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On a cyclic covering of a projective manifold

By

Hiro-o TOKUNAGA

§0. Introduction

The main purpose of this article is to investigate a finite normal cyclic
covering of a projective manifold (i.e., the rational function field corresponding to
the covering is a cyclic extension). In §1, we consider the structure of a cyclic
covering from a field theoritic view point. In §2, we consider the direct image of
the structure sheaf by the method of Esnault-Viehweg. And in §3, we applied the
result of §1 and §2 to 3 cases. Qur main results are as folows.

Proposition 3.3. Let n X — Y be a finite cyclic covering of Y where X is normal
and Y is non-singular. Let B denote the branch locus of m. Assume:

(1) B is an irreducible divisor.

(i) For each yeB, n~'(y) consists of one point.

Then there exists a line bundle F, so that X is embedded in the total space of F.

Proposition 3.4. Let X be a finite normal cyclic covering of an abelian variety
A. Assume that X is of general type, and its covering map is flar. Then,

h(Oy) = h'(0,) for 0<i<d
and
h(Oy) > n

where d = dim X = dim A and n = the degree of the covering.

Theorem 3.5. Let n: S — P? be a finite normal covering of P? whose covering
degree is a prime integer p. Assume that the branch locus of n is C,UC,, where C;
is a smooth curve whose degree is n;, and the divisor C, + C, has at most simple
normal crossings. Then:

(i) There exists a unique integer v with 1 <v < p — 1, and singularities of S

are all cyclic quotient singularities of type (p, v) or (p, p — v) and they do not

appear simutaneously.

(i) The direct image of the structure sheaf of S is isomorphic to

On: @ "€=;_>11 (91’2(%("1 +(p—vny) + [M—ppﬂ]n2>
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where [ ] denotes Gaussian symbol.
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Notations and Conventions

The ground field is always a complex number field C.
h(X, Oy) = hi(Oy) = dim H'(X, Oy)

C(X): the rational function field of X

®p : the rational map associated to a linear system |D|
Let D,, D, be divisors.

D, ~ D, means linear equivalence of two divisors.

§1. Constructions of cyclic coverings

For the first, we remind us of some constructions of cyclic coverings.

Construction 1: Let Y be a projective mainfold and B be a smooth divisor
such that L®" ~ B for some Lepic(Y) and neN. Then, as is well-known, we can
construct a finite cyclic covering of Y ramified over B in the total space of L. This
construction is a very familiar method, but most of cyclic coverings of Y is not of
this type.

Construction 2: Let ¢ be an element of the retional field of Y, C(Y), and X
be a subvariety in Y x P! which is defined as follows:

Let ¢ = 9o/, be a local representation, and [{,: {,] be a homogeneous
coordinate of P!. Define:

X = {5 [Lo: L1)e Y X P o — {1 9o = O}

Let X be the stein factorization of p,|§ X~ — Y where p, is a projection to Y! x P
— Y. Then X is a normal finite cyclic covering of Y.

Construction 3: Let B be an effective divisor on Y such that L®" ~ B for
some LePic(Y) and neN. Then we can construct a cyclic covering of Y in the
total space of Las Constructron 1. Let n: X' — X be the normalization. Then,
X’ is a finite normal cyclic covering of Y.

It is clear that construction 1 is a special case of construction 3. In this
section, we consider the relation between construction 1, 2, and 3.

Let p: X - Y be a finite normal cyclic covering, and assume that the Galois
group Gal(C(X)/C(Y)) is isomorphic to Z/nZ. By field theory, there exist # in
C(X) whose minimal polynomial is T"-¢ where ¢ is an element of C(Y). We
introduce following notations:

D, : the zero divisor of ¢, and D, =) v,D{¥, its decomposition to
irreducible
components.
D,: the polar divisor of ¢, and D, =) u
irreduclble components. J
Put B=Dy+ (n—1)D,. Then B~ nD,. So, by construction 3, we can

;D). its decomposition to
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construct a cyclic covering ramified over B in the total space of a line bundle
associated to the divisor D,. Let X, be its normalization. Then we have:

Proposition 1.1. Let X, X, be as above. Then X and X, is isomorphic to
each other.

Proof. By the uniquness of the C(X)(resp. C(X,))-normalization of Y (see
Iitaka [1], Theorem 2.2.4), it is enough to show that C(X)= C(X,). By
construction 2, we construct a birational model of X in Y x P!. We denote it
X. We will prove that C(X) = C(X,). Let

: N .
fo= O fO% and f = fiM . fleo)m

be local equations of D, and D, respectively. Then X, is constructed as follows:
Put

B=Dy+(n—-1)D,

L = a line bundle associated to divisor D,.
Then

L®" ~ B.

Define a subvariety X, in the total space of L by the equation (" = f,(f,)" "
locally. Then X is a cyclic covering of Y, and its normalization is X,. Define a
raitonal map from X,; to X as follows:

Locally,

Xy
x — (n(x), &(x)) +oo> (@(x), E(X)/f )

(m: the projection of a line bundle).

But, by construction, above rational maps defined over Y. We can easily check
that the above maps are birational maps. Therefore C(X,) = C()? ). Since X is
birational to X, so C()~() = C(X). Therefore C(X,)= C(X). This proves our
proposition.

Q.E.D.

§2. The direct image of O, p O,

In this section, we assume that the finite morphism p is always flat. Since p is
flat and finite, p, Oy is locally free sheaf. Moreover, in our case, there is an action
of Z/nZ. Therefore, p,0y is decomposed into the direct sum of line
bundles. Next result which are due to H. Esnault-E. Viehweg are important.

Lemma 2.1. Let D be an effective divisor on Y and D = B+ ) v;E; its
j

decomposition into prime divisors. Suppose that for some invertible sheaf L and
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some integer n > 0, we have
L®" = (0y(D).

Then, by Construction 3, we obtain a finite normal cyclic covering p: X
— Y. Assume that p is flat. Then

N-1
PuOx= @ LV

=1

o-roa(-3[4]e)

where [ ] is Gaussian symbol.

<
~

For a proof, see Viehweg [6]. By Viehweg [5], if D is an effective divisor
with simple normal crossing, X has only rational singularities and p is
flat. Therefore, we can calculate numerical invariants of non-singular model of X.

Example. Let [,, I, be two lines in P> Let S be a normal surface
corresponding to a field C(P?)(0) where 6" =f, feC(P?) and f=1,/l,, and its
minimal resolution of S is a rational ruled surface of degree n. Let p: S — P2 be a
covering map. By the above result, we obtain:

Px0s = Op2 @ Op(— 1) D -+ @ Opa(— 1).

n—1

§3. Applications
(I) In Wavrik [7], he proved the following;

Theorem 3.1. Let n: X - Y be a cyclic covering of Y where X and Y are
complex manifolds. Then we can find a line bundle F on Y so that X is embedded in
a total space F.

For a proof, see Wavrik [7].

Remark. In this above theorem, definition of “a cyclic covering” is slightly
different from our definition. His definition is as follows:

Definition of a cyclic covering in the sense of Wavrik [7].

Let #: X > Y be a k-sheeted branched covering of Y, where X and Y are
complex manifold. Let C denote the branch locus. We call X a cyclic covering
of Y if the following conditions are satisfied:

(i) For each xeC, n~'(x) consists of one point.

(ii) The group of covering transformations of X\ 7 ~!(C) over Y\ C is cyclic

group of order k.

(iii) Fro each € C we can find a neighborhood U with coordinates (z,,...,z,

on U and ({,,...,{,) on #~*(U) such that the map is given by z; = {;
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(1<i<n-1), z, =,
(iv) If k #2, C is connected.

In the above definition, the condition (iii) implies that the branch locus, C is
non-singular, and this is essential. Assume that X is normal. Then, of course, C
may be singular. In our case, X can not be always embedded in the total space of
line bundles. For example, the normal surface S in Example, §2, has an only
singurlity over Iynl,, and this singurality is rational n-ple point. As is well-
known, rational surface singularities are hypersurface singularities if and only if
they are rational double points. Therefore, if n > 3, S can not be embedded in any
total space of line bundles over P2,

For a normal finite cyclic covering, we obtain proposition;

Proposition 3.3. Let n: X > Y be a finite cyclic covering of Y where X is
normal and Y is non-singular. Let B denote the branch locus of m. Assume:
(i) B is an irreducible divisor.
(i) For each ye B, n~'(y) consists of one point.
Then there exists a line bundle F, so that X is embedded in the total space of F.

Proof. Since C(X) is a cyclic extension of C(Y), so, by field theory, there
exists an element @, in C(X) so that its minimal polynomial is T" — f, fe C(Y)
where n = the degree of the covering. In the following, the notation is the same as
§1. Put:

fl(O)"| “.f;‘(O)"k
:fl(oo)”l '“ﬁ(w)“l

where f{® and f{* are definining equations of D{® and D{®), respectively. Put:

f

B=Dy+(n—1)D,, L=I[D,].

Now, we construct a cyclic covering V' in a total space of L by Construction 3 in
§1. By Proposition 1.1, if V denote a normalization of V', V is isomorphic to
X. Therefore, by the assumption (i), we may assume v,,..., v, and u,,...,y are all
multiple of n and only v, is not. Moreover, by the assumption (ii), g.c.d.(n, v;)
= 1. Hence there exist integers a, f such that av, = fin + 1. Consider a rational
function f* This is represented as follows:

fl(O)Vl" . ._fk(O)"k“

ftl

T (o)1 (c0)H1®
fl fl
(0)8 £(0)V22 (0)Vict
= [ <f1 f2 S >n
—J1 uia uia
flriT L peo

where v; = nvi, pj=nu; (i=2,....k, j=1,...,]).
Therefore,

k !
D ~ n(— BDY — .Zl av; D + 'Zx au; D).
i= j=
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Put

1 k
e L )
i= i=2

We can construct a cyclic covering of Yin the total space of F by the same method
of Construction 1 in §1. We denote it by X,. We will prove X is isomorphic to
X. (Note that X, is a normal variety.) As in the proof of Proposition 1.1, it is
enough to show that C(X) = C(X,). By our construction, C(X) = C(Y)(f,) and
C(X,) = C(Y)(#,) where minimal polynomials of 6,, 6, are T"—f, T" —f*
respectively. Since av, = fin + 1, 63 satisfies T" —fF"*1 = 0. Therefore the
minimal polynomial of 6%/f% is T"—f. Therefore C(X,)> C(X). But
[C(X): C(Y)] =n. Therefore, C(X,) = C(X).

Q.E.D.

Remark. By the proof of the above proposition, if there exists an element
feC(X) such that its minimal polynomial T" — f, fe C(Y) and f is of type as
follows:

f=f1fz'~fk< """ )

then, X is always embedded in a total space of a certain line bundle.

(I1) Cyclic covering of abelian varieties. Let p: X > A be a finite cyclic
covering of 4, where X is a normal variety and A is an abelian variety. Let 6 be
and element of C(X) such that C(X) = C(A4)(6) and the minimal polynomial of 8 is
T" — ¢ for some peC(A). Let Dy, D, be the zero divisor of ¢ and the polar

divisor of ¢ respectively, and D, =3 v,D{ and D, =) ;D be their

J J
decomposition into irreducible components. We rewrite D, and D, as follows:

Dy = ZViDE'O) = Z(V:' + né,) DY,

=Y ;D\ = Y (u; + nd;) D,
J J

where d;, 4;, v;, u; are non-negative integers and 0 <v; <n and 0 < y; < n.
Put

B =D, + (n— 1)D
=Y. (Vi + 1) DI + 3 (n — 1) (i + ni;) D{.
i J
Then,

LViD +(n — 1)) u; D
i J

=B —n(}.6;D + (n — 1)) 4;D})
i j
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~nDg — n(Zé D + (n — I)ZA D§e))

= n(Do = 3,80 — (n = DL AD5)
Put l
L=[Do—Y.8:D — (n — 1)}, ;D]
i j

We construct a cyclic covering V' in the total space of a line bundle L. Let V
denote its normalization. We will show that Vis isomorphic to X. By the same
argument as before, it is enough to show that C(V) = C(X). By f{? and f{*, we
denote their defining equations of D{® and D{* respectively. Then, by using a
local representation, the field C{X) is equal to

C(X) = C(4)(0),

where
fl(O)"l .uf;((o)"k
el o
Let X' be a cyclic covering of 4 obtained by Construction 2 in § I with respect to
fI(O)Vn fk(O)"k
:fl(oo)“l .“ﬁ(oo)”l ‘
Clearly, X' is birational to X. We define a rational map from Vto X’ as follows:
Y.V
[7] E— (n(v)’ C(D))‘. .......... >

5 S (n-1)4 )(n-l)l
Y S Y
ﬂ(U), fl(oo)ﬂl ._.ﬁ(oo)l‘z

where 7© is the projection from a total space of L to Y, and ( is its fibre
coordinate. By our construction,

GO - Ly e
o0)H1 (00)P1
Sl )

_ L) 1O . 10 ey DA preo)
= fl(wjnul ”.f;(d))nul

. )y - 4 ) n=1)(uy +nip)
(0)V1+ 11 (0)\k+»rék (a0)" Iy +nldy . (a0)™ m 1
fl fk fl )

o "

[l e

FON L 0 ple0) iy s oo™ DEy
_h .

fl(cx))"“n . f’(oo)"“l

(0)¥1 .. £(0)'k
L

= oo f(o)f
fi A

nn=-14,
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By the above calculation, it is easy to see that ¥ is birational map. Hence C(X)
= C(V')=C(V). Therefore, V is isomorphic to X.
In the following, we assume that p: X — 4 is flat

Then, by Lemma 2.1,
n—1 _
Py =0, @ @ L™

where
m _ [m vim DO — w D
L L"® (9A< [ p p i

Lm®(9A<_Z[V_"nm]D}0) Z((N,—l m_{_[m(nn_ #}})D;m))

J
By our construction,

i

L'~ ' v;iD® + (n— 1)y y; Dy
i J

J

T n

oo e 2 Jor)

N (9A<Z’"”?Df-°’ +m(n—) Y ;D —zn[%]w
i j i

_ Z(m"('u} -+ ,,lim(n—n_“é]>[)goo)>
= (9A<Z<mv}— n[ ,v >D}°’

)

’

. vim
By our consruction, mv; > n|: :

v n

Now we obtain the following.

where Z’, Z mean that the sum are taken for non-zero v;, v
~

Therefore,

=

Proposition 3.4. Let X be a finite normal cyclic covering of an abelian variety
A. Assume that X is of general type, and its covering map is flat. Then,

hi(Oy) = K(O,) for 0<i<d
and

hd(@x) =>n
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where d = dimX = dimA and n = the degree of the covering.

Proof. By the above calculation,
n—1 .
Plx=0,® @ L™

where p is the covering map, and L™ is as above.

Claim. The divisor;

Z(mv;- - n[%])Dﬁo’ + Z(m(n — 1) — n[@])%w’

is an ample divisor.

Assume the above claim. We obtain that L™ is ample. Then, by Riemann-Roch
Theorem for an abelian varieties (see Mumford [7]), we obtain

h(A, L'™) > 0.
Therefore,
hi(X, Oy) > n.

Proof of Claim. Since an effective divisor on an abelian is always numerically
effective, it is enough to show that the divisor

D= z“:’DgO) + ;' D}oo)

is ample, where ) ', Y’ denotes that the sums are taken for non-zero v; and
T
M. Assume that D is not ample. Then, by litaka [1], Proposition 10.6, there

exists an abelian variety A, such that
(1) Dup: A— A, gives a structure of an abelian fibre space and dimA,
= k(D, A).
(ii) There exists an ample divisor 4 on A, such that D = &f, (4).
Let B be an abelian subvariety of A4 which is a fibre of ®,,. By Poincaré
reducibility, we obtain the commutative diagram:

X - B x A,
i .
X A

p

where a and « are étale morphism, and x(X) = x()?) =d. By (i), (ii) as above, we
obtain (a* L™)"| g, is a trivial line bundle for ae 4, and «*L™|,,,,, is the same
for all ae A;. Therefore, we obtain a n-fold étale cyclic covering of B x A,, say B
x A,;. Eventually, we obtain the commutative diagram:
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F

X — B x A,
! |#
X P B x A,

where f and [? are étale morphisms and K()?) =k(X)=4d. By our construction,
B*a* L™ is considered a pullback of some line bundle over A;. Therefore X has a
structure of an abelian fibre space. This implies k(X) <dimX. This is

contradiction.
Q.E.D.

Remark. By the proof of Propsition 3.3, we know the structure of a cyclic
covering of an abelian variety. And if its covering map is flat, we can compute
cohomology of its structure sheaf by using Kempf’s Theorem (see Kempf
[2]). Note that we can obtain many examples of a normal cyclic covering over an
abelian variety which have the same cohomology as an abelian variety. Note that
they are not of general type by Proposition 3.3.

(III) Remark on S. Yamamoto’s paper. In [8], S. Yamamoto proved the
following.

Theorem 3.5(Yamamoto [8]). A 3-sheeted covering space of P?* branched
along C,UC,, which are two smooth curves with at most simple normal crossings, is
either

a normal surface whose singularities are all rational double points
or

a normal surface whose singularities are all rational triple points.

Moreover, for the first case, we obtain

1
py(S) = g(Cy) + g(Cy) — §(C1 - 2C,)(2C, - ()
and for the second,

2
p,(S) = g(Cy)) + g(C,) — §(C1 —Cy)?

where g(C,) is a genus of C,.

We will extend the above theorem to p-sheeted covering where p is a prime
integer. By the result of M. Oka (see Oka [4]), n,(P?\(C,UC,)) is an abelian
group. Therefore, for a normal p-sheeted covering S of P2 branched along C, UC,
which satisfies the above conditions, C(S) is a cyclic extension of C(P?) with degree
p. Hence, we can apply the resluts in §§1 and 2 to this case, and we obtain
the following:

Theorem 3.5. Let n: S — P? be a finite normal cover over P* whose covering
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degree is a prime integer p. Assume that the branch locus of m is C,UC,, where C,
is a smooth curve whose degree is n;, and the divisor C{ + C, has at most simple
normal crossings. Then
(1) There exists a unique integer v with 1 <v<p—1, and

singularities of S are all cyclic quotient singularities of type
(p, v) or (p, p — v) and they do not appear simultaneously.
(i) The direct image of a structure sheaf of S is isomorphic to

i [k k(p —
0B ® (9.3(—(»11 +(p— )+ [M]n)
k=1 p 14

where [ ] denotes Gaussian symbol.

Remark. Since qoutient singularities are rational, we can compute numerical
invariants of a minimal resolution of S by using the above results. For p=3, v
=1and p=p, v=p— 1, we obtain Yamamoto’s results.

Proof. (i) Under the above assumption, 7 is a cyclic covering of order
p. Therefore, the rational function field C(S) is obtained as follows:

C(S) = C(P*)(0)
where

0” = ¢, for some @e C(P?).

Let
(©)o = Z Vi DEO)

and

(@) =2 14; Df
J

be irreducible decompositions into prime divisors with respect to the zero divisor
of ¢ and the polar divisor of ¢ respectively. By the assumption, we may assume
that either

(a) DY =C,,D{™ =C, and all v(i > 2), p,;(j > 2) are divisible by p,
or

(b) DY =C,, DY =C, and all v,(i > 3), u;(j > 1) are divisible by p.

Case (a) Let f,, f, be local equations for D and D{® respectively. Then,
locally ¢ is represented as follows:

Vi 4P
_Ji 91
U1 P
1395

where (g§) = ) v,D!® and (99 = .22 u; D . By the assumption, g.c.d.(v,, p)
jz

i>2
= 1. Therefore there exists a pair of integers (k,,!,) such that k,v, + pl,
= 1. Hence,
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kivi Jkip
ki _fl g1
T fkipy gkip
f2* g3

_ fi ( g >p
7\ T

Let v, [, be a unique integer such that

ki, =ply+v O<v<p.

(pkl =&< g’il )P
H\S22 95

g} ’
=f f(p—v)<_—_>
SV

Let L be the line bundle which is linear equivalent to

Then

(z leng'w) + (I, + YD + 1D — Z kyv;D{?)
=2 i

i>2

Then
L% ~ D(IO) + (p _ V)D(lcn)

and we can construct a normal cyclic covering § which ramified over C,UC,.
Obiously, C(S) = C(P?) o C(P?)(#*) = C(5) and [C(P?)(6): C(P?)]
= [C(P?)(6*"): C(P?)] = p. Therefore C(S) = C(S), and S ~§. Moreover, by the
local equation in the total space of L, singularities of S are all cyclic quotient
singularities of type (p, v).
A proof for case (b) is similar to case (a), so we omitt it.
(i) By the results of Esnault-Viehweg (see Viehweg [5]), = is flat
morphism. Therefore, we can apply Lemma 2.1, and obtain the desired result.
Q.E.D.
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