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Affine lines on Q-homology planes
By

R. V. GURJAR and A.J. PARAMESWARAN

1. Introduction

An algebraic surface X defined over C is called a Q (respectively Z) -homology
Plane if H; (X, Q) =0 (resp. Hi (X, Z) =0) for all i>0. By a result of T. Fu-
jita, a Q-homology plane is an affine surface. Q-homology planes occur
naturaily and “abundantly” as follows. Let Z be a smooth rational surface
and D a simply connected curve on Z whose irreducible components generate
H»(Z; Q) freely. Then X:=Z—D is a Q-homology plane (cf. Lemma 5).

Following results about the existence of contractible algebraic curves on
Q-homology planes are known.

(i)  If K (X) = — oo, then there is a morphism ¢: X — B where B is a
nonsingular curve, such that a general fibre of ¢ is isomorphic to
C, and hence there are infinitely many contractible curves on X
(cf. [M], Chapter I, Theorem 3.13).

(i)  If (X) =1, then X contains at least one and at most two contracti-
ble curves (cf. [M-S], Lemma 2.15). If X is a Z-homology plane
with & (X) =1, then X contains a unique contractible curve and it
is smooth (cf. [G-M]).

(iii)) If ¥ (X) =2, then X contains no contractible algebraic curve (cf.
[M-T2]).

In this paper we complete the picture by proving the following (somewhat

unexpected) result. For the terminology used in the statement of the theorem,
see §1.

Theorem. Let X be a Q-homology plane with k(X) =0. Then the follow-

mg assertions are true.

(1) If X is not NC-minimal, then X contains a unique contractible curve
C. Moreover C is smooth with & (X—C) =0.

(1)  If X is NC-minimal and not the surface H[k, —k] in Fujita’s classi-
fication, then X has no contractible curves.

(i6i) If X is NC-minimal and is isomorphic to H [k, —k] with k> 2, then
there is a unique contractible curve C on X and it is smooth. Further,
k(X—C)=0.

(iv)  The surface X=H[1, —1] has exactly two contractible curves, say C
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and L. Further, both the curves ave smooth, £ (X —C) =0 and (X —
L) =1. The curves C and L intersect each other transversally in ex-
actly two points.

It should be remarked that by a beautiful result of Fujita, there does not
exist a Z-homology plane X with £(X) =0. This follows from the complete
classification of NC-minimal Q-homology planes with x(X) =0 due to Fujita
(cf. [F, §8.64]). A direct and short proof of this was recently found by the
first author and M. Miyanishi. In this paper we use this classification of Fu-
jita in a crucial way.

Combining the results in this paper with the earlier known results, we get
the following.

Corollary. A Q-homology plane with Lhree contractible curves is of logar-
ithmic Kodaiva dimension — o0,

2. Notations and preliminaries

All algebraic varieties considered in this paper are defined over the field of
complex numbers C.

For any topological space X, e (X) denotes its topological Euler character-
istic.

Given a connected, smooth, quasiprojective variety V, k¥ (V) denotes the
logarithmic Kodaira dimension of V as defined by S. Iitaka (cf. [I]).

By a (—n) -curve on a smooth algebraic surface we mean a smooth
rational curve with self-intersection —n. By a normal crossing divisor on a
smooth algebraic surface we mean a reduced algebraic curve C such that ev-
ery irreducible component of C is smooth, no three irreducible components
pass through a common point and all intersections of the irreducible compo-
nents of C are transverse. For brevity, we will call a normal crossing divisor
an n.c. divisor. Let D be an n.c. divisor on a smooth surface. We say that D
is a minimal normal crossing divisor if any (—1)-curve in D intersects at least
three other irreducible components of D. A minimal normal crossing divisor
will be called an m.n.c. divisor for brevity.

Following Fujita, we call a divisor D on a smooth projective surface Y
pseudo-effective if H-D=0 for every ample divisor H on Y.

For the convenience of the reader, we now recall some basic definitions
which are used in the results about Zariski-Fujita decomposition of a
pseudo-effective divisor (cf. [F], §6; [M-T], Chapter 1).

Let (Y, D) be a pair of a nonsingular surface Y and a normal crossing di-
visor D. A connected curve T consisting of irreducible curves in D (a con-
nected curve in D, for short) is a twig if the dual graph of T is a linear chain
and T meets D— T in a single point at one of the end points of T; the other
end of T is called a tip of T. A connected curve R (resp. F) in D is a club
(resp. an abnormal club) if R (resp. F) is a connected component of D and the
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dual graph of R (resp. I') is a linear chain (resp. the dual graph of the excep-
tional curves of a minimal resolution of singularities of a non-cyclic quotient
singularity). A connected curve B in D is rational (resp. admissible) if each
irreducible component of B is rational (resp. if none of the irreducible compo-
nents of B is a (—1)-curve and the intersection matrix of B is negative
definite). An admissible rational twig T is maximal if T is not contained in
an admissible rational twig with more irreducible components.

Let {Til (resp. IR, and {F\l) be the set of all admissible rational max-
imal twigs (resp. admissible rational maximal clubs and admissible rational
maximal abnormal clubs). Then there exists a decomposition of DD into a sum
of effective Q-divisors, D=D*+ Bk (D), such that Supp (Bk(D)) = (U, Tz) U
(U, R,)U(U, F,) and ((Ky+D?*)+Z) =0 for every irreducible component Z
of Supp (BE(D)). The divisor Bk (D) is called the bark of D, and we say that
Ky + D* is produced by the peeling of D. For details of how Bk(D) is
obtained from D, see [M-T].

The Zariski-Fujita decomposition of Ky + D, in case Ky + D is pseudo
-effective, is as follows:

There exist Q-divisors P, N such that Ky +D =P+ N where, = denotes
numerical equivalence, and

(a) P is numerically effective (nef, for short). If (Y —D) =0, then P
~( by a fundamental result of Kawamata (cf. [Ka2]).

(b) N is effective and the intersection form on the irreducible compo-
nents of N is negative definite

(¢) P+D;=0 for every irreducible component D; of N.

N is unique and P is unique upto numerical equivalence. If some multi-
ple of Ky+D is effective, then P is also effective.

The following result from [F, Lemma 6.20] is very useful.

Lemma 1. Let (Y, D) be as above. Assume that all the maximal vational
twigs, maximal rational clubs and wmaximal abnormal rational clubs of D ave
admissible. Let K (Y—D)2>0. As above, let P4+ N be the Zariski decomposition
of Ky+D. If N#Bk(D), then there exists a (—1)-curve L, not contained in D,
such that one of the following holds:

(1) L is disjoint from D

(i)  L+D=1 and L meets an irreducible component of Bk (D)

(iii) L-D=2 and L meets two different connected components of D such that
one of the connected components is a maximal rational club R, of D and L meets a
tip of R,

Further, c(V—D—L) =k (Y—D).

Following Fujita, we will say that a smooth affine surface V with x (V) >

0 is NC-minimal if it has a smooth projective completion % such that D:=_l;—
V is an m.n.c. divisor and N=Bk (D), where P+N is the Zariski-Fujita decom-
position of Kv+D.
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The following results proved by Kawamata will be used frequently.

Lemma 2. (cf. [Kall). Let Y be a smooth quasi-projective algebraic sur-
face and f: Y — B be a surjective morphism to a smooth algebraic curve such that
a general fibre F of f is irreducible. Then £(Y) 2k (B) +k (F).

Lemma 3, (cf. [Ka2]). Let Y be a smooth quasi-projective algebraic sur-
face with €(Y) =1. Then therve is a Zariski-open subset U of Y which admits a
morphism f: U—B onto a smooth algebraic curve B such that a geneval fibve of f is
isomorphic to either C* or an elliptic curve.

We call such a fibration a C*-fibration or an elliptic fibration respective-
ly.

Similarly, we can define a C-fibration and a P'-fibration on a smooth
projective surface.

As mentioned in the introduction, the next result follows from R.
Kobayashi's inequality and plays an important role in the proof of the
theorem.

Lemma 4. (cf. [M-T2]). Let V be a smooth affine surface with e (V)
<0. Then k(V)<1.

We begin with some properties of Q-homology planes.
Let X be a smooth affine surface and X C Z be a smooth projective com-
pactification with D:=7Z—X.

Lemma 5. Assume that the irvegularity q(Z) = 0. Then X is a
Q-homology plane if and only if the irreducible components of D genevate H,(Z; Q)
freely and H, (D; Q) =0.

Proof. We use the long exact cohomology sequence with Q-coefficients of
the pair (X, D). By Poincaré duality, H' (Z, D; Q) =H,—;(X). Hence H;(X)
=0 for 1>0 if and only if the restriction map H' (Z; Q)—H' (D; Q) is an iso-
morphism for i <4. Since H,(Z; Q) =Hs(Z; Q) =0 by assumption, it follows
that X is a Q-homology plane if and only if H, (D; Q) =0 and the irreducible
components of D generate H,(Z; Q) freely.

Now let X be an affine surface with either a C-fibration or a
C*-fibration, ¢: X—B. For a suitable smooth compactification XCZ we get a

P!-fibration @: Z—’[—i where B is a smooth compactification of B. We will
need the following result due to Gizatullin.

Lemma 6. Let F be a scheme-theoretic fibre of ®. Then we have;
(1)  Frea is a connected normal crossing divisor all whose irreducible components
are isomorphic to P*.
(2) If F is not isomorphic to P', then Frea contains a (—1)-curve. If a
(—1)-curve occurs with multiplicity 1 in F, then Fra contains another
(—1) -curve.
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Note that from (1) it follows that a (—1)-curve in Fyes meets atmost two
other irreducible components of F.

Let ¢: X—B be a C*-fibration and ®: Z— B be an extension as above.

Then D contains either one or two irreducible components which map onto B
by @. We will call these components as horizontal. All other irreducible
components of D are contained in the fibres of @. An irreducible component
of D will be called a D-component for the sake of brevity. We say that ¢ is
twisted if there is only one horizontal D-component (in [F], such a fibration is
called a gyoza). Otherwise we say that ¢ is untwisted (in [F], such a fibra-
tion is called a sandwitch). In the untwisted case the horizontal
D-components are cross-sections of @ and in the twisted case the horizontal
D-component is a 2-section.

The next result follows by an easy counting argument using the fact that
the irreducible components of the divisor at infinity in a smooth compactifica-
tion of a Q-homology plane generate the Picard group, Pic (X), freely over Q.

Lemma 7. (cf. [G-M], Lemma 3.2). Let ¢: X—B be a C*-fibration on
a Q-homology plane X. Then we have,

(1) If ¢ is twisted, then B =C, all the fibres of ¢ are irveducible, there is a uni-
que fibre Fo of @ such that Fo,., is isomorphic to C and all other fibres are isomor-
phic to C*, if taken with veduced structuve.

(2)  If ¢ is untwisted and B=P?, then all the properties of the fibres of ¢ ave the
same as (1) above.

(3) If ¢ is untwisted and B=C, then ¢ has exactly one fibve Fo with two irre-
ducible components and all the other fibres are isomorphic to C*, if taken with re-
duced structuve. Either both the components of Fo are isomorphic to C which in-
tersect transversally in one point or they ave disjoini with one isomorphic to C and
the other one isomorphic to C*.

In order to avoid repetitive arguments in the proof of the theorem, we
give detailed proof of the next result and use such arguments without details
later on.

Lemma 8. Let X be a Q-homology plane with k¥ (X) =0 and ¢: X—B be a
C*~fibration. Let Fy be the veducible fibre of ¢ (cf. lemma 7) which contains a
contractible irveducible curve C. Consider a smooth completion Z 2O X with D:=2Z7
—X an ne. divisor and @: Z—P! a P'-fibration which extends @.

(1) Suppose ¢ is twisted.

If K (X—C) =0, then the morphism X —C—C* has no singular fibres. If &
(X—C) =1, then the morphism X —C—C* has at least one multiple fibre.

In both the cases, the fibve over the point po: =P'—B can be assumed to have
the dual graph
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and the horizontal component Dy intersects the (—1)-curve transversally in a
single point.

(2)  Suppose ¢ is untwisted and B=C.

Then the fibre Fw over pw is a regular fibve of @ and the two horizontal
D-components meet this fibre in two distinct points. The morphism X —C—C has
at least one multiple fibre.

(3)  Suppose ¢ is untwisted and BEP?.

If K(X—C) =0, then ¢': X—C—C has at least one and at most two multiple
fibres. If ¢ has two multiple fibres, then their multiplicities are 2 each. If k (X
—C) =1, then ¢ has at least two multiple fibres.

Proof. (1) Let ¢ = @lx—c. Suppose ¢ has a multiple fibre, say m,F,
with m,=> 2. Denote by po, p1 the points ¢ (C), ¢(F,) respectively. Using
lemma 9, we can construct a finite ramified covering 7: A—C, ramified only
over po, p1 such that the ramification index over p; is m; for i=0,1, where m, is
a large integer. Then the normalization of the fibre product A X ¢X contains a
Zariski-open subset U which is a finite étale covering of X —C. Since k(4)
=1 for large mo, by lemma 2, ¥ (U) =1. But then ¥ (X—C) =1, since k¥ does
not change under finite étale coverings by a result of Iitaka (cf. [I]). This
contradiction shows that ¢ has no multiple fibre, if ¥ (X—C) =0. Hence ¢’
has no singular fibre.

If ¢ has no multiple fibre, then X —C has a 2-sheeted étale cover which
is isomorphic to C* X C*. Hence k¥ (X—C) =0.

The assertion about the fibre Fw is proved by Fujita in [F], lemma 7.5(2).

(2) The assertion about F is proved in [F], lemma 7.6 (1). If ¢ has
no multiple fibre, then X — C is isomorphic to C X C* contradicting the
assumption that & (X) =0.

(3) Suppose kK (X—C)=0. If ¢ has no multiple fibre, then X—C is iso-
morphic to C X C*, a contradiction. If ¢ has two multiple fibres miF, maFs,
then letting p; be the points ¢ (F;) for i=0,1,2, we can construct a finite galois
covering . A—P! which is ramified only over p; and the ramification index at
any point over p; is m; for 1=0,1,2. If one of the m, m; is strictly bigger than
2, then for large mo, A is non-rational. But then we see that x (X —C) > 1.
Hence m;=m,=2.

The proof for the case ¥ (X—C) =1 is similar.

The next result follows from R. H. Fox's solution of Fenchel's conjecture
(cf. [Fo] and [C]).

Lemma 9. Let ay, ..., a, be distinct points in P! with ¥=3 and my, ..., m, be
integers>2. Then there is a finite Galois covering T. B—P" such that the rami-
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fication index at the point a; is m; for 1 <i<y. There is also a similar assertion
if ¥=2 and mi=mo.

Lemma 10. Let Ci, Cz be two distinct contractible curves on a Q-homology
plane X with £(X) 20. Then CiNCo# $ and if the intersection is a single point
then it is transverse.

Proof. Since ¢ (X—C;) =0, by lemma 4 £ (X —C;) <1. Clearly, ¥ (X —
C,) 20.

Consider the case ¥ (X —C;) =0. Since Pic(X) is finite, there exists a
regular function f of X such that (f) =mC, for some integer m. We can
assume that the morphism given by fi X—C;—C* has connected general fibres.
Then by lemma 2, a general fibre of this morphism is isomorphic to C*.
Thus, X has a C*-fibration such that C, is contained in a fibre. Suppose C;
NC,= ¢ . Since C; does not contain any non-constant units, the image of C,
is a point. This contradicts lemma 7.

Suppose £ (X —Cy) =1. If C;NCy= ¢, then e (X —(C,UC;3)) =—1 and
hence by lemma 4, ¥k (X— (C;UC,)) =1. Then by lemma 3 we see that X— (C,
UC,) has a C*-fibration. Since X does not contain any complete curves, this
morphism extends to a C*-fibration on X. Then C, and C, are mapped to
points, otherwise the fibration is a C-fibration. Again by lemma 7, both C,
C, lie in the same fibre and hence C), C; intersect transversally in a single
point by part (3) of lemma 7.

Now we know that C; NC;# ¢ . Suppose C;NC; is a single point. Then
e(CLUC) =1,e(X—CUC,) =0, and hence £ (X —C, U Cy) <1 by lemma 4.
Arguing as above, we see that X admits a C*-fibration such that C, U C; is
contained in a single fibre and hence they intersect transversally in a single
point, again by lemma 7.

3. Fuyjita’s clssification

In this section we describe the classification of NC-minimal Q-homology
planes with k=0 due to Fujita (cf. [F], 8.64). There are four types of such
surfaces. We also describe Fujita's surfaces H [—1, 0, —1], which are
NC-minimal surfaces with k=0, ¢=0 and b,=1.

Type 1 (cf. [F], §8.26). HI[k, —k] with k2>1

The dual graph of the divisor D at infinity for an m.n.c. compactification
1S given by

T1 ‘\ TZ

B1 B2

T3 T4
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Here B3=k, B{= —F and T?= —2 for all i. There is a (—1)-curve E; meet-
ing the tips T,, T, transversally in a single point and no other point of D.
Similarly, there is a (—1)-curve E; meeting T3 and T, transversally in a sing-
le point and no other point of D. The divisor F,=T,+2E,+ T, is a fibre of a

P'-fibration @ on X and Fp= T3+ 2E,+ T4 is another fibre of @. The curves
B:1 and B: are cross sections of @. Let Fo be the fibre of @ through B; N Ba.
Clearly C:=F,— (B;N'B;) =C, hence C is a contractible curve in X.

Lemma 11. x(X—C) =0.

Proof. The C*-fibration ¢: X —C—C has exactly two multiple fibres cor-
responding to 2E; and 2E,. Let p;=®(F;) for i=0, 1, 2. Using lemma 9 we
can construct a degree 2 galois covering 7. B— P! such that the ramification
index over p; is 2 for each i. By Riemann-Hurwitz formula, B=P'. Then

X XpB—B is a C*-fibration and X XpB— 7' (C) is an étale cover of X—C
isomorphic to C*X C*. Hence k(X—C) =0.

Types 2, 3 and 4 are denoted by Y [3, 3, 3], Y[2, 4, 4] and Y (2, 3, 6] re-
spectively by Fujita (§8.37, 8.53, 8.54, 8.59, 8.61). The dual graphs of
each of these have a unique branch point. There are three maximal twigs T;,
T, and T; for each of them and 2.°_,1/d (T;) =1, where d (T,) is the absolute
value of the determinant of the intersection matrix of T;.

Fujita has shown that m;(X) is a finite cyclic group for any NC-minimal
Q-homology plane with ¥(X) =0. This result will be used effectively in the
next section.

Now we will describe the surfaces H[—1, 0, —1] (cf. [F], §8.5).

The dual graph of an m.n.c. divisor at infinity is given by

T1 T2

B1 DO B2

Ts T4

Here, Bi=B%=—1, D3=0 and T?= —2.

4. Proof of the Theorem (Non NC-minimal case)

Let X be a Q-homology plane with ¥ (X) =0. In this section we prove the fol-
lowing.

Proposition. Suppose X does not have an NC-minimal compactification,
then X contains a unique contractible curve.

Proof. Suppose L is a contractible curve in X. Then ¥ (X —L) <1 and
there is a C*~fibration ¢": X—L—B" which extends to a C*-fibration ¢: X—B
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and ¢ (L) is a point (cf. proof of lemma 10). We choose a smooth compacti-
fication XC Z such that D:=Z7—X is a normal crossing divisor and ¢ extends
to a P'-fibration @: Z—P'. We now consider the three cases given by lemma
7.

Case 1. ¢ is twisted. By lemma 7 (1), B=C and every fibre of ¢ is irre-

ducible. The fibre Fo:=®@ ! (p) has the dual graph as described in lemma 8
(1) and the 2-section D, meets the (—1)-curve in F. transversally in a sing-
le point.

First consider the case K (X—L) =0. The surface X—L has the following
properties.

(i) X—L is affine

(i) ®¥(X—L)=0

(iii) e(X—L)=by(X—L) =0 and b;(X—L) =1

(iv) X—L is NC-minimal.
The property (iii) follows from the long exact cohomology sequence with com-
pact support of the pair (X, L) and duality. The property (iv) follows from
the observation that if X —L is not NC-minimal, then by lemma 1, X —L con-
tains a curve C=C. But then C is closed in X and disjoint from L, contra-
dicting lemma 10.

Now the surface X —L is isomorphic to H[—1, 0, —1]. Let F, be the
fibre of @ containing L. We may assume that any (—1)-curve in D con-
tained in Fy meets at least two other D-components in Fy. Since D is a con-

nected tree of P! s, either Fo,,,d=Z or the horizontal component D, meets an
irreducible component Do of D which occurs with multiplicity 2 in Fo (observe

that Fo — L is connected). Suppose D, C D is a (—1)-curve in Fy which is
disjoint from D,. Then by lemma 6 (1), D, meets at most two other
D-components contained in Fy. Hence we can contract D, to a smooth point
and get another compactification Z; which satisfies the same properties as Z.

Repeating this argument we can assume that L and Dy are the only possible
(—1)-curves in Fp. Moreover, if Do is a (—1)-curve then it meets two other
D-components. We claim that D, is not a (—1)-curve. Otherwise, the

m.n.c. divisor obtained from D U L by succession of contractions of
(—1)-curves cannot be of the type described by Fujita. Now we see that D
1S an m.n.c. divisor.

Since X is not NC-minimal and D is m.n.c., there exists a (—1)-curve C
given by lemma 1. Let C=CNX. If C # L then C is horizontal as it has to

meet L. Hence C meets one of the tip components T; of Fw. As above, X—C
is also of the type H[—1, 0, —1]. By contracting C and then the image of T},
we obtain a compactification divisor of X —C which is not of type H[—1, 0,
—1]. Hence C=L.

By lemma 8 (1), Kk (X—L) =1 if and only if ¢ has at least one multiple
fibre other than L. Now assume that K (X—L) =1. Then we can see that D,
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meets at least three D-components and hence D can be assumed to be m.n.c. as

above. By lemma 1, there is a (—1)-curve CinZz satisfying the properties
stated there. We arrive at a contradiction as above by first contracting C
and then T;.

Case 2. ¢ is untwisted and B=C. Now ¢ has a unique fibre which con-
tains two irreducible components, say L and L. Any other fibre of ¢ is iso-
morphic to C* if taken with reduced structure. The fibre Fe is a smooth
fibre of ¢ and the two horizontal components of D meet Fo in distinct points.
The divisor D may not be m.n.c., but it is obtained from an m.n.c. divisor by
successive blow-ups. By lemma 8 (2), the morphism X —L—C has at least
one multiple fibre. From this we can see as above that D can be assumed to

be m.n.c. Again since X is not NC-minimal, we get a (—1)-curve C=P!'on 7

which meets only a twig component of D. If Z‘?ﬁi then we get a contradiction
as above.

Case 3. ¢ is untwisted and B=P'. Then every fibre of ¢ is irreducible.
Any fibre of ¢ other than L is isomorphic to C*, if taken with reduced struc-
ture. By lemma 7.6 of [F], we can assume that every fibre of @ other than
the fibre Fy containing L is a linear chain such that the two horizontal compo-
nents of D meet the tip components of the fibre. From the connectivity of D
we see that the union of D-components in Fo is connected. Denote by D), D;
the horizontal components. Let Do be a D-component contained in Fy which
meets Dy or Dz Then Dy occurs with multiplicity 1 in Fo. If Doisa (—1)-
curve it can meet at most one more D-componet in Fy,. Hence we can contract

Dy to get a smaller compactification of X. Consequently we can assume that L
is the unique (—1)-curve in F.

Now (Kz+ D) +L=0. On the other hand, if Kz +D = P+ N is the
Zariski-Fujita decomposition then P= 0 by the properties of the Zariski de-

composition. Hence N‘L = 0. From the assumption that X is not
NC-minimal, we know that there exists a curve CC X such that C=C and its
closure C occurs in N. But by lemma 10 if L#C then L+-C>0.

If x(X—L) =1, then by lemma 8, the morphism X —L—C has at least two
multipe fibres. Then both D; and D, are branch points for the dual graph of
D and hence D is m.n.c. The curve C above can be assumed to be a
(—1)-curve. Since C+L>0, the intersection form on the subspace of Pic Z®
/Q generated by C and L is not negative definite. Hence L does not occur in

N and N*L>0 as CCN, a contradiction. If ¥ (X —L) =0, then we have a
morphism X— C with one fibre mL and general fibre isomorphic to C*, as in
the proof of lemma 10. This is a twisted fibration by lemma 7. Then we are
reduced to the case 1 and hence L is the unique contractible curve. This com-
pletes the proof of the proposition.
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5. Proof of the Theorem (NC-minimal case)
We begin with the following general result.

Lemma 12. Let I' be a connected normal crossing divisor on a smooth pro-
Jective surface Y. Assume the following conditions.

(i)  Every irreducible component of I is isomorphic to P*.

(it)  The dual graph of I has at most one branch point.

(1i1) If the dual graph has a branch point, then I has exactly three maximal

twigs Ty, T2 and T3 and 221/d (T:) >1.

(iv) T supports a divisor G with G+G>0.

Then K (Y—I) = —o0,

Proof. Suppose that K (Y—1I)>0. We will give the proof when I" has a
branch point. Then Ky+41I has a Zariski-decomposition P+N. First assume
that (Y, I) is NC-minimal. Then N=Bk(I'). Let Cy, C; and Cj be the irre-
ducible components of the maximal twigs T,, T, and T3 respectively meeting
Co, the I'-component corresponding to the branch point. By lemma 6.16 of
[F], the coefficients of C; in Bk(I") are 1/d (T;). Hence P=Ky+Co+ 2 °_, (1
~ 4Ty (}I‘i) )Ci+ ... Butthen P*Co=—2+ 2 (1—1/d (T;)) <0, contradicting
the fact that P is nef.

If (Y, I) is not NC-minimal, by lemma 1 we can reduce to the case when
there is a (—1)-curve E on Y which occurs in N, E is not contained in I" and
E-I'=1, where E meets a component of Be(I'). Then k(Y—1) =k (Y—TU
E). By contracting E and any (—1)-curves in the maximal twigs successive-
ly we reduce to the situation when either the image of I" becomes linear or a
maximal twig has a vertex with non-negative weight or the NC-minimal case
occurs. If a maximal twig has a vertex with non-negative weight then by
lemma 6.13 of [F], we get k(Y —1I) = —o00, a contradiction. This proves the
result.

Let X be an NC-minimal Q-homology plane with x (X) =0. Then m, (X)
1s a finite cyclic group by Fujita.

Lemma 13. Assume that X contains a contractible curve C. Then X is of
type H{k, —F], E>1.

Proof. As before, there is a C* fibration ¢: X—B with ¢(C) a point and
B=C or P!. We consider the three cases depending on the type of ¢.

Case 1. ¢ is twisted.

Then B=C and all the fibres of ¢ are irreducible. We claim that ¢ has
at most one multiple fibre. Let py, ..., p, be the points in B corresponding to
the multiple fibres and p.=P'—B. If r=2, then we can construct a suitable
non-cyclic covering A— P!, ramified over pi, .., py, p». Then we get a con-

nected étale cover X—X with non-cyclic galois group. This is not possible.



74 R. V. Gurjar and A. ]. Pavameswaran

Hence r<1.

As before, ¢ extends to a P'-fibration @: Z—P' on a smooth compatifica-
tion Z of X. Let D:=Z—X. As in lemma 8, we see that K (X—C) =0 if the
morphism X —C—C* has no multiple fibre. Let Fo be the fibre of @ contain-
ing C.

Using the lemma 12, we now see that the dual graph of D has at least one
branch point. But the fibre Fe has the form

by lemma 8 (1). Hence by lemma 12 again D has at least two branch points
and D is obtained from an NC-minimal divisor of the form H[k, —k] for £>1.

If the morphism X —C—C* has a multiple fibre with multiplicity m > 1
and Fo#C then the divisor D is m.n.c and the 2-section D, meets at least four
other curves in D. This contradicts Fujita's classification. Hence either the

morphism X —C—C™* has no multiple fibre or C=F,. In the later case, X —
C—C* has one multiple fibre by lemma 12 and £ (X—C) =1. Further, D, is a
branch point of D.

Case 2. ¢ is untwisted and BEC.

We claim that this case does not occur. First we observe that the fibre
F. is a regular fibre of @ and the two horizontal components meet Fe in two
distinct points. It is easy to see that D cannot be obtained from any of the
surfaces Fujita has described by a finite succession of blowing-ups.

Case 3. ¢ is untwisted and B=P*

The fibration ¢ has at most two multiple fibres by lemma 8. The curve

Fo— C is connected. The morphism ¢": X —C— C has at least one multiple
fibre by lemma 8 (3). If ¢  has only one multiple fibre, then X —C contains
C* X C* as a Zariski open subset and hence ¥ (X —C) =0. Suppose ¢  has
two multiple fibres. Then D is m.n.c. and we see that the horizontal

D-components D; and D, intersect in a point on C. This shows that X is of
type H [k, —k]. Further, the multiple fibres have multiplicity 2 each
(otherwise D cannot be of type H[—1, 0, —1]) and ¥ (X —C) =0, as in the
proof of lemma 8(3).

Next we prove the following.

Lemma 14. Let X be of type H [k, —k] and X contains a contractible
curve L with k(X—L)=1. Then k=1.

Proof. From the proof of lemma 10, we know that there is a twisted
C*-fibration ¢: X—C with ¢ (L) a point. Further, ¢’ has exactly one multi-
ple fibre, where ¢: X —L—C* is the restriction. The horizontal component
Dy is a branch point for D and the fibre Fe has the dual graph,
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L is a reduced fibre of ¢ by the proof of case 1 of lemma 13. Using lemma 6

repeatedly we see that L can be assumed to be the full fibre of ¢. From Fu-
jita's description of D, we see that k=1 because the branch points intersect
and one of them is a (—1) -curve.

To complete the proof of the theorem, it remains to prove the following
result.

Lemma 15. (1) On the surface X of type H [k, —Fk], theve is a unique
contractible curve C with ¥k (X—C) =0.
(2) On HI[1, —1] theve is a unique contractible curve L with ¥ (X—L) =1.
(3) Ifk=1and C and L are the contractible curves as above then C*L=2 and
they meet transversally.

Proof. (1) Let C be a contractible curve on X with ¥ (X —C) = 0.
There is a C*-fibration ¢: X—C such that for some m =1, mC is a fibre of ¢.
Then ¢ is a twisted fibration. Let XCZ be a smooth projective compactifica-
tion such that ¢ extends to a P'-fibration @: Z—P!. By lemma 8(1) there is
no multiple fibre for the map X—C—C*. The fibre F. has the dual graph,

and D, meets the (—1)-curve in Fw. Let Fy be the fibre of ¢ containing C
and Do be the D-component of F that meets D,. We claim that Dy meets only
one other D-component in Fy. If not, Do is a branch point of D and from Fu-
jita’s classification, we deduce that D, is a (—1)-curve and after contracting
Dy, we get an NC-minimal completion of X. But this is not of type H [k, —F]
with >1. Hence we may even assume that Do is not a (—1) -curve.

As before, we may assume that C is the only (—1)-curve in Fo. Since
an NC-minimal completion of X is obtained from contracting suitable
(—1)-curves in D, we conclude that D, is a (—1)-curve. Then D, is a

(—2) -curve. By repeating this argument, we infer that the dual graph of C
UD is

—2

-2

Ql
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By successive contractions of (—1)-curves starting with D, we get an m.n.c.
compactification divisor of X such that the dual graph of the image of CUD

looks like H [k, —Fk], with the image of C passing through the intersection of
the two branching curves. From this it is easy to see that the curve C is uni-
que.

(2) Let L be a contractible curve on X with K(X—L) =1. By the proof

of case 1 of lemma 13 and lemma 14, we can assume that LUD looks like

e

Clearly, L is a full fibre of the P'~fibration on Z given by the linear system
|T,+2B,+T,|. Therefore L is unique.

(3) We have seen that (—7 passes through the intersection of B; and B:

and meets transversally with both. Hence C:L=2. Now by lemma 10, CNL

consists of 2 distinct points as L does not pass through B, N B,. This com-
pletes the proof of the theorem.
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