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On the extremality for Teichmiiller mappings
By

HuaNG XinZhong

1. Introduction

The universal Teichmiller space T (1) is the totality of quasicircles with
suitable normalization. This space T (1) is universal in the sense that it con-
tains the Teichmiller space of an arbitrary Riemann surface. There are sever-
al useful realization of T(1). Among them the following Bers embedding
method is now standard.

Consider T'(1) as the set of conformal mappings of the unit disk E =
{z] <1} onto domains surrounded by quasicircles, and take the Schwarzian
derivatives of them. Then we can show that T (1), which is now considered as
the set of those Schwarzian derivatives, is a bounded domain in the Banach
space B; consisting of all ¢ holomorphic on E with the norm

(1.1) lpA=2=sup lp(2)A(z) 2 <0
zeE

where A% (2) |dz\2 is the Poincaré metric on E. For the relationship between
quasicircles and Schwarzian, we refer to the works of Nehari [21], Ahlfors
and Weill [2], Gehring and Pommerenke [8], and the author’'s recent work
[15]. More detail reference for Teichmiiller space, one can consult with, for
instance, Lehto [19], Gardiner [6], Nag [20], and Imayoshi and Taniguchi
[18].

The above representation tells us that for describing the whole universal
Teichmiiller space, we need only those holomorphic functions on E with the
order estimate

12 lel=o((Z2y))-

Because we know that the essential data for holomorphic quadratic differen-
tials is the geometric structure of trajectories (or topologically, the foliation
structure of them), we can assert that whole universal Teichmiiller space can
be controled by geometric structures of holomorphic functions ¢ on E satis-
fying the above order estimate.

This may lead us to the concept of the “Teichmiiller model” of T (1),
which is the L®-theory originated from Teichmiiller, and whose main tool is a
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special kind of extremal quasiconformal mappings called Teichmiiller map-
pings. (See the definition below.)

Teichmiiller asserted that, in case of a compact Riemann surface, the
Teichmiiller space of it can be embedded in the space of holomorphic quadra-
tic differentials by using, not the Schwarzian derivatives, but the Teichmiiller
mappings. A Teichmiiller mapping is locally affine mapping in a sense, whose
stretch direction can be controled rather directly by the geometric structure of
the corresponding differential.

Even in case of the universal Teichmiiller space, it is natural to consider
that the complexity of the space can be represented by Teichmiiller mappings
and their geometric structures can be controled again by an order estimate of
the corresponding differentials. But in general, a Teichmiiller mapping need
not be extremal (as Example 1 below shows), and even basic problems such
as whether T (1) can be represented in a space consisting of Teichmiiller map-
pings still remain unsettled. We will investigate in this paper such basic
problems and give several contributions.

Before stating our main result, we first give a historical survey of the
problems and then discuss several fundamental conjectures.

Consider a quasiconformal mapping f=f" of the unit disk £ onto itself.
The supperscript £ denotes the complex dilatation of the mapping f. Such an
f induces a homeomorphism of the boundary OF onto itself. Let Qs be the class
of all quasiconformal self-mappings of £ with the same boundary values as f.
In Qy, there is a function fo with smallest maximal dilatation Ko. (Namely,
(1.3) Ko=inf Kg .

£E€Qf
Here K, denotes the maximal dilatation of f. Set ko= (Ko—1)/(Ko+1). Then
this is equivalent to
(1.4) ko= inf kg ,

g€Qs
where we set kg=||/c||m for every g =g") Such a mapping fo is called extremal
in the class Qy, or more simply, extremal. An extremal mapping will be called
uniquely extremal if there is only one extremal mapping in Qy.

Next, a quasiconformal mapping f(z) of E is called a Teichmiiller mapping
if, for almost everywhere on E, the complex dilatation « of f is of the form

(1.5) x=k% .

where 0<k<1 and ¢ is holomorphic on E.

Then a general question is the following: For a holomorphic function ¢,
when is the corresponding Teichmiiller mapping extremal or uniquely extrem-
al?

The origin of the problem goes back to

Grotzsch extremal problem ([9]). Show that if a schlicht and sing-
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le valued branch of [ /¢ (z) dz can be chosen which maps E onto a rectangle,
then any Teichmiiller mapping corresponding to ¢ is uniquely extremal.

However, a Teichmiiller mapping need not be extremal, or may be extremal
and yet not uniquely extremal as the following examples show.

Example 1. Let @ map E conformally onto the upper half plane and

let F(z) =Kxr+iy, K>1. It follows that f=® '0Fo® is a Teichmiiller map-
ping corresponding to ¢ = @? which is not extremal, for if we set G (z) =Kz

then g=® '0Go® is conformal and agrees with f on OF.

Example 2 (Strebel’s chimney region [30]). Let R= {Imz<0 U
{IRez| <1}, the mapping F (z2) =Kx +iy minimizes the maximal dilatation in
the class of all mappings of R onto S=F (R) that agree with F on the bound-
ary OR. If @ and ¥ are conformal mappings of E onto R and S respectively,
then f= ¥ 'oFo @ is a Teichmiiller mapping corresponding to ¢ = @? which
is extremal in Q;. However, if

F(z) for Imz=>0

Gl2) = {
Kz for Imz<0 ,

the mapping g= ¥ '0G o @ also has the maximal dilatation K and g agrees

with f on OE.

The problems of determining conditions on ¢ in order that a correspond-
ing Teichmiiller mapping f is extremal is seen to be one possible interpretation
of the general problems stated by Teichmiller [32]. Main problems made by
Teichmiiller are to determine how regular the boundary correspondence
should be in order to be continuable at all to a quasiconformal mapping and
furthermore to be continuable to an extremal mapping which is a Teichmiiller
mapping.

The necessary and sufficient condition that the boundary correspondence
be continuable to a quasiconformal mapping is given by Beurling and Ahlfors
[3], but the second part of the problem is still unsolved, which we shall res-
tate as Conjectures 1 and 2.

Actually, Teichmiiller asked whether the condition [ [z || dxdy <oo is
sufficient in order that a corresponding Teichmiiller mapping is extremal. In
1962, K. Strebel [30] succeeded in giving a partial answer to this question as
well as to the case where the integral is infinite. In a later work [31] Strebel
succeeded in giving affirmative answer to this question. However, Example 2
also shows that not every quasisymmetric boundary correspondence can be
extended to a Teichmiiller mapping with finite norm.

Now, in view of the above remarks, we are interested in the following

Extremality Conjecture 1. If ¢ belongs to Bz, then every Teichmii-
ller mapping corresponding to ¢ is extremal.
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This conjecture has partially solved by many authors including Sethares
[29], Reich and Strebel [28], and Hayman and Reich [12]. We will give in
Theorem 1 a more general, but still partial answer for this conjecture. Also
see Added in proof.

As for a possible characterization of ¢, meromorphic in the closure of E,
such that the corresponding Teichmiiller mappings are extremal, Sethares [29]
showed that, if ¢ has at most double poles on OF, then a corresponding Teich-
miiller mapping f is extremal. However, for every integer n> 2, there exists
such a ¢, with an n-th order pole at z=1, for which a corresponding f is not
extremal. Based on these evidences, he made in [29] the following conjecture

Sethares conjecture [29]. For a Teichmiiller mapping corresponding
to holomorphic quadratic differential ¢, which is meromorphic in a neighbour-

hood of E, is extremal if and only if either (i) ¢ has a double pole or (ii) ¢
has no pole of order exceeding two.

The if-part of this conjecture was proved by Sethares himself, and the
only-if-part is considered to be true, but have not been proved yet. A natural
generalization of Sethares conjecture is Conjecture 1 and the following Conjec-
ture 2. It is rather surprising that we can give a counterexample to Conjecture
2. See Examples 4 and 5 at the end of the section 3.

Tameness Conjecture 2. Suppose that a Teichmiiller mapping cor-
responding to holomorphic quadratic differential ¢ is extremal. Then ¢ be-
longs to Ba.

Finally, as for uniqueness of Teichmiiller mappings, the following conjec-
ture is modest, but still unsettled.

Uniqueness Conjecture 3. If ¢ and ¢ belong to B, then Teichmiiller
mappings corresponding to ¢ and ¢ concide with each other if only if ¢ =¢
up to multiplication by a positive constant.

The uniqueness problem have been investigated by many mathematicians.
There are several ways to attack this problem. First, by using Hamilton [11]
and Reich-Strebel's [27] necessary and sufficient conditions for extremal
quasiconformal mappings, Reich and Strebel proved the following:

Let £ be an extremal complex dilatation for which no Hamilton sequence
is degenerate. Then every weakly convergent Hamilton sequence tends in
L'(E) to the unique holomorphic quadratic differential ¢ and

(1.6) KZIIKIINT%[ .

Next, considering the argument or the image domain for an extremal com-
plex dilatation, Ortel and Smith [23], Huang [14], Huang and Taniguchi [17]
also obtain the same assetion stated above. .

Also by assuming various order estimates of ¢, the uniqueness conjecture
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has been partially proved by Sethares [29], Hayman and Reich [12].
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2. Preliminaries and main results

Let B (E) denote the class of functions ¢ (z) holomorphic in E which
satisfy that

(2.1) ||g0(z)||:fj;|§0(z)|dxdy<00, z=x+iy .

For a Teichmiiller mapping f(z) of E with the complex dilatation (1.5), a
necessary and sufficient condition (see [11] and [28]) under which f is an ex-
tremal mapping among the class of quasiconformal mappings of E with the
same boundary values as f is that there exists a so-called Hamilton sequence,
namely, a sequence |, in B(E), such that

‘fj;: (0(2 drdy\

lon (2 ||

If p(2) € B(E), then ¢, (2) =¢(2), n=1,2,... constitutes a Hamilton sequence,
so the problem to determine whether a Hamilton sequence exists or not is non-
trivial only when ||§0(2) |[=o0. Furthermore, if a Hamilton sequence @, does
exist, such a sequence can be realized in terms of a sequence of “polygonal”
Teichmuller mappings f» which agree with f at finitely many boundary points
(see [28], Theorem 6). However, these f,'s are obtained by a highly noncon-
structive process, hence the relationship between the properties of the corres-
ponding sequence {@.l and the properties of ¢ is quite obscure. In [26]
Reich considered the question whether a Hamilton sequence, if one does exist,
can be obtained in a more direct manner. In particular, he considered the fol-
lowing: If {R. is a sequence of numbers such that 0<R, <1 for every n and
limp—e Rn=1, does {¢ (R, z)! constitute a Hamilton sequence? He showed

(2.2) =1.

n

Theorem A. Suppose that ¢ (2) is holomorphic in a neighbourhood of E
except for a finite number of poles on |lz|=1. Then

ff (z) @(Rz)dxdy|

o IIqo (R2)|

(2.3)

=1,
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if and only if ¢ (2) has poles of at most order 2 on {|z|=1} .

From the work of Sethares [29], Theorem A is equivalent to the follow-
ing

Theorem A’. Suppose that ¢ (z) is holomorphic in a neighbourhood of E
except for a finite number of poles on lz|=1}. Then, o (Ru2)l is a Hamilton

sequence for any sequence 1R, as above if and omly if the Teichmiiller mapping
with dilatation (1.5) is uniquely extremal.

In the work of Sethares [29], he obtained extremality and uniqueness
theorems for Teichmiiller mappings with ||g0||= oo under assumptions on the
growth of supjzi=y|@(z) |. On the other hand, in [28], Reich and Strebel
obtained the following extremality theorem under a growth assumption on

2n X
1) =5 [l (e lat.

Theorem B. Suppose thal ¢ is holomorphic in L, and
1

1—r

@4 Lo =0(1=). r—1.

Then the Teichmiiller mapping with dilatation (1.5) is extremal for its boundary
values.

Later, in [12], Hayman and Reich showed

Theorem C. Suppose that ¢ is holomorphic in E, and
1

-t

L) =0(1=). r—1.
Then the Teichmiiller mapping with dilatation (1.5) is uniquely extremal and
{@ (Rn2)| is a Hamilton sequence for any sequence |R,l as before.

The following example shows that extremality of f is no longer implied if

(1—7) 7" in the right-hand of (2.4) is replaced by (1—7) ~'7% for any positive
0.

Example. Let ¢ (z) =¥ "%(2), where {= ¥ (z) maps E onto an angular
domain, |arg {|<dm/4, 0<d<2. The horizontal stretching by a factor K >1
and subsequent conformal mapping of the streched angular domain onto the
unit disk lead to a quasiconformal self-mapping of the unit disk with complex
dilatation £ (z) =k (2) /¢ (2) |, which is not extremal [30]. In this case, up to
an irrelevant multiplicative constant,

1
(1—2)2*9(1+42z)2°°

(2.5) o(z)=

The order of I, (r,¢) for (2.5) is the same as that of
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1 T 1
RO L o
-r [1—re|?+? T (1—2r cosf+7) 1+3
Since sinﬁ>ﬁ for 0<Q<£ we get that
25 =2=2Wes
1—27 cosf+7= (1—7)2+4r sin? g (1—7r)2 +
Thus, for r= 2
<[ 1 p<—— [~ 1 at .
T ((1—n)2427262) 1+ Q=11 J-

= (1427722)+3
The last integral is convergent. Therefore,

L(r, @) =O<(1+r)1+6>' r—1.

In this paper, we will prove an extremality theorem under growth
assumptions on I, (7, ¢) and on

Ar, @) =—1—2 frfn L (re™) |rdrd 6 .
w2 Jo Jo

We know, from Hardy's convexity theorem (see [4], Theorem 1.5), that I, (
@) is a non-decreasing function of 7, and

Alr, @) <L (r, @) <|sup o (2)
Z =r
Our results can be stated as follows.

Theorem 1. Suppose that ¢ (2) is holomorphic in E,

log

1—r _
(2.6) lrljfll A( QD) =
and that
(2.7) L (r '(D)ZO(lirloglir)' r—1.

Then the Teichmiiller mapping with dilatation (1.5) is extremal for its boundary
values, and there exists a sequence of numbers |Rnl such that 0<R,<1, limp—o R
=1, and {¢(Rnz)} is a Hamilton sequence.

Sethares proved in [29] the following

Theorem D. For a holomorphic function @, if | (z2)|=0 1/ (1—7)) as
|z| =r— 1, then the Teichmiiller mapping with dilatation (1.5) is extremal for its
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boundary values.
Corresponding to Theorem D, from Theorem 1, we obtain the following

Corollary 1. Suppose that ¢ (2) is holomorphic in E, and that

1 1
sup lo @)1 =0( 1o 15). =1

lzl=r

Suppose furthey that

log
. 11—y
lim o) 0

Then the Teichmiiller mapping with dilatation (1.5) is extremal for its boundary
values, and theve exists a sequence of number {ﬁn} such that O<§n<1, lim oo ﬁn

=1, and {¢p (Rn 2)| is a Hamilton sequence.
Also correponding to the Theorems B and C, we have the following

Corollary 2. Suppose that ¢ (z) is holomorphic in E, and that

Il(r,q0)=0(llrlog ) r—1 .

1—7
If limy—y (1 —7) I, (r,¢0) =00, then the Teichmiiller mapping with dilatation (1.5)
is extremal and 1@ (Rn2)| is a Hamilton sequence for any R, such that 0 <R,
<1 and limy—w Ry=1.

From these, we see that for the holomorphic functions ¢ satisfying the
assumptions made in Corollary 1 or 2, the Extremality Conjecture 1 is true.

Remark. In the case of lim,—; (1 —7) 1, (+,¢p) =a # o, the result had
been proved in [28]. Thus corollary 2 treats the case which is not included in
Theorem B.

3. Proofs of Theorem 1 and Corollaries

In order to prove Theorem 1, first we derive some relation between the
mean growth of a holomorphic function and that of its derivative. Such re-
sults are related to the Theories of H? spaces and of univalent functions and
interesting in themselves. The following Proposition is a counterpart of the
results made by Duren [4], or by Reich [24], and the result made by Hallen-
beck and MacGregor [10]. Some of other applications can also be seen from
their works, hence are omitted here.

Proposition. Suppose that @ (z) is holomorphic on E, 0<p <o and B>
0. Further suppose that
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1 1 [ ,. 3 1 1
(2.8) Iﬁ(r,qo)z{ﬁj; lo (re t9)|”d(9]1’=O<(l_r)/310g1—_—r> r—1,
then, for every positive integer n,

1 1 [ 1 1
(2.9) 13 (r ™) = {Ef l™ (1e'f) |"d0} O<(1_7)3+n1081—7>’ r—1.

Proof of Proposition. First let 1 <p<oo, and assume that (2.8) holds. By
the Cauchy formula

oy _ ;2 Z) 2T (p(Rei(¢+0))ei(¢'—0)
@’ (re”’) = o f|z| -2 (z—re’o)zd 271- v=0 (Re'*—7)? d¢
1
where R = (1-;7) . Suppose there exist M>0 such that If (r,¢) <M a L E
—r

logl—lz—r. Minkowski's inequality (in continuous form) then gives

1 , 1 21 IL(R, )
Iﬁ(r,go)égj;oRz bR d¢

2Ry cos¢+7*
Iﬁ(R(D) M o 1
R2—r ~ (1—R)E(R*—#) °~1—R

. 1 1
Suppose now that 0<p<1, and that
1 M 1
13 (rp) < ‘—_;)7_, ogT—, -

If ¢ (2) has no zeros in E, let F(z) = [¢(2)]? is holomorphic and

M? 1\
L(rF) < (1—7)5? (logl—r> :
. 1 s
With R=§(l+r), this implies

L(rF) <

II(RF) M, ( 2 )9
R (1o Ty

where M, >0 is a constant. On the other hand, since
¢ &)<, F@ITFE) |

Holder’s inequality gives
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1 1_
7 0rg) <107 P L F)

p
Ll__M Ll My 1 \¢
ép [(1_,)511 (log1_7> ] (1—7)5p+1<1ogl—1’>

1 1

If ¢ (2) has a zero, we need the following Lemma due to P.L. Duren [4].

Lemma. Any function f € H? (0 <p <00) can be expressed in the form
f(2) =f1(z) +£2(2), where fi and f» are nonvanishing H? functions such that ||fl,
<2|Al5 for each i.

In this case, we fix R, 0 <R <1, and according to the above Lemma, we
can write that

¢ (Rz) =1 (2) +¢2(2) |
where ¢; and ¢, are nonvanishing functions such that

2M
(1—R)*

1
I (rpi) < logliR. i=12.

Hence, by the same but more simple argument as in the first paragraph of this
proof,

1, My . 1 \1
1,{’(7,(,0;)S<(1_R>Blog1_R/1_r, i=12,

where M,>0 is a suitable constant. Since
R’ (R2) [P <2* [l (2) P +lop2 (2) 7]
it follows that

Log My 1
I} (R < alosT— -

where M3>0 is also a suitable constant. This easily gives (2.9). This proves
Proposition with n=1.

Finally, applying the result with » = 1 inductively, we can obtain the
assertion for every n.

As a special case when p=n=8=1, the above Proposition turns out to be
the following

Corollary 3. Suppose that ¢ (z) is holomorphic on E, and
1

1—r

(2.10) [l(r,(p)IO(llylog ) r— 1,

then
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N 1 1 R
(2.11) 11(7'(p)_0<——(1_7)210gT——r>' r—1.
Proof of Theorem 1. In order to prove Theorem 1, first we note that, for

every R with O<R<1,

R 2r v , .
=ff lo (Rz) — ¢ (2) |dxdy < f rdrf dﬁf |’ (te') |at
lzI<R 0 0 Ry
R 4
=27rf0 rdr j;r I (tg')dt

Hence, by using (2.11), the assumption implies that

a(R) <2M7l'f rdrf( logl1 >dt

_ZMrrj; (1 BY 108%(.[;7 dt)rdr

sZMn(l—R)fo (1i 2
=2Mn(1—R) [1iRlog1_1R—l_RR]S2M7r log‘l—_l—R .

(2.12) ]

1
r 1—

logl—l—r-dr:

with a suitable M. Next, set

= fj;,qzm |¢(Rz)|drdy=f2ﬂ do fl lo (Rte'®) |t dt

2r
-1 ﬁf | (ue®) |udu—2

2 o r]l (r.@)dr .

Again by the assumption, we obtain that

3 S 1 3 . 1
,B(R)SR2 o T—7 087, 4r= o 08T dlogT—;

RZ
Mn 1
(2.13) =="log(1+R)1
g2 o8 (1+R) & 1—R)2(1+R)
2M7rl 1
< R? O81"R -

with a suitable M.

Now, we prove that there exists a sequence of numbers |R,| such that 0
<R,<1, limy—e R,=1, and

'fj; ¢EZ) ‘P(ﬁnz)dxdy|
- ||<p(an) |

=1.

n

First, we can write
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f_/;. _g; ¢ (Rz)dxdy :Rz_*_szflzKRTgE—g[[w (Rz) — ¢ (2) ldxdy

lo ko)1 I, Je@lazay

|zI<R
fj:KIzI(l <p8 <p(Rz)dxdy

Izl<ng0<z) |drdy

+R?

By (2.12) and (2.13) we have

Slfﬁ]%[[fp(li‘z)—qﬂz)]dxdy|< a(R) <2M7rlogTi—R;

(2.14) < < ‘
R|(0 (2)|dxdy TR?A (Rp)  mR?A(R,@)
and
ZMr 1
1

(2.15) Uf'“'l'ﬂ ‘P(Z ¢(R2)dxdy‘< BR) _ R’ °B1—R

. | |<quo(z ldxdy TR?A (R,p) ~ mR?A (R.p)
z
1
log=——

On the other hand, since lim,., A—(r_(m_y:()' there exists a sequence of

numbers |R,l such that 0<R,<1, limy—e Ry=1, and

Therefore, combining (2.14) and (2.15), we deduce that

\ff; e )(p an)drdy _

i lo (R 2)

1.

Thus, the Teichmiiller mapping with dilatation (1.5) is extremal and the

sequence | (kv,,z)} is a Hamilton sequence. The proof of the Theorem 1 is
complete.

Since the proof of Corollary 1 can be easily deduced from Theorem 1, we
will only prove Corollary 2.

Proof of Corollary 2. Suppose that ¢ (z) satisfies the conditions of Corol-
lary 2. Since lim,—, (1—#) I, (r,¢p) =0, using L'Hopital’s rule, we derive
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1 l
log7—— log
1—r . 1—
tim A (r,) lm;l ’
r—1 r—
ST etwniadr
=lim 1 =0 .

it (l—r)rf lo (re'®)|a 0

Thus by the proof of Theorem 1, we can see that the Teichmiiller mapping
with dilatation (1.5) is extremal and the sequence l¢ (R,z)! is a Hamilton
sequence for every Ry as before. The proof of the Corollary 2 is complete.

Finally, we give an example to show that Theorem 1 really treats the case
not included in Theorem B. It should be stressed that this example is also a
counterexample for Tameness Conjecture 2.

Example 4. Set

_log_liz
¢ (2) e

on E. Then the Teichmiller mapping f(z) with the dilatation k¢ (z) /|¢ (2)], 0
<k<1, is extremal for its boundary values.
In this case, we have

1
log—
1 2n 1 2 1_ i6 1 1
2m Jo o (re")la 6= |1_re"r"e|2 desc‘l—rlogl—r' r—1.

[1—re'-"|
(1—v7) =2,

On the other hand, because of lim,;

f |go(re'0)|d0>f —,—Bl—dﬁ Cz( 1 log%) r— 1,

where C; ans C; are positive constants. Therefore, there exists a constant C3>

0 such that
f fZIt
|1—re“’|2

1og——
Thus lim,_.lﬁ=0, and hence, by Theorem 1, the Teichmiiller map-

2
rdrd0>C3 logz——— 1 r—1.
g 1—

ping f(z) with the dilatation k¢ (z) /|¢ (2)| is extremal for its boundary values.
But ¢ (z) does not satisfy the conditions in Theorem B.

Remark. Consider the conformal mapping
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2e )%

1—2z

D(z) = (log

of E. A simple computation shows that f(z) is a Teichmiiller mapping corres-
ponding to

YR | 2
0@)=076) =1 {logr %)

Then by Example 4, we conclude that
f(z) =KRe®(z) +ilm D (2)
is an extremal Teichmiiller mapping for every positive K>1.

Example 5. By using Example 4, we can further construct a less ob-
vious example, that is, a holomorphic function ¢ (z) on E which satisfies all of
the following conditions.

i)  Any Teichmiiller mapping corresponding to ¢ is extremal;

ii) ¢ (z) has OF as its natural boundary; (Namely, there are no ¥ (z),
holomorphic on a domain containing £ as a proper subset, which is
coincident with ¢ (z) on E.)

iii) For every { € E and every neighbourhood V of { (in C),

sup (1—lz])?|¢ (2)|=+o0 .

zeV

First, fix a sequence |l n=1, where every ay € OF and Ujs-; |yl is dense in
OF. Choose positive converging sequence {f =1 so that

o0

ZC1M2 Z

2:______

En CZ ek
k=n+1

for every n, where C,, C; are the same constants as in Example 4 and M,>1 is

a suitable positive constant. Let

v [ 1
= — 1 —
v Z (1-aa)? 1

on E. Then ¢ (z) satisfies the conditions. In fact, by the same estimate as in
Example 4, it is easy to see that

0o

1

1
1, (r,) SC12 skl—_—ylogl—;-r— )

k=1
And we have

1

1
1 (r,0) SCzExElogﬁ
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o

1 1
_CIZ Ekl logl
k=2
C, 1 1
>
2 08—, -

Hence

Alrp) 2> Cs(logT—l—>2

and as in Example 4, we conclude that i) holds.
Next, since ii) follows from iii), we will show that iii) holds. For this
purpose, fix { € 0E and a neighborhood V of { arbitrarity. Then there is an ay

in VN OE. Here we may assume that a,-EEI_/ﬂ OF for every j<N. Then

The second term in the right hand side of the above inequality is bounded on

VNE and we choose M>>1, so that CM,

CM
ak k‘

—M1<Zek Ogl—
k>N /1_” |ZI

M,Coen 1 lo
= 2MCy 1—|z|)2 51— lzl

<1, then

S— 1 .
2 (1—|z|>2 °8l—lzl

Thus (1—|z])2/¢ (z)| tends to + o when z tends to 0E along the line largz=
ant, which shows iii).

4. Application of Theorem 1

To describe the characteristic of extremal Teichmiiller mappings from a
variational point of view, it is natural to consider quasiconformal selfmappings
of a domain which are equal to the identity on the boundary.

Let @; be the class of quasiconformal mappings f of the unit disk E onto
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itself with f(e') =e®, 0<6<2m. We write %, the set of the complex dilata-
tions of all f € ;. Using the metric |g (2) |ldz]? arising from a holomorphic
quadratic differential g (z)dz® with finite norm, Reich and Strebel [27] derived
a necessary integral condition for u € %, which is now called Main Inequality
and plays a fundamental role in the theory of Teichmiiller spaces. For inst-
ance, from this inequality one can easily derive a uniqueness theorem which
states that a Teichmiiller mapping f which belongs to a quadratic differential
@ of finite norm is uniquely extremal with the class of mappings which coin-
cide with f on OF.

For other related results, also refer the works of Earle and Eells [5],
Gehring [7], Reich [25] and Huang [13].

Because of the importance of the class of Teichmiiller mappings it is de-
sirable to estimate the growth of those quadratic differentials ¢ for which
there exists a k>0 such that k¢/|@| € Fo. In this case it is easy to know that
||(p||=OO. A simple example is the following

_ 1+z . .

Example 6. Let @ (2) = 71—, Which maps E conformally onto the
right half plane, and let F (z) =Kx+iy, K>1. Then f(z) =@ 'oFo@ is a
Teichmiiller mapping corresponding to ¢ = @2 It is easy to see that f (z) €

@;. Furthermore, we have that |(p|=0(—(—1—_1r—);) and I, (+,¢) =O<(1—1y)3>'

As Reich showed in [24] that, if f € Q;, and u(2) =%=k gogg , then by a
V4

theorem of Sethares [29], we have

lim (1—7) suplg (2)|=o0 |

7—1 lzl=7r

and by a theorem of Reich [24], we also have

lim (1= 1, (r.p) =0

r—1
Using Theorem 1, we can derive that either the growing order for I, (r,¢0) must

be faster than ﬁlogﬁ, as is the case in example 6, or I, (r,¢) and A (r,¢)

must satisfy some conditions. Namely, we get the following
Theorem 2. Suppose that f € Q;, and

P 10))
ﬂ(Z)—fz_k ¢ (2)

where @ (2) is holomorphic in I. Also suppose that

1

I (r,) =O<l—i;log-l—__—r>, r—1 .
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Then A (r,@) = O(logﬁ), r—1, and (hence lim,—, (1—7) I, (r,p) =0, but)
limy—1 (1—=7) I, (r,p) =a# 0.

Proof of Theorem 2. First we assume that
lim AL — oo
r—1
log 11—

which is equivalent to

| 1
lim _Og_l__rzo
=1 A (ne) '
According to Theorem 1, the Teichmiiller mapping f with the complex dilata-

tion k gogzg is extremal for any positive k (<1), but it is obvious that in the
class of Q; the extremal mapping must be the conformal mapping g (z) = z.
This contradiction proves that A (r,¢) =O(log1—£—r>.

Next suppose that if lim,~; (1—7); (r,¢) =o0. Then by the Corollary 2, f
must be extremal, which is again impossible.
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