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Local smooth solutions of the relativistic
Euler equation

By

Tetu MAKINO and Seiji UKAI

1. Introduction

The motion of a relativistic perfect fluid in the Minkowski space-time isS gov-

erned by
3
e LA

=1

(1.1)
0t\c2—y

Here ¢ denotes the speed of light, p the pressure, (v,,v5v3) the velocity of the

fiuid particle, o the mass-energy density of the fiuid (as measured in units of

mass in a reference flame moving with the fluid particle) and v?=v,*+v,®+0vs’.
We assume the equation of state of the form

(1.2) p=ad’o .

where a, the sound speed, is taken to be constant so that 0<a <¢. In particu-

lar, a =c¢/4/3 arises in several important physical contexts. For detailed dis-
cussions of this setting, see J. Smoller and B. Temple [6].
Under the assumption (1.2), we can write the equation (1.1) as

+Z axk
at’+2l— i=123 |

where
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ct+a%? _c*+a?
_cTaw” wi=

Wo—

(1.4) _cz(cz—vz)p '
fr=wwi+a?00y , k=123 .

ovi

c2—v,

We shall solve the equation (1.3) for t=0 and x = (x1, 12, x3) € R® together
with the initial conditions

{p|:=o=po(x) ,

vili—o=v0i (1), i=123 .

(1.5)

For the one-dimensional motions, Smoller and Temple [6] constructed
global weak solutions, using Glimm’s method [1]. However, no results have
been known so far about the full-dimensional existence. Thus the aim of the
present paper is to establish the existence of local smooth solutions of (1.3)
and (1.5).

We note that in the limit c—©o0, the system (1.3) reduces formally to the
non-relativistic Euler equation

3
0o 0 _
=) B, (VR =0
(1.6) K=

3
%(pv,) +Zaixk(pvwk+a2‘05ik) =0, =123 .
k=1

It is well known that this system can be transformed to a symmetric hyperbo-
lic system to which the Friedrichs-Lax-Kato existence theory of local smooth
solutions is applicable, see, for example, Majda [4, §1.3]. Actually, several
symmetrizers are known to (1.6), ([1],[2],[4].[5]). which lead to the local
existence theorems in different function spaces.

In this paper, we will show that a symmetrizer exists also for the relati-
vivtic case (1.3) which results in the

Theorem 1.1. Suppose thal the initial data po and (vo1, voz, Vos) belong

to the uniformly local Sobolev space Hy = HS, (R®), s=3, and that there exist a
positive constant 0 (<1) such that

(1.7) 0<p0, vi=vhi+od+0v5< (1—-0)c* .
Then, the system (1.3) has a unique solution
(1 -8) (Pyvl'vz.l%) eC( [O,T] Hioc) NCH( [O-T] JHfa_cl) )

with 0>0 and v2<c?. Here T>0 depends only on d and the Hy,-nom of the ini-
tial data.

To construct symmetrizers, instection is enough for the non-relativistic
case (1.6), but it does not seen to work well for the present case (1.3). In-
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stead, we shall follow the idea due to Godunov [1] which relies on the exist-
ence of a convex entropy function. Such an entropy function will be con-
structed in §3 and the symmetrization for (1.3) using this entropy function
will be shown in §2. In 84, the convergence is established of solutions of
the relativistic (1.3) to those of the non-relativistic (1.6) as the light speed ¢
tends to infinity.

2. Symmetrization
Theorem 1.1 can be concluded if there is a change of variables
(2.1) 2= (0v1,02,03) = (wour,u2,u3) |

which reduces the system (1.3) to a system of the form
ou  \ 9
0(,\ oM k() oU _
2.2) AR+ ) AW TE=0
k=1

whose coefficent matrices A°(u) and A*(u), #=1,2,3 satisfy the condition

(2.3) (i)  they ave all vead symmetric and smooth u
' (i1) A°(u) is positive definite .

The system (2.2) satisfying (2.3) is called a symmetric hyperbolic system.
We claim that one of such changes of variables is given by

(2.4) "°:_<cz_64:,z>wp“’+c2+az ‘
. o 1123

where

2.5 =2

C24a?
We shall check the condition (2.3). First, note that the map (2.1) with
(2.4) is a diffeomorphism from £2,= {0>0, ¥2<c% onto 2,= luo<c?*+a? u*=
(1) 24 () 24 (u3)2< (wo—c®—a? ?/c¥. By a straight but tedious computa-

tion, we can find the coefficients A° (u) = (A%s) ap=o123 A* () = (A¥qs)
aB=0,1,2,3, k:1,2,3. as fO“OWSI

0 — 4 6+1 0 — 40 — 4 841
Aw=A10""", Ag=An=A0""v; ,

(2.6) .
A,O'j:A3pa+l'Uil’j+A4pe+16ij, i,]':1,2,3 \
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Ab=A0"*"
(2.7) Agi:Ako:Agpo+lvivk+A4pe+15ik ’
Aﬁ‘j=Agp(’“v,-v,~vk+A4pa“(viajk+vi5ik+vk5,-,-), i.j=l,2,3 y

where
_ c*+3d? _c*+2a%*+a*?
A= s AT, o,
¢ H(CZ_UZ)B/Z 630(02_1)2)3/2
(2.8) 4 2 2 2__ 2
A= c’+3a A= c*—a

_Cg(cz_vz)a/z ’ _c(cz—vz) /2 -

These coefficents can be calculated by the chain rule and the formula

_aﬁzﬂpoﬂ Op _As o1y,

2 ’ . 2 J
(2.9) ) aM«O a au, a
Qe oot Rim2aggts,, i =123
oo 50°Vi , auj—CAsp o L 1=149,
with
(2.10) As=c3(c2—?) V2 |

Clearly, (2.6) and (2.7) show that the matrices A° () and A° (u) are
real symmetric and smooth in £,. Let us show that A°(x) is positive definite

LetZ= (&.8) €ER* be a 4-vector with EER?® and ||5]|=/&+E%. We should
calculate the inner product

(2.11) (A°(u) &|5) = p™*]

where

(2.12) J=AEE 246 (0]€) + 45 (0]€)*+ 4,8,
Aj; being those in (2.8). It is sufficient to show that
(2.13) J=elEr

with some positive constant k. First, we write
As 21 2 2
J=A&+52 0|8 ) ——(A3—A.143) (W|€)2+A4,E% .
Ay A
Since

1 (e?+a?) (c*+4a2c®—a*?)
—(A%—A,A5) = >0
Ay (A} 143) c (2= V2 (¢4 +3¢2?)

A=

and by Schwarz’ inequality (v|€) <v%E2, we get
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(2-14> ]2161&2 ,
with

(Cz_vz) 1/2 (64—(121)2)
K1=A'—Aq?= >0 .
! v 360 (c*+3a%?)
On the other hand, decomposition £2=|E— (7|€) 712+ (7|€) 2 where v=v/|v|E
S? gives

J=AEE 24,6 T8 +(A3+f—:> @T18) 2+ AdE— @)D |?

> (Ag?+As) ((JIE) +m>2+<m—ﬂ>&?

A3U2+A4 A3172+A4
2/52&20 ,
where
2 2 24 2y (.2 2)1/2(4_ 22
K2=A1— Azzv i (C +5a )2(5 vz) <Z zal )>O :
A?+A cS(c2a®+ (4 2a?)v?)

This and (2.14) now given
1
jZE(El€2+Kzsg) .

This shows that (2.3) (i) is also astisfied, and hence, the
Friedlichs-Kato-Lax theory works for the system (2.2) . Since the map
(2.1) with (2.4) defines a diffeomorhism, we then conclude Theorem 1.1.
We can say more, however. Given 0€ (0,1) and ¢>0, put

(2.15) R0c)=10<p<67 v2<(1—6)cY

It is seen that, for any 6 € (0,1) and ¢>0, £, and &, are bounded and bounded
away from 0 uniformly for ¢ =>co as well as for z= (0v1,02v3) ER(d.co). Also,
A%(u) and any of their derivatives are uniformly bounded both for ¢=¢, and z
€02(8,c0). Hence, we have a strengthen version of Theorem 1.1.

Theorem 2.1. For any numbers ao, co> 0 and 8o € (0,1), there exist
posi-tive constants C and T such that for each initial data zo= (0o,v01,002.003) E H®
satisfying

”Z‘ouﬂa, <ao, 20E€E8R(doco) for all tER?

and for each ¢ =>cq, the Cauchy problem (1.3) with (1.5) posesses a unique solu-
tion z= (0,v1,02,03) belonging to the class (1.8) and satisfving

(2.16) llz () g, <C. 2 (t) €ER(6o/2.0) for all xER? |
for all t€[0,T].
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3. Strictly convex entropy function

Let us consider the system of conservation laws

(3.1) w,+2(f"(w))“=0, w= (W Wwa,..Wm) .

A scalar function n=7 (w) is called an entropy function to (3.1) if there ex-
ist scalar functions, ¢*(w), k=12,.., N, satisfying

(3.2) Dun (U)) Dwfk (w) :quk .

Here and in the sequel, Dwh is taken as a row vector in case A iS a scalar
function and is the Jacobi matrix case & is a vector valued function.

According to Godunov [1], (see also Kawashima-Shizuta [3]), if a strict-
ly convex entropy function exists, then the transformation

(3.3) w—u=Dyn (W) ,

is well-defined and reduces the system (3.1) to a symmetric hyperbolic sys-
tem of the form (2.2) whose coefficients

A®(u) =Dw= (Din) ',
A% () =Duf*=Duf*Duw |,

(3.4)
satisfy the condition (2.3).

In our case, (1.3) is of the form (3.1) with
(3.5) w= (wowiwaws), f*(w) = (weff, /5 £5)

where wo, wy, f¥, (i,k=1223) are those in (1.4). Recall z= (o, vy, v, v3).
The map z — w is a diffeomorphism from 2,= {0>0, v?<c? onto 2,= {we>0,
(w1, we, ws) ER®. Specifically, using the formula,

_QQ_:MI , —aa-p-zszj R
0 Wj
(3.6) . 5
%:).:M&O_lvi ' EZ?:M‘W_IUWF"MSP_I‘SU .
where
_ A +v?) _ 2c? _ AP
(3.7) Ml_m ' MZ__C"—aZv2 - M= Cd—at
. _26(c2—=2?) _ (=Y
M4_ 64—82‘1}2 ’ Ms— 62+a2

we see that the Jacobi matrix D,z is nonsingular with
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2(.2_,2)4

(3.8) det (Dwz) =# (cZ—Ifa§§3(cZ)—)a2v2) >0 .
Rewrite (3.2) as

(3.9) DB¥=D,g* k=123 ,

where

(3.10) B*=D 2D f*= (bkg) w'p=01.23 .

are computed using (3.5) and (3.6) as
bbo=Bwi, b&i=B2p0k; ,

(3.11) bﬁ‘o=Bsp_lvkvi+B4p_l5m ,
b=Bsvi0kit vl |

with
Bl=cz (¢?—a?) Bzzcz(cz—i-az)
A—gh? A—a?
P P oY
(c®+a?) (c*—a®?) '
B‘:az(cz_vz) 5 :_aZ(Cz_vz)
St c24q? ’ k ot —ap?

We shall solve (3.9) assuming that our entropy pair (1,4*) is of the form
(3.13) n=H(p2?), ¢*=Q(p1*)v .

Then, setting y =12, the condition (3.9) reduces to the following set of equa-
tions for the functions H and Q.

(3.14) H,=Q, .
(3.15) BIH,,+2(Bgy+B4)%H,,=Q,, ,
(3.16) By0H,+2ByH,=Q .

From (3.14), there should exist a function G =G (0) of p only such that H=
Q(py) +G(p). On the other hand, eliminating pH, from (3.15) and (3.16),
and using (3.14), we have

(3.17) (2 4a?) pQ,— (*—a®) Q=2a*(c*—») Q, .
This and (3.15) then yield

2__ 2 2
3.18)  oG=5%(0—%00,) |

c2+a? c?
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or putting ¢= (c*—y) Q,

(3.19) (1—6)g—pq,=c0G, .

Since the right hand side is a function of p only, ¢ must be of the form
(3.20) g=0""lg0) +r ()] |

where g and h are arbitrary functions. Substituting (3.20) into (3.17) or
(3.21) 0q,—q=20(c*—y)qy .

we get, with a constant Ko,

(3.22) g (p) —0g () =6012(c2—y)h' (y) +h (y)} =—6K, ,

whose solutions are

(3.23) 2(0) =K.0°4+Ko, i (y) =K, (c2—y) 2—K,

Kj's being arbitray constants. Now, substitution of (3.23) into (3.20) and
then into (3.19) yields

K0

(3.24) G=—"40+Ks .
Thus we get
oy K\ _ 1 0
(3.25) H-H—Wp‘ ”+Kz<02_v2——-c—2~>,o+l(3 ,
K _ K?
(3.26) 0= gl "t

For the later purpuse, we wish to choose the constants Kj;, j =1,2,3, so
that (3.25) converges, as ¢— © , to the entropy function for the
non-relativistic case (1.6) given by

(3.27) ﬁZ%pv2+a2plogp ,
which can be obtained exactly in the same way. The right choice is then
found to be
(3.28) Ki=—c(c*+a?), K,=c*—a* K;=0 ,
with which (3.25) becomes
_ c(c*+a?) -0 (®+a?) (*+a*?)
(CZ_UZ) 1/2 CZ(CZ_UZ)

The change of variables (2.4) was derived from this 1 via (3.3), using
(3.6). This 7 is strictly convex due to (3.4) since A°(u) is positive definite

(3.29)
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as was seen in the previous section.

4. Non relativistic limit

Now for the non-relativistic case (1.6), the symmetrizing variables associated
with the entropy function (3.27) are

4.1) [ﬁo= —%vz-i-azlogp-i-az ,

U;="vj, j=123 ,

and the resulting system is

3

(4.2) Z°<a)u,+ZZk () me=0 |
k=1

with

.3 ASo=a"20. AY=A%=a"2ov; ,

AYy=a"2pvw;+p0; .

and so on. The condition (2.3) can be easily checked to hold, so that the
Friedlichs-Kato-Lax theory applies also to the system (4.2) and, as a
conse-quence, to the non-relativistic Euler equation (1.6).

Let z= (pw1,0203) and z= (0,v1,v2,03) be the solutions to (1.3) and (1.6),
repectively, both for the same initial data zo= (0o,v01.v02.003). Let z, be as in
Theorem 2.1. Then, we may conclude that z exists on the same time interval
[0,T] as z, ¢ >co, belongs to the same class (1.8) and enjoys the same estimate
(2.16). We shall show the

Theorem 4.1. As ¢—00, z converges lo z uniformly on [0.T] in HioE for
any €>0.

Proof. It suffices to prove the theorem for the solutions u to (2.2) and u
to (4.2). Put ¢=u—wu. Subtracting (4.2) from (2.2), we have

(4.4) A%) gt Do AR () g=
— A% () —A°G) i — D00 AR () —A¥ ) i
First, we know from the remark made above that the uniform estimates

"u (t) ”Hi,. "ﬁ (t) ”Hi,. ”—1/2 (1) Mygp <GCo .
(4.5) A () B15), (A°@w () 88) 2r5]
z(t), z(t) €EQR(66/2.co) forall xER? |

hold for all ¢ =¢o and for all € [0,T], with some constants Co, £o>>0. On the
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other hand, it is easily seen that the maps u =u (z) defined by (2.4) and u=
u(z) by (4.1) satisfy

(4.6) u(z) =u(z) +0(™?) ,
whereas
(4.7) A%(u(2)) =A% (2) +0 (™), a=0123 ,

and similarly for their derivatives, as c—co, where the remainders O (c72) are
all uniform for z€ 2(do/2,0). Owing to (2.16), (4.5), (4.6) and (4.7), the

L% norm of the right hand side of (4.4) is majorized by C (¢ |z +¢?) with
some positive constant C, uniformly for ¢=¢o, and, hence, (4.4) gives, by in-
tegration by parts and using Gronwall's inequality,

lo @ ll=0(> .

which then yields, after interpolation with (4.5),

g (6) ls—e=0 (c™%)

with any €>>0. Thus we are done.
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