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Range characterization of Radon transforms
on complex projective spaces

By

Tomoyuki KAKEHI

§ 0. Introduction

T h e  purpose o f this paper is to characterize th e  ra n g e s  o f  R a d o n  transforms on
PnC by invariant differential operators.

R ange characterization o f  a  R a d o n  transform by a  differential operator was first
treated by F . Jo h n  1 8 1 . Consider th e  se t M  o f all lines in  113 o f  th e  form

1: x=a l td -P i, Y=a2t - FP2, (t: parameter).

We define a  coordinate system on M by 1 -0 ,, a2, 132)E R 4. L e t  R: C7(R 3 )-->Q (M )
be the Radon transform defined by

Rf (0 = 1 -
0 0 /(ait+181, a2 t+ 132, t)dt fo r  f E C (R 3 ).

Then it is easily clinked that the  range  o f  R is included i n  t h e  kernel o f  a n  ultra-
hyperbolic differential operator P defined by

,92 ,92
(o.1) P = aaiap, a23p1
and , in  fac t, F . John  showed that K er P=Im  R, that is, the  range of R is characterized
b y  P .  G elfan d , G raev , an d  G in d ik in  [1 ] later extended F . Jo h n 's  result to Radon
transforms on  R n a n d  C " .  They characterized the range of the d-plane Radon trans-
form on Rn (resp . on  C n ) (d<n -1 ) by a system of second order differential operators
o n  a  corresponding real (resp. complex) affine Grassmann manifold.

For Radon transforms on compact symmetric spaces, there exists Grinberg's result
[ 4 ] .  He showed that the  range of the projective d-plane R adon transform o n  a  real
o r  complex projective space is characterized by an  invarian t system of second order
differential operators in  a  corresponding com pact G rassm an m anifold. We notice that
his construclion o f th e  system was led by representation theoretical consideration.

O n  th e  other h a n d , our approach is based o n  th e  idea o f F . Jo h n , which yields
characterization by a single invariant differential operator on a G rassm ann m anifold.
I n  f a c t ,  t h e  range-characterizing operator can be represented as an ultrahyperbolic
differential operator like (0 .1 )  o n  a  vector bundle, b u t  we here treat the  one reduced
to a single differential operator fo r the  sake o f simplicity.
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Let M  be  the set of a ll projective /-planes in P ' C , w h ich  is  a  complex Grassmann
manifold and is  a compact symmetric space of rank m in {/ ± 1 , n-11.

We define a Radon transform  R: C"(PnC)—>C"(M) by

1 
dve(x), eEM, fE C "(P n C ),f ( e )  V o l  ( Pt C) se ./ (x )

w here dve (x ) denotes the  measure on e (C P n C ) induced  by  th e  canonical measure on
PnC.

W e assume that rank /14> 2 ,  th a t is, The main theorem of this paper
is  as follows.

T h eorem . There exists a fourth order invariant differential operator P on M  such
that the range of the Radon transform R is characterized by P, j. e., Ker P=Im R.

The explicit form  of P  w ill be g iven in  the nex t section.
T h e  au thor w ou ld  like  to  thank  P ro fesso r Chiaki Tsukamoto for suggesting the

problem and for many valuable discussions.

§ 1 .  Invariant differential operator P

Let M  be  the set of a ll (1+1)-dimensional complex vector subspaces o f C " - ' , that
is , th e  se t o f p ro jec tive  /-p lanes in  P n  C. T hen  M  is  a compact symmetric space
SU (n +1)/ S(U (l +1)X U (n— l)) of rank min fl+1, n — /1 . We assume that r : = rank /11_2,
th a t is , 1_<l n -2 .

For a Lie group G and its closed subgroup H , w e  d e n o te  b y  C"(G, H ) the  set
If EC - (G ); f(gh )=  f(g ) V g E G and V/IEHI, and w e identify C- (G, H ) w ith  C"(G/H).
We define an action 1,, o f G on C"(G ) b y  (I, , f)(x) ,  f (g - ' x) fo r xe G , and f
Similarly we define an action R , of G  on C °°(G ) b y  (R , f)(x )=  f (x  g ). A  differential
operator D on G is called left-G-invariant if 1,,D=DL 9 f o r  a ll g E G .  Similarly, D  is
called right-H-invariant if  R h D =D R I, for a ll h E H .  W e id en tify  a  right-H-invariant
differential operator on G w ith  a  differential operator on G/H.

Let G, K , and K ' be  the groups SU(n+1), S(U(1+1)XU(n—l)), and S(U(1)XU(n)),
respec tive ly . T hen  w e have M =G/K, PnC

,---G /K ', and  b y  th e  above identification,
C "(G , K )= -C "(M ), C "(G , K ")= C "(P n C ). W e choose  a  K illing form  m etrics on G,
which induces metrics on K , K ', M , and P n C .  L et g  and I deno te  the L ie algebras
of G and K , respectively,

1=

g= I ; X+ X *=0, tr X= 01,

X i0
; X,EMi+i(C), X2E-Mn_1(C)}.

Let g=telm  be  the Cartan decomposition, where m is  a ll the matrices of the form
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• 0 — 2 /1 -2 ,1

0  " .  0 — 21+2,1+1.•• —271+1,1+1

Z / + 2 ,1 • Z i + 2 ,  (+I 0 • • • 0

2 n + 1 ,1  '• ' Z n + 1 ,1 + 1 0 ••• 0

W e define  second order differential operators 1, 11 ,„13  ( l+2 _ <i<jS n +1 ,
an d  a  fourth order differential operator P  o n  G a s  follows.

a2 a2  )f (g exp Z)I f E C - ( G ) ,L ii,aPf (g)"=az iaaz i,e az o az i,

P = L ,,oL o,a,g r

l g a < / - F 1

where L t,a/3 denotes the adjoint operator of and  is given by

L t . a  f  ( g ) = ( a .i t
a
, , a

2
2113 )f (g exP Z) I z=0 .

Lemma 1.1. P  is a right-K -inv ariant differential operator.

Pro o f . W e define Ad-K-invariant polynomials Fi (Z )  ( j=1 , 2, •••) o n  m by
det (2/+Z)=2n + 1 ±Fi(Z)2n - l -FF2(Z),I' a + • •• .

T hen w e have

F2 (Z)= (22,2".0 — 202 j a )(z i a 2i i i —z i fiz j a ) •
1-1-2.si<j f,n+1
1 5 a < -1S,91-1-1

O n the other hand, w e  have

1-1-2 -1/5n+1

where

a2 ) f i g  eXp kZ 1? - 1 )1 z-o
a2

k -if (g)=(6 6
z .0  az ip az iaR k 13R

a2 ) f ( g  eXp kZ1? - 1 )1z,,oR k Lti.a PR k - l f  ( g ) — ( a 2 i S 2 , „

fo r  f E C - (G ) an d  k E K .
T h u s , w e  h av e  on ly  to  p rove  tha t P  is  invariant under th e  linear transform

k n - 1 =A d k Z ,  which follows easily from  th e  fa c t th a t the polynomial F 2(Z )  is  Ad-K-
invariant. •

It is obvious that P  is left-G -invariant. Therefore , P  is well-defined a s  a n  invari-
ant differential operator o n  M.

T h e  purpose o f th is paper is to  prove th e  following theorem.

Z =
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Theorem 1.2. The range of the Radon transform R is characterized by the invariant
differential operator P , that is, Ker P=Im R.

Rem ark 1.3. T h e  above differential operators L 1a n dand L a ,3 a re  o f the  form
sim ilar to (0.1). In th is  sense, w e can  say  tha t the range of the Radon transform  on
P 3 C  is also characterized by an ultrahyperbolic differential operator.

§  2 . Proof that 1m RcKer P

W e  f ir s t  p ro v e  th a t  Im RcKer P. B y  the identification C- (G , K (=C - (M ) and
C"(G , K ')=C - (Pn C ), w e consider the Redon transform  R  a s  a  m a p  f ro m  C"(G, K ')
to  C "(G , K ) . T h en  R  is given by

1 
(2.1) ( R  f ) ( g ) = f (gl,)dk 'Vol (K )k eK  f E C -(G , K ') .

From  this section, w e use the representation of the form  (2.1).
W e define  a  b ilin e a r  fo rm  <•, •> o n  Cn+1 x C " `  b y  <u, v>=En i u,u, f o r  u=

(u 1, ••• , u.+1), v=(v i, ••• v .+1), and a function hZ b EC - (G) by li b(g)-- -- <a, gei>m <bgei>m ,
w here a, bE C "+i, e1 = (1, 0, ••• , 0)EC"' and in is  a  nonnegative in teg e r. It is  easily
checked that Iran b e Coo(G , K '), that is, hZ b EC - (P " ( C ) .  Moreover the  following lemma
holds.

L em m a 2 .1 . L e t  V  .  denote th e  subspace of  C- (P n C )  generated  by  the  set
{ hZb; <a, b> = 0} . T h e n  V .  i s  the  eigenspace of  4 p n c ,  th e  Laplacian on P n C , corre-
sponding to the m -th eigenvalue and V m  is irreducible under the action of  G.

For the proof, see [10] § 14.

Proposition 2 .2 .  Im RCKer P.

Pro o f . Since P  and R  are G-invariant operators and L g - h 12 1111'1
- - u±,b

=
 -  g .* c  g * 1 »  w e  have

P(R (hZ ry))(g)=P(R(117,,, g ib ) ) (
1

) ,

w here / denotes the (n+ 1)X (n+ 1) identity matrix.
Since th e  d ire c t  sum a,°,,,R (V "') is  dense in Im R  in  C- -topology, w e  have only

to prove P(R(hg t,b))(/)= 0 ,  or,

L1,,o(R(11 7: b))(1)
1

(

6 2a z
h :b ( (  exp Z)/e)dkVol (K ) a z i a az 3a z o az,„)kEIC

=O.
H ere w e have
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( a2

aza  i<a, (exp Z)ke,>"`<b, (exp Z)ke -5"1 1 z=0
Ziaa z i a a z ,

=m (m -1)<a, ke1>"̀ - 2 0 ,

x{
a a 

, <a, Zkel>..,
a <a, Zke l > <a Zke l >„., <a, Zkei>1ozi a o z , p azja

a
ozo

=m(m-1)(a,k,,,a,kp i —a,k 1 a,k a i )<a, kel>"'<b, ke i >"̀ =0,

w here  k EK, a n d  k„ denotes the (i, j) entry of k. In  the  above computation, we used
th e  f a c t  th a t  the polynomial <b, Zke i > o n  in  is  a  linear combination of 2„ 's and the
fac t th a t the polynomial <a, Z 2 ke1> and <1), Z2 ke1> on in  consist only of the term s of
the form (constant)><Zp2 2p '2 '.)

Therefore the assertion is verified. •

§ 3 .  The inversion Formula

W e construct a  con tinuous linear m ap  S: C - (M)—>C- (P " C )  s u c h  th a t  SR=Id,
w here Id  denotes th e  identity map.

L et E denote th e  se t o f  (n -1 ) dimensional complex projective subspaces o f  P"C.
T hen  ..̂7=SU(n+1)/S(U(n)XU(1)), and w e put K "= S (U (n )xU (1 )). We define a Radon
transform  g  C-(P 11 (7)--C-(227) and  its  dua l Radon transform  g :  C"(E)--4C - (P "C ) by

1 r f(g e )d k "f ( g )  — Vol (K")ik"EK"
fEC,-(G , K '),

1 f
(g )—  Vol (Ki)3 k,EK,O(gk')dk'

We define a polynomial 0(t) by

0 ( t ) n + 1
 (n —1)1)( (n —2)2 \ (

t

1 1t+ (n— )
n+1 n+ 1 ) n+1

Theorem 3.1 (Helgason [6], C h. 1, Theorem 4.11). W e have the inversion formula

where c„ is a constant depending on n.

Proposition 3.2. T here ex ists an inversion m ap S: C - (114)—C- (P " C )  such that
SR=Id.

Pro o f . We define a  continuous linear map f?: C- (M)—>C- (2.7) by

1 f
P f  ( g ) —  Vol (K ") f(gk")dk" , f  C - (G, K).

T hen , it is easily checked that P R = E F . Therefore, if  w e  put

(3.1) S=c„0(zIpnc)'gP ,

O C- (G, K").
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w e  g e t S R =I d  by Theorem  3.1.

§  4 .  Representation o f (G, K )

In  th is  section, w e describe the  roo t, the  w eight, and the W eyl group o f  (G, K).
L et aC m  be  th e  se t o f  a ll m atrices of the form

/ 00 t,

0  ••• 0 tr

H (t)=H (t i , ••• , t r )=-A/ —1 t,0 . . . 0

t

0 . . . 0

w here w e p u t r= rank M (= rank G /K ) in  Section 1 and t =(t i ,  ••• , t r )E R ' .  T h e n , a  is
a  maximal abelian subalgebra o f  in. W e  id e n tify  a  w ith  

J r
 b y  th e  mapping H(t) ,—>t.

L et (• , •) denote an  invarian t inner product on  g  defined by

(X, Y)= —2(n +1) tr (XY), X, Y Eg

w hich is a  m inus signed Killing form on g.
F o r  a E a ,  w e  s e t  ga := IX E gc ; [H, X ] = ' / - 1 ( a ,  H ) X  f o r  all H a l ,  a n d  a  is

called a  root of (g, a) w hen ga = { 0 } . W e p u t ma =dimcg a ,  a n d  c a l l  i t  a  multiplicity
o f  a.

W e p u t Hi =H(0, ••• , 1, ••• , 0) (1 i < r ) .  T hen  th e  roo ts of (g, a) and their multi-
plicities a re  g iven  by  the table:

a m„

1 1 1 1 ( 1 5 j5 r) ,± 2 (n + 1 )'' i

1
±- 4( +1) ' 

ri
'

2(n +1-2r) (1 j < r ) ,H 3

1 
— 4( +1)

(H,±Hk) 2
n 

W e fix a  lexicographical order <  o n  a  such that H 1 > •••  >H ,->0 . T hen  th e  posi-
tive  roots a r e  (1/2(n+1))11i , (1/4(n+1))11; , (1/4(n+1))(11;-±Hk), (15.i<k_-<r).
The sim ple roots a re  (1/4(n+1))(11,-1-1,), (1/4(n+1))(112 -1 1 3), ••• , (1/4(n+1))(1-1,—,—Hr ),
(1/4(n+1))H r . W e  d e f in e  th e  p o sitiv e  W ey l cham ber _A + b y  I tE R r ; 0<t .,<Ir/2
( 1 5 j  r ) ,  t i > ••• >t r l.

W e set

Q ( ( e x p  H ( t ) ) K ) : =
a: p o s it i .e  root

W e consider Q a s  a  density function o n  R +, and  w e  have
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Q =-- cm ' ,

(4.1) w h e r e  a =2r (2n  -2 r +3 ) I II sin 2t ;  sin "" - r+l)t ;

w = 2(112 ) ( ' - 1 ) 11 (cos 2t 3 —cos 2tk)•
j<k

T he  Satake  diagram  o f G /K  is g iven  by  (4 .2) or (4.3),

ca s e  A  n + 1 > 2 r :

A, A r  A „ , A n ,  An-r+i An
....... 0  •  ..............  • - - - O

(4.2)

ca s e  B

A r - 1A r  A r + 1

(4.3)
o 0 0 0

In  the d iag ram  (4 .2 )  o r  (4.3), A 1 , • , A . d e n o te  the fundam ental weights o f g,

corresponding to the simple roots o f g.
Since rank G 1 K =r, there  are r  fundam ental w eights M „ ••• , M r  o f  (G, K ) .  By

the diagram (4.2) or (4 .3), M I ,  ••• , M , are given by

M i=-A id-A ,„••• , M r=A rd -A ,,,-+1 , (case A),

••• , M r- =2 A r, (case B).

T hen  w e have

1 kMk= 
2 ( n - 1 - 1 )  j = '

, (1.._<k<r),

Let Z (G , K ) be  the weight lattice, that is, Z (G , K )=1(1(4(n+1))(p 1 11,4- •••
p i , ••• , p, E Z I .  The highest w eight of a spherical representation o f (G, K )  is  of the
form in, M i + ••• where mi, ••• , in , are non-negative integers. Let V (m „ •••,m r)
denote the eigenspace of the Laplacian 4 m  on G /K  th a t  i s  an irreducible representa-
tion space w ith the highest w eight m i M i d- ••• ±mrMr•

T h e  Weyl group W (G , K ) of (G, K )  is  the set of all m aps s : a—>a such that

s : (t1 , •• ••• , 6 4 , ( r ) ) , 6 ,=  ± 1 , C r

§  5 .  R adial part of P

W e calcula te  the radial part of the invariant differential operator P .  The result
in th is section is used to calculate the eigenvalues of P  in the n ex t section.

To each invariant differentia l operator D  o n  G / K ,  th e re  corresponds a unique

An
0
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differential operator o n  W e y l ch am b ers  w h ich  is  invarian t under the action of the
Weyl group W (G , K ). T h is  operator is called a  r a d ia l p a r t  o f  D , a n d  w e denote  it
b y  rad (D).

T h e  following lemma is well-known. (See [10] Theorem  10.4.)

Lemma 5.1. T he radial part o f  the Laplacian 4 3 i o n  M  is given by

rad ( 4 m ) = 1 a2 Qt   a
)+ .4(n+1) ;=-1 at ;

2Q  at ;

We define a  differential operator Q , on  R r by

1 r  ,a 2 0-2 a \- +-'
at,2 a  at,

T h e  next lemma is easily checked.

Lemma 5.2.

—4(n +1) rad (40=  Qi —  i4 j( j± n  + 2 -2 r).
j= 1

W e consider the  following conditions (A ), (B), (C) and (D) on a differential operater
Q o n  

j r
 th a t  is  re g u la r  in  a ll Weyl chambers.

16 2  6 2

( A ) 1 6  11<k at,2 ato+lower 
order terms.

(B) Q  is form ally self-adjoint w ith  respect to  the  density Qdt.

(C) Q  is  W (G, K)-invariant.

( D )  [Q, rad (4m )] : =Q  rad (4 M )—rad (Z1m )Q =O.

T hen  the  differential operator rad (P) satisfies the  above four conditions (A ), (B),
1(C), and  (D ) . Indeed, t h e  principal sym bol o f  P  i s  g iv e n  b y  —

1 6  
Fz (Z ), w hich w as

ai   a ,\/--.1 a defined in  (1.1). (Notice th a t  =
Uzi ./ L  O x i j 2  ;EPA ;  for xt;+-\/—lyti) There-

1 1fore  its  restriction to  a  F
.

6-F2(H(t)) R E .K kija , a n d  th e  c o n d itio n  ( A )  h o ld s .  The

condition (B ) follows from the self-adjointness of P .  Since P is an invariant differential
oparator, the conditions (C) and  (D) a re  easily verified.

We defined a  differential operator Q , by

Q 2 : 1   E  (  82 4_ a v  82, + a, k a ) ow.16w j<k at , ',a t „ A a t o atk

Lemma 5.3. The dif ferential operator Q 2  satisf ies the conditions (A ), (B ), (C), and
(D).

Pro o f . The condition (A ) is  obv ious. T he  condition (D) follows from Lemma 5.2.
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T h e  conditions (B ) and  (C) a re  easily checked using the form ula (4.3). •

Lemma 5.4 . I f  a  differential operator Q  satisfies the conditions (A ), (B ), (C ) and
(D), then Q  can be written in the form

Q = Q 2 + c i  rad (4M)+c 2 ,
f o r suitable constants c i,  C2.

P ro o f. Because of the conditions (A) and (B ), Q — Q , is  a second order differential
operator and  satisfies the conditions (B ), (C), and  (D ) . Therefore th e  proof is reduced
to  the  following lemma.

Lemma 5.5 . If  a second order differential operator

a2 a 2 ra
:=  E E B ik  C j

O rj" j< k ut j ut k i = 1 ut

satisfies the conditions (B ), (C ), and (D), then Q  can be written in  the form

Q =c  rad (4M),

where c  is a suitable constant.

P ro o f. By the  condition (D ), th e  third order term s o f [Q, rad (Jm ) ]  v an ish . T h u s
w e  have the following equations.

(5.1) (1 /11Ar);

(5.2) 2-1L2k+Bik,2i=0, (.1<k ) ;

(5.3) BiLtk+Bik,ti+Bik.1;=0, (15 i< j<k_<r).

By the  equations (5.1), (5.2), and  (5.3), we obtain

B j k , t i t i
=

B j k , t k t k
-

0 ,

k)

From  the condition (C) an d  th e  equations (5.1-6), the coefficients 11;  a n d  B i k  are
polynomials o f  th e  form

(5.7) .4)=31 E /1+62
kO j

(5.8) B ik -=-23ititk

w here 6 , and 3, a re  some constants.
Using the conditions (B ) , w e  have

1 1 1(5.9) E
j < k  (B,kg2)t

O n+ - -  (B k if A
k •kGSC k <J

I f  3i = 0 , th e n  the coeffic ient B i k = 0 ,  an d  th e  coe ffic ien t Ci=6 2 ,f22 i /Q b y  (5.9).

(5.4)

(5.5)

(5.6)
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Therefore w e obtain Q= —4(n +1)52 rad (Jm), and the lemma holds.
Now, w e suppose th a t  61 # 0 .  Furtherm ore, we m ay suppose th a t 5i =1  and 52 =0.

By the condition (D), the first order term s o f  [Q , rad ( 4 m ) ]  v a n ish . T h u s  w e  h a v e

(5.10) Qa,= —4(n +1) rad (4m )C,

w here w e put ai -=S22 1 /Q.
W e extend the both sides of (5.10) to C as meromorphic functions of t1 = p 1 -F'N/-17.),.
By the formula (4.1), we have

cos2t, cost, —2 sin 2t1a1 =2 + 2 (n  r+ 1 ) . +2 E  sin 2t, sin cos 2t1 — cos 2t;  •

A s vi —›+00, w e have a l . ti —>0, a l , t j t ,—>0 (rapidly decreasing), and a1 = 0 (1 ) .  T he same
fact holds fo r a, (j=2, ••• , r). T hus Qa 1 —>0 (rap id ly  decreasing). T herefore  w e get
rad (4m )C,-40 (rapidly decreasing) by (5.10). However, when vi tends to  +00, we have

52 a—4(n+ 1) rad (Jm)C i= a t k
+  a )(13,,a,+13,,, t ) ) +0(1)

2  k= 2 kz a t ,

( In  th e  above  computation, w e  u s e d  (5.7), (5.8) and the fa c t th a t a5 = 0 (1 ) and the
derivatives of af -4 ) as vi —÷00) Therefore, we have rad (4m)C,--›00, for suitable t2 ,
and tt i . I t  is  a contradiction. •

Lemmas 5.1, 5.2, and 5.3 imply the following proposition.

Proposition 5.5. The dif ferential operator rad (P ) can be expressed in  the form

rad (P )=Q 2 +c 1 Q i +c 2 ,
f or som e constants c2 , e 2 .

§ 6 .  Proof o f Theorem 1.2

W e calculate the  eigenvalue of P  on V(m i , ••• , in,.) to prove Theorem  1.2.
L et a(m i , • • • , mr )  b e  the eigenvalue of P on V(n i , ••• , rnr) and the zonal

spherica l func tion  w h ich  be longs to  V(m i , ••• , mr). W e denote  by the
restriction of to  the Weyl chamber A+.

Lemma 6 .1  ([10], Theorem 8.1). The f unction u2 „ 1 ,..., „ .) h as  a Fourier series ex-
pansion on ,A+ of  the form

„y ( t i ,  • • •  ,  t,.)= exp N7-1 (2, t,H,± •-•
2ez(G.K), fin ite sum

w here 72„,, i ,  ni r m 0.

Let f ,  and f 2 b e  Fourier series on _A+ of the form
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f i = E C2 exp •V -1(2 , • • •  +1- , H r),

f2 = E CA exp -\/-1(2, t11-11+  •••
A22EZ(G. IC)

We denote w h e n  A 1 =A 2 a n d  C11 = C A 2 ( # 0 ) .  Obviously the relation is  an
equivalence relation.

Lemma 6 .2 . 147e have the following relations.

(6.1) c r t i- -2 A / -1 (n + 2 -2 r )a ,

(6.2) ahi--2A 7-1(r— j)w  ,

a(6.3) • • •

P ro o f. T h e  relations (6.1) and (6.2) are easily  checked . T he relation (6.3) follows
from Lemma 6.1. •

Lemma 6.3.

(6.4) a (m i, • • , rrt r )=  E (i i +r—j)(/ ) +n+2—r—j)(1k+r—k)(1k+n+2—r—k)
j<k

—4c 1
 7 (l i -kr— j)(l i d-n+2— r— j)-k c 2 ,

where c ,  and c ,  are  constants in Proposition 5 .5 , and 11 =m i +m i + 1 + ••

P ro o f. Since 95(7.1 ,..., mr , EV(m1, ••• , ni),

(6.5) POcm,.•••,nir)— a(mi, ••• • M r ) 0 0 7 t i , —, la »  •

W e restrict the both sides of (6 .5) to  Ji+, and then  w e have

rad (P)u ( ,, . )= a(m i, • • •  ,  M r ) U ( a m . , ) •

By Proposition 5 .4 , w e get

1 (  .3 2a
t i  a  y + ctk  a )(wu ( „„,..., , ) )(0\at j 2a t i l\ate a at,

+c, 1 +( a2 a t aew E — ——
5=1 w at i 2a t

= a(m i , ••• , mr)cr 2ani c . , , •

Using Lemma 6 .2 , w e have

E  { (/;+r— j)(6± n  +2 — r +r— k )(1k +n +2 — r— k)ecou c .
i< k

(6.6) —4c1E
J-1

••• , mr)a2amon1,•••.mr)•
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Comparing the  leading coefficients of the both sides o f (6.6), w e  g e t (6.4). •

Lemma 6 .4 .  R: V .—>V(m, 0, ••• , 0) is  an isom orphism .

P ro o f .  B y  Proposition 3 .2 , R  i s  G-equivariant a n d  one to  o n e .  T h u s w e  have
only  to  prove that th e  highest w eight o f  V .  is  e q u a l to  th a t o f  V(m, 0, ••• , 0). The
Satake diagram  of P C  is  g iven  by

40— •  .................. • —  o
(6.7)

Com paring (6.7) w ith  th e  diagram  (4.2) o r  (4.3), w e find  tha t V„, corresponds to
tnA//,. O n the  other hand , the  highest w eight o f  V(nt, 0, ••• , 0) i s  m ill, by definition.
T h is  completes our proof.  •

Now, w e can calculate th e  eigenvalue o f P  by combining th e  above lemmas.

Theorem 6.5. T he e ig en va lu e a (n t i , , zn ,) o f P  on V (m i, ••• m r) is given by

(6.8) a(mi, ••• , m r ).= E 1,1 k(1, +n + 2 —2/)(1k n —2k)
j< k

(j-1)(n+1—  j)1 ; (1J -1-n + 2 -2 j) ,
j=2

w here li =mi-Fm.) + 1-1- -1-mr•

P ro o f .  By Proposition 2.2 and  Lemma 6.4, we have a(m , 0 , • ', 0 )= 0  fo r any non-
negative integer in. Then, by Lem m a 6.3, w e have

(n t+ r-1 )(nz+ n-F 1— r) 7 (r—k)(n-F2—r—k)
k =2

E  (r—j)(n+2—r—j)(r—k)(n+2—r—k)
S j< k  <r

,-
—4c 1 (m 2 H -nm )-4 c 1 ( r—  i) (n  +2 — r — i)-4-c2

j= 1

= 0 .

Therefore, w e get

1
(6.9) c, =—, E (r— k)(n +2— r— k ),

4  k = 2

C 2  =  E (r—j)(n+2—r—j)(r—k)(n+2—r—k)
j< k

(6.10) ,
-Fi E(r—j)(n+2—r—j)} 2 .

Substituting (6.9) and  (6.10) to  (6.4), w e obtain the form ula (6.8). •

The following corollary is now obvious.
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Corollary 6 .6 .  V(m i , • • • , m,_) is contained in  Ker P, if  and  only if  m2 =-- •••

Proof  o f  Theorem 1.2. Let V :=E31Z=0 V(m, 0, • •• , 0) a n d  :=E{31771=0 V„, (direct sums).
T hen , w e have R: --->T7 a n d  S : V -4 " .  Here S is  the inversion map defined in  (3.1).
Moreover, we have SR-=Id o n  1-7 a n d  RS=Id on V by Proposition 3.2 and  Lemma 6.4.

By Collorary 6.6, V  is  dense in  Ker P  i n  C- -topology. S ince  th e  in v e rs io n  map
S: C - (M)--->C- (P n C ) is  c o n tin u o u s , w e  h a v e  RS=Id  o n  Ker P .  T h is  completes the
proof. •

Remark 6 .7 .  If  OEKer P, the inverse im age of 0  is  g iv e n  b y  S O, th is  is , R(S0)
=0.

Remark 6 .8 .  T he invarian t differential operator P, w hich w e constructed in  Sec-
tion  1, is  o f least degree in  a ll the invariant differential operators o n  M  that charac-
terize the  range  o f R .  It follow s from  th e  fa c t  th a t  the principal symbol (1/16)F2 (Z)
o f  P is  o f  least degree in  a l l  t h e  Ad-K-invariant polynomials o n  in  e x c e p t fo r  th e
principal symbol o f  th e  Laplacian.
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