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Hypoellipticity for some infinitely degenerate
elliptic operators of second order

By

Tatsushi MORIOKA

§1. Introduction and results

We are mainly concerned with the hypoellipticity of degenerate elliptic operators
in R* of the form

(1.1) L=Di+ft)Di+g(x)Dj
satisfying
(1.2) f0)=g(0)=0, f)>0, g(x)>0 for ¢+#0, x=0, respectively.

Throughout this paper, the coefficients of differential operators are assumed to be
functions of the class C=.

Before the statement of results, let us explain our motivation. Concerning the
following operator

Li=Di+D:+g(x)D3,

where we assume xg’(x)=0 in addition to (1.2), Kusuoka and Strook [4] have shown
that L, is hypoelliptic if and only if

(L.3) lim| x log g(x)|=0.
-0
We remark that (1.3) allows the infinite degeneracy of g(x) at x=0. For example,
L,=Di+Di+e"'='"° D}

is hypoelliptic if and only if ¢<l. As a generalization of L,, Morimoto [6] has con-
sidered the following operator

Ly=Di+t*Di+e™' =" D2,

where k is a non-negative integer. In [6] it was proved that L, is hypoelliptic if
o<l1/(k+1). See also page 2 of [2]. However in case of =1, we can not see that
g<1/(k+1) is necessary for L, to be hypoelliptic. The above result concerning L,
comes from the following fact. Let P be a differential operator of the form

P=

k

ibde

ap(x)D;, D., in R%,

1
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where a matrix (a,;) is non-negative definite for each x&R®. Morimoto [6] has shown
that P is hypoelliptic in 2 (open subset of R¢) if P satisfies the following estimate:
for any ¢>0 and for any compact subset K of 2 there exists a constant C such that

(1.4) llog Dul*<eRe(Pu, u)+Clluj?® for ueCs(K).

Also [6] has shown that (1.4) is necessary for P to be hypoelliptic if P can be written
in the following form

(1.5) P=D% +b(x', D) in R%,
where b(x’, D;.) is a formally selfadjoint operator of second order satisfying
(1.6) (b(x’, D, )v, v)=—const.|v|? for veCs(ReY).

L, satisfies (1.4) if and only if o<1/(k+1). See Proposition 4 in [6]. In case of
k=0, L, can be written in the form (1.5) and satisfies (1.6). So we see that ¢<1 is
necessary for L; to be hypoelliptic. However in case of k=1, L, can not be written
in the form (1.5). Therefore, our information about the hypoellipticity of L, is not
complete. So we consider the operator (1.1) generalizing L,. Our first result is the
following theorem.

Theorem 1. Let L be the operator (1.1) satisfying (1.2). Assume moreover that
(1.7) l[irroxlt log f(t)| =0,

(1.8) lino1 | x log g(x)]=0.
Then L is hypoelliptic.

Theorem 1 shows that L, is hypoelliptic if ¢<1 for any positive integer k. If
we assume tf’()=0 in addition to (1.2), (1.7) is necessary for L to be hypoelliptic.
Indeed, let P be an operator which we obtain from L by the change of variables x=
¢(z), where ¢ satisfies ¢'(z2)=g(p(2)) and ¢(0)=1. Applying Theorem 3 in [6], we

see that P satisfies (1.4) for @=/{(¢, 2z, y): 2>0}. The condition (1.7) follows from (1.4).
Let us continue our argument. Hoshiro [3] has considered the following operator

(L.9) L=Di+/)D:+gM"D3,

where f(0)=g(0)=0 and f(t), gt)>0 for t#0. In [3] it was shown that the hypoel-
lipticity of L is decided by the combination of the vanishing order of f(t) and g(t) at
t=0. See Theorem 1 and 2 in [3]. So we next consider

(1.10) L=Di+f()D:4g(t, x)D;
generalizing (1.1) and (1.9). We assume that g(¢, x)=0 and
(1.11) f(0)=0, f)>0 for t+0.

Our second result is the following theorem.

Theorem 2. Let L be the operator (1.10) satisfying (1.11) and the following con-



Degenerate elliptic operators 375

ditions.
(A.1) There exists a function G(f) such that gt, x)<G(t), tG'#)=0 and

Lnrgn/’d(ﬁu log f(t)=0.

(A.2) L is hypoelliptic in {(t, x, y)eR*: (¢, x)#(0, 0)}.
Then L is hypoelliptic.

Theorem 2 has the following corollary, which yields Theorem 2 in Hoshiro [3].

Corollary 3. Let L be an operator of the form

L=Di+ f(O)D3+g®)h(x)D}
satisfying
J(0)=g0)=h(0)=0
(1.12) @, g®), (x)>0  for t#0, x+0

tf(0), tg')=20

and
lim+/ gt log )1 =0
(1.13) lim vV f@)|t log gt)| =0

lim| x log h(x)|=0.
-0
Then L is hypoelliptic.

Proof of Corollary 3. In view of Theorem 2, it suffices to show that (A.1l) and
(A.2) are satisfied. (A.1) follows from (1.13). We see that (A.2) is also satisfied by
Theorem 3 in [3] and Corollary 2 in [6]. Q.E.D.

Let us consider the following examples.

Example 1. Let o, § be constants. Theorem 1 shows that
L=Dj+e " "Di+e = °D2
is hypoelliptic if ¢<1 and d<1. In case of ¢=1, L is not hypoelliptic for any d>0.
Example 2. Let ¢ and 0 be constants and k be a positive integer. Corollary 3

shows that
L=Di+*Die 0" 1217’2

is hypoelliptic if 6<k+1 and d<1. If 6=k+1 and 0=0, L is not hypoelliptic. Cf.
Example 1 in [3].
Example 3. Let w, ¢ and d be positive constants. Corollary 3 shows that
L=Di+e 't "Dite- = -12170p2

is hypoelliptic if <1.
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The plan of this paper is as follows. In section 2, we prepare basic facts to prove
Theorem 1 and 2. In section 3 and 4, we explain our microlocal energy method and
complete the proof of Theorem 1. The proof of Theorem 2 will be given in section
5. Finally in section 6, we prove the propositions in section 3.

Acknowledgements. The author would like to express his gratitude to Professors
N. Iwasaki and Y. Morimoto for helpful encouragements.

§2. Preliminaries

We begin this section by preparing the following Sobolev spaces which are necessary
for the proof of Theorem 1 and 2.

Definition. We denote by H* "/ (—oo<k, [, j<oo) the space of all distributions
ueS'(R?) satisfying

SSSM@, £, ) KeOHE y¥ dededy < oo,

where @ is Fourier transform of u and <{r>=(1+47?)!'%. Moreover, veH* !> means
that v H*%/ for any j.

Remark. H*%/ is a Hilbert space with the following inner product:

(U, VInk.1j =S8Sﬁ(r, & iz, & KO E D drdédy).

We say that a distribution u is locally of the class H*''7 at (f, xo, yo) if there
exists a function g C5 with ¢=1 in a neighborhood of (¢, xo, o) such that guesH* 4.

If u is a distribution and (z,, x,, vo)ER?, there exists three real numbers (%, [, j)
such that ueH*%/ at (¢, x,, ¥o). Let L be the operator stated in Theorem 1. If
ucH*"7 and LueC> at (t,, xo, Yo), We have us H**2!-27-2 at (t,, x,, Vo). In case
of t,=x,=0, the above fact is shown in the following way. Let ¢,&C% be a function
with ¢,=1 in a neighborhood of (0, 0, y,) such that ¢,ucH* "7 and ¢,LucC5. Choose
o, x, y)=X({®)¢(x, y) so that §&¢,, i.e., ;=1 in a neighborhood of the support of ¢.
Here X and ¢ are equal to 1 in neighborhoods of t=0 and (x, y)=(0, y,), respectively.
Then the right hand side of the equation

Digu)=[Di, X()]pu+¢ Lu—¢(f()D:+g(x)Dy)u

is of the class H*!-27-2_ [n fact, the second and third terms belong to C% and
H#t-%i-2 regpectively. The first one is of the class C% because of the hypoellipticity
of L in {t+0}. Hence we see that gucs H***!-27-2  Repeating these arguments, we
see that u is locally of the class H#*2¢-!-2¢.7-2¢ for any positive integer d.

In the case where LueC= at (0,0, y,), the partial Fourier transform of u at
0, 0, yo), i.e.,

Kot & p=en e Tguc, & nde

is of the class C%(—1, 1) with respect to t for almost every (§, 7).
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Remark. The hypoellipticity of L in {(f, x)#(0, 0)} has been shown in [6], under
the assumptions (1.7) and (1.8). So we may assume t,= x,=0.

Now the proof of Theorem 1 is reduced to the following proposition.

Proposition 2.1. Let L be the operator (1.1) satisfying (1.2), (1.7) and (1.8). Assume
that LueC> at (0,0, y,). Then we have the following two claims.

(i) If ueH"" at (0,0, y,), then us H*.!+'/%3-2 at (0, 0, y,).

(it) If ueH*"7 at (0, 0, y,), then usH"*>= at (0, 0, y,).

From the above proposition and the previous arguments, we have ueH**"/ at
0, 0, yo) for any (k, {, j) if LueC= at (0,0, y,). Hence usC=at (0, 0, y,). The proof
of Proposition 2.1 will be given in section 3 and 4.

§3. Microlocal energy method (1)

In this section, we prove Proposition 2.1-(i). Let us prepare the microlocal energy
of distributions used in section 4 of [3], after some refinements. The use of the
method here is slightly different from that in [3]. Choose first a sequence ¥y C3(R)
(N=1,2, ) with ¥y=1 in {x: [x|<¢'} and Ty =0 in {x: |x|=r} 0<r'<r<1)
satisfying

| DYy | SCACN) for p<N,

where C, and C are constants independent of N. Our microlocalizers {a.(§), 8.(x, ¥)}
are defined in such a way that

a®=Vn, (S 1)+ (S 41). Bulr D=Tw, N, 30,

where N,=[log n]+1. Our microlocal energy is

Simu= 5 lep@i?(D)Buplinom,  uES (R

P+iqls

with cj=n?(Mlog n)~?-'?". Here a{”’=0%a«, and B,q=D%D%B, with g=(¢,, ¢»). We
have now the following propositions whose proofs will be given in section 6.

Proposition 3.1. Let ueH""/ at (0,0, yo) for some [, j. Then there exists a
function X(t)eC% with X=1 in a neighborhood of 0 and a positive constant M, such that

S#, m.(xu)'—__o(n-u) for m;’j, A]gA/[o.

Proposition 3.2. Let ucH*'""™ at (0, 0, y,). If there exists a function X(H)eCS
with X=1 in a neighborhood of 0 and a positive consant M such that

S m@u)=0(n"*"),

then for any I'<<| we have usH®*'"™ at (0, 0, y,).

Remark. In general, ¢,=0(n"*) means that there exists a constant B such that
|¢.|<Bn *, when n is large.
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Roughly speaking, these two propositions imply that the decreasing (or increasing)
order of the microlocal energy S¥ ,(Xu) indicates the regularity of u with respect to
x-variable at (0, 0, v,).

Let us now begin the proof of Proposition 2.1-(i). The hypoellipticity of L in
{t+0} enables us to know that the right hand side of the equation

LAY =L D}, X(t)]u+ALu

is of the class C5 if LueC= at (0, 0, y,), where X(t)=C% and ¢(x, y)eC% have their
supports in small neighborhoods of t=0 and (x, y)=(0, y,), respectively. So we have

3.1) $Lv=h,

where v=Xu and heCs.

Assume that p+1[g| <N, and »>0 is chosen sufficiently small so that 8,&¢. Let
us operate a{”’ B, to the both sides of (3.1), namely,

3.2) ai’BipLlv=ai’Bioh.
The asymptotic expansion gives

3.3) (Lvn.p.0 V. p.ln= 3 by
with

by=— 212(_1)%” !)"l(LéL)vn, g+, 00 Un, p.q) m s
v=1,

b2:2(g(x)1)yvn. p.q+¢0, 1), Un, p,q)m »
b:i: _(g(x)vn p.q+0,2) Un, p,q)m ,
by=—(ra, p(ﬁn(q)DfJU)x Un, p,q)m ,

b5:(hn, P.Q Uu, p,q)m ’
where

Un_p.q:a;(zp)ﬁn(q)vy /ln,];,q:aglp)ﬂn(q)hy LOZ %+f<t)D;r
L¢=2f@)Di, Y p=LaP(D.), g(x)],
(a, bm=(a, b)go,o.m, m=j—2.

We are going to estimate the each terms on the right hand side of (3.3).

Lemma 3.3. For any ¢>0 there exists a constant Ny which is independent of (p, q)
such that

(lOg n)zllvn,p,qllfnés(Lovn,p,q, Uu,p,q)m. fOT’ ngNO’

where ||| n means |*|| 0.0, m.

Proof of Lemma 3.3. From (1.7), it follows that for any ¢>0 there exists a con-
stant N, such that
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(3.4) (log|§|)2S|¢(t)i2dt§s(g|go’(l)lzdt—ké‘lgf(t)|go(t)|2d1>
for p=C3(—1, 1), |§|=N,. See Proposition 3.1 in [3]. Taking

PO)=va,0.4; & N=aiPE)Bav)t; & 1),

multiplying the both sides of (3.4) by (»>*" and integrating with respect to (§, 5), we
Q.E.D.

have the desired estimate.
Let K be an arbitrary positive con-

For a convenience, we assume that g(x)<1.

Then we have

stant.
(3.5) 15l =20(@()Dy s p.grca s T p.o)l
< K108 1) @)D 0 navcorr Dyt pogsco. ) K (108 1210, .ol
< K1010g 1) (Lt asco. 0 Vi avco Dt g Lo Vi
(3.6) 3] = 1Y gt 0,995 Do p. o
< K108 1)1vn. p.gecornr I+ Clog m)vn. .ol

. 1
é[( "(lOg 71)—4([11}11,11,(14-(0,2); vu,]).q+(0,2))m+ g(LUn,p,q: Uu,p,q)m-

From the Parseval’s formula we have

|<L(§y)vn, n,q+Cy, 0 Uu, p,q)m'

<2\ [O1E1 10 ot & 1025 4G & I dedédy
sa=rn | r 08105 rv0ntt; & DI atdzdy

+33Sf(t)§5| Vot &, 77)|2<77>2mdtd5d77}

=K-'(log n)_h([/vn,p,qﬂu.o); vlhp.q+(b,0))m+_(Lvn,p,q) Un.p.)m-
8

Therefore,
[ D] éy;oK”(lOg n)—zy(Lvn,p.qu,o)y Un, p,q+(v,0))m

3.7
+%(Lvn,p,qr Vap. @
We estimate b, and b; in the following way:

ol = K70, 2By DIv)In—+K " [vn, .ol

(3.8)

(3.9
From (3.5)-(3.9), we have

[0 S KN pollint+ K vn, p.oll -
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1
(3-10) 7([’01;,1)‘([7 vu.]l.q)m

=K 3B (log )" (Lvu p.grr Viop.ar)nt Kl o ol

+2K_l ”vn, pq||$n+K ”rn. p(.Bn(q)D?/v)“'?n .

Let us now observe that cj.(log n)"""'=M"'c} ... From (3.10) we see that

(3.11) L

5 (Lwa s Wi p.dun

fvi=1,2

<K'M* X (Lwnlp‘qi-xy u’n,p,q+y)m+K”c;qhn‘p.q”‘%n
+2K<l”wn.p.q||$n+h’”c;qrn,p(ﬁn(q)ng)nfn)

where wy, . ¢=Cpeln, p.q-

Lemma 3.4. [f we choose M sujjiciently large, then

2 ”ngrn, p(ﬁn(q)D?!U)”%n:O(n—Zl—z)‘

P+IgIsSN,

Proof of Lemma 3.4. Writing the symbol by the oscillatory integral together with
the fact that 1—r)n< |6 <(1+7)n for ésuppa,, we see that

170, pll o, 0. mesro, 0, m<const. |7, | &
Zconst. a1 gar(x)1§)
<const.(CN,)Pn-P-t-1,
where |a|{ denotes the seminorm in S!,, i.e.,
lal§’= max suplag(x, <.

See also page 58 of [5]. Therefore,

M. 1;(/3 u(q)D?/U)” n= ||7’n. p“ll"» LMo HO,0, m”.Bn(q)(/JD?/U“H", L,m

gCODSt. lrn,p | <(il) Iﬂn(q) | 4(103) ”Sngv”I]('. Lm

<const.(CN,)P+1aip-r-t-1,
Thus we have

“Cqun.p(lgn(q)Div)“ n=const.2CM ~")r+iaip-t-t,
In case of 2CM <1, we have

>

leparn. p(BrwDiv)lin=const. n=*"2 3 (2CM ~')PP*+*18=0(n"*"?).
PHIQTSN p.a

Q.E.D.

Let us sum up the both sides of (3.11) with respect to (p, ¢) satisfying p+|q| <
N,—2. From (3.11) and Lemma 3.4 we see that
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(3.12) % WHSK-'M'WH+KSY i +2K-'S¥ w+0(n=22),

where

Wi= = (Lwn.p,q’ Wa,p.g)m-
P+i1gisN,

To establish (3.12), we used

. (LLU,,_ p.go Wha, p.q)mzo(n-zl—z)
Np-2sP+191sN

for sufficiently large M. Cf. Lemma 1 in [2]. The first term on the right hand side

of (3.12) is absorbed into the left hand side by taking K sufficiently large. Since he
%, S¥ h=0(n"?"-%. Thus we have

1

(3.13) 1

WH<2K-'S¥ ,v+0(n=%?).
By Poincaré’s inequality,

(Lwn, p.ao Wa, ]),q)mg ”thn,p.q”%nz5“ W, p.q“?n

holds for some constant §>0. Therefore, W#=4S¥ ,v. By taking K sufficiently large,
we obtain from (3.13)

S# L v=0(n"%"%),.

In view of Proposition 3.2, the proof is completed.

§4. Microlocal energy method (2)

In this section we prove Proposition 2.1-(ii). Here we rely on the microlocal
energy method again. But our argument in this section is not so delicate as previous
one. Indeed, the microlocal energy prepared here is quite simple. Let ¥eC$(R) be
a function satisfying =1 in {|x|<#’} and ¥=0 in {|x|=r}, where we assume that
0<r'<r<l. Our microlocalizers {a.(n), (y)} are defined in such a way that

7 7
a =Y (- 1)+ (- +1),  BO=F(—y).
Our microlocal energy is
Syvau= 23 lcpeai?” (D) (B, HeS'(R?)
PH+EN

with cp=n¢/®-0_ We have now the following proposition.

Proposition 4.1. Let ucH""7 at (0, 0, y,) for some j and N be an arbitrary in-
teger. Then usH""> at (0,0, y,) if and only if there exists a function X, x)=C%
with X=1 in a neighborhood of (t, x)=(0, 0) such that Sy ,(Xu) is rapidly decreasing as
n—oo, 1.e.,

Sy, 2(u)=0(n"*)
for any s>0.
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The proof of Proposition 4.1 can be given by the same argument as in section 6.
See also page 111 of [5].

Let us now begin the proof of Proposition 2.1-(ii). The hypoellipticity of L in
{(t, x)#(0, 0)} enables us to know that the right hand side of the equation

Sl’L(xxqu):(ﬁ[DZ, X 1%pu +¢'f(t)[D? XX u +X1X2¢’Lu

is of the class C§ if LueC~ at (0,0, y,). Here X,(1)eC%, %(x)eCs and ¢(»)=C3
have their supports in small neighborhoods of t=0, x=0 and y=y,, respectively. So
we have

“.1) $Lv="h,

where v=XX,u and heC¥s.
Assume that >0 is chosen sufficiently small so that S&¢. Let us operate ai? B«
to the both sides of (4.1), namely,

4.2) a?BupLv=al?’Bh.

The asymptotic expansion gives

4.3) (Lvy.p.g v,,,p,q)————y;ﬂ(—l)‘(u DL pogrn Vip.d (R poas Unpoa)s
where v, . =aP’ B, hu po=ai?’Bph and LP=2g(x)Di*. Therefore,

D) Lowpe vpdS 2 L0000 Vnp )| HK oK 0.4l

where K is an arbitrary positive constant.
We are going to estimate the first term on the right hand side of (4.4). From
the Parseval’s formula, we have

](L(L)Uu,p,qﬂn Uu,]),q)l §2335g(x)| ﬂlz_plU;,p,qP,(t: XS ﬂ)m'dtdx{iy}
<a||[gtoin 1107wt 33 I*dtdady

+%Sgsg(x)n2|v;'p,q(t, x: p)|dtdxdy,

where v, , 4, x; 7) denotes the partial Fourier transform of v, ,, with respect to y.
Since vy, 5.4, x5 PN=aP(PPBv) (¢, x; p) and 1—rn=|n|=(1+r)n for yp=suppa,,
we have

1
(4'5) l(L(L)Un, D,qtys Un, p,q)i .§4(l—r)_2>n_2L(LU7t,p.q+w Un,p,(1+u)+ Z(Lvu.l).q’ l”u.p,q) .
Therefore,

1
(4.6) ?(Lvn,p.q’ Vo, p.o)=4(1—7)"* _21‘. n 3 (Lva, p.grvr Un,p.gsr)

v 2

+l\ ||/ln,p,q“2+K _l”Un, p,q”2 .

Let us now observe that cpen /**=cj ¢v.. From (4.6) we see that
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1
4.7 —Z—(Lw,,_ oo W, p,q)§4(l—r)”n““:Elz(Lwn, T T )

+Kllesehn, p.ollP+ K wa, p.ql*,

where Wy, ».¢=CheVn. p.o-
Now we use the following fact. For any s>0 there exists a large number N
such that

(48) 2 (Lwn,p,q; wu.p.q):O(n_zs)-

N-25p+qsN

Let s>0 be an arbitral number. We chooss N so that (4.8) holds. Summing up
the both sides of (4.7) with respect to (p, ¢) satisfying p+¢g<N—2, we have

4.9) W wSUL =)0 Wy b KSy aht K 1Sy av+-0(n ™),

where
WN.n: > ,(Lwn,p,q- wn,p,q)-

p+gs N

The first term on the right hand side of (4.8) is absorbed into the left hand side.
Since heCs., we see that Sy ,i=0(n"%%). Therefore,

(4.10) %Wy,ngf(“‘s,v‘nz)%-O(n‘“).

By Poincaré’s inequality, Wy ,=0Sy ,v holds for some constant ¢>0. Taking K suf-
ficiently large, we obtain from (4.10) that
Sy, 2v=0(n""").

In view of Proposition 4.1, the proof is completed.

§5. Proof of Theorem 2

The proof of Theorem 2 is also reduced to Proposition 2.1. We can prove Pro-
position 2.1-(ii) in the same way as in section 4. Here we shall prove (i). Our
argument in this section is quite analogous to that in section 3. So we need only
slight modification. Recall the equation (3.3) and replace g(x) with g(¢, x). Then we
have '

5.1) (Lva. .00 Vn.p.0m= 3 bi

with
bi=— 3 (=) (LPVnp.esc.00 Vnp.odm
by=2(g(t, x)Dyvs.p.q+c0. 135 Vo, p.d)m>
by=—(g{, X)Vn,p.q+0.23s Vn.p,dm,
bi=—= . p(Br> D), Vi p.a)m

l)ﬁz(hn,p,qy Un, p.q)m ,
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where
L:D%-f-f(t)])i-’-g(t, x)Dﬁ, 7n,p=[a1(zp)(Dr)r g(t, x)] .

We may estimate by, b, and b, in the same way as in section 3. See (3.7)-(3.9).
To estimate b, and bs;, we prepare the following lemma.
Lemma 5.1. Let G(t) be the function which we stated in Theorem 2. Then for

any >0 there exists a constant N, which is independent of (p, q) such that

(lOg n)z(G(t)vn.p,Qy Un,p,q)mge([/ovn,p,qv vn,p.q)m fOT’ 712N0-

Proof of Lemma 5.1. From (A.l), it follows that for any &>0 there exists a
constant N, such that

5.2) tog €[OI pwI*ar=e( (1901 de+e 01 90 12

for p=C3(—1, 1), |§|=N,. See Proposition 3.1 in [3]. Taking ¢{)=v; ,.t; & 1),
we obtain the desired estimate. Q.E.D.

Thus we have
Lbo| =21(g(t, X)Dyvn, p.q+c0.11 Vn,p.@)ml
<K '(log n)*(g(t, X)Dyvu, p.q+c0.09 DyVn.p.arco.1)m
+ K (log n)*(glt, X)Vn.p.qs Vn.p.a)m
<K~ '(log n) 3 (Lvy. p.g+0. 13 Un.p.a+co.0)m
+K(log n)*(G®)vn, p.es V. p.ddm
<K '(log n) *(Lva,p.q+c0. 15 Vn.p.grco.10)m
5 Lonp 0 Vg,
[bs] = 1(g(t, X)Vn.p.qrco 20 Vn.p.o)m]
<K Y(log n) (G(E)va, p,q+c0, 2> Va,p.gro.2)m
+K(log m)*(GEva.p.g» Vn.p.adm
<K-'(log n)"*(Lvn, p.q+0.2>) Vn.p.q+0.2))m
+%(Lvn‘p,q, Vn.p.d)m-

Therefore,

1
E(Lvn,p.qr vn.p,q)m§K~1M§l 2(10g n)—ZIL'(Lvn.p.qw» Un.p.q+v)m

FK o p. ol +2K 0w, 5.l + K172, p(Brp Dy
By the same argument as in section 3, we obtain

SH () =0(n-t2).
R Q.E.D.
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§6. Proofs of Proposition 3.1 and 3.2

Here we give the proofs of Proposition 3.1 and 3.2.

Proof of Proposition 3.1. Let ¢,=C% be a function with ¢,=1 in a neighborhood
of (0,0, y,) such that ¢,ucsH™"’/ and choose ¢, x, y)=X({)(x, y) so that @¢&S¢,.
Here X and ¢ are equal to 1 in a neighborhoods of t=0 and (x, y)=(0, y.), respectively.
Take r>0 sufficiently small so that 8,&¢. We assume p+[g| <N, and v=Xu. Then

we have
ntla? Brpvlmn=In'aP E)Brp) (t; & P<P™

<const.[lai” () (Br@v) (t; & L™
<const.n " ?(CN,)? BVl zo.t. m
<const.n ?(CN,)"*' (v go.1.m
<const.n ?(CN,)?*',
Recall that (1—r)n< 18| <(1+7)n for £é€suppa,. Therefore,
U Chae P Brcovllm < const.(2C M -1)P+iat,
If 2CM-'<1, we see that

nSY L Qu)=n* 3 |cpalP Brpvlh=const. 3 (2CM -1)p+iar,
PH+IqIsSNy p.q

Since 3} 2CM -')?P+212l oo the proof is completed.
P.q

Proof of Proposition 3.2. Let ¢(x, y)C% be a function with ¢=1 in a neigh-
borhood of (0, v,) such that ¢&E8,. Then we have

lan(@)ll m=lardBrvlln=lPanBrvlntloBv)n,

where v=Xu and w=[a,, ¢]. By the same argument as in the proof of Lemma 3.4,
we see that
lw(Ba)lm=0(n"").
Therefore,
langvllm=const.|a,Bv|n+0(n").

Since S¥ ,v=0(n"%), we have

vl n=0(n"").
Therefore,
letagvlln=0(n"").
Let us observe that 35, a,(&)*n**~'=const.<&)* for any s=R. This fact can be seen

by noticing that the number of n such that a,(§)=1 is estimated from below by
const.<¢>. Combining the above arguments, we see that
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muﬁv(r, £, 7)IXE (pp* dededy Sconst. 3 lan(@n)ntt <o

if I'<!. Q.E.D.
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