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Range characterization of Radon transforms
on complex projective spaces

By

Tomoyuki KAKEHI

§0. Introduction

The purpose of this paper is to characterize the ranges of Radon transforms on
P"C by invariant differential operators.

Range characterization of a Radon transform by a differential operator was first
treated by F. John [8]. Consider the set M of all lines in R*® of the form

I x=a,t+8,, y=at+fs. z=t, (t: parameter).

We define a coordinate system on M by l—(a,, as, Bi, B:)ER*. Let R: CFR*)—-CHM)
be the Radon transform defined by

RIO=\" flat+p, ai+po it for fECIRY).

Then it is easily chacked that the range of R is included in the kernel of an ultra-
hyperbolic differential operator P defined by
p B

00,08, 0a,0B,
and, in fact, F. John showed that Ker P=Im R, that is, the range of R is characterized
by P. Gelfand, Graev, and Gindikin [1] later extended F. John’s result to Radon
transforms on R™ and C™. They characterized the range of the d-plane Radon trans-
form on R™ (resp. on C™) (d<n—1) by a system of second order differential operators
on a corresponding real (resp. complex) affine Grassmann manifold.

For Radon transforms on compact symmetric spaces, there exists Grinberg’s result
[4]. He showed that the range of the projective d-plane Radon transform on a real
or complex projective space is characterized by an invariant system of second order
differential operators in a corresponding compact Grassman manifold. We notice that
his construciion of the system was led by representation theoretical consideration.

On the other hand, our approach is based on the idea of F. John, which yields
characterization by a single invariant differential operator on a Grassmann manifold.
In fact, the range-characterizing operator can be represented as an ultrahyperbolic
differential operator like (0.1) on a vector bundle, but we here treat the one reduced
to a single differential operator for the sake of simplicity.

(0.1)
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Let M be the set of all projective [-planes in P"C, which is a complex Grassmann
manifold and is a compact symmetric space of rank min{/4+1, n—/}.
We define a Radon transform R: C=(P"C)—C>(M) by

1
RIQ= Gor(pres o ), EEM,  fECAPO),

where dvg(x) denotes the measure on §CPP"C) induced by the canonical measure on
P"C.

We assume that rank M =2, that is, 1</<n—2. The main theorem of this paper
is as follows.

Theorem. There exists a fourth order invariant differential operator P on M such
that the range of the Radon transform R is characlerized by P, i.e., Ker P=Im R.

The explicit form of P will be given in the next section.
The author would like to thank Professor Chiaki Tsukamoto for suggesting the
problem and for many valuable discussions.

§1. Invariant differential operator I’

Let M be the set of all ({+1)-dimensional complex vector subspaces of C**!, that
is, the set of projective [-planes in P"C. Then M is a compact symmetric space
SU(n+1)/SWUI+1)xU(n—1) of rank min{/+41, n—/}. We assume that r:=rank M=2,
that is, 1<I<n—2.

For a Lie group G and its closed subgroup H, we denote by C=(G, H) the set
{feC=(G); f(ghy=f(g) YgeC and VheH}, and we identify C=(G, H) with C~(G/H).
We define an action L, of G on C*(G) by (L,f)(x)=f(g 'x) for x=G, and f=C=(G).
Similarly we define an action R, of G on C=(G) by (R f)(x)=f(xg). A differential
operator D on G is called left-G-invariant if L,D=DL, for all g&G. Similarly, D is
called right-H-invariant if R,D=DR, for all heH. We identify a right-H-invariant
differential operator on G with a differential operator on G/H.

Let G, K, and K’ be the groups SU(n+1), SUU+1)XU(n—1)), and SWU)XU(n)),
respectively. Then we have M=G/K, P"C=G/K’, and by the above identification,
C=(G, K)=C=(M), C~(G, K")=C=(P"C). We choose a Killing form metrics on G,
which induces metrics on K, K’, M, and P’"C. Let g and t denote the Lie algebras
of G and K, respectively,

g={XEM,,(C); X+X*=0, tr X=0},
X, 0

f={( )Eg: XieM ,(C), XzEMn-z(C)}‘
0 X,

et g=tPm be the Cartan decomposition, where m is all the matrices of the form
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0 0 _§l+2,1 '_En-n,l

0 «+ 0 —Zite 141 —Zapt1,101
7=

Zige1 vt Zigen 00 o 0

Znst1 0 Zparier O 0 0

We define second order differential operators L .s (+2<i<j<n+1, 1<a<B<i+1)

and a fourth order differential operator P on G as follows.
2 aZ
az,:aazj'lg - aziﬁaZja
P= 3 L¥asLij«s,

l+2<5i<jsn+1
1sa<fBsl+l

Lusasf@)=( )/ (@exp Z)l e [ECG),

where LY .5 denotes the adjoint operator of L;; . and is given by

2 az
02:402;5  0Z:150%;a

Lt.apf(®)=( )f(g exp 2)| 1.

Lemma 1.1. P is a right-K-invariant differential operator.

Proof. We define Ad-K-invariant polynomials F;(Z) (=1, 2, ---) on m by
det (AI+Z)=2"""+F\(Z)A" '+ F)(Z)2* 34 -+
Then we have

(1.1) Fy(Z)= > (ZinZjp—21pZ10)Z1a2ip —21825a) "
l+25i<jzn+1
1sa<s fl+1

On the other hand, we have

RkPRk—xz 2 RkL?‘j,aﬂRk—ﬁRkLij.aﬂRk—x,
l+egi4jsn+1
1sa-psl+1
where
> & L
RlzLU.nﬁRk-lf(g)—(azmazjﬁ - aZ“gaZj« )f(g expkZk™)| z-0,
0* ik
* — _ -1
RkLtj.aﬁRk—lf(g)—(aEiaanﬂ 0Z:140%10 )f(g expkZk )| z-0,

for f€C>(G) and k=K.

Thus, we have only to prove that P is invariant under the linear transform Z—
kZk'=Ad,Z, which follows easily from the fact that the polynomial F,(Z) is Ad-K-
invariant. [ ]

It is obvious that P is left-G-invariant. Therefore, P is well-defined as an invari-
ant differential operator on M.

The purpose of this paper is to prove the following theorem.
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Theorem 1.2. The range of the Radon transform R is characlerized by the invariani
differential operator P, that is, Ker P=Im R.

Remark 1.3. The above differential operators L;; .s and L} ,s are of the form
similar to (0.1). In this sense, we can say that the range of the Radon transform on
P"C is also characterized by an ultrahyperbolic differential operator.

§2. Proof that Im RcCKer P

We first prove that Im RCKer P. By the identification C*(G, K(=C>=(M) and
C=(G, K")=C=(P"C), we consider the Redon transform R as a map from C(G, K’)
to C=*(G, K). Then R is given by

2.1 (Rf)(g)zval(—K—)S Kf(gle)d/e, feC=(G, K.

ke

From this section, we use the representation of the form (2.1).

We define a bilinear form <., > on C**'XC"*' by <u, v>=37u;v; for u=
(uy, -+, Uns1), V=, =+, Un4+), and a function 1} ,=C=(G) by hZ(g)=<a, ge,>™<{bge;»™,
where a, beC**', e,=(1, 0, ---, 0)=C"*' and m is a nonnegative integer. It is easily
checked that h?,=C.(G, K’), that is, hF ,=C>(P’"(C). Moreover the following lemma
holds.

Lemma 2.1. Let V., denote the subspace of C>(P"C) generated by the set
{h?,; <a, b>=0}. Then V., is the eigenspace of dpuc, the Laplacian on P™C, corre-
sponding to the m-th eigenvalue and V ,, is irreducible under the action of G.

For the proof, see [10] § 14.
Proposition 2.2. Im RCKer P.

Proof. Since P and R are G-invariant operators and L,-1h%,=h%, ,«», We have
P(RChZ o N@)=P(R(hgsa, g,

where I denotes the (n-+1)X(n+1) identity matrix.
Since the direct sum @n-R(V™) is dense in Im R in C>-topology, we have only
to prove P(R(hZ)(1)=0, or,

Lij, o g(RChE ))XT)
_ 1 /0 @&
- Vol (K)\ 32,,,3275 azileaZjn
=0.

W, e exp 200 Loy

Here we have
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0? a? n I\ o m
(aZiaaZjﬁ B GZiﬁazja){<a’ (exp Z)ke>™<h, (exp Z)ke)™} | z-s
=m(m—1)Xa, ke >" b, ke>"

P a ) P
x{az—m@, Zkez,—<a, Zhey—5-—<a, Zkeiy 5, —<a, Z/ee,>}

=m(m—1)a:ika1asks1—aikpiakar)la, ke )™ *b, key" =0,

where kK, and k;; denotes the (7, j) entry of k. In the above computation, we used
the fact that the polynomial <b, Zke,> on m is a linear combination of Z,,'s and the
fact that the polynomial <{a, Z*ke,> and <b, Z%ke,> on wm consist only of the terms of
the form (constant)Xz,eZpq.)

Therefore the assertion is verified. ]

§3. The inversion Formula

We construct a continuous linear map S: C*(M)—C=(P"C) such that SR=Id,
where /d denotes the identity map. :

Let £ denote the set of (n—1) dimensional complex projective subspaces of P"C.
Then £=SU(n+1)/SU(n)xU(1)), and we put K”=SU(n)xU(1)). We define a Radon
transform & : C*(P"C)—C>(5) and its dual Radon transform & : C*(&)-—C=(P"C) by

l 3 4 ” " oo, ’
T /&)= o (i e ERIART . [ECTG, K,

7 1 ’ ’ © ”
FOE) = ol 17 e SRR HECTG, 7).

We define a polynomial @(t) by

00=(e+ I N+ BT - ().

Theorem 3.1 (Helgason [6], Ch. 1, Theorem 4.11). We have the inversion formula
L‘,,(D(Ap,,c)g-'(j:]d ,

where ¢, is a constant depending on n.

Proposition 3.2. There exists an inversion map S: C(M)—C=(P"C) such that
SR=1d.

Proof. We define a continuous linear map R: C=(M)—C=(Z) by
3 1 " n 00
RI@ = G5 75 e [ @RV FEC(E, K.
Then, it is easily checked that RR=%. Therefore, if we put

3.1 S=c,0Upnc)F R,
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we get SR=1d by Theorem 3.1.

§ 4. Representation of (G, K)

In this section, we describe the root, the weight, and the Weyl group of (G, K).
Let acCm be the set of all matrices of the form

0 N 0 tl
0 -0 t,
H(t):H(tl; tty tr):’\/:V]- tl 0 e 0 .
tr
0 --- 0
where we put r=rank M(=rank G/K) in Section 1 and t=(¢,, ---, t,)&R". Then, a is

a maximal abelian subalgebra of m. We identify a with R™ by the mapping H(¢)—t.
Let (-, -) denote an invariant inner product on g defined by

(X, Y)=—2(n+1) tr (XY), X, Yeg,

which is a minus signed Killing form on g.

For aca, we set g,:={Xeg®: [H, X]=v—1(a, H)X for all Heq], and a is
called a root of (g, a) when g.#{0}. We put m,=dime¢g,, and call it a multiplicity
of a. o

We put H;=H(, ---, 1, ---, 0) (1<i/<r). Then the roots of (g, a) and their multi-
plicities are given by the table:

a n,
im“l:r)"f An+1-2r) (1<j<P),
1 .
ii@;ﬁj““iH” 2 (1=7<ksr),

We fix a lexicographical order < on a such that H,> --- >H,>0. Then the posi-
tive roots are (1/2(n+1)H;, (1/4(n+1)H;, 1<j<r), (1/4n+D))H; £ H,), 1<7<k<r).
The simple roots are (1/4(n+1))(H,—H,), (1/4n+D)(H,—Hy), -, 1/4n+1))(H, ., —H,),
(1/4(n+1)H,. We define the positive Weyl chamber A* by {teR"; 0<t;<n/2
(1<jsm), 6> >t}

We set

Q(exp HODK):=|  TI (e*TeHun _o=/TTe fiamynal,

«a: positive root

We consider 2 as a density function on R*, and we have
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=00,
r
4.1 where ¢=2"@"-2r+9| 1] sin 2¢; sin *"~7*9¢,],
j=1
w=2"/27C D] (cos 2t;—C0S 2t4).
i<k

The Satake diagram of G/K is given by (4.2) or (4.3),
case A n+1>2r:

Al Ar Ar+l An-r An-r+1 An

(1.2) \ _____ \ foee J

4.3) \ _____________ X L /*

In the diagram (4.2) or (4.3), A,, -, A, denote the fundamental weights of g,
corresponding to the simple roots of g.

Since rank G/K=r, there are » fundamental weights M,, ---, M, of (G, K). By
the diagram (4.2) or (4.3), M,, ---, M, are given by

M1:A1+Am B 1"’[7'—l=1/]1’—l+/111—r‘+2, A4r:Ar+An—r+h (case A),
1"/[1:/]1_‘_/171: Ty M1‘~1=A1'—l+/1n-r+2» Mr':ZAn (case B)~
Then we have
1 k
- - ; <k<r),
M=oy A Ask=D

Let Z(G, K) be the weight lattice, that is, Z(G, K)={(14n+1))Xu.H, + - +p.H,);
t, -+, p.€Z}. The highest weight of a spherical representation of (G, K) is of the
form m,M,+ --- +m,M,, where m,, ---, m, are non-negative integers. Let V(m,, ---, m,)
denote the eigenspace of the Laplacian 4, on G/K that is an irreducible representa-
tion space with the highest weight m,M,+ - +m,M,.

The Weyl group W(G, K) of (G, K) is the set of all maps s: a—a such that

S: (tly Tty tl‘)'_)(eltdl(l)y Tty erta'(r)); 5j=i1) UE@r ’

§ 5. Radial part of P

We calculate the radial part of the invariant differential operator P. The result
in this section is used to calculate the eigenvalues of P in the next section.
To each invariant differential operator D on G/K, there corresponds a unique
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differential operator on Weyl chambers which is invariant under the action of the
Weyl group W(G, K). This operator is called a radial part of D, and we denote it
by rad (D).

The following lemma is well-known. (See [10] Theorem 10.4.)

Lemma 5.1. The radial part of the Laplacian dy on M is given by

1 0 ;0
rad (dy)= T 4(n+1) ]21 (at, + Q al‘;>

We define a differential operator Q, on R" by

1 0° (; 0
Qui=3 Z(Gt, gaj m,) @.

@

The next lemma is easily checked.

Lemma 5.2.

—4(n+1) rad (Aﬂ,)zQ.—j_él 4G +n+2—-2r).

We consider the following conditions (A), (B), (C) and (D) on a differential operater
@ on R" that is regular in all Weyl chambers.

(A) Q=I1621<k£;£%+lower order terms.

(B) Q is formally self-adjoint with respect to the density £2dt.
(C) Q@ is W(G, K)-invariant.

(D) [Q, rad (dy)]:=Q rad (dy)—rad (4,)Q=0.

Then the differential operator rad (P) satisfies the above four conditions (A), (B),
(C), and (D). Indeed, the principal symbol of P is given by 1%FZ(Z), which was

=
defined in (1.1). (Notice that % %Ei—]—\—z—lai for z;;=xy+~—1y;") There-
ij i

fore its restriction to a IléFz(H(t)) is EEKkt?ti, and the condition (A) holds. The

condition (B) follows from the self-adjointness of P. Since P is an invariant differential
opoarator, the conditions (C) and (D) are easily verified.
We defined a differential operator @, by

VA 0
Qui= 16«) ,<k(at, Ugl"ag)(‘az:‘i*%’gafg)°""

Lemma 5.3. The differential operator Q. satisfies the conditions (A), (B), (C), and
(D).

Proof. The condition (A) is obvious. The condition (D) follows from Lemma 5.2.
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The conditions (B) and (C) are easily checked using the formula (4.3). ]

395

Lemma 5.4. If a differential operator Q satisfies the conditions (A), (B), (C) and

(D), then Q can be written in the form

Q=0Q:+c, rad (dy)+c,,
for suitable constants c,, c,.

Proof. Because of the conditions (4) and (B), Q—@, is a second order differential
operator and satisfies the conditions (B), (C), and (D). Therefore the proof is reduced

to the following lemma.

Lemma 5.5. [f a second order differential operalor

& & P
Q=3 gt BBigan T pofes at,

satisfies the conditions (B), (C), and (D), then Q can be written in the form

ch rad (AM)y
where ¢ is a suitable consiant.

Proof. By the condition (D), the third order terms of [Q, rad (d,)] vanish.

we have the following equations.

5.1) As ;=0 (<IN
(5.2) Alz.[j'*'Bjk,tk:Or /'lj,tk+Bjk,tj:O) (7<k);
(5.3) Bij iyt Bjk.e;+Bik. i ;=0, (I=i<j<kEr).

By the equations (5.1), (5.2), and (5.3), we obtain

(5.4) Aj_tklktk:()) G#k);
(5.5) Bjk,tjtj:Bjk,tklk:O!
(5.6) By, cltlzl'—o @#7, k).

Thus

From the condition (C) and the equations (5.1-6), the coefficients A; and B,, are

polynomials of the form

(5.7) 44]':51 2 t§+5z ’
k+j
(5.8) le—‘ 25 t,;tlz ’

where 8, and d, are some constants.
Using the conditions (B), we have

1 1 1
(5.9) Cj—g(AjQ)Lj'I‘Z‘Q' Ek(Bij)zk-F'Z—Q— E}(Bkjg)tk-

If 0,=0, then the coefficient B;,=0, and the coefficient C;=0,2.;/2 by (5.9).
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Therefore we obtain Q= —4(n+41)d, rad (4dy), and the lemma holds.
Now, we suppose that §,#0. Furthermore, we may suppose that §,=1 and 9,=0.
By the condition (D), the first order terms of [Q, rad (dy)] vanish. Thus we have

(5.10) Qa;=—4(n+Drad (4y)C;  (ISj=7),

where we put a,-:Q,j/Q.
We extend the both sides of (5.10) to C as meromorphic functions of t,=g,+ v —1ly,.
By the formula (4.1), we have

€08 2t cost, —2 sin 2t,
2§1‘2t1 +2(n +1)~~—1 +2 ;22 oS 2t,—Cc0s 2t;

As y,—+o0, we have auj—>0, al,chk—>0 (rapidly decreasing), and a,=0(1). The same
fact holds for a; (=2, ---, ¥). Thus Qa,—0 (rapidly decreasing). Therefore we get
rad (4,)C,—0 (rapidly decreasing) by (5.10). However, when v, tends to +co, we have

r

—4(n+1) rad (40)C,= P <6t &+akat JBisas+Bis.)+0()

JE=2
=—1, 3 a’+0().
k=2

(In the above computation, we used (5.7), (5.8) and the fact that a;=0O(l) and the
derivatives of a¢;—0 as y,—o0) Therefore, we have rad (4,)C,— oo, for suitable ¢,, -+, t,,
and p,. It is a contradiction. ]

Lemmas 5.1, 5.2, and 5.3 imply the following proposition.
Proposition 5.5. The differential operator rad (P) can be expressed in the form
rad (P)ng+61Ql+CZ ’

for some constants c,, ;.

§6. Proof of Theorem 1.2

We calculate the eigenvalue of P on V(m,, ---, m,) to prove Theorem 1.2.

Let a(m,, -+, m,) be the eigenvalue of Pon V(m,, -+, m,) and ¢cm,,...n,> the zonal
spherical function which belongs to V(m,, -, m,). We denote by ucm, ., u, the
restriction of @cm,....m,» to the Weyl chamber A*.

Lemma 6.1 ([10], Theorem 8.1). The funclion ucw,,..m,> has a Fourier series ex-

pansion on A* of the form

Umy,oom (B oy 8)= py 7, exp vV —1(, tHi+ - +t,.H,),
Asm M+t me My
A€Z(G.K), finite sum

where 7]m11111+A.,+mrMT>0o

Let f, and f, be Fourier series on A* of the form
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fi= = Ciexp v —1(@, t,Hi+ - +t.H,),
isAA€Z(G, K)
fo= = Ziexp v—1Q, tHi+ - +t,.H,).

1s432€2Z(G. K>

We denote f,~f, when A=A, and (;={4, (#0). Obviously the relation ~ is an
equivalence relation.

Lemma 6.2. We have the following relalions.

6.1) 0 ~2V=1(n+2-27)0 ,
(6.2) w ~2V —1(r—)w,
b .
(6.3) S W, mo~2V =Tnj+my+ - +me)cmy,m, -
J

Proof. The relations (6.1) and (6.2) are easily checked. The relation (6.3) follows
from Lemma 6.1. [ ]

Lemma 6.3.

(6.4) a(my, -, my)= 2 +r—7U+n+2—r—=DUe+r—R) U +n+2—r—k)
i<k

—de, 2 U+r—i+n+2—r—j)+cs,
j=1
where ¢, and ¢, are constants in Proposition 5.5, and l;=m;+m;,+ - +m,.

Proof. Since Bimy mp EV (MY, oo, my),
(6.5) Phem,.cmp=almy, =, m)Gcmy,m, -
We restrict the both sides of (6.5) to A*, and then we have
rad (P)ucmy, . mp=a(®my, =, M) Ucny,im -

By Proposition 5.4, we get

170 a0\ o0, 0
2 (. J.o T
g w];,{ ) (atjz + g 8t, )(atkz + P atk )(a)u(ml,-n. m r))

32 th a
(az?+7, o,

— 2
—a(mlr Tt mr)a wu(ml_m, my) .

+ci0%0 S 1

A )(wu(ml,-u,mr))+0202wu(m,.~~~,mr)

Using Lemma 6.2, we have

Zk{(lf'!"’—j)(lj'i'n F2—r—le+r—R)le+n+2—r—k)o*0Ucn,,... m >}
i<

6.6) —dey S U7 — Uy n42—r— DO OUm, o m >+ O DUy >
j=1

~a(my, =+, m;)0°OUCn,, ..y -
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Comparing the leading coefficients of the both sides of (6.6), we get (6.4). [ |
Lemma 6.4. R:V,—V(m, 0, ---, 0) is an isomorphism.

Proof. By Proposition 3.2, R is G-equivariant and one to one. Thus we have
only to prove that the highest weight of V, is equal to that of V(m, 0, -+, 0). The
Satake diagram of P"C is given by

(6.7) Q——@— e — @——0

Comparing (6.7) with the diagram (4.2) or (4.3), we find that V, corresponds to
mM,. On the other hand, the highest weight of V(m, 0, ---, 0) is mM, by definition.
This completes our proof. n

Now, we can calculate the eigenvalue of P by combining the above lemmas.

Theorem 6.5. The eigenvalue a(m,, -, m,) of P on V(m,, -, m,) is given by

(6.8) a(my, -, me)= S Ll (;+n+2=2/)le+n+2—2k)
i<k

+ 3 U= D= D+ n+2-2)),
=2
where Lj=m;+mj+ - +m,.

Proof. By Proposition 2.2 and Lemma 6.4, we have a(m, 0, ---, 0)=0 for any non-
negative integer m. Then, by Lemma 6.3, we have

(m+r—1)(m+n+1—r)§(r—/e)(n+2—r—k)

+ 2 —pht2—r—j)(r—k)n+2—r—k)
25j<k<r

—4¢,(m*+nm)—4c, ﬁ r—1nNmn+2—r—j)+c,
j=1

=0.

Therefore, we get
1 =1
(6.9) ¢ =Zk§2(r—lz)(n +2—r—=Fk),

€= 2,2 (r=n+2—r—)r—k)Xn+2—r—k)
(6.10) =
HZ(r—n+2—r—7)}*.

=

Substituting (6.9) and (6.10) to (6.4), we obtain the formula (6.8). [ ]

The following corollary is now obvious.
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Corollary 6.6. V(m,, ---, m,) is contained in Ker P, if and only if my= --- =m,.=0.

Proof of Theorem 1.2. Let V :=@%_,V(m, 0, -, 0)and ¥ :=@%_,V » (direct sums).
Then, we have R: V-V and S: V—V. Here S is the inversion map defined in (3.1).
Moreover, we have SR=1Id on ¥V and RS=Id on V by Proposition 3.2 and Lemma 6.4.

By Collorary 6.6, V is dense in Ker P in C=-topology. Since the inversion map
S: C*(M)—>C=(P"C) is continuous, we have RS=Id on Ker P. This completes the
proof. ]

Remark 6.7. If g=Ker P, the inverse image of ¢ is given by S¢. this is, R(S¢)
=g.

Remark 6.8. The invariant differential operator P, which we constructed in Sec-
tion 1, is of least degree in all the invariant differential operators on M that charac-
terize the range of R. It follows from the fact that the principal symbol (1/16)F,(Z)
of P is of least degree in all the Ad-K-invariant pojynomials on m except for the
principal symbol of the Laplacian.
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