Affine lines on Q-homology planes

By

R. V. GURJAR and A. J. PARAMESWARAN

1. Introduction

An algebraic surface X defined over \mathbf{C} is called a \mathbf{Q} (respectively \mathbf{Z})-homology Plane if $H_i(X, \mathbf{Q}) = 0$ (resp. $H_i(X, \mathbf{Z}) = 0$) for all i > 0. By a result of T. Fujita, a \mathbf{Q} -homology plane is an affine surface. \mathbf{Q} -homology planes occur naturally and "abundantly" as follows. Let Z be a smooth rational surface and D a simply connected curve on Z whose irreducible components generate $H_2(Z; \mathbf{Q})$ freely. Then X:=Z-D is a \mathbf{Q} -homology plane (cf. Lemma 5).

Following results about the existence of contractible algebraic curves on \mathbf{Q} -homology planes are known.

- (i) If $\overline{\kappa}(X) = -\infty$, then there is a morphism $\phi: X \to B$ where B is a nonsingular curve, such that a general fibre of ϕ is isomorphic to \mathbf{C} , and hence there are infinitely many contractible curves on X (cf. [M], Chapter I, Theorem 3.13).
- (ii) If $\overline{\kappa}(X) = 1$, then X contains at least one and at most two contractible curves (cf. [M-S], Lemma 2.15). If X is a \mathbb{Z} -homology plane with $\overline{\kappa}(X) = 1$, then X contains a unique contractible curve and it is smooth (cf. [G-M]).
- (iii) If $\overline{\kappa}(X) = 2$, then X contains no contractible algebraic curve (cf. [M-T2]).

In this paper we complete the picture by proving the following (somewhat unexpected) result. For the terminology used in the statement of the theorem, see §1.

Theorem. Let X be a Q-homology plane with $\overline{\kappa}(X) = 0$. Then the following assertions are true.

- (i) If X is not NC-minimal, then X contains a unique contractible curve C. Moreover C is smooth with $\overline{\kappa}(X-C)=0$.
- (ii) If X is NC-minimal and not the surface H[k, -k] in Fujita's classification, then X has no contractible curves.
- (iii) If X is NC-minimal and is isomorphic to H[k, -k] with $k \ge 2$, then there is a unique contractible curve C on X and it is smooth. Further, $\overline{k}(X-C) = 0$.
- (iv) The surface X = H[1, -1] has exactly two contractible curves, say C

and L. Further, both the curves are smooth, $\overline{\kappa}(X-C)=0$ and $\overline{\kappa}(X-L)=1$. The curves C and L intersect each other transversally in exactly two points.

It should be remarked that by a beautiful result of Fujita, there does not exist a **Z**-homology plane X with $\overline{\kappa}(X)=0$. This follows from the complete classification of NC-minimal **Q**-homology planes with $\overline{\kappa}(X)=0$ due to Fujita (cf. [F, §8.64]). A direct and short proof of this was recently found by the first author and M. Miyanishi. In this paper we use this classification of Fujita in a crucial way.

Combining the results in this paper with the earlier known results, we get the following.

Corollary. A **Q**-homology plane with three contractible curves is of logarithmic Kodaira dimension $-\infty$.

2. Notations and preliminaries

All algebraic varieties considered in this paper are defined over the field of complex numbers C.

For any topological space X, $e\left(X\right)$ denotes its topological Euler characteristic.

Given a connected, smooth, quasiprojective variety V, $\overline{\kappa}(V)$ denotes the logarithmic Kodaira dimension of V as defined by S. litaka (cf. [I]).

By a (-n)-curve on a smooth algebraic surface we mean a smooth rational curve with self-intersection -n. By a normal crossing divisor on a smooth algebraic surface we mean a reduced algebraic curve C such that every irreducible component of C is smooth, no three irreducible components pass through a common point and all intersections of the irreducible components of C are transverse. For brevity, we will call a normal crossing divisor an n.c. divisor. Let D be an n.c. divisor on a smooth surface. We say that D is a minimal normal crossing divisor if any (-1)-curve in D intersects at least three other irreducible components of D. A minimal normal crossing divisor will be called an m.n.c. divisor for brevity.

Following Fujita, we call a divisor D on a smooth projective surface Y pseudo-effective if $H \cdot D \ge 0$ for every ample divisor H on Y.

For the convenience of the reader, we now recall some basic definitions which are used in the results about Zariski-Fujita decomposition of a pseudo-effective divisor (cf. [F], §6; [M-T], Chapter 1).

Let (Y, D) be a pair of a nonsingular surface Y and a normal crossing divisor D. A connected curve T consisting of irreducible curves in D (a connected curve in D, for short) is a twig if the dual graph of T is a linear chain and T meets D-T in a single point at one of the end points of T; the other end of T is called a tip of T. A connected curve R (resp. F) in D is a club (resp. an $abnormal\ club$) if R (resp. F) is a connected component of D and the

dual graph of R (resp. F) is a linear chain (resp. the dual graph of the exceptional curves of a minimal resolution of singularities of a non-cyclic quotient singularity). A connected curve B in D is rational (resp. admissible) if each irreducible component of B is rational (resp. if none of the irreducible components of B is a (-1)-curve and the intersection matrix of B is negative definite). An admissible rational twig T is maximal if T is not contained in an admissible rational twig with more irreducible components.

Let $\{T_{\lambda}\}$ (resp. $\{R_{\mu}\}$ and $\{F_{\nu}\}$) be the set of all admissible rational maximal twigs (resp. admissible rational maximal clubs and admissible rational maximal abnormal clubs). Then there exists a decomposition of D into a sum of effective \mathbf{Q} -divisors, $D = D^{\#} + Bk(D)$, such that $\operatorname{Supp}(Bk(D)) = (\bigcup_{\lambda} T_{\lambda}) \cup (\bigcup_{\mu} R_{\mu}) \cup (\bigcup_{\nu} F_{\nu})$ and $((K_{Y} + D^{\#}) \cdot Z) = 0$ for every irreducible component Z of $\operatorname{Supp}(Bk(D))$. The divisor Bk(D) is called the *bark* of D, and we say that $K_{Y} + D^{\#}$ is produced by the *peeling* of D. For details of how Bk(D) is obtained from D, see [M-T].

The Zariski-Fujita decomposition of $K_Y + D$, in case $K_Y + D$ is pseudo -effective, is as follows:

There exist **Q**-divisors P, N such that $K_Y + D \approx P + N$ where, \approx denotes numerical equivalence, and

- (a) P is numerically effective (nef, for short). If $\overline{\kappa}(Y-D) = 0$, then $P \approx 0$ by a fundamental result of Kawamata (cf. [Ka2]).
- (b) N is effective and the intersection form on the irreducible components of N is negative definite
 - (c) $P \cdot D_i = 0$ for every irreducible component D_i of N.

N is unique and P is unique upto numerical equivalence. If some multiple of $K_Y + D$ is effective, then P is also effective.

The following result from [F, Lemma 6.20] is very useful.

Lemma 1. Let (Y, D) be as above. Assume that all the maximal rational twigs, maximal rational clubs and maximal abnormal rational clubs of D are admissible. Let $\overline{k}(Y-D) \ge 0$. As above, let P+N be the Zariski decomposition of K_Y+D . If $N \ne Bk(D)$, then there exists a (-1)-curve L, not contained in D, such that one of the following holds:

- (i) L is disjoint from D
- (ii) $L \cdot D = 1$ and L meets an irreducible component of Bk(D)
- (iii) $L \cdot D = 2$ and L meets two different connected components of D such that one of the connected components is a maximal rational club R_{ν} of D and L meets a tip of R_{ν}

Further,
$$\overline{\kappa}(V-D-L) = \overline{\kappa}(Y-D)$$
.

Following Fujita, we will say that a smooth affine surface V with $\overline{k}(V) \ge 0$ is NC-minimal if it has a smooth projective completion \overline{V} such that $D:=\overline{V}-V$ is an m.n.c. divisor and N=Bk(D), where P+N is the Zariski-Fujita decomposition of $K\overline{v}+D$.

The following results proved by Kawamata will be used frequently.

Lemma 2. (cf. [Ka1]). Let Y be a smooth quasi-projective algebraic surface and f: $Y \to B$ be a surjective morphism to a smooth algebraic curve such that a general fibre F of f is irreducible. Then $\overline{\kappa}(Y) \ge \overline{\kappa}(B) + \overline{\kappa}(F)$.

Lemma 3, (cf. [Ka2]). Let Y be a smooth quasi-projective algebraic surface with $\overline{\kappa}(Y) = 1$. Then there is a Zariski-open subset U of Y which admits a morphism f: U \rightarrow B onto a smooth algebraic curve B such that a general fibre of f is isomorphic to either \mathbb{C}^* or an elliptic curve.

We call such a fibration a C^* -fibration or an elliptic fibration respectively.

Similarly, we can define a C-fibration and a ${\bf P}^1$ -fibration on a smooth projective surface.

As mentioned in the introduction, the next result follows from R. Kobayashi's inequality and plays an important role in the proof of the theorem.

Lemma 4. (cf. [M-T2]). Let V be a smooth affine surface with $e(V) \le 0$. Then $\overline{\kappa}(V) \le 1$.

We begin with some properties of \mathbf{Q} -homology planes.

Let X be a smooth affine surface and $X \subseteq Z$ be a smooth projective compactification with D:=Z-X.

Lemma 5. Assume that the irregularity q(Z) = 0. Then X is a \mathbf{Q} -homology plane if and only if the irreducible components of D generate $H_2(Z; \mathbf{Q})$ freely and $H_1(D; \mathbf{Q}) = 0$.

Proof. We use the long exact cohomology sequence with \mathbf{Q} -coefficients of the pair (X, D). By Poincaré duality, $H^i(Z, D; \mathbf{Q}) = H_{4-i}(X)$. Hence $H_i(X) = 0$ for i > 0 if and only if the restriction map $H^i(Z; \mathbf{Q}) \rightarrow H^i(D; \mathbf{Q})$ is an isomorphism for i < 4. Since $H_1(Z; \mathbf{Q}) = H_3(Z; \mathbf{Q}) = 0$ by assumption, it follows that X is a \mathbf{Q} -homology plane if and only if $H_1(D; \mathbf{Q}) = 0$ and the irreducible components of D generate $H_2(Z; \mathbf{Q})$ freely.

Now let X be an affine surface with either a \mathbb{C} -fibration or a \mathbb{C}^* -fibration, $\phi: X \to B$. For a suitable smooth compactification $X \subseteq Z$ we get a \mathbb{P}^1 -fibration $\Phi: Z \to \overline{B}$, where \overline{B} is a smooth compactification of B. We will need the following result due to Gizatullin.

Lemma 6. Let F be a scheme-theoretic fibre of Φ . Then we have;

- (1) F_{red} is a connected normal crossing divisor all whose irreducible components are isomorphic to \mathbf{P}^1 .
- (2) If F is not isomorphic to \mathbf{P}^1 , then F_{red} contains a (-1)-curve. If a (-1)-curve occurs with multiplicity 1 in F, then F_{red} contains another (-1)-curve.

Note that from (1) it follows that a (-1)-curve in F_{red} meets atmost two other irreducible components of F.

Let $\phi \colon X {\longrightarrow} B$ be a ${\bf C}^*$ -fibration and ${\bf \Phi} \colon Z {\longrightarrow} B$ be an extension as above. Then D contains either one or two irreducible components which map onto \overline{B} by ${\bf \Phi}$. We will call these components as *horizontal*. All other irreducible components of D are contained in the fibres of ${\bf \Phi}$. An irreducible component of D will be called a D-component for the sake of brevity. We say that ${\bf \Phi}$ is *twisted* if there is only one horizontal D-component (in [F], such a fibration is called a gyoza). Otherwise we say that ${\bf \Phi}$ is untwisted (in [F], such a fibration is called a sandwitch). In the untwisted case the horizontal D-components are cross-sections of ${\bf \Phi}$ and in the twisted case the horizontal D-component is a 2-section.

The next result follows by an easy counting argument using the fact that the irreducible components of the divisor at infinity in a smooth compactification of a \mathbf{Q} -homology plane generate the Picard group, Pic(X), freely over \mathbf{Q} .

Lemma 7. (cf. [G-M], Lemma 3.2). Let $\phi: X \rightarrow B$ be a \mathbb{C}^* -fibration on a \mathbb{Q} -homology plane X. Then we have;

- (1) If ϕ is twisted, then $B \cong \mathbb{C}$, all the fibres of ϕ are irreducible, there is a unique fibre F_0 of ϕ such that F_{0red} is isomorphic to \mathbb{C} and all other fibres are isomorphic to \mathbb{C}^* , if taken with reduced structure.
- (2) If ϕ is untwisted and $B \cong \mathbf{P}^1$, then all the properties of the fibres of ϕ are the same as (1) above.
- (3) If ϕ is untwisted and $B \cong \mathbb{C}$, then ϕ has exactly one fibre F_0 with two irreducible components and all the other fibres are isomorphic to \mathbb{C}^* , if taken with reduced structure. Either both the components of F_0 are isomorphic to \mathbb{C} which intersect transversally in one point or they are disjoint with one isomorphic to \mathbb{C} and the other one isomorphic to \mathbb{C}^* .

In order to avoid repetitive arguments in the proof of the theorem, we give detailed proof of the next result and use such arguments without details later on.

Lemma 8. Let X be a \mathbb{Q} -homology plane with $\overline{\kappa}(X) = 0$ and $\phi: X \to B$ be a \mathbb{C}^* -fibration. Let F_0 be the reducible fibre of ϕ (cf. lemma 7) which contains a contractible irreducible curve C. Consider a smooth completion $Z \supset X$ with D: = Z - X an n.c. divisor and $\Phi: Z \to \mathbb{P}^1$ a \mathbb{P}^1 -fibration which extends ϕ .

(1) Suppose ϕ is twisted.

If $\overline{\kappa}(X-C)=0$, then the morphism $X-C \to \mathbb{C}^*$ has no singular fibres. If $\overline{\kappa}(X-C)=1$, then the morphism $X-C \to \mathbb{C}^*$ has at least one multiple fibre.

In both the cases, the fibre over the point p_{∞} : = $\mathbf{P}^1 - B$ can be assumed to have the dual graph

and the horizontal component D_h intersects the (-1)-curve transversally in a single point.

(2) Suppose ϕ is untwisted and $B \cong \mathbb{C}$.

Then the fibre F_{∞} over p_{∞} is a regular fibre of Φ and the two horizontal D-components meet this fibre in two distinct points. The morphism $X - C \rightarrow \mathbb{C}$ has at least one multiple fibre.

(3) Suppose ϕ is untwisted and $B \cong \mathbf{P}^1$.

If $\overline{\kappa}(X-C)=0$, then $\phi'\colon X-C\to \mathbb{C}$ has at least one and at most two multiple fibres. If ϕ' has two multiple fibres, then their multiplicities are 2 each. If $\overline{\kappa}(X-C)=1$, then ϕ' has at least two multiple fibres.

Proof. (1) Let $\phi' = \phi|_{X-C}$. Suppose ϕ' has a multiple fibre, say m_1F_1 , with $m_1 \geq 2$. Denote by p_0 , p_1 the points $\phi(C)$, $\phi(F_1)$ respectively. Using lemma 9, we can construct a finite ramified covering τ : $A \rightarrow \mathbb{C}$, ramified only over p_0 , p_1 such that the ramification index over p_i is m_i for i=0,1, where m_0 is a large integer. Then the normalization of the fibre product $A \times cX$ contains a Zariski-open subset U which is a finite étale covering of X-C. Since $\overline{\kappa}(A) = 1$ for large m_0 , by lemma $2, \overline{\kappa}(U) = 1$. But then $\overline{\kappa}(X-C) = 1$, since $\overline{\kappa}$ does not change under finite étale coverings by a result of Iitaka (cf. [I]). This contradiction shows that ϕ' has no multiple fibre, if $\overline{\kappa}(X-C) = 0$. Hence ϕ' has no singular fibre.

If ϕ' has no multiple fibre, then X-C has a 2-sheeted étale cover which is isomorphic to $\mathbb{C}^* \times \mathbb{C}^*$. Hence $\overline{\kappa}(X-C) = 0$.

The assertion about the fibre F_{∞} is proved by Fujita in [F], lemma 7.5(2).

- (2) The assertion about F_{∞} is proved in [F], lemma 7.6(1). If ϕ' has no multiple fibre, then X-C is isomorphic to $\mathbf{C}\times\mathbf{C}^*$, contradicting the assumption that $\overline{\kappa}(X)=0$.
- (3) Suppose $\overline{\kappa}(X-C)=0$. If ϕ' has no multiple fibre, then X-C is isomorphic to $\mathbb{C}\times\mathbb{C}^*$, a contradiction. If ϕ' has two multiple fibres m_1F_1 , m_2F_2 , then letting p_i be the points $\phi(F_i)$ for i=0,1,2, we can construct a finite galois covering $\tau\colon A\to \mathbf{P}^1$ which is ramified only over p_i and the ramification index at any point over p_i is m_i for i=0,1,2. If one of the m_1 , m_2 is strictly bigger than 2, then for large m_0 , A is non-rational. But then we see that $\overline{\kappa}(X-C)\geq 1$. Hence $m_1=m_2=2$.

The proof for the case $\bar{\kappa}(X-C)=1$ is similar.

The next result follows from R. H. Fox's solution of Fenchel's conjecture (cf. [Fo] and [C]).

Lemma 9. Let $a_1, ..., a_r$ be distinct points in \mathbf{P}^1 with $r \ge 3$ and $m_1, ..., m_r$ be integers ≥ 2 . Then there is a finite Galois covering $\tau: B \to \mathbf{P}^1$ such that the rami-

fication index at the point a_i is m_i for $1 \le i \le r$. There is also a similar assertion if r=2 and $m_1=m_2$.

Lemma 10. Let C_1 , C_2 be two distinct contractible curves on a **Q**-homology plane X with $\overline{\kappa}(X) \geq 0$. Then $C_1 \cap C_2 \neq \phi$ and if the intersection is a single point then it is transverse.

Proof. Since $e(X-C_1)=0$, by lemma $4\ \overline{\kappa}(X-C_1)\leq 1$. Clearly, $\overline{\kappa}(X-C_1)\geq 0$.

Consider the case $\overline{\kappa}(X-C_1)=0$. Since Pic(X) is finite, there exists a regular function f of X such that $(f)=mC_1$ for some integer m. We can assume that the morphism given by $f\colon X-C_1\to \mathbb{C}^*$ has connected general fibres. Then by lemma 2, a general fibre of this morphism is isomorphic to \mathbb{C}^* . Thus, X has a \mathbb{C}^* -fibration such that C_1 is contained in a fibre. Suppose $C_1\cap C_2=\phi$. Since C_2 does not contain any non-constant units, the image of C_2 is a point. This contradicts lemma 7.

Suppose $\overline{\kappa}(X-C_1)=1$. If $C_1\cap C_2=\phi$, then $e\left(X-(C_1\cup C_2)\right)=-1$ and hence by lemma 4, $\overline{\kappa}(X-(C_1\cup C_2))=1$. Then by lemma 3 we see that $X-(C_1\cup C_2)$ has a C^* -fibration. Since X does not contain any complete curves, this morphism extends to a C^* -fibration on X. Then C_1 and C_2 are mapped to points, otherwise the fibration is a C-fibration. Again by lemma 7, both C_1 , C_2 lie in the same fibre and hence C_1 , C_2 intersect transversally in a single point by part (3) of lemma 7.

Now we know that $C_1 \cap C_2 \neq \emptyset$. Suppose $C_1 \cap C_2$ is a single point. Then $e(C_1 \cup C_2) = 1$, $e(X - C_1 \cup C_2) = 0$, and hence $\overline{\kappa}(X - C_1 \cup C_2) \leq 1$ by lemma 4. Arguing as above, we see that X admits a \mathbf{C}^* -fibration such that $C_1 \cup C_2$ is contained in a single fibre and hence they intersect transversally in a single point, again by lemma 7.

3. Fujita's clssification

In this section we describe the classification of NC-minimal **Q**-homology planes with $\bar{\kappa} = 0$ due to Fujita (cf. [F], 8.64). There are four types of such surfaces. We also describe Fujita's surfaces H [-1, 0, -1], which are NC-minimal surfaces with $\bar{\kappa} = 0$, e = 0 and $b_1 = 1$.

Type 1 (cf. [F], §8.26).
$$H[k, -k]$$
 with $k \ge 1$

The dual graph of the divisor D at infinity for an m.n.c. compactification is given by

Lemma 11.
$$\bar{\kappa}(X-C) = 0$$
.

Proof. The \mathbf{C}^* -fibration $\phi\colon X-C\to\mathbf{C}$ has exactly two multiple fibres corresponding to $2E_1$ and $2E_2$. Let $p_i=\Phi(F_i)$ for i=0,1,2. Using lemma 9 we can construct a degree 2 galois covering $\tau\colon B\to\mathbf{P}^1$ such that the ramification index over p_i is 2 for each i. By Riemann-Hurwitz formula, $B\cong\mathbf{P}^1$. Then $\overline{X\times_{\mathbf{P}'}B}\to B$ is a \mathbf{C}^* -fibration and $\overline{X\times_{\mathbf{P}'}B}-\tilde{\tau}^{-1}(C)$ is an étale cover of X-C isomorphic to $\mathbf{C}^*\times\mathbf{C}^*$. Hence $\overline{\kappa}(X-C)=0$.

Types 2, 3 and 4 are denoted by Y[3, 3, 3], Y[2, 4, 4] and Y[2, 3, 6] respectively by Fujita (§8.37, 8.53, 8.54, 8.59, 8.61). The dual graphs of each of these have a unique branch point. There are three maximal twigs T_1 , T_2 and T_3 for each of them and $\sum_{i=1}^3 1/d(T_i) = 1$, where $d(T_i)$ is the absolute value of the determinant of the intersection matrix of T_i .

Fujita has shown that $\pi_1(X)$ is a finite cyclic group for any NC-minimal **Q**-homology plane with $\overline{\kappa}(X) = 0$. This result will be used effectively in the next section.

Now we will describe the surfaces H[-1, 0, -1] (cf. [F], §8.5).

The dual graph of an m.n.c. divisor at infinity is given by

Here, $B_1^2 = B_2^2 = -1$, $D_0^2 = 0$ and $T_i^2 = -2$.

4. Proof of the Theorem (Non NC-minimal case)

Let X be a **Q**-homology plane with $\overline{\kappa}(X) = 0$. In this section we prove the following.

Proposition. Suppose X does not have an NC-minimal compactification, then X contains a unique contractible curve.

Proof. Suppose L is a contractible curve in X. Then $\overline{\kappa}(X-L) \leq 1$ and there is a \mathbb{C}^* -fibration $\phi': X-L \to B^1$ which extends to a \mathbb{C}^* -fibration $\phi: X \to B$

and $\phi(L)$ is a point (cf. proof of lemma 10). We choose a smooth compactification $X \subseteq Z$ such that D:=Z-X is a normal crossing divisor and ϕ extends to a \mathbf{P}^1 -fibration $\Phi: Z \to \mathbf{P}^1$. We now consider the three cases given by lemma 7

<u>Case 1. ϕ is twisted.</u> By lemma 7(1), $B \cong \mathbb{C}$ and every fibre of ϕ is irreducible. The fibre $F_{\infty} := \Phi^{-1}(p_{\infty})$ has the dual graph as described in lemma 8 (1) and the 2-section D_h meets the (-1)-curve in F_{∞} transversally in a single point.

First consider the case $\bar{\kappa}(X-L)=0$. The surface X-L has the following properties.

- (i) X-L is affine
- (ii) $\bar{\kappa}(X-L)=0$
- (iii) $e(X-L) = b_2(X-L) = 0$ and $b_1(X-L) = 1$
- (iv) X-L is NC-minimal.

The property (iii) follows from the long exact cohomology sequence with compact support of the pair (X, L) and duality. The property (iv) follows from the observation that if X-L is not NC-minimal, then by lemma 1, X-L contains a curve $C \cong \mathbb{C}$. But then C is closed in X and disjoint from L, contradicting lemma 10.

Now the surface X-L is isomorphic to H[-1, 0, -1]. Let F_0 be the fibre of Φ containing L. We may assume that any (-1)-curve in D contained in F_0 meets at least two other D-components in F_0 . Since D is a connected tree of $\mathbf{P^1}$, s, either $F_{0red} = \overline{L}$ or the horizontal component D_h meets an irreducible component D_0 of D which occurs with multiplicity 2 in F_0 (observe that $F_0 - \overline{L}$ is connected). Suppose $D_1 \subset D$ is a (-1)-curve in F_0 which is disjoint from D_h . Then by lemma 6 (1), D_1 meets at most two other D-components contained in F_0 . Hence we can contract D_1 to a smooth point and get another compactification Z_1 which satisfies the same properties as Z. Repeating this argument we can assume that \overline{L} and D_0 are the only possible (-1)-curves in F_0 . Moreover, if D_0 is a (-1)-curve then it meets two other D-components. We claim that D_h is not a (-1)-curve. Otherwise, the m.n.c. divisor obtained from $D \cup \overline{L}$ by succession of contractions of (-1)-curves cannot be of the type described by Fujita. Now we see that D is an m.n.c. divisor.

Since X is not NC-minimal and D is m.n.c., there exists a (-1)-curve \overline{C} given by lemma 1. Let $C=\overline{C}\cap X$. If $\overline{C}\neq \overline{L}$ then \overline{C} is horizontal as it has to meet L. Hence \overline{C} meets one of the tip components T_i of F_{∞} . As above, X-C is also of the type H[-1,0,-1]. By contracting C and then the image of T_i , we obtain a compactification divisor of X-C which is not of type H[-1,0,-1]. Hence C=L.

By lemma 8 (1), $\overline{\kappa}(X-L)=1$ if and only if ϕ has at least one multiple fibre other than L. Now assume that $\overline{\kappa}(X-L)=1$. Then we can see that D_h

meets at least three D-components and hence D can be assumed to be m.n.c. as above. By lemma 1, there is a (-1)-curve C in C satisfying the properties stated there. We arrive at a contradiction as above by first contracting C and then T_i .

Case 2. ϕ is untwisted and $B \cong \mathbb{C}$. Now ϕ has a unique fibre which contains two irreducible components, say L and L'. Any other fibre of ϕ is isomorphic to \mathbb{C}^* , if taken with reduced structure. The fibre F_{∞} is a smooth fibre of ϕ and the two horizontal components of D meet F_{∞} in distinct points. The divisor D may not be m.n.c., but it is obtained from an m.n.c. divisor by successive blow-ups. By lemma 8 (2), the morphism $X-L \to \mathbb{C}$ has at least one multiple fibre. From this we can see as above that D can be assumed to be m.n.c. Again since X is not NC-minimal, we get a (-1)-curve $C \cong \mathbb{P}^1$ on C which meets only a twig component of C. If $C \neq L$, then we get a contradiction as above.

Case 3. ϕ is untwisted and $B \cong \mathbf{P}^1$. Then every fibre of ϕ is irreducible. Any fibre of ϕ other than L is isomorphic to \mathbf{C}^* , if taken with reduced structure. By lemma 7.6 of [F], we can assume that every fibre of $\boldsymbol{\Phi}$ other than the fibre F_0 containing L is a linear chain such that the two horizontal components of D meet the tip components of the fibre. From the connectivity of D we see that the union of D-components in F_0 is connected. Denote by D_1 , D_2 the horizontal components. Let D_0 be a D-component contained in F_0 which meets D_1 or D_2 . Then D_0 occurs with multiplicity 1 in F_0 . If D_0 is a (-1)-curve it can meet at most one more D-componet in F_0 . Hence we can contract D_0 to get a smaller compactification of X. Consequently we can assume that \overline{L} is the unique (-1)-curve in F_0 .

Now $(K_Z+D)\cdot \bar{L}=0$. On the other hand, if $K_Z+D\approx P+N$ is the Zariski-Fujita decomposition then $P\approx 0$ by the properties of the Zariski decomposition. Hence $N\cdot \bar{L}=0$. From the assumption that X is not NC-minimal, we know that there exists a curve $C\subseteq X$ such that $C\cong \mathbb{C}$ and its closure \overline{C} occurs in N. But by lemma 10 if $L\neq C$ then $L\cdot C>0$.

If $\overline{\kappa}(X-L)=1$, then by lemma 8, the morphism $X-L\to \mathbb{C}$ has at least two multipe fibres. Then both D_1 and D_2 are branch points for the dual graph of D and hence D is m.n.c. The curve $\overline{\mathbb{C}}$ above can be assumed to be a (-1)-curve. Since $\overline{C}\cdot\overline{L}>0$, the intersection form on the subspace of Pic $Z\otimes_{\mathbf{Z}}\mathbb{Q}$ generated by \overline{C} and \overline{L} is not negative definite. Hence \overline{L} does not occur in N and $N\cdot\overline{L}>0$ as $\overline{C}\subseteq N$, a contradiction. If $\overline{\kappa}(X-L)=0$, then we have a morphism $X\to \mathbb{C}$ with one fibre mL and general fibre isomorphic to \mathbb{C}^* , as in the proof of lemma 10. This is a twisted fibration by lemma 7. Then we are reduced to the case 1 and hence L is the unique contractible curve. This completes the proof of the proposition.

5. Proof of the Theorem (NC-minimal case)

We begin with the following general result.

Lemma 12. Let Γ be a connected normal crossing divisor on a smooth projective surface Y. Assume the following conditions.

- (i) Every irreducible component of Γ is isomorphic to \mathbf{P}^1 .
- (ii) The dual graph of Γ has at most one branch point.
- (iii) If the dual graph has a branch point, then Γ has exactly three maximal twigs T_1 , T_2 and T_3 and $\sum 1/d$ $(T_i) > 1$.
- (iv) Γ supports a divisor G with $G \cdot G > 0$. Then $\overline{\kappa}(Y - \Gamma) = -\infty$.

Proof. Suppose that $\overline{k}(Y-\varGamma) \geq 0$. We will give the proof when \varGamma has a branch point. Then $K_Y+\varGamma$ has a Zariski-decomposition P+N. First assume that (Y,\varGamma) is NC-minimal. Then $N=Bk(\varGamma)$. Let C_1 , C_2 and C_3 be the irreducible components of the maximal twigs T_1 , T_2 and T_3 respectively meeting C_0 , the \varGamma -component corresponding to the branch point. By lemma 6.16 of [F], the coefficients of C_i in $Bk(\varGamma)$ are $1/d(T_i)$. Hence $P=K_Y+C_0+\sum_{i=1}^3(1-\frac{1}{d(T_i)})C_i+\dots$. But then $P\cdot C_0=-2+\sum (1-1/d(T_i))<0$, contradicting the fact that P is nef.

If (Y, Γ) is not NC-minimal, by lemma 1 we can reduce to the case when there is a (-1)-curve E on Y which occurs in N, E is not contained in Γ and $E \cdot \Gamma = 1$, where E meets a component of $Bk(\Gamma)$. Then $\overline{\kappa}(Y - \Gamma) = \overline{\kappa}(Y - \Gamma \cup E)$. By contracting E and any (-1)-curves in the maximal twigs successively we reduce to the situation when either the image of Γ becomes linear or a maximal twig has a vertex with non-negative weight or the NC-minimal case occurs. If a maximal twig has a vertex with non-negative weight then by lemma 6.13 of [F], we get $\overline{\kappa}(Y - \Gamma) = -\infty$, a contradiction. This proves the result.

Let X be an NC-minimal **Q**-homology plane with $\overline{\kappa}(X)=0$. Then $\pi_1(X)$ is a finite cyclic group by Fujita.

Lemma 13. Assume that X contains a contractible curve C. Then X is of type H[k, -k], $k \ge 1$.

Proof. As before, there is a \mathbb{C}^* fibration $\phi: X \to B$ with $\phi(C)$ a point and $B \cong \mathbb{C}$ or \mathbb{P}^1 . We consider the three cases depending on the type of ϕ .

Case 1. ϕ is twisted.

Then $B \cong \mathbb{C}$ and all the fibres of ϕ are irreducible. We claim that ϕ has at most one multiple fibre. Let $p_1, ..., p_r$ be the points in B corresponding to the multiple fibres and $p_{\infty} = \mathbf{P}^1 - B$. If $r \geq 2$, then we can construct a suitable non-cyclic covering $A \to \mathbf{P}^1$, ramified over $p_1, ..., p_r, p_{\infty}$. Then we get a connected étale cover $\widetilde{X} \to X$ with non-cyclic galois group. This is not possible.

Hence $r \leq 1$.

As before, ϕ extends to a \mathbf{P}^1 -fibration $\Phi: Z \to \mathbf{P}^1$ on a smooth compatification Z of X. Let D:=Z-X. As in lemma 8, we see that $\overline{\kappa}(X-C)=0$ if the morphism $X-C \to \mathbf{C}^*$ has no multiple fibre. Let F_0 be the fibre of Φ containing C.

Using the lemma 12, we now see that the dual graph of D has at least one branch point. But the fibre F_{∞} has the form

by lemma 8(1). Hence by lemma 12 again D has at least two branch points and D is obtained from an NC-minimal divisor of the form H[k, -k] for $k \ge 1$.

If the morphism $X-C\to \mathbb{C}^*$ has a multiple fibre with multiplicity m>1 and $F_0\neq C$ then the divisor D is m.n.c and the 2-section D_h meets at least four other curves in D. This contradicts Fujita's classification. Hence either the morphism $X-C\to \mathbb{C}^*$ has no multiple fibre or $\overline{C}=F_0$. In the later case, $X-C\to \mathbb{C}^*$ has one multiple fibre by lemma 12 and $\overline{\kappa}(X-C)=1$. Further, D_h is a branch point of D.

Case 2. ϕ is untwisted and $B \cong \mathbb{C}$.

We claim that this case does not occur. First we observe that the fibre F_{∞} is a regular fibre of Φ and the two horizontal components meet F_{∞} in two distinct points. It is easy to see that D cannot be obtained from any of the surfaces Fujita has described by a finite succession of blowing-ups.

Case 3. ϕ is untwisted and $B \cong \mathbf{P}^1$

The fibration ϕ has at most two multiple fibres by lemma 8. The curve $F_0 - \overline{C}$ is connected. The morphism $\phi' \colon X - C \to \mathbf{C}$ has at least one multiple fibre by lemma 8 (3). If ϕ' has only one multiple fibre, then X - C contains $\mathbf{C}^* \times \mathbf{C}^*$ as a Zariski open subset and hence $\overline{\kappa}(X - C) = 0$. Suppose ϕ' has two multiple fibres. Then D is m.n.c. and we see that the horizontal D-components D_1 and D_2 intersect in a point on \overline{C} . This shows that X is of type H[k, -k]. Further, the multiple fibres have multiplicity 2 each (otherwise D cannot be of type H[-1, 0, -1]) and $\overline{\kappa}(X - C) = 0$, as in the proof of lemma 8(3).

Next we prove the following.

Lemma 14. Let X be of type H[k, -k] and X contains a contractible curve L with $\overline{\kappa}(X-L)=1$. Then k=1.

Proof. From the proof of lemma 10, we know that there is a twisted \mathbf{C}^* -fibration $\phi: X \to \mathbf{C}$ with $\phi(L)$ a point. Further, ϕ' has exactly one multiple fibre, where $\phi': X - L \to \mathbf{C}^*$ is the restriction. The horizontal component D_h is a branch point for D and the fibre F_{∞} has the dual graph,

L is a reduced fibre of ϕ by the proof of case 1 of lemma 13. Using lemma 6 repeatedly we see that \overline{L} can be assumed to be the full fibre of ϕ . From Fujita's description of D, we see that k=1 because the branch points intersect and one of them is a (-1)-curve.

To complete the proof of the theorem, it remains to prove the following result.

Lemma 15. (1) On the surface X of type H[k, -k], there is a unique contractible curve C with $\overline{\kappa}(X-C)=0$.

- (2) On H[1, -1] there is a unique contractible curve L with $\overline{\kappa}(X-L) = 1$.
- (3) If k=1 and C and L are the contractible curves as above then $C \cdot L = 2$ and they meet transversally.

Proof. (1) Let C be a contractible curve on X with $\overline{\kappa}$ (X - C) = 0. There is a \mathbb{C}^* -fibration ϕ : $X \to \mathbb{C}$ such that for some $m \ge 1$, mC is a fibre of ϕ . Then ϕ is a twisted fibration. Let $X \subseteq Z$ be a smooth projective compactification such that ϕ extends to a \mathbb{P}^1 -fibration Φ : $Z \to \mathbb{P}^1$. By lemma 8(1) there is no multiple fibre for the map $X \to C \to \mathbb{C}^*$. The fibre F_{∞} has the dual graph,

and D_h meets the (-1)-curve in F_{∞} . Let F_0 be the fibre of ϕ containing C and D_0 be the D-component of F_0 that meets D_h . We claim that D_0 meets only one other D-component in F_0 . If not, D_0 is a branch point of D and from Fujita's classification, we deduce that D_h is a (-1)-curve and after contracting D_h , we get an NC-minimal completion of X. But this is not of type H[k, -k] with $k \ge 1$. Hence we may even assume that D_0 is not a (-1)-curve.

As before, we may assume that C is the only (-1)-curve in F_0 . Since an NC-minimal completion of X is obtained from contracting suitable (-1)-curves in D, we conclude that D_h is a (-1)-curve. Then D_0 is a (-2)-curve. By repeating this argument, we infer that the dual graph of C $\cup D$ is

By successive contractions of (-1)-curves starting with D_h , we get an m.n.c. compactification divisor of X such that the dual graph of the image of $\overline{C} \cup D$ looks like H[k, -k], with the image of \overline{C} passing through the intersection of the two branching curves. From this it is easy to see that the curve C is unique.

(2) Let L be a contractible curve on X with $\overline{\kappa}(X-L)=1$. By the proof of case 1 of lemma 13 and lemma 14, we can assume that $\overline{L} \cup D$ looks like

Clearly, \overline{L} is a full fibre of the \mathbf{P}^1 -fibration on Z given by the linear system $|T_2+2B_2+T_4|$. Therefore L is unique.

(3) We have seen that \overline{C} passes through the intersection of B_1 and B_2 and meets transversally with both. Hence $\overline{C} \cdot \overline{L} = 2$. Now by lemma 10, $C \cap L$ consists of 2 distinct points as \overline{L} does not pass through $B_1 \cap B_2$. This completes the proof of the theorem.

SCHOOL OF MATHEMATICS,
TATA INSTITUTE OF FUNDAMENTAL RESEARCH,
HOMI BHABHA ROAD,
BOMBAY 400 005, INDIA

E-MAIL: gurjar@tifrvax. bitnet param@tifrvax. bitnet

References

- [C] T. C. Chau, A note concerning Fox's paper on Fenchel's conjecture, Proc. A. M. S., 88 (1983), 584-586
- [Fo] R. H. FOX, On Fenchel's conjecture, Math. Tidsskr. B, 61-65, 1952.
- [F] T. Fujita, On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo, 29 (1982), 503-566.
- [G-M] R. V. Gurjar, M. Miyanishi, Affine surfaces with κ≤1, Alegebraic Geometry and Commutative Alegebra, Kinokuniya, 1987, 99-124.
- [I] S. Iitaka, On logarithmic Kodaira dimension of Algebraic varieties, Complex analysis and algebraic geometry, Iwanami Shoten, Cambridge Univ. Press, 1977.
- [Ka1] Y. Kawamata, Addition formula of logarithmic Kodaira dimensions for morphisms of relative dimension 1, Proc. Internat. Symp. on Algebraic geometry, Kyoto 1977, 207-217, Kinokuniya, 1978.
- [Ka2] Y. Kawamata, On the classification of non-complete algebraic surfaces Lecture Notes in Math.

- 732, Springer, 1979, 215-232.
- [Ko] R. Kobayashi, Uniformization of complex surfaces, Adv. Stud. Pure Math. 18 (1990).
- [M] M. Miyanishi, Non-complete Algebraic Surfaces, Lecture Notes in Math 857, Springer, 1981.
- [M-S] M. Miyanishi, T. Sugie, Homology planes with quotient singularities, J. Math Kyoto Univ, 31 (1991), 755-788.
- [M-T1] Miyanishi, S. Tsunoda, Non-complete algebraic surfaces with logarithmic Kodaira dimension -∞ and with non-connected boundaries at infinity, Japan. Journal. of Math., 10-2 (1984), 195-242.
- [M-T2] Miyanishi, S. Tsunoda, Absence of the affine lines on the homology planes of general type, J. Math. Kyoto Univ., 32-3 (1992), 443-450.