co's. As L2 is transformed
isometrically to the dual D  space, (A.6) can be extended in the micro-local sence.
Bony tried to considered it in the following way: u is micro-locally of class H ' at
the point (xo , e.) if there exists a classical pseudo-differential operator R  of order
zero whose principal symbol is non zero at (xo , e.) such that RueH s. Similarly
to the proof of Remark A.2 we will be able to show that

(A.7) s.o. (f; x, e o) = inf { — s; Ruells,a(R)EgL, a(R)(x o ,  e0) 13}

is well-defined and has the similar properties to those o f Ord S ing (f ;  x o , e°). It
seems to the author that Ord S ing (f ;  x o , e") is more natural in the sence that it
can be directly related to the properties of Ck as was seen in  (S .2) and (S.3) in
Introduction. However it is the problem to be solved that will discuss the relative
merits.

DEPARTMENT OF MATHEMATICS,
KYOTO UNIVERSITY
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