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Micro-local energy method of
Mizohata and hypoellipticity

By

Toshihiko HOSHIRO

§0. Introduction

In  the present paper, we are mainly concerned with partial hypoellipticity
(with respect to the x-variables) of the equation (in  Rd ." )

(0.1) a u  
a ( x ,  

Dx )u=f ,

where a(x , D O is a second order partial differential operator (in  Rd with coeffi-
cients o f class C - )  satisfying the following conditions.

(A.1) There exists a constant C such that

E  a( ' ) (x, D x)v 112 +  E Ma c ) ( ,  D x)v112-11”1---1
Il=C(R e(a(x , D x ) vi v'.. ) + (1v112), V vey(Rd).

(A.2) For any e > 0 , there exists a constant CE such that

R e(a(x  D x )v, v)H-Csiiv112 , e  (Rd).

Here we use standard notations: 4)(x, e)—ai'(—iax )Aa(x, e), and  log<Dx >=log
(2 ---4x ) 1 /2 .  II I I  a n d  II  11-1  stand for the norms in  L 2 (R d )  and H - 1 (R d )  (the So-
bolev space o f order —1) respectively.

Our main purpose is:

Theorem 1 . A ssume tha t second order differential operator a(x , D x )  satisfies the
conditions (A .1 )  and  (A.2). Suppose tha t u e C 1 ([0 , a ] ;  g jx (U ) )  and  f  EC([0, 3];

(U )) satisfy the eguation (0.1) in  (0, 3) X U, where 3 > 0  and U  i s  an open set of Rd.
Let (x o , e°) be a point of  U x (R d -----0). T hen , if  (x o , e°)€E W F(f (• , t)) f or 0 t 6, it
fo llow s tha t (xo , e°)EE W F(u(• , t)) f o r 0 <t

Since au(x)---- f(x) implies aulat+au= f  (where u  and f  are independent o f t),
Theorem 1 yields the result due to Y. Morimoto [7] :

Corollary. Provided second order differential operator a(x , D x )  satisfies the  con-
ditions (A .1) and (A .2 ), then it follow s that a(x , D x )  is  hypoelliptic in  Rd.

Our argument can be applied without modification to the proof of the follow-
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ing M orim oto's theorem:

Theorem 2. (Y. M orim oto  [8 ]). Let a(x,D x )  be a differential operator of order m
with coefficients of  class C - (R d ) .  Assume that for any e> 0 , there exists a constant Ce such
that

(A.3)I I  (log<Dx >)mv 112 d-o<  I<  ,. (1(log<D,>) 1'+P 14 2  (x, D x )v112 _1„1

<Elia(x, D x )v112 +Ce livIi2 , VvEY(Rd).

Then, a(x, D x )  is hypoelliptic. Moreover we have WF(au)=WF(u) f o r all uE g'(R d).

Let us now explain the conditions (A .1) and (A .2 ) .  To the operators of the
form a(x, D x )-=E; = ,X7X i(or=E; = ,X ;), where X i, j= 1 ,.. . ,  k  are C -  real vector
fields generating a Lie algebra of rank d  at every point, Theorem 1 is applicable.
In fact, the condition (A.1) is satisfied by the operators of the form E ; =1 X .

2,-F Xo (Xj,
j= 0 , . . . ,  k  are real vector fields of class C - ) ,  and, provided X k  satisfy
the condition on Lie algebra, the operators o f th e  form  a(x, D x ) =E; = ,X;`X
(or=E; = ,X )  have

(A'.2) <D>'v112 const. (Re (a(x, D x )v, v)+11v 112 ) , Vv  E 9(Rd)

for some a ,  0 < o - -  1 .  (See L. W irm an d er [1 ] chap. 2 2 .2 .)  Theorem 1 is also
applicable to the infinitely degenerate elliptic operators (they are our main targets).
For example, the operator

al  (x, Dx)=D+xl k M ,+exp(-11ix2r)-M ,

1satisfies (A .1) and (A .2 ), if k is a  non-negative integer and 0 < r<   + 1   . (See Y.

M orim oto [7] proposition 4.)
On the other hand, it is remarkable that the condition (A .2 )  is necessary

for hypoellipticity of the operators of the form a(x, D x ) = D -Fb(x ' , D e ) .  where
b(x', D e )  is a formally selfadjoint differential operator of second order satisfying
(b(x' , D e )v, z)) - —const. 1(v112 , v E Y (R d - ' ) .  (From this fact, we can show that the
operator ai (x, D x )  with k = 0  is  not hypoelliptic in  any neighborhood of the
origin OERd, if  1. See Y. M orim oto [7] or T . Hoshiro [2].)

We rely heavily on the works [4] and [5] by S. M izohata , who initiated the
micro-local energy method for the characterizations of the analytic and the Gevrey
wave front sets. We remark that our method is quite elementary. In fact, we
make use of basic calculus of pseudo-differential operators.

Hypoellipticity o f a(x, D x )  under the conditions (A .1) and (A .2 )  (or under
the condition (A .3 )) was recently studied by Y. M orim oto, related to the work
by S. Kusuoka - D. Strook [3]. H e has obtained the corollary to Theorem 1 and
also Theorem 2  in  [7] and [8] respectively. Essentially, our results are not new.
However, we believe that our method is one of the most direct way to arrive at
the results.

The plan of this paper is as follows: In  §1 , we explain our method. The
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proof of Theorem 1 will be given in § 2 . In  §3, we will prove the propositions
stated in §1. Finally in §4, we will prove Theorem 2.

Acknowledgments. The author is deeply indebted to Professors S. Mizohata,
W. Mastumoto and N. Shimakura for helpful encouragements.

§ 1 .  Preliminaries.

In this section, we introduce some notations and techniques which are necessary
for the proofs o f Theorems. Let us first define a  sequence o f cut-off functions
(micro-localizers) {ce n (e), P ,,(x )},i, of size ro>0. It is well known that there exists
a sequence ON E CP.' (R d ) ,  N =1, 2,..., having the following properties:

(C-1) ON has its support in { y; ly l_ r o } ,  and is equal to 1 in

(C-2) For any positive integer K o ,

Ipi N  an d  vi

where C  and CK0 are constants independent o f N.
(For the construction of ON, see S. Mizohata [5].)

Now we define

ty; Y1 r0/21.

(1. 1) Nn= [log n] 1 ,  an (e)=ON„(--
e
—n  —e°) and p.(x)=0N„(x—x o).

N ote : Let us notice that the support of an (e) is contained in {e; je—ne° i
in other words, since ro is small, the support of an (e) is contained in a small conic
neighborhood of e°. We remark that, in the following arguments, we are mainly
concerned with the investigations when n is large. So we may regard N n  as logn.
Also we remark that, in  our method, (C-2) is very important because we have

I ar' ) (E)I C Ko (CN n )IPIrt - IP + '! for I pIN  I v i K 0 and j P,,(p+,)(x)1 CK0 (CATT )IPI for

Ipi...<K o ,  which enable us to d o  the quantitative analysis. ( a r ' ) =arce n ,
P.(q+,0---(—iax)P+AP..)

with c, 0 =m - ip+a1nIPI(logn) -1 P-hql.

S ( u )  could be called a micro-local energy o f u in a neighborhood o f (xo , ne°).
Now, we have the following propositions on the relation between the wave front
sets and behavior of n i (u) as n—“x), whose proofs will be given in  §3.

P ro p o s itio n  1 . L et u  be a  distribution and suppose (xo , e °) E W F(u). Then we
have, i f  ro is sm all:

Let us put, for ue9 1 (Rd),

{S i (u)= E 11 el,,,a;!) (D)19„( ,) (x)u112
Lp-i-q1_,N.

(1.2)
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tFor any positive number s, there ex ists a  M > 0  such that

S(u)-= 0(n - 2 s) as

N o te : In general, Ori =0(n - k) means that there exists a constant B such that
1 01 Bn- lc, when n is large.

The converse is also true. We can state in the following form:

Proposition 2 . Put:

-S. .
 1,11 (u)= Ip N N , , I1c;,ocr;„'') (D)13n (x)u1(2 .

I f /(u) sa tisfies (1.3), th en  (xo, e°) EE WF(u).

N o te : It follows from Proposition 1 and 2 that (xo , e°) Er WF(u) is equivalent

to  (1.3) because Sm„ (u)_ Sm„ (u). Also notice that S„m(u) Sm„"(u) if  M .A f '.
Let us notice the following fact. In the definition (1.2), if we take M  suffi-

ciently large, the values of I c a; . ( o u 11, (p , q ) satisfying Ip+ q I = N n ,  are so
small that we can neglect them, when n is large. M ore precisely,

L e m m a  1 . L et u b e  a distribution. For any positive num ber s, i f  w e ch oo se M
sufficiently large, then

(u) E cp" g a (nP)  (D) p„( a ) (x)ui
ip+qi=N„

=0(n - 2 2 )  as n-) - .

In the sequel, we call a  term (or sum of terms) n eg lig ib le  if  it satisfies the
same property as S„m (u) in Lemma 1. By the same argument as in Proof of Lemma

1, we can show that the sum o f Ile, 0a ( 0 0 2 w ith  respect to  (p , q ) satisfying
1■1' —n0 lp+qiI<N„, no being any fixed positive integer independent of n, is also
negligible.

P r o o f  of L e m m a  1 . First, we take a C e c r  so that C(x)=1 in  {x;
__<ro } .  (Therefore fin c c . )  Then, for some k, w e have CueH - k. Let us now
recall that, for c(x, E ) E S ,  th e  semi-norm of c(x, $) in Sj is defined in such a
way that

I c 1r') = max sup I $) 1/<e>- k-

From the condition (C-2) and fact that K - 1 -n _Al1+iel2 K •71  for Eesupp[ce], it
follows that the semi-norms (in  Sil )  o f symbols 0.(4, 0a ( 0 ) ) ,  (p ,  q ) satisfying

are estimated by nk-Ci(2C/M) 1P+0i, where C  (resp. M ) is the same
constant as in (C-2) (resp. (1.2)). Therefore, the values of

(D )  ( q )  (X) < D  k  II La ÷

(1), q) satisfying 1P+41-5N., are also estimated by nk•C"(2C/M)IP+ 0 .
To see these estimates, observe that

(1.3)

2



Micro-local energy method o f  Mizohata 5

(1.4) la (ce  8 )1r '`) < const . ja;,P) 1,-  k)  I 13 „( , ) I ,°)

_<const. nL - IPI(CN n )IPI(CN„) 1q1,

where const.s are independent o f n, p  and q  (we take K o = l i  in  (C -2 )) .  We

choose l= d + 2  in  order to apply (1.4) to the values of 114„q«(!)p. < 0 <px>kli. , ,,z,
(p , q ) satisfying Ip+qj N .

On the other hand, the number of terms with (p , q )  satisfying 1P+q1=-- Nn
cannot exceed (2d)fv”. Therefore we have

E  licLa(! ) ,0”( g )<Dx >lc<D,>- Ku 112
Ip+o-N”

C i i4 , g a ( ! ) P r z ( q ) < D x > k

C2 •n2 k • (2C/M ) 2 "''• (2d)A7',

where Ci, j= 1 ,  2 ,  are constants independent of n.
Now, for the given positive number s , we choose M  in  such a  way that

(2C/M) • I r a  e- s- k . Then the last inequality is estimated by const.•n - 2 s when n
is large (recall that N n klogn).

N o te : There are several choices of micro-local energy forms related to the
criterion of the wave front sets (see S. Mizohara [4]). The reader might feel that
our form S ( u )  looks like strange because, in  spite of the analysis in C--class,
the sum on pd-q1 is taken up to N logn (which becomes large with n ) .  How-
ever in our arguments, the choice, together with the choice of c ,  and the con-
dition (C-2), is essential in view of the assumption (A.2).

§ 2 . P roof of Theorem  1.

Let us admit Proposition 1 and 2 for the moment. Our assumption for f(x , t)
is:

Given any positive number s, there exist positive constants M = M  s and  A= A

such that

S (f (•  ,  t ) ) An - 2 8

f o r t; (i).. t. 5 and n ; large.

Under this assumption (for the given s), we are gcing to prove:

For any ri(0<27<5) ,  there exists a B=B(72, s) such that

(2.2) S (u (• ,  t ) ) Bn - 2 s

f o r t; 1 t ô and  n ; large.

W e show this by the method of S. M izohata [5]. Since the proof is long, we
devide it into three steps.

(2.1)
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(Step 1.) First, we operate «;,P)(D)p„,q ) (x ) , (p , q )  satisfying
both sides of the equation (0 .1 ) . Then

a gip, = — CE;,P ) fin ( q)a (X  , D x )Zi f p, q ,

where we denote U p,q=a („P ) 13,1(q)21 and f  p,q = a ? ) Pn (q)f

Therefore we have

1P+41--Arn, t o  the

d(2.3) um 112 = 2Re( --(4,P) ten ( q ) a( x ,  D x )u-1- f p,,, u p ,  =

=2Re { — (a (x, D x )up, q ,  Up ,q)

E  (a ( (x ,  D x )up, g + „, up,,)— E  (a (, ) (x , D x )up+ q , up,,)
tvi=i lAi=i

E ( - 1)i'l 
( a x 5 D x )

—(rp,,(x, D x )u, up s ) ±(f p,,, up,,)}

6
= 2R eE /i,

where N , is a large integer whose definition will be given later (see (2.4)).

(Step 2.) Now, we have the following :

L e m m a  2 .  (i) The terms rp,,(x,D x )u, (p, q) satisfyinglp+ql_N,,,, are negligible,
that is , if  we take N o sufficiently large, then

E Dx)u112=0(n-2') as n-->00.
I + q  I Nrz

Here, On (t) =0(n - k) means that there exists a constant B  such that 10,,(t)II<Bn - k, f o r t;
0 _.< t 3 and n; large.
(ii) For every positive number L,

I/ 2 1 L - i(logn) - 2  const. Dx)up,g+,„ up, q + ,)

+11up, q +112 1 +L(log n) 2 u p , q 112 ,

and

11 L-1712(logn)- 2 const. E {Re(a(x, Dx)up+p,,q, uP+A.q)1.1-1

+11 up+A.a 112 } +L(log n) 2 11 up,q 112 ,

where const.s are independent of  L, n , p  and q.
(iii) For every positive number L,

11 4 I.< L - 1  const. E n2 (2 - i'l ) (log n) - 4 x
2sip+pisNo

x {Re(a (x, D x )up.i.„,„+ „, up÷ ,,,)+11up + „,,,1 12 1

+L(logn) 2
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where const. is independent of  L , n , p  and q.

P ro o f o f L em m a 2 .  (i) T a k e  a  function CE C7(Rd) satisfying C(x) =1 in

{x; 1 x—x0 1_<ro } . Then, Pnc OEC and there exists a positive number k  such that
Cu(, t )E H - k(Rd) for t;

Let us observe the followings. From the condition (C-2) and the fact that

K - 'n 12 K •n  for e E supp [an ,  it follows that the semi-norms of C7,,  q r p, q

( X  Dx )  in SI:V - " ,  (p , q) satisfying Ifi-f-q1 N ,,, are estimated by n - S C"(2C/M) 1P+0i.

Therefore the values of

p ,q (x  Dx)<Dx>kilL.5

( p ,  4 )  satisfying p+ ql_< N ,,, are also estimated by n - sC"(2C/M)IP+ 0 , provided

(2.4) s+1—N o _<—k.

To see these estimates, observe that (cf. S. Mozohata [4] page 58)

I(s -4-1—No)

const. E 1cr(P+P) 1(s- IPI) fi,, ( q + 0

const. n- s- IPI(CN„) 1P+0 ,

where const.s are constants independent of n, p  and q.
So, let us take N o in  such a way that the inequality (2.4) holds. Then we

have (notice that, in  (2 .3 ), u  may be replaced by Cu, because a(x, D x )  is  a
differential operator and fin c cC)

E 11 C, q r p, q (X D x )u112

= qr q (X  , Dx)<Dx>k<Dx›-kCu 112

E  1 4  o rp q (X ., Dx)<Dx>kiIp+q1.5_.N„

2E (2 C I M ) 2 1 P + gin - 2 s

P.O

Con- 2 s,

provided M  satisfies 2d(2CIM) 2 < 112. (Observe that the number of the terms with
( p ,  q ) satisfying 1p-1,7H- j  cannot exceed (2d)i.)
(ii) Let us show the second inequality, because the proof of the first one is similar.
First, it is clear that

I /31.5_ L- 'd(log n) - 2  E
Ipi=i

a(g)Up-Fp,011 2 + L ( l o g  n) 2  U M  112 .

Let us take a  function sbeCr so that 5b(y)=1 in ly; [y1 and define

an(e)=--0(—
n  

—eo). Then, since an c ca n and the commutator[,,, a („) ]  is bounded

in OPS1, 0,  we have

L '- L '
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11a( o up+ „,,112=11a( „) a(D x )up+ ,, q 112

p+14,1112+Cill<Dx>up+,„q 112211 (D )a (o ua i  x  ii

<C an2 fil <Dx >-1 a(oup+,, q
112

.. 14+0,q112}

where Ci, j=1, 2, are constants independent of n, p  and q.
N ow , in  view of (A.1), the latter inequality of (ii) is proved.

(iii) It follows from cOES15 1' l  that

1141 L - ' (log n) - 2  const.< D > 2 - " L  (log n) 2 11 up,q 112

251v+pISN0

1.-4 (logn) - 2  const. E n 2(2-I,I) IIu p ÷ ,,, , +L(logn)211up,q 112,

where const.s are independent of L, n, p  and q.
Now, in view o f (A.2), the assertion of (iii) is proved. (Observe that K - 'n.

1i+1e <  K • n for e E s u p p  [a;,P) ].)

(Step 3 .) Let us now observe that c, q (logn) - 1 =M  C;, g +  for 11)1= 1, c,,n(logn) - '
= M  4 + ,„a fo r 1p1=1, and c;,q (logn) - 2 n2 - 1 ' 1_<M 1" - 14 + ,,,,, ,  for ( w h e n  n
is large). Therefore, it follows from (2.3) and Lemma 2 that

(2.5) d
W 114 'qu Piq112

2 { —Re(ac, aUp,q,

+ {2 +3L(log n) 2 } 11 cLum 112 +

+ L -4  const. M 2N0 E (Re(a4 + „, q ,_„up+ „,
1SIv+pl No

+114+,,i_ v iip+p,q+y112 ) }  +negligible terms.

Let us take L  sufficiently large and sum up the inequalities (2.5) with respect
to ( p ,  q) satisfying 1pd-ql<N„— N o. Then, the third terms on the right hand side

of (2.5) will be absorbed into the first ones, that is, we have (also observe that the

dterms —c-rt 114, qup,q 112 and Re(a4, qup,q , c;, qup,q ) ,  (p , q) satisfying N n —N o _Glp-Fql_ N„,

are negligible)

(2.6) —
d

Sm(u(•' t)) G— Re(a4,„up,q, 4,,up, q )d t "  

+212+3L(logn)2+L-1 const. M2N°1 S(u(• , t))+0(n -2 s),

where const. is independent of M , L  and n.

Furthermore, it follows from the assumption (A.2) that

d(2.7) 7
1

/P"m" t ) ) . _ < - -6(logn)2S(u(• , t)) +0(n-22)
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< (log n)S i,w (u( • , t)) +0(n - " ) ,

where e> 0  can be chosen arb itararily  small. (For any positive number e , the
inequality (2.7) holds when n is sufficiently large.)

Therefore we have

,5%."(u( • , t))_< exp( — (log n)tle) n i (u(• , 0))+0(n - 2 s)

=n - 1 /6ST(u( • , 0))+0(n - 2 0 ).

Now, the assertion of Theorem 1 is proved, because S' (u( • , 0))=0(nk) for some

k. q.e.d.

§ 3 .  Proofs of Propositions.

Proof of Proposition 1 .  Here, we consider the values of 11 c;,,a;,P) A„,q , U ,  (p,
q ) satisfying lp-Fql_Ar,„ when (xo , eo) EEW F(u) and ro (size of micro-localizers) is
small.

Take a  function CŒCT  so that C(x)-= 1 in  tx ;  x—x01_< r o} . Then we have
p„c OEC (i.e. C=l in the support of pn)  and CuEH - le for some k. Let us write

=  E !- I-c7„,13„( q + „) a(P+0 (cu) d- c;„,r'p, q (x, D x ) (Cu),

where N 0 is a large integer whose definition will be given later (see (3.1)).
On the last terms of the right hand side, w e have the following: By the

same argument as in the proof of Lemma 2  ( i) , the values of

II c;,, gr /p,q (x, D x )<D x >,k II L '

(p, q) satisfying are estimated by n- 0 const.(2CIM) 1P+0 i (const. is inde-
pendent of n, p and q), provided

(3.1) k— N o -1  <  —s.

Therefore, if we take M  so that (2d)(2C/M) 2 <1 /2, then

E c / p , q (x, D)(11)) 2

=  E  II c ,r;, g (x , Dx )<Dx >k<Dx >- k(cu)Ptp+qi N„

E 11c ,  g r ' p ,q (x , Dx )<Dx >klIzy4L-
+.q1 N”

const. E (2C/M) 21P-I- 0 I n- 2 8

q.P

L<const. n - - 2  s,

where con st.s are independent of n.
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On the other terms of the right hand side, we have the following: Let us

observe that

II Pn(p+o«;!"(Cu) II sup! P.cp+.) I sup Ice" I x {S A „ . I Cu(e)I2 de} "2 ,

where An= {e; le—neol n ro }.  Therefore, it follows from the assumptions o f Pro-
position 1 that, for any positive number s , there exists a constant C ' (independent
of n, p  and q ) such that the values of 11/3”(p+5)cr( P+0 (Cu)I are estimated by n - 5 --1 P+0

C'(CN) 1P+171.
Therefore, if we take M  so that (2d)(2C/M) 2<1/2, then

E c„ 0P,,( p+ 0 «„P+ v)(Cu )112
IP-EgISN „

C 1E(2C1 M ) 2 ' P n -

P,

where C1 is a constant independent of n.
Combining the above arguments, we have the assertion of Proposition I .

Proof of Proposition 2 .  Let CECT  be a  function satisfying Cc c a „  (i.e.
9n=1 in the support of C). First, we shall show that Ilan (D)Cull-=0(n - 1 )  as n+-,
when Sm„ (u)=-0(n - " )  holds. Let us consider

Ilan(D)Cull =11 an (D)C(Pnu)11

<  E
k 15A ro 

Msup I Cco I cr,op„u 11+11 r"(x, Dx)Anu II.
, 

In the above inequality, we have Ila;,') 13011=0(n - s- I'l(logn)l'i) from the hypo-
thesis. S o  w e  must consider only the last term . Let us now take a function
-C'EC,7 so that 'C=1 in the support of N . Then, for some k , .eueH - k. Therefore,
by the same argument as in the proof of Lemma 2 (i), we can show that

Il r"(x, D x )13011=11r"(x, D x )P<D x >k<Dx >- kCI

= 0 (n - s),

provided N o satisfies the inequality k— N0 - 1
Now, we remark that, for the proof of Proposition 2, it suffices to show that,

for any positive number s,
"N.

sup jan (e)Cu(E)1=0(n - s) as

from the assumption of Proposition 2 .  To see this, let us observe that

1 a ( )6 ( e )1 1 1 a n (D)C1111L.,

__const. 11(1 +1x12 )/an(D)Cul,

where t is a integer satisfying 1> d1 2 . Furthermore,

(1 x12)Icr„(D)(Cu)
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=  E  ( - 1 ) 1‘ 1,c1- 1 4 [ ( — ia x ) . (1-Flx12) 1](cu)

- =  E  a;7) C,,u,
Hds2/

where we denote C„=(-1) 1' 1x! -1 [( — iax)"( 1 - 1- lx12) 1N.
Thus we have

la (e )(e )i< co n s t.

In the last inequality, we can show that,
0(n- ' -1 "1(logn) 1"1)  by the same argument as
completes the proof.

E II cf,") CA71.s 21

for any positive number s, 11 a n C„u11=
in the forepart of the proof, which

§ 4 .  Appendix (Proof o f Theorem  2).

The proof of Theorem 2 is quite analogeous to that of Theorem I. We shall
show that, provided a(x, D x )u =  f and a(x, DO satisfies the condition (A.3), Sm (f )

=0(n - 2 s) implies S(u)=0(n - 2 s) for any given positive number s.
Let us first operate « (D ) (3 7,( q ) (x ) ,  (p ,  q ) satisfying Ipd-qi_ Arn , to the both

sides of the equation a(x, D x ) u =  f  Then

Pn ( o ) au=-- a(! ) 13,i ( q ) f.

This implies

0 < 1 1 -p 1 S N o •11-
, , ( a ) „ tc ,q+ p+ rq ,q

12
=  f

,  

Here we have used the same notations as in the proof o f Theorem 1 . Therefore
we have

(4.1) auP.q

const.{ E (4214+0,q+1,112 E 114up+p,a+.11 2

o<ia+pl<m ,,

+11 rp, q u 112 +11 f p, q 112 }

=const. {J1+J2+11rp,qu11 2 +If p,q112 }

where const. means a constant independent of n, p  and q.
Almost the same arguments as in the proof of Lemma 2 yield the following:

Lemma 3 .  (i) For any positive number s, there exists a positive integer N o such
that

E II c,̀ g rp,qu 112 = 0(n - ")as
IP+q ISN„

(ii) For any positive number e, there exists a constant CE such that

J1  ^ E {(logn) 1n1 1
}

2 Ilaup+t,,a÷,,P+C6.11up+A.gi,1121,o<1.+pl<ni
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and

J2 E 2 Is 11 aUp+,,, q +,112 c 5
MSIv.-1-pd No

Let us continue the proof of Theorem 2. Observe now that (1ogn) - 1 " -AIdAlc„

= M 1'+Plc; + ,„„ ,  and , for (2 ), it) satisfying 11., ± p l_m , (lo g n ) - mn'" - 1 0 6.7„,i _ MI'÷g 1

(when n is  la rge ). So, in view of (4.1) and Lemma 3, we have

(4.2) II a(c7„ g lip,q)11 2

const. fe E a(4+,,,1-„up+p,q+,)I12+Cellc;+„,q+Ap+,,,q+.11210<11,-1-p1 No

+ negligib le term s.

Let us choose s>0 sufficiently small and sum up the both sides of (4.2) with
respect t o  ( p ,  q ) satisfying I p N  n  —No. Then, the first terms on the right
hand side of (4.2) will be absorbed into the left hand side, that is, we have (also
observe that II a(cLup, q )II2 w ith  (p , q) satisfying N 0— N 0_5_11)+4 15_ N n, are negligible)

(4.3) I I  a(c: p 0
-

112 const. S m
n (u) 0  (n - " )

P+ oi Nn 

In  view  of the condition (A.3), it is clear that

(log n) 27n S (u ) cons/. E la (CLU p , ,
1P+q[ bly

when n is la rge . Therefore, it follows from (4.3) that

n i (u)=0(7c 2s)as n- sœ,

which completes th e  proof. q.e.d.
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