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A comparison theorem for Riccati equations
and its application to simple hyperbolic
boundary value problems

By

Sadao MIYATAKE

§1. Introduction.

In this paper we deal with a certain comparison theorem for Riccati equations
and apply it to construct an integral representation of forward progressing solutions
of simple hyperbolic boundary value problems. This integral representation enables
us to see that the forward progressing solution preserves its order of singularities
along characteristic curves. (See (P.1) and (P.2) below.)

Let us explain our comparison theorem (Theorem 2.1). Let ¢(x) be a smooth
function defined on [0, o) taking its values in C—(—o0, 0]. By 4g(x) we denote
a root of ¢(x) with positive real part. It is evident that, if ¢(x) is constant ¢, the
equation w’=g—w"* has solutions y ¢ and —y¢q. Here —4 is an unstable solution,
V¢ being stable. In general case it is interesting to seek for the solution w(x) of
w'=q(x) —w?, which stays close to —4g(x) for all x€[0, ). We suppose that
(logg(x))” is not so large as compared with Re yg4(x). More precisely under the
assumption

g’'(x)
q(x)

(L.1) D(g):sup{ / ReW}<4,

0<x

we can show that there exists a solution w(x) of w’=g¢(x) —w? satisfying

w(x) —(—Vq(x) )
w(x) —vg(x)

1 8 .
where r; stands for a root of r+7— D) less than 1, i.e.

(1.2) '<r1, for all xE[0, o),

(1.3) nt=prys <Ll

In order to apply the above result to the boundary problem stated below, we
take ¢(x)=—rz%a(x), where a(x) is a positive valued smooth bounded function and
t=0—iy, 0€R, y>>0. Then D(q) can be made arbitrarily small if we take the
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14 Sadao Miyatake

parameter y sufficiently large. Hence from (1.2) and (1.3) the equation w’=
—7? a(x)—w? has a solution w(x, 7) close to —izyg(x). Put

(1.4) v(x, r)=exp<5:w(y, 7) 4)})

Then »(x, v) will give a unique solution of

= —72a(x in (0, o
(1.5 {v (x)v (0, o)
v(0, 7)=1, Ii_)rcr:v(x, 7)=0.

Now we can make a solution of

& s
- [a—xzu—a(x)wu=0, x>0, tER,

u(0, t)=g(t), tER,
in the following form;
(1.6) u(x, £)=e"F[o(x, D)F[e*g(s)]],

which is independent of y>7,=0, if ¢~¥*g(s) belongs to &’ for y'’>r. We can say

that the solution u(x, ¢) defined by (1.6) is the forward solution, since the following

(P.1) can be verified. We can prove also (P.2). (See Theorem 3.1)

(P.1) inf supp u(x, t) propagates along the forward characteristic issued from
(0, inf supp g(¢)).

(P.2) Sing‘ularities of u(x, -) propagate along forward characteristics, keeping the
order of singularities which is defined below by (1.9). More precisely it holds

(1.7)  Ord Sing (g; s)=0rd Sing (u(x, *); tx(s)), for all s€R and x€(0, ),

X
where tx(s)=:+Soda(y) dy.
Here the order of singularity of f(¢) at a point ¢, is defined as follows. First we
put
(1.8) Ord Sing(f)=inf {reR: ‘lilmf(a)(l +le])-r=0},
o|>oo

for fe¥’ satisfying f(&§)€Ll,. Using (1.8) we define for f€9’
(1.9) Ord Sing(f; t)=lim Ord Sing(anf),

where {a,} is a sequence of functions in & satisfying a,(t)) #0 and suppaz— {t}.
In Section 4 we show that a finite number or —co corresponds to the right hand
side of (1.8) independently of the choice of {a,}. Here we point out some of the
properties of Ord Sing (f; to):

(S.1) Tan=! (Ord Sing(f; t)) is an upper semi-continuous function and satisfies

Ord Sing(f) :té’li;f:f Ord Sing(f; t), if fe&’.

(S8.2) If Ord Sing(f; to)<<—(k+1) holds, then f(t,) is k times continuously differe-



A comparison theorem for Riccati equations 15

ntiable in a neighbourhood of #. On the other hand Ord Sing (f; t)>—k:
implies that f(¢) is not k; times continuously differentiable in any neighbourhood
of t,.

(S.3) Ord Sing(f; t)<—(k+1) on a compact set K implies that f(¢) is £ times
continuously differentiable in a neighbourhood £2; of K.

(S.4) f(t) is a C= function in an open set £ if and only if Ord Sing (f; t)=—c
holds for all t€2. And we have

sing supp f={t; Ord Sing(f; t)>—oo}.

(S.5) If Ord Sing(f; t)=—oo0 holds on a compact set K, then we can say that
S(t) is a C= function on K since (S.3) holds for all integer £>0.

Now remark that Ord Sing (f; t)=—co does not imply te&sing supp f. Denote
the set

{t: tesing supp f, Ord Sing(f; t)=—oo}
by CR(f), (critical regular points of f). From (S.4) we can verify
CR(f)={t: |mtz}x Ord Sing (f; s)>—o0 for >0, lim max Ord Sing(f; s)=—o0}.
s-t|<e 3

=0 |s—t|<
Hence we can point out easily examples of functions satisfying CR(f)+#¢, (see
Section 4).
Now we consider an example of the forward solution in a simple case where
g(x)=1. Remark that gi(t—x)+g:(¢t+%) satisfies (P) whenever g(t)=g1(t)+ g2(¢)
holds. In this case the forward solution u(x, t) is equal to g(t—x). We can also

say that u(x, t) is uniquely determined by Cauchy data (0, t)=g(¢) and -aaTu(O, t)

=—g’(t). However it is not so easy to find the value %u(o, t) in general case.

In fact its Laplace-Fourier image is w(0, t) g(r), where w(0, ¢) is determined
depending on all the value a(x), ¥>0.
Historically speaking, the propagation of singularities of this type was con-

sidered in [11] in the case where %g(t) has the discontinuity of the first kind.

However if singularities are more general, it is suitable to consider them using

Laplace-Fourier inversion formula. In fact we write the solution u(x, t) given by
(1.6) in the form

(1.10) u(x, t)=lim limS j P L O

E>0  &>0

where ge(s) €2 and e "gs(t) converges to e *g(t) in &’ as e tends to 0. Especially
we remark that there exist positive constants C, 7, and 6 satisfying

(1.11) Cle<Jo(x, 7)|<C  for Im 7<{—¢° and x€[0, ].

In the proof of (P.2) we will see that the estimate (1.11) plays an important role
together with the definition of the order of singularities (1.9).
The author consulted Friedlander [3], Hoérmander [4], Nirenberg [5] and
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Melrose-Shostrand [6] to justify the interest of the problem studied here and the
method used here, and refered also to Mizohata-Yamaguti [10] and Picard [11].

§2. Comparison theorem for Riccati equations.
As is well known, »”’=g(x)v is reduced to
(2.1) w' =q(x) —w?,

if we put w=2'[v in the case v#0. conversely for any w satisfying (2.1),

u(x) =expS:w( ) dy

satisfies »’=¢(x)o and »(0)=1. Now let us consider another transformation of
(2.1) supposing the following condition

(C)o q(x) is a continuous tunction defined on [0, o] with values in € —(—co, 0].
Denoting by 4g(x) the root of ¢(x) with positive real part, we put

_w(x)+g(x)
(2.2) )=

If g(x) is constant ¢, then (2.1) is equal to 2’=2yg 2. In this case we have (log|z|)’
=2Re ¢ >0, if z#0 i.e. w# —4¢. This implies that w=—4y¢ is an unstable solu-
tion. »=exp(—+¢x) is the unique solution of »”’=gv in (0, ), »(0)=1 and
l:_r)ri v(x)=0. We will extend this argument to general ¢(x). At first let us introduce

Notation. w(x; xo, w,) stands for the solution of (2.1) satisfying w(x,)=uw,.
We put
w4g(x)
w=A4g(x)
Then we have the following theorem, an ameliolation of some results in [5]
and [6].

Q(x, 1) ={wEC,

<r}.

Theorem 2.1. Suppose that q(x) satisfies (C)o and (1.1). Then there exists a solution
of (2.1) satisfying w(x)€Q(x, r1) for all x>0, where ry is given in (1.3).

In the process of the proof of Theorem 2.1 we use

Proposition 2.1. Assume the same condition as in Theorem 2.1. Let x,€(0, )
and woC satisfy wo€82(x,, r1). Then we have w(x; xo, wo) ER(x, r1) for 0x<xy,
and w(x; xo, wy) €2(x, r1) for x<x. It holds the same result replaced ry by 1[ry.

Remark 2.1. From (1.3) and (2.2), |z(x)|<r; yields

w(x) +4g(x)
Yq(x)

Example. Let g(x)=—t2%a(x), t=0—iy, d€R and y>0. Suppose that 0<m

2r, 2D(q)
l—rrl < 4—D(q)

<
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<a(x)<M and |a’(x)| <M, hold for all ¥=0. Then we have D(q)<(M/m3’2)% and

w(x) +l‘hja(x)

which tends to zero as y tends to oo.

(2.3) <C%, for r>7,=2(My[m*?),

The estimate (2.3) will be used later.

Proof of Proposition 2.1.  First remark that (2.1) and (2.2) make

(2.4) Atog =27y — (e— 2L

Using |z—2z7'<|z|+|z|! and Re—(—id;logz(x) =7d;loglz(x)|, we have

g’ (x)

g(x)
The condition (l.1) implies that the right hand side of (2.5) is non-negative if 2z

(2.5) L 1og| 2(x) [22Rey () —l 21+ 21

. 1 ..
satisfies |z|=r; or |zl=—;—-. Hence we have Proposition 2.1.
1

Proof of Theorem 2.1. Let us put
F,=lw(0, n, w,); w,€l(n, r)}.

The family of set {F,} satisfies F,=F,, F,e(0, r;) and F,DF,,,, for any integer n
>0. Therefore F, converges to a non empty set F= EF,,. Let w, belong to F,

n=1

then w,eF, for all n>>0. Therefore in view of Proposition 2.1 the solution w(x)

=w(x; 0, w,) belongs to 2(x, r;) for all x€[0, n], n=1, 2, 3,.... Hence w(x) be-
longs to 2(x, r;) for all x€[0, oo).

§3. Forward progressing solution of the problem (P).

In this section we state our results concerning forward progressing solution
of (P) described in Introduction. The proof is given in later sections. First let
us introduce

Definition 3.1. g(t) is said to belong %7y, if ¢t g(t) belong to &’ for all
T>71ER. lin(}ge=g in %'y, means lirr;e"t ge(t)y=etg(t) in &’ for all y>7,.
> >

Remark 3.1. Let X(t) and ¢¢(t) be functions in & satisfying leirrolxe(t)=l and
>
léirrolgbe(t) =din &’/. Thenge=¢: *(Xeg) satisfies l;n;l ge(t)=g(t) in &7y, for any g(¢)
> >
ES v,

We suppose that the boundary data of (P) belongs to &’y., Now we can
state a characterization of ¥/,

Lemma 3.1. g belongs to &'y, if and only if the following (i) and (ii) hold.
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(1) &(zr)=Fl[e"tg] is analytic in {rC: Imc<—7,}.
(ii) &(o—1iy) belongs to #’(a) for all y>>y. For given e>0 there exist positive constants
C and k satisfying

12— <Clol+ 1), for all o€ R and ry+e<y<ro+r-

Now the coefficient a(x) in (P) is assumed to satisfy the following condition.
(Cr) a(x) is a C=—function satisfying 0<m<a(x)<M <oo and |——-a(x)| <M<

for all x>0 and all integer k€[1, k], where k; is a given posmve integer.
(C) a(x) satisfies the above conditions for all k;>1.

Proposition 3.1. Suppose that a(x) satisfies the above condition (C.), i.e. (Cy,) with
ky=1. Then the problem (1.5) has a unique solution v(x, t) for all © belonging to Sy,
={r€C: Im t<—p,}, where 7y is a positive number. The solution v(x, t) is analytic in
© and satisfies the following estimates: There exist positive constants C and 6 such that we
have for all x=0 and all €3y,

(i) Cle < Ju(x, 7)I<C,

(ii) |v(x"1'.‘._)le lo(y, 7)P dYSCHm I

In view of Lemma 3.1 and the bove estimate (i) we see that ge¥”,, implies
u(x, )€y, for all x>0, where u(x, t) is defined by (1.6). Now we can state
Theorem 3.1 using the above v(x, 7).

Theorem 3.1. Assume (C). Suppose that g belongs to &'y, 10=2(M[m?). Then
u(x, t) defined by (1.6) is a smooth bounded function in x&[0, o) with values in &'y,
together with all iis dervatives. u(x, t) is the forward progressing solution of the problem
(P) in the sense that (P.1) holds. u(x, t) satisfies also (P.2) if inf supp g>—oo holds.

In order to verify (P.1) and (P.2) we use some detailed properties of the
solution w(x, 7) of the following problems.

[w’ =—t%a(x) —w?, x>0,

(3.1)
Res:w(y, 7) dy=—c0

Proposition 3.2. Assume (Cy). Then the problem (3.1) has a unique solution
w(x, ) satisfying the following (i) and (ii):
(1) w(x, t) is analytic in €3y, for all x=0.
(ii) For each integer k[0, k1—1), there exist positive constants Cy and yy such that we
have, for all €3y, ={reC; Imt—7r4} and x=0

1030 (3, <) +ida(e) )| <Cfr, 0=iy 0=, 0<itj<k

Imz|’

Remark. we can show that w(x, ) has an analytic continuation into X=
{reC; Im7 <0}, if we apply the method used in [8].
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Incidentally we state another estimate of u(x, ¢) defined by (1. 6) as a
corollary. At first let us introduce

Notation. g is said to belong to H% if ¢ g belong to H*, for yeR and
kER. |egl) is equivalent to l|g||k,7=< S (1+]z])2| g () dr>1/2.

Imr=-7y

Corollary 3.1. Suppose geHY, kR, in Theorem 3.1. Then the solution u(x, t)

is a continuous function in x with values in HY satisfying the following estimates:

1
(32)  Creiglha<3)

9
ol )| -ir < Callglan, for 170 and 0.
0

3.3) [ (lu6n R+

i) 2 1
—a;u(x, -)”k_m)dxsck ; lgl&,vs Sor r>70.

§4. Order of singularities.

Here Definition (1.9) is shown to be reasonable and we verify some basic
properties of Ord Sing (f; t), which are used later. First we state a fundamental
lemma concerning the definition (1.8).

Lemma 4.1. For any fe&’(R) and a€P(R), we have

(4.1) Ord Sing(f) = Ord Sing(af).
Proof. For any r satisfying Ord Sing(f)<r, (1.8) yields
(4.2) f(0)|<Cr(1+|e)™  for cER.

From @f(a)=2—lﬂj F(o—p)a(p) dp and (4.2) it follows
(1+lo)rlaf@) < C A ao) dp < €. fla@)l(1 +1pD)7 dp<oo.
Hence we have Ord Sing (af)<r, which implies (4.1).
From Lemma 4.1 we have immediately
(4.3) Ord Sing(a f)= Ord Sing (Bf) holds for f€o’ (R),
if a€9 and B2 (R) satisfy supp B {¢; a(t)+0}.

By virtue of (4.3) we see that the right hand side of (1.9) corresponds to a finite
number or —o independently of {a,(t)}. Now remark that Lemma 4.1 is true
even if we replace 9/(R) and @(R) respectively by 92’(R") and 2(R") and extend
(1.8) to

(1.8)" Ord Sing(f)=inf{reR: llélm f(&)(1+]€])-"=0}, for fe¥’ satisfying f(&)eLl,.
Thus the definition (1.9) can be extended to

Definition 4.1. For f€9’ (R") we define the order of singularity of f at a
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point x=x, by

(4.4) Ord Sing( f; xo)=lim Ord Sing (apf)=  inf Ord Sing(af)
o0

a€,a(x)=0
where {a;} is a sequence of functions in 9 satisfying ai(x,)#0 and suppa— {x,}.

In fact Definition 4.1 is reasonable since it holds Lemma 4.1 replaced the
space R by R". Now we have the following lemma concerning the order of
singularities of distributions in R,* n=>1.

Lemma 4.2. We have for any f€&’, f1€&’ and f,€9’
(4.5) Ord Sing( f; x)<<Ord Sing(f),
(4.6) Ord Sing( f1+ f2; x)gmzla.)zc Ord Sing(f;; %),
r=1,

(4.7) Ord Sing( f1+ f; x)=mzlu2< Ord Sing(f; x), if Ord Sing(f1; x) #Ord Sing(f2; x).
=1,

Lemma 4.2 is verified directly from Definition 4.1. We prepare another Lemma
concerning Ord Sing(f).

Lemma 4.3. For any f€&’ we have
(4.8) Ord Sing( f)=max Ord Sing (a;f), Ufimieaj=l on supp f, a;ED.
i i=

(4.9)  Ord Sing(f)<—(k+n) implies that f is a C* function for non-negative integer k.
(4.10) Ord Sing(f)>—k implies that f is not a C* function for non-negative integer k.

Progf. From Lemma 4.1 the left hand side of (4.8) is not less than the right
han dside of (4.8). On the other hand the definition (1.9)’ yields the counter
estimate. Thus (4.8) holds. If f satisfies the condition of (4.9), then (1+4&|)" f (&)
is bounded, r=k+n+e. Therefore (1+|é)¢ f(¢)€L!. Hence we have f(x)€ Ck.
Similarly from Ord Sing(f)<—k follows that |&[k f (¢) is not bounded. Therefore

&
since su is compact, . t) is not continuous. Thus we have Lemma 4.3.
pPp p di*

Now we state

Theorem 4.1. Let f be a distribution in R", n==1. Then Ord Sing(f; x) has the
same properties as we have stated in Introduction in the case of n=1. Namely we have
(S.1) replaced t by x, (S.2) replaced t,, —(k+1) and t respectively by xo, —(k+n) and
x, (S.3) replaced ¢t and —(k+1) by x and—(k+n) respectively, (S.4) replaced t by x and
(S.5) replaced t by x.

Proof. The upper semi-continuity of Tan-! (Ord Sing (f; x)) follows directly
from Definition 4.1. Let us take the following series of partitions of unity of

finite
supp f: El ayi(x)=1 on supp f, k=1, 2, 3,,..., where a;,;j are functions in  satisfy-
J
ing max {diameter of supp ajj}—0 as k—o. By virtue of (4.8) there exist
J

numbers ng, k=1, 2, 3,..., satisfying



A comparison theorem for Riccati equations 21
(4.11) Ord Sing(f)=0rd Sing(ay,n f)=0rd Sing(arf), k=1,

where a;= II  @jny Remark that suppa, converges to a point x,Esupp f. Therefore
by the deﬁmtlon (1.8)" it follows Ord Sing(f; xo)zlim Ord Sing (atf). From
>0

(4.11) and (4.5) we have Ord Sing(f)= maxf Ord Sing(f; x). Thus (S.1) holds.
x Esupp

Now suppose Ord Sing( f; x0)<—(k+n). Then Ord Sing(af)<—(k+n) holds for
some a(x)EZ satisfying a(x,)#0. Therefore from (4.9) of Lemma 4.3 we see
that f(x) is a C* functien in a neighbourhood of x,. Similarly Ord Sing(f; x0)>
—k; implies that f(x) is not k; times continuously differentiable in any
neighbourhood of x,. We next remark that (S.3) and (S.4) follow from (S.2), the
definition of sing supp f and the Heine-Borel theorem. (S.5) is an interpretation of
Ord Sing( f; x,)<—(k+n) for all £>0 in use of (S.2). Thus the proof of Theorem
4.1 is complete.

Now we consider concretely some examples of Ord Sing(f; ¢t) in R and show
an example of the function satisfying CR(f)={t; tEsuppf, Ord Sing(f; t)=—c0
*o.

Example 4.1. Let {(t) be equal to ¢/t for {20 and zero for {<0. Put a(t)
=C(t+1){(—t+1) and a,(t)=a(nt). Then {a(t)} is a sequence of functions in
satisfying the condition in the definition of (1.9) for ¢,=0, i.e. a,(t) €2, a,(0)0
and li_)m supp a,={0}. Denote by ¢7 the function defined by ¢™ for £>>0 and zero

for t<C0. From (S.2) t7&C™ implies Ord Sing(t7; 0) = —(m+1) and t7€C™ ! implies
Ord Sing(t7; 0)<<—(m—1). Now we can show by a direct calculation Ord Sing (i7; 0)

—(m+1) as follows. Since it holds F[ayt7](0) =—nm—l_1—-F [atf](%), we have
Ord Sing(ant?)=0rd Sing(at?)=1im Ord Sing(ant7)=0rd Sing(t7; 0).
nyoo
So it suffices to prove Ord Sing(aty)=—(m+1). For ¢+0 it holds
- 1 ., m 1 \™m*1¢t 4 ., am m
Flat7](o)= Soe ito (1)t dt=(;—> jme ito—tr (a(t)em)dt

m!a(0) + (m+.l)!a’(0) +<i%>m+zj:e-itudi:::: (a(t)t™)dt

- (ia)’"“ (w.)m+z

Therefore we have Ord Sing(at?)=—(m+1). Hence Ord Sing(¢7; 0)=—(m+1).

Example 4.2. Using the above function a(t) we denote f,(t)=a(4nt)t}.

Put f(t)=e""t Ef (t ———) Then from Example 4.1 we have Ord Smg(f,,(t —L); %)

=—(n+1). Remark supp f,,(t—i>ﬂsupp f,,,(t——) ¢ for n#m and |fP(¢)|

< Cn* for any fixed integer k<n. Therefore for any £>0, f(¢) is C* in a
neighbourhood of the origin. Thus CR(f)={0}#4.

Incidentally from microlocal viewpoints it will be suitable to define
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Definition 4.2. Using (1.8)’ we define the order of the singularity of f €9’(R")
at (x,, &%) €R"XS™!

(4.11) Ord Sing(f;5 %o, &) =lim Ord Sing(Bx(D)axf),

where {a;} is the same one as in Definition 4.1 and {8} has the following pro-
perties; reC= are homogeneous of degree zero in &, |£|=1, satisfying B(§°)+0
and

lim supp B |s1={£°}
k>

We can verify that Ord Sing(f; x, £) has similar properties as Ord Sing( f; x).
We give some comments in Appendix relating to [1], [4], [9] and [12].

§5. Proof of Theorem 3.1.

In this section we prove Theorem 3.1 admitting Propositions 3.1 and 3.2,
which are proved in the next section. First let us confirm

Notations. We say that u(x,t) belongs to Ck([0, oo); H?) if 77 u(x, t) is &k
times continuously differentiable in x on [0, o) with values in Hi. u(x, t)E
Ck ([0, e); HY) means u(x, t)€Ck([0, o0); HZ) for all j7>>0. u(x, t) is said to
belong to Ck([0, o); &%) if et u((x, t) belongs to Ck([0, ); &) for all y>r,.

From the expression (1.6) and Proposition 3.1 we have directly

Proposition 5.1. Assume (C) in Section 3. If geHY for some 1>, then u(x, t)
is a solution of (P) satisfying (3.2) and (3.3). Moreover g€HY implies u(x, t)E
C¥([0, ); HY) for 1>7,, and u(x, t)€C*([0, =); #7,) follows from gE¥y,.

Progof. From Propositions 3.1 and 3.2 the solution »(x, 7) satisfies

< Cilzlk, €YY, k=0, l.

(5.1) ’T%kk—v(x, T)

By virtue of Lemma 3.1, (5.1) and the Lebesgue theorem we have Proposition
5.1.

Let us put
(*
(5.2) 6=¢(t, 7, 53 x)=r(t-s)—zSow(_y, ) dy.
Then the integral representation (1.10) becomes

5.3 u(x, t)=Hlm lim \\e e~%"g.(s) dsdr,
&el

£50 &0

where g.(s) €2 satisfies e~ Vg,(t)—>e "g(t) as e»0. Remark that (5.3) follows from
(1.6) if we take care of the continuity of Fourier transformation. Use the relation:
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k
(5.4) ei"’:(i; ”a?r‘) 6%, k=1,2, 3,..., if $:%0

in (5.3). Then we have

(5.3)" tim tim [~ -2 2= $e2) e () dade,

E>0 &> l¢-r dr l¢.2,

if (4, x) satisfies the following condition for some y>7,:

inf |é-(¢, 7, 53 x)|>0.
(5.5) sEsupp g, Imr=——r¢ ( )

Now remark that ¢, approximates to t—t,(s) as y tends to oo, where ¢,(s) equals
S+S:«/a(.y) dy. In fact ¢,—(t-—t,(s))=s:3,(w(y,r)+itda(y)) dy and Proposition 3.2
yield

(5.6) |¢,—(t—tx(.v))]£CITi;w—|, for (4, s, 7, x) ER*X Ty, X (0, o).

o[t

(5.7) |o(t, =, s; x)lgckxllmrl

, k=2, for (¢, s, 7, x) EREX 04, X (0, )

follows also from Proposition 3.2. Here we put

2 1 a TT ’C - 2
(58) Pt T, s %, el) =e€rr<— ip, W_%> e=o,

Here we collect some estimates concerning ¢. and pz, which are used later.
Proposition 5.2. Let F be a closed set in R. Suppose that at (x,, ty) € (0, ) X R,
(5.9) to—t(5) #0, for all sEF,

holds. Then we can find a neighbourhood U of (xo, t), positive constants 7y and Cy, k=1,
2, 3,..., such that the following (5.10), (5.11) and (5.12) hold.

(5.10) inf {|6,(, 7, 53 %)|; (%, )€U, s€F, Ime<—F,}>0,
(5.11) sup {|pu(t, 7, 55 %, &)l; (x, t)EU, s€F, Imr—F, 0<e<L1}
sc,émmz\f—k, k=1,
(5.12)  sup {le=*7pi(t, 7, 55 %, €)l; (x, t)EU, s€F, Ime—Ts, 0<e<1}
<Cell+(e)Rer) el b, k=L,

Proof. (5.10) follows from (5.6) and (5.9), if we take 7, sufficiently large.
(5.11) holds with Fy=max {rk, 71}, if we use (5.7), (5.8) and (5.10). In order to
obtain (5.12), we employ the following inequality: Forz& {r:—Imz=y>>0} it holds

49(jle),  if IRet|=J27,
43(er?)detr, if |Rer|<y27.
From (5.11) and (5.13) we have (5.12). Thus the proof is complete.

(5.13) le=#v*(ez?)d] S{
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Now we can prove that the solution u(x, t) in Proposition 5.1 has the property
(P.1).

Proposition 5.3. Assume (C). Suppose that the boundary data g belongs to ¥},
and satisfies inf supp g=so>—oco. Then the solution u(x, t) of (P) given by (1.6) vanishes
X
in Z(yo)E{(x, 0 1<tls) =5+ | Va(o) dy}.
Proof. 1In the expression (5.3) we can suppose that supp g, converges to supp g

as ¢ tends to zero. Especially lim inf supp ge=s,. Let (xo, ) be an arbitrary

point in Z(se). Then there exists a positive number ¢, such that for F= <U< Supp ge
0<e<eo

we have (5.9). Applying Proposition 5.2 we can find a neighbourhood U of
(%0, to) satisfying (5.10), (5.11) and (5.12). Especially we use (5.11) rewriting e

by &. Now in (5.13) put e:%el, then we have (5.12) replaced e, ¢7*" and C*

1 ) ~
respectively by ¢, ¢ 7% and C;. From (5.3) and (5.8) it holds
P Yy by

leo  _le »
(5.14)  u(x, )=lim lim( (e =) (T pr)gls)dsde, 1T, K21,

>0
for (x, t)eU. Let us estimate the integrand of the right hand side of (5.14). Now

it suffices to consider Re(iq&——é—e,-rz). From Proposition 3.2 we have

(5.15) Re(igﬁ——é—elrz)gr(t—tz(s))+Cx(|07[+r) e, ("2§TZ> <1(i—ta(s))

1 1 2
5 (14 Cx) 2 (et =1)(1 -%)

By virtue of (5.15) and the modified (5.12) we can see that it is suitable to put
7 as

7=e; -

Then for (x, t) €U, e€(0, ¢) and sEF, there exists a constant 6‘;, such that it
holds

|integrand of (5.l4)lgéke7“'lx“”|z'l‘klge(s)l, k<3.

Remark t—¢,(s)<.—0<0 in this case and make ¢ tend to 0, then we see u(x, )
=0 in U. Thus the proof is complete.

Proposition 5.4. Suppose the same conditions as in Proposition 5.3. Then u(x, t)
defined by (1.6) satisfies

(5.16) t.(s) Esing supp u(x, ) if and only if s €& sing supp g, for x€(0, ).

Proof. Suppose sesing supp g. We decompose g in the following form:
g=g1+ g2+ g5, where g;€C>, supp g,C (s—26, s+20), supp g (540, o) and supp g;
C(—o0, s—0) for some positive number 8. Denote by u; the solution u defined
by (1.6) with g=g;, k=1,2,3. Remark gre94. It holds u=u,+u,+u;. From
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Proposition 5.1 %; is in C* and Proposition 5.3 says that ¥, vanishes in a neigh-
bourhood of f,(s). Remark gs€&’ from our assumption inf supp g>—o. So we
can write

k d]
g3=j§——dtjg3j, gs;€ELENLY, supp g3;C (so—1, s—0).
k
Then we have us=33Ju3j, where
j=1

usj=e"Fv(x, ) (ir) iF [e™7g5;(s')]] =leiITolSSe“’e‘GT’(ir)fgsj(s’)ds’d-r.

Differentiate h-times in ¢, then it holds
h
(o) wsst =tim [ etogusonts, = 5'5 % ai(s)ds'de,  E>0, k—j—h>1,
>

l a TT
where g, jun(t, 7, 55 %, e)=<_i75: = ?;3
of (5.12), we have the following estimate; For any fixed x there exists a neigh-

bourhood V of t,(s) such that for k=0 it holds

)k(e“f’l(it)f+h). Similarly to the proof

1qk.j+n| < Crjen{(1+(er?)) bt bt |k 370,y >Ty,

where Cy,j.n and 7 are certain positive constants. Therefore we can see that us;
is infinitely differenciable in ¢ in a neighbourhood of ¢,(s). Thus sesupp g implies
tz(s) Esing supp u(x, +) for all (s, x)€RX(0, o). Similarly we can prove the
converse, if we use the expression:

(5.17) g(s) =e7‘F[;G—l—;)—F[e'”u(x, t)]] :lg:r()lSSe'i¢e'572ue(x, t)dtdr,

where u(x, t) satisfies lim e Yug(x, t)=e¢u(x, t) in &’ and u(x, t)€2 for fixed

x>0.
Using Proposition 5.4 and the estimate (i) in Proposition 3.1 we can exhibit

Proposition 5.5. Suppose the same conditions as in Proposition 5,3. Then we have
(P.2) in Inroduction.

Progf. For any fixed x€ (0, ) denote u(x, ¢) simply by
u(x, t)=Tg=e"Flo(x, t)F[e7g(s)]].
The definition (1.8) and the estimate (i) in Proposition 3.1 yield
(5.18) Ord Sing(e* Tg)=O0rd Sing(e™g), for ge ¥}, and 1>7,.
Note ¢t g simply by gy, then it holds
(5.19) Ord Sing (gy; s)=0rd Sing (g; ).

Let functions B, be identically 1 in a neighbourhood of s, satisfying lim supp B,
={0}. Put g=8ng+ (1 —Pn)g=gn1+gn2 Proposition 5.4, (4.5), (4.7) and (5.18)
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yield
Ord Sing (Tg; tx(s))=0rd Sing ((Tgna)y; tx(5))<Ord Sing ((Tgng)7)
=0rd Sing ((828)+)s
which converges to Ord Sing (g; s) in view of (5.19). Therefore we have
Ord Sing (u(x, +); tx(s))<<Ord Sing (g; s), for x€(0, ), s€R.

If we take care (5.17) we can also prove the reverse inequality. Thus the proof
of Proposition 5.5 is complete,

We obtain Theorem 3.1 and Corollary 3.1 from Propositions 3.1, 3.2, 5.1, 5.3
and 5.5.

§6. Proof of Lemma 3.1, Propositions 3.1 and 3.2.
Proof of Lemma 3.1. Let a(t) be a C= function with value 1 in (1, ) and
0 in (—o, —1). Let 7 belong to (ri, 72), where ri=y,+¢ and r2=70+% for any

fixed e€(0, 1). Put gy=a(t)g and g,=(1—a(t))g. We consider g(z)=F[e"g(¢)]
corresponding to the decomposition:

e")'tg:e—("/—')'l)le—)'llgl +€—(7_72)l€_721g2.

Remark gre¥4, and e g ey’, k=1,2. By virtue of Riesz Theorem we have
e g3 (1 +1) "], k=1, 2,
=

where freL?, supp f1C(—2, o) and supp f; C (—oo, 2). Rewrite this equality

as
e =31+ )" £,
where f;. have the same properties as f, and satisfy
e VM1 +2)2 f e Lt for yE€ (11, 12), k=1, 2 and j=1, 2,..., 2m.
Remark the relation:
Flem0=mwQj(1 4+ £, )= {i{o—ir) —pud IF[e-mi(1 £ 2)m ).
Then we can see that g(¢) is analytic in {r: Imt<{—y,}.

Now suppose that g(r) satisfies (i) and (ii) in Lemma 3.1. Put gy=¢"F[§()]
for y>7,. Then it holds

{gy, $>=CeVgy(1), e'P(t)>=<(o—ir), $(—a—iy)}, for ¢ 9.

Since the last expression is independent of 7, we have g(¢t)=gy(t)€%4. Thus the
proof of Lemma 3.1 is complete.

Here we introduce a notation on projection mappings concerning oblique
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coordinates in complex plane C.

Notation. Let a and 8 be a pair of complex numbers satisfying Im(af) #0.
Then any weC can be represented as w=Pa,g(w)a+Q a,a(w)p, where

Pa,s(w)=% and Qa_,g(w)=%l((%.

Q o,8(w) as well as Pq g(w) satisfies
(6.1) Q o,8(Xrpwe) =2r1Q a,8(w), for ryeR, wreC.
Especially we denote Q .., _i.(w), Rer+0, simply by Q.(w). Then it holds

(62) Q. () = {agrapimwe),

(6.3) Q () =0, Q.(—ir)=1 and Q.(1)=2(Imz)/|z [

Using the above notation we can state the following lemma, which is applied
repeatedly in this section.

Lemma 6.1. Suppose that w(x) satisfies w’=q(x)—w? q(x) being a continuous
Sfunction defined on [0, o) with values in C. Put v(x)=uv, expS:w( ) dy, vo#0, which

satisfies v''=q(x) v and v(0)=v,. For some t=C satisfying Ret#0 and Imz<0, we
assume Q .(g(x))<<0 on [0, ) and that w(x) is bounded on [0, c0). Then inf Q .(w(x))

>0 implies lim v(x)=0 and sup Q .(w(x))<0 implies lim |v(x)l=oc0.
xyoo x x-»oo
Proof. Integrate v/v=gq(x)|v|* by parts on [0, x], then

(6.4) w(@)lo(E—w(0) 2(0)r= 10" ()tdy+ | g(5)e(r)ay

Operate Q. to both side of (6.4), then

(6:5)  Q.(w(x)lo(x)— Q- (w(O)a(0)=Q.(1) | W (NPD+ [ QolgMa(r)id.

Remark Q.(1)<0 from (6.3), v'(y)=w(x)v(x) and 0<c;<|w(x)|<c; on [0, o).
Then we can see that (6.5) gives the desired results. This completes the proof of
lemma 6.1.

Now we can show
Proposition 6.1. Assume (C1). Then the solution v(x, ) of the problem (1.5)
replaced lx{)rg v(x, 7)=0 by }E lo(x, 7)|<oco is unique for re{reC; —Imc>y,= 2M, }

ms/2

Corollary 6.1. Suppose (C.). Then the solutions v(x, ) of (1.5) and w(x, t) of
(8.1) are unique.

Proof of Proposition 6.1. Denote by @(x, t) the solution of w’= —z2a(x) —w? and
w(o, 7)=ityq(0) € £2(0, 1/r). Proposition 2.1 says @b(x, t) & 2(x, 1/r;) for all x>0.
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Namely we have from (1.3) and Example in Section 2

@(x,7) +it4a(x) 1 . _ 7o 1
(6.6) m)—-— —>——TT if ——Im‘c—r>ro, where 7'1< ] 7

From (6.6), similarly to (2.3) we have
(6.6)’ |3, ) —ieda(®) | < Frola(®) oh for ©>70.

Let us operate Q . to (6.6)’ taking account of (6.3) and max Q,(w):—ﬁl—, then
lwl<1 [Rez|

we have
(6.7) VG <Q(x, )< —gia@s  fIRer|=>r.

Remark Q.(—7%a(x))=0. Then from Lemma 6.1 7(x, r) satisfies lim|3(x, ¢)[=c0
EL

in this case if we put 7(x, t)=exp S:ib(y, ) dy. If |Rer|<y, we take the real
part of (6.6)’. Then it follows

IRe @(x, ) —rda(x) | < 27 Tova(x) , If |Rez|<y, 70

This implies Ja(x) r[2<Re(x, t)<3a/a(x) 7/2, thus o(x, c)>exp<—[2£rx> This com-

pletes the proof of proposition 6. 1.
As for the existence of solutions v(x, ) of (1.5) and w(x, ) of (3.1) we state

Proposition 6.2. The solutions w(x, 7) of (3.1) and v(x, <) of (1.5) exist uniquely
and satisfy the following estimates for x€[0, ) and —Imt>7,, if (C1) is supposed.

(6.8) Jwl, ) +ira(e) <5 el
(6.9) lo(x,7)| <3va(0)/a(x) »
(6.10) TEE) 0. ey < 3 L

Proof. Apply Theorem 2.1 to the equation w’=—rz2a(x)—w? and denote by
w(x, t) the solution belonging to 2(x, r;) for all x=0. Namely

(6.11) |(w+irm)/(w-ir,fm)|gn<—§;, > x>0
Similarly to the proof of Proposition 6.1, we have (6.8) and

(6.12) Va(x) |712< w(x, 7)|<3a(x) I1/2,

(6.13) Ja(®) 12<Q-(w(x, ))<34a(x) /2,  if |Rec|>y,

(6.14) —3a(x) r/2<Re w(x, 7)<—va(x) 7/2, if |Rez|<y.
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From (6.4) and (6.14) we have (6.9) and (6.10) if |[Rez|<y. In the case where
|Rez| =7, we integrate by parts of »”/3=—r2a(x)|v|* and operate Q . to obtain

(6.15)  Qu(w(so, D)loln, ) F=Qr(x, Dot D= (D 1073, Dy,

for any x, and x satisfying 0<<x,<{x. Here we have used Q.(z?)=0 in (6.3). Put
%,=0. Then (6.15) and (6.13) yield (6.9), because Q.(1) is negative. (6.10) holds
from (6.15), (6.12), (6.13) and (6.3). The proof of Proposition 6.2 is complete.

As for the analyticity of w(x, ¢) and »(x, t) with respect to r we state

Proposition 6.3. Suppose (C,). Then the solution w(x, ) of (3.1) is analytic with
repect to t for every fixed x. The solution v(x, t) of (1.5) has the same property.

Proof. First we verify the continuity in ¢ of w(x, r). Suppose —Imz, >y, and
lim ¢;=1,. Since the set {w(0, r;)} is bounded, we can suppose that w(0, z;) con-
verges to w, if we replace {r;} by a subsequence. Denote by w,(x, 7o) the solution

of w'=—zla(x) —w? and w(0)=w,. Put v(x, 7o) =S:wo(y, 79)dy. Then (6.9) yields
[vo(x, 7o)| <3 M/[m, for all x>0.

Proposition 6.1 says that vy(x, 7o) =0v(x, 7o) for all x=0. Hence wy=w(x, o). Thus
w(x, 7) is continuous in r for all fixed x=>0. Therefore v(x, z) is also continuous
in z. In order to prove the analyticity, we consider wy(x, t) = (w(x, t+h) —w(x, t))/h,
where £ is a complex number in a neighbourhood of the origin. From the equation

=~ (2r+)a(x) —(w(x, ) +10(x, 7)),
it follows
(6.15) E(i;(v(x, t+ho(x, t)wy(x, t))=—2c+h)o(x, t+h)v(x, t)a(x).

Integrate (6.15) from x to oo and tend % to zero. Then from Proposition 6.2 we
have

el ) =2e(x, )+ a()o(y, ).

Jr x
Hence we have Proposition 6.3.

By virtue of Propositions 6.1, 6.2 and 6.3 the proof of Proposition 3.1 is
complete if we verify the following

Proposition 6.4. Suppose (C). Then the solution v(x,) of (1.5) satisfies
M +JMi+16M%*
2m ’

(6.16) |o(x, )| >2a(0)a(a) e %%, Jor x>0, 10, where 9=

2
Proof. Let us describe in short L=7de+r2a(x) and vg=e*v. Then Lyv=0
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means (Lv)g=Lgve= (% —0> 2v‘gv+ t2a(x)ug=0. Then we have

(6.17) I=2Re{(L9v9) (71‘”‘;-0)09}= (7"; —0) {e20% J.(x)} — 2 H, (x) =0,

where [J.(x)=|v'|*+a(x)|wo|?, H.(x)=a’(x)|70[*—2Im{2ya(x)ze’}.
Put X=yg(x) v and Y=7/, then J.(x)=XX+ 3y and
a’la 2iﬁr>

H,(x)=%/XX_+2rW(X7—YX):(XY)H(‘);), H=<_2N77 )

Since the eigen-values of H are (¢’ +4Va’2+164%%)/2a, we havedix {e%* J(x)} >0 from

(6.17) if we take @ as in (6.16). Hence it holds J.(x)>¢~%*J.(0), which yields
(6.16) from (6.12). Thus the proof of Proposition 6.4 is complete.

Finally we show the following Propositions 6.5 and 6.6, which give Proposition
3.2

Proposition 6.5. Suppose (Cr). Then there exist positive constants Cy and yi, k=
0,1, 2,..., ky—1 such that we have

(6.18) Iag’ﬁ(w(x,t)+ir¢5(§)_)lnglr|/r, Jor x€[0, ), —Ime=y>7;, 0<k<<k,—1.

Proposition 6.6. Suppose that for any fixed integers k=0 and h>0 there exist
positive constants C;j and 155, for i=0, 1,..., k+1, j=0, 1,..., h—1 and also for i=0, 1,...,
k—1, j=h in the case of k=1, satisfying

(6'19) ‘a;caZ<w(x: T)'*‘ifa/a(x) )|£Cij|7|l_j/7, f07’ XE[O, oo), _Im7=7>rija

Sor all above (i, j). Then we can find positive numbers Crp and 7y, satisfying (6.19) for
i=k and j=h.

Proof of Proposition 6.5. For k=0 (6.18) corresponds to (6.8). Suppose that
(6.18) is true for k=0, 1, 2,..., j—1 <k;—2. For simplicity let us put
w-=w-(x, 7)=—itya(x) , W=W(x, ©)=w(x, 7)—w-(x, 7).
w® =0k , W®O=3kW

(6.20) {

Then we can use

(6.21) |w®| < Cylzl, for x€[0, o), —Ime>pe, k=0,

(6.22) IW"G’ISC,CITLl, for x€[0, ), —Imr>r;, 0<k<j—I.
From the equation w’= —rz%(x) —w? it follows

L W= 3wt —wt) 0w

(6.23)

Using w?—w?. =W?+2Ww_ we can represent 9’ (w?—w?) as follows.

(6.24) ¥ (w—w? ) =2wWP+Q ;+R;,
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where Q ; does not contain W% and R; excludes both W and WY-P. More
concretely from

ai( we) =k12()j0k W WI-k = 2( WWo 4 le ww W(j-n) +::2:jck WR Wb,

3 (2Ww_) =2(WPw_+ jclw<f-x>w9>)+%_ézjck Wkg®

we get
(6 ) (Q1=2 Wuw®, Q_z-_: (2 W(”+4w(_l)) W, Q,s=6( W(1>+w(_1)) we,
25
=2j(We+wD) W9 >, j=4,
Ri=0, Ry=2Wuw®, Ry=2(3W®w®+Ww®) and
(6.26) ( i ' j .
Ri=ZiC WP+ D) WIP+2 3 jCa@W TP, j=4.
Now put
(6.27) Ri=R;+d*'w..

Then the equation (6.23) is written in the form
(6.23)" L wo— _gwwo—g;-R;.

Taking account of -j?vz=2w02, lim »(x, r)=0 and (ii) in Proposition 3.1, we have
xyoo

. 1
(6.28) W, ©)=grayr ] 200 Qi+ Ry,
since (6.21), (6.22), (6.25), (6.26) and (6.27) yield
(6.29) 1Q;1<C;sllr, |iéj|gc,~|z-12/r, for xe[0, o) and T>7j—1=0 max 7.

<k<j-1
Hereafter for convenience we denote by C; various constants depending on j and
a(x). Substitute v( y, r)2=2—w(ly—r)-8yv( 2, 7)? into (6.28) and integrate by parts to
have

. +R; -
630)  Wols, =~ [, oy

B+

From (6.12), (6.21), (6.22), (6.25) and (6.26) the first term of the right hand
side of (6.30) is estimated as follows:

(6.31) Q7+R

'SC ltl for x€[0, ), —Imz>%;;.

As for the integrand of the second term of (6.30) we have

R; ayR (W<1’+w(1)) ~
3y< 2w ) 2wt ;.
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Q;i\_ (WD) 9yQ ;
a”(2—w)__ Quw? it o

Similarly to (6.31) the following estimates hold:

( W(l) + wg))

(6.32) lay(—%)scj‘—;l, lQ" ot

9yQ ;

We rewrite as
2w

lscj'rﬂ, for x€[0, ), —Ime>7j1.

aij

2w

=r;WP+7%;,
where r; and 7; do not contain W and from (6.25) they satisfy
(6.33) Ir,1<Cy, |7,-|gc,-l;—‘, for x€[0, ), —Ime>;1.

Now we put

¥l

(6.34) a(

Then it holds

(6.35) IRi|<CAAL, for xe[0, @), —Ime>F.
Substitute (6.31), (6.34) and (6.35) to (6.30) and remark that
(6.36) Kj(x, z)=sup| WP(y, 7)|

<y

is a monotone function in x, then it follows
, lel (k. ey 1 (7
Kjx, )< Citt+(Kj(e, 0)+C >|v(x, 7 § 1009, oy
Here we use (ii) in Proposition 3.1. Then we see that
K;(x, f)gél;—‘, for x€[0, ), —Ime=y>7,

holds for sufficiently large C and 7. Therefore we have (6.18) for k=j. Thus step
by step we can prove (6.18) for any j<<k,—1.

Proof of Proposition 6.6. In order to calculate the right hand side of
(6.37) A ot () = — 280 (w0t —w2) ~ 030
we use w?—w'=W?2+2w_W and

(6.38), P (W) =-_§é,_§§'kci 4G RIW DRI W=,

(6.38), 3 (w_ W)= "o ﬁ:,],,c,- 2C P PRI W kD,
p2

i=
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We can denote

(6.39) 39 (0 — ? ) = 2w W+ Q 11+ R,
where Q i, contains 0:W%-1 and Ry involves neither o:W% nor 3"W%-, Denote

- 23 1
Q in=rra0i W%, Rpp=Rpp+0"0"  w_.

Then there exists a positive constant € such that we have

(6.40)  |rea| <Cia, |Ren|<Cra,  for x€[0, ), —Im > = 02X Tij,

where Sg; is the set of all pair of integers belonging to
{[0, £+1]X[0, A—1]} U{[0, k—1]x {A}}.
For convenience let us write rg, precisely using the notation (6.20)
T h=03 T h=2 W(D+w(l) 5
(6.41) { 0 1=2( )
Tea=2k(WP+uw®),  for k=2.

Similarly to (6.28) and (6.30) we have from (6.37), (6.38), (6.39) and (6.40)

(6.42) W — _&!LQ%;M_;””(},) 7) 2{%&2 W<k>+1:3kh}a’y,
x

where Rkh 8y<2"" )a"W(k ,)+ay( 2w ) Similarly to (6.31) and (6.35) we have

Qkh+Rkh ISC ll"”, %’.L'SCHL and
(6.43) 7 w
|1§kh|gck,,(|f|l-h/r), for x€[0, ), —Im>Fk.

Here Cgp stands for suitable positive constants depending on & and A. Now put

Kkh(x; T) =§‘;};l aﬁ W(k)(y’ T)l

Then we have from (6.42) and (6.43)

-h
Kin(x, r)gck,,“'; 3 for x€[0, ), —Imzc >y,

if we choose positive constants Cis and 7is sufficiently large. Thus we have
Proposition 6.6.

Appendix.

Here we give some comments on the order of singularity at (x, £°) and its
historical back-ground. First we remark that the following theorem holds similarly
to Theorem 4.1.
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Theorem A. Let feg’' (R"), n==1. Then Ord Sing (f; x, &) defined on R" X §™-1
satisfies the following (A.1) ~ (A.3).

(A.1) Tan™ (Ord Sing (f; x, £)) is an upper semi-continuous function on R™XS™-1,

(A.2) Ord Sing (f; x) =max Ord Sing (f; x, &),
(A.3) WF(f)={(x, §): Ord Sing (f; x, §)>—o0}, for fED".

Remark A.l. For feg2’(R"), let us denote

CR(f)mie={(x, §)€R"XS"': (x, )€ WF(f), Ord Sing (f; x, §)=—c0}.
Then as in Example 4.2, there are examples of f €9’ satisfying CR(f)mic# 9.

In order to discuss further Ord Sing (f; x, £) we use

Notation. Let us denote a(x, &) esy,, if a(x, £)eS8y, is homogeneous in &,
for |§|=1 and supp a(x, §) | Rrxsn-1 18 compact.

Remark A.2. For f€9’ (R") Ord Sing (f; %, &°) is equal to
(A.4) }:m Ord Sing (af f)= inf Ord Sing(a*f),

a€Sh, alxo, £9)#0

where a;€S8%,, ag(x, £°)#0, lim s‘lélpp ap=(x,, §°) and a* f is defined by
>0 =1

a*f=(—2;rl)T/2SSei‘”'”Ea(y, &) f()dyde,

this integral being interpreted as an oscillatory integral as in (1,10). Moreover

we have for fe¢&’

(A.5) Ord Sing (f, %o, $°)=1im Ord Sing (ag(x, D) f= inf Ord Sing (a(x, D) f)
>

a €8}, alx, £0)%0
where ai(x, D) are the usual pseudo-differencial operators with the same symbols.

We shall prove elsewhere Remark A.2 and other properties of Ord Sing ( f; x, §)
together with suitable applications.

Finally we give a historical comment on the micro-localization and the order
of singularity in order to clarify the viewpoint of Definition 4.2 and Remark A.2,
although it is limited to author’s knowledge and references are not complete in
any sense. In Mizohata [9] the following micro-localizer B,(D)a(x) was introduced
in order to discuss the necessary condition for Cauchy problem to be well-posed.
a(x) is a function in C§ with support contained in {x; |x—x,|<7,} and 1 on {x;
|x—x0| <ro/2}. a(§) is another function of the same type with its center x, replaced
by &, and a,(&)=a(&/n). It is remarkable that not only g,(D) a(x) but also
B (D)a,(x) are used in [9] to prove Lax-Mizohata theorem. Hormander [4]
used pseudo-differential operators as localizers in order to define the wave front
set, whose projection to R" is the singular support. This micro-localization makes
it clear to discuss the propagations of singularities of solutions to equations with
variable coefficients. Now we can observe that the notion of the order of singularity
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exists surely behind that of the singular support, since sing supp f ®x, means that
for any N>0 there exist Cy and a(x)eCy, a(x)#0 satisfying |(If|gcn(1+|el)'“.
As sing supp f is the compliment set of an open set indicated above, there appears
a little difference between sing supp f and the set

{x: f(x) is not infinitely differenciable at x}={x: Ord Sing (f; x)>—oo}.
The former is strictly larger than the latter if CR( f) #¢. However from the proof of
Proposition 5.5 we can guess that the notion of the singular support is indispen-
sable in order to discuss the order of singularities for hyperbolic equations with
variable coefficients. On the other hand as for equations with constant coefficients,
the fundamental solution for Cauthy problem were considered by many authors,
relationg to the order of singularity. For example Duff [2] showed the order of
singularities of fundamental solution in a neighbourhood of the wave surface.
Though the exact definition of the order is not given in [2], we can recognize

that the order of 6~ and v.p. ;1;,— in R! are said in [2] both to be n—1, which

coincides the order given in Definition 4.1. (Remark that the order of v.p.%— as

distribution is not zero.) Tsuji [12] developed the argument in [2] and introduced
the definition of the order of singularity in the following L? sence:

(A.6) s.o.(f; xo)=~—lein(} supp {o(u¢);9€C(x, )}, for fez’'(R"),

where o(v) =supp {k; v(x) € H*(R™)} and C§(x, &) ={pCF; supp 9C {x; |x—x,| e},
¢(x)#0}. Now we notice that the above s.0.(f; x) is equivalent to

(A.6) s.0.(f; x)=inf{—r; $f€H", $€CF(R"),$(x) #0},

since it follows that ue H"(R") implies guc H"(R") for ¢=C7. As L?is transformed
isometrically to the dual L? space, (A.6) can be extended in the micro-local sence.
Bony tried to considered it in the following way: u is micro-locally of class H? at
the point (x,, £°) if there exists a classical pseudo-differential operator R of order
zero whose principal symbol is non zero at (x,, §°) such that RueH®. Similarly
to the proof of Remark A.2 we will be able to show that

(A.7) s.0.(f; x, &)=inf{—s; RueH%a(R)E€8%,, o(R) (%, &°)#0}

is well-defined and has the similar properties to those of Ord Sing (f; xo, &°). It
seems to the author that Ord Sing (f; x,, £°) is more natural in the sence that it
can be directly related to the properties of C¥ as was seen in (S.2) and (S.3) in
Introduction. However it is the problem to be solved that will discuss the relative
merits.
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