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A coupling of infinite particle systems
By

T.S. MOUNTFORD

In this note we extend a coupling technique introduced in Mountford
(1993) to a large class of interacting particle systems (IPSs) on the one
dimensional lattice. A one dimensional IPS is a Markov process on state
space D where Z is the integers and (in this paper) D is some finite set of
possible spin values. The generator for this process can be written as

=), ) (Fom) —f))er(n, v)

T veDT

where the first sum is over finite subsets of Z, T and where v7 denotes the
configuration with vy (y) equal to v(y) if y € T and equal to 1 (y) otherwise.
The function ¢z (v, ) can be assumed to be zero if v(y) =71 (y) for some y in
T. In this case for v different from 1 on T, we should think of the process as
satisfying

P[r][.q.d[:v on T |77[] =CTr (7']:, )J)dt+0 (dt)

See Liggett (1985), especially section 1.3, for a discussion of existence ques-
tions. Throughout this paper we will assume that the process
is of finite range . there exists an R<<oo so that cr(,) is zero if T has
length greater than R and such that for any x in Z and T containing x
of length at most R, cr (v, 1) depends only on the spins n (x —R), n (x
—R+1),,.., 7 @),.n«x+R).

and
has bounded flip rates . for each site x, Z Z cr (v, m) <1. The
z€T peDT
bound of 1 is arbitrary, any bound can be reduced to 1 by rescaling
time.

Given these hypotheses, there exists a unique Markov semigroup S (t) .
corresponding to operator £. It should be noted that if the “flip” functions c
are translation invariant, then (perhaps after rescaling time) the bounded flip
rates hypothesis is guaranteed once the finite range hypothesis is satisfied.

A probability measure v on D? is invariant for the process if for each f
continuous on D and for each t>0
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Jf)vdw)= SO f(w)v(dw)

where S is the semi-group for the process. To check that a measure is in-
variant it is only necessary to verify the above equations for cylinder func-
tions f.

Our principal result is

Theorem One. Let n; be a one dimensional particle of finite vange and
with bounded flip rates.

If tn is a sequence of times tending to infinity such that 0, —v in distribu-
tion, then v is an invariant measuve for the process.

Remark 1. the hypotheses of the theorem are clearly not the most
general and could be easily weakened but we feel that our simple assumptions
enhance the clarity of the paper.

Remark 2. This result improves the result obtained in Mountford
(1993) in that we no longer require the initial configuration to be “finite” and
we no longer require 0 to be an invariant measure.

Remark 3. Given assumption (ii) there is no problem with existence
of our process.

We wish to explain our motivation for the result. It is well known (see
e.g. Liggett (1985), Proposition 1.8 page 10) that if a particle system if Feller
(which is certainly the case for particle systems satisfying conditions (i) and
(ii) of Theorem One) and t, is a sequence of times tending to infinity such

1 [ e , .
that 7[ ©S (t) dt converges in distribution to measure v then v must be in-
0

variant. Thus if our particle system 7, admits only one invariant measure, v,
it must be the case that as T tends to infinity

1 T
7]; uS (t)dt—v

in distribution for any initial probability ¢#. Theorem One enables us to make
the following immediate extension

Theorem Two. A finite range one dimensional interacting particle sys-
tem n,, with bounded flip rates which has a unique invariant measure is evgodic.

This result is relevant to question 4, chapter one of Liggett (1985). It is only
a partial answer as it says nothing of particle systems with long range be-
haviour or of higher dimensions; the method given here is strictly one dimen-
sional. It seems more than plausible that the conclusion of Theorem Two is
true in higher dimensions. Theorem One is, I hope, of interest, but a problem
which limits its application is that the main criterion for the uniqueness of in-
variant measures, the (e, M) criterion (see Liggett (1985) or for recent work
Maes and Schlossman (1993)), also establishes ergodicity. Indeed exponen-
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tial convergence is deduced, a much stronger result than we show.

The paper is planned as follows: in §1 some elementary coupling results
are assembled, in §2 we construct a coupling which implies Theorem One, in
83 we give some applications of Theorem One to cases not covered by theorem
Two.

This work was completed while the author was working at the Isaac New-
ton Institute, Cambridge. Their hospitality is gratefully acknowledged.

§1

In this section we establish crude bounds on how boundary behaviour can
propagate. We fix a particular particle system 7, with flip functions ¢ satis-
fying the hypotheses of Theorem One. Let R € Z; be such that cr is identical-
ly zero if T has length greater than R and such that cr (v, ) only depends on
spins of 1 at sites within R of every site in T. Let N(T) be the set of sites
within R of every site of T. We say a process 7 performs a T jump at time ¢
if n:(y) =n.-(y) if and only if y is outside T.

We describe a particle system 1’ as a system restricted to interval I, with
boundary conditions 0 (without loss of generality O is in D), if all sites out-
side I are fixed at value 0 and all sites in I flip according to functions cr (.,.)
for TCI. Given two particle systems n and ', both of range R, we say they
are naturally coupled if whenever 1,-=17"— on N (T), then 1 performs a T
jump at time t if and only if " performs a T jump at time t and in this case 7,
=7n';on T. Such couplings exist (see e.g. Durrett (1988), Liggett (1985)).

Lemma 1.1. Let ny and ' be naturally coupled where
i) mo=n'oon[—n, nj
i) N is a particle system restricted fo an interval containing [—n, n] with zero
boundary conditions.
Then there exists a Poisson Process V (t) of rate 2R such that for all times t 1,=
n'ion [—n+RV(), n—RV ()]

Proof: We call a site x vulnerable at time t if there exists s € [0, t] and
ly —2| <R such that 75 (y) is not equal to p’s(y). Let L(t) =sup x<R+1:x
is vulnerable at time t} and let R (t) =inf x> — (R+1): x is vulnerable at
time tf. The following are obviously true:

i) m=n"ron [L(t)—([R—-1),R(t)+R-D)],

ii) L(0)<—n+R,R(0)>n—R.

L (t) can only increase if there is a T jump (for 1 or ') with T having right
endpoint in [L(t) —(R—1), L(t)] flips, at which time L (t) will increase by at

most R. By our bounded flip rates assumption, Z Z cr (v, ) <R, where we

T veDT
sum over T with right endpoint in the interval [L (t) — (R—1), L(t)]. Simi-

larly for the way R (t) decreases. The lemma follows.
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Corollary 1.1. Let 1 and 'y be naturally coupled and
1) 77():7],0 on [_3st, 3RZS] s
ii) 7 is restricted to [—3R%S, 3R2S] with zero boundary conditions.
For fixed M € Z,, the chance that ns=1n's on [—M, M] tends to one as S tends to
mfinity.

We now define (separately for each t) another process {X*, 0<s<t+K which
will be defined on an essentially finite state space with the property that for

fixed M, as t tends to infinity the spins of {&k on [—M, M] will be close to

those of 74k, provided their initial configurations are close. The process (X"
is defined in three steps.

L. First take a rate one Poisson process. Let its first [t-t*°] points be 7
< Ty...Tr_ps (with slight abuse of notation for the last term). (As will be
seen in the technical details we chose the term t?® simply because 2/3 is
in the interval (1/2,1).)

2. On the interval [7;, Tis1) (7o is taken to be 0), we let X! evolve as a
particle system restricted to [—4R?(t—i), 4R?(t—i)] with zero boundary
conditions. We take (&' to be the configuration (X restricted to this in-
terval. We take (' to be previously defined.

3. If 7y_ps is greater than or equal to t+K, then {¥ is fully defined on the
interval [0, t+K] and no further definition are required. If not then we

let L&* evolve on [7,_rers, t+K] as a particle system restricted to [—4R?
(t—[t—1t*7]), 4R?*(t— [t—t**])] with boundary conditions equal to O and
such that &% is equal to {&fs- on [—4R? (¢t — [t —t¥%]), 4R*(t — [t —

t2/3] ) ] )
R2(t—1i),4R2(t—1)]

Note by regarding {*** as being in the state space D'™* on time in-

terval [7;, Tis1), we can think of (¥ as being a continuous time Markov chain
(t—r2/3)

on the finite state space U DITARHE=DARKE=D] which jumps (where this
i=0
\ v . me
makes sence) from D!T4RA-DARI=D] o pl-4R2(t-i-DARX=i=D] 4t constant rate 1.

Lemma 1.2, For fixed M € Z, and K € Ry if (E'=mn0 on interval of site
[—4R?, 4R%*t] and the two processes ave naturally coupled, then the chawnce that

CEh=n1ek on [—M, M] goes to one as t tends to infinity.

Proof. Lemma 1.1 together with the Markov property applied to times ;
gives the following: for every >0, there exists a V such that

inf<,_po P[CE*=n, on [—4R?(t—i) +V, 4R?*(t—i) = V]] >1—e¢

The Central Limit Theorem implies that
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t+K— Ty s
t2/3

1 in probability

Putting these facts together we see that with probability tending to one as t
tends to infinity,

t+K— T¢_¢Z/3S‘g‘t2/3 and 7¢ 2= Cgifwa on [— 3R2%t2/3, SRZ%l?'/E)]

The result now follows from Corollary 1.1 and the Markov property.

§2
In this section we prove Theorem One. The essential step is to establish

Proposition 2.1. For any fixed M € Z, and T € R, there exist a coupling

of (It and (' such that as t tends to infinity, the probability that (¢, = (>
tends to one.

Given this result Theorem One follows quickly and simply, therefore we feel it
makes sense to show how it follows from Proposition 2.1 before descending

into the technicalities necessary for the proof of Proposition 2.1. In the se-

quel we will drop the superscript O and write {} for (.

Pryof of Theorem One. Let t, tending to infinity be such that 7., converges
to v in distribution. It is sufficient to show that for each cylinder function f
and each T€R,, [f(w)vdw)= JS(T)f(w)v(dw). Here, as before, S(t) is
the semigroup corresponding to the interacting particle system. Let f have
support in [—M, M].

First by definition of weak convergence

Jf@)v(dw) =1imE[f(n.,)] .

n—oo

Lemma 1.2 implies that

EmE [f () ] =UmE[F (L] .

n—oo n—oo

Proposition 2.1 yields the equality
HimE [f () 1 =1mE [ (Lh™)] .

n—oo Nn—o0

We apply Lemma 1.2 to obtain

HmE [f (5 ). = imE[f (e r) 1. =HmE[S(T)f (1) ] .

n—oo n—oo Nn—oco

But S(T)f is a continuous function since, as previously noted, 1, is Feller, so
this last limit must equal [ S(T)f(w)v (dw) and we are done

It only remains to prove Proposition 2.1. The ideas for the proof are very
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close to those of Mountford (1993). We can and will regard the processes (¢,

t—12/3
(It 0<s<t+T as finite state Markov chains on the set U D4R D AR =D
i=0
We wish to couple the processes so that with probability tending to one as t
tends to infinity,

CE=CLY for all s € [Ti—res, t]

The process (' ({T) can be constructed in two steps as follows

FirsT STEPS: Choose the sequence of states that {' jumps to (i.e. pick a realiza-
tion of the embedded discrete time Markov chain): Xo,.X1,..Xn1...Xn,... Where N;
=inf {n: X,, € D'T*R2-DARZE=D) ¥ i simply 1o restricted to the interval [—
4R%, 4R%].

SECOND STEP: Given this sequence X;, there is, for each state X;, a jump rate q
(X;). It is obtained by adding all the flip rates of the sites of configuration
X, plus the unit flip rate at which the process moves its boundary inwards if

X; € DITHRU=DARI=D) g0 4 <4 — 423 Choose independently of each other ex-
1

onential random variables ey, e1, e of means S
P 0 Ol B q(Xo)" q(X1) "

i-1 i
We obatain {' by taking {{=X; for s € [Z e;, Ze,-), here e_, is taken to be O.
j==1 j=-1
The above recipe can also be used to construct the process (.
We will construct a coupling of two processes { and {7 by employing the
above construction for both processes and choosing the same embedded dis-
crete time Markov chain realization Xo, Xi, Xa.... but different exponential ran-
dom variables (egey,..), (ed, ef..) to construct ' and {T*. The exponential
random variables will be chosen with the aim of ensuring that for all i large

i i
enough Ze,-= Ze,-T—T. We will shortly describe the coupling explicity, but
0 j=0
first we require a simple lemma.
Lemma 2.1. Given x>0, we can couple together two mean v exponential
random variables X and Y so that with probability e™*"*, X=Y+x.

Proof. Let Z be a random variable, independent of X with distribution
equl to a Y. Then by memoryless properties of exponential random variables

Y=Ixsn (X—x) +lix<nsZ

is an exponential random variable of mean v with the desired property.

We can now describe the coupling of two sequences of independent exponen-
tial random variables we employ. We call it the ABL coupling because it is a
continuous version of a discrete coupling employed by Andjel, Bramson and
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Liggett (1988).
We write the sequences of exponential random variables that we wish to
couples as fe;l, lefl. We will choose the pairs (e,, ¢) so that

n—1

i=-1

is a martingale. (e_, and T, are taken to be zero.) We define the following
stopping times for the martingale M:

Vo=0,
for i odd, Vi;=inf {n>V,_;: M, =T}
for i even, V;=inf n>V,_: M, <T},

We choose (e;, ef) independently until i = V;; then we choose (e;, ef) so that

(T—Myy)/E(e1) MV
1

with probability e +1=T. By Lemma 2.1 this is possible. If

My,+1 is equal to T, then thereafter we chose ¢; =e/, ensuring that thereafter

M,=T. If My, is not equal to one, we choose (e;, ¢f) independently until
time V3 then (again as with Lemma 2.1), we choose (ey, evi) so that with
probability e™v2=TV/Etev) ppy =T, Again if My,4, =T, we choose subsequent
ei, ef's so that M, remains equal to T. Otherwise we continue with indepen-
dent ¢;, ef until V3 and so on. We say the ABL couples successfully by time
n if Mys1=T. Of course this implies that M, is equal to T for all subsequent
r.

For this couplig to work to our purpose we must first establish a crite-
rion for the coupling to be successful, and secondly show that this criterion
will be relevant to the exponential sequences we use to construct {f and {7,

Lemma 2.2. There exists a function f. () such that lim f.(x) =1 and

Zco
if eo, e1,... ex and el el ... ek are sequences of independent exponential random vari-
ables with

a) Ele;] =E[eT] <1 for each i and

b) Eleil /E [ei+1] is less than or equal to ¢ <o, then the chance that the ABL

N
coupling of the sequences succeeds by time N is at least f, <Z (E [e4] 2> .
i=0
Proof. Given the memoryless property of exponential random variables,
the, is n is not equal to V; for some i, we can think of M4, as being obtained
from M, by, with probability 1/2 adding an exponential random variable of
mean E [e;] and with probability 1/2 subtracting an exponential random vari-
able of mean E[e;]. Given this characterization and using again the memory-
less property of exponential random variables, we see that provided My, is not
equal to T, then |Mv,,—T| is distributed like an exponential random variable of
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mean E [e,] on the event V, =7 Therefore, given Lemma 2.1 and property
(ii) of the sequence E [e;], we find that

1
1+4+c¢

PIMyyr# TIMy, # T, Vy<o0] < fo TSt =

Therefore for any n € Z,, we have

P[My#T] s(l—j_j)"+1>[v,,>1v—1]

N
The desired result clearly follows as P[V,>N—1] tends to zero as Z(E

i=0
[e;])? tends to infinity if all the summed terms are less than one.

In working towards the second objective, we first record some necessary facts
about the sequence g (X,).

Lemma 2.3. The sequence q(X,) satisfies
D) g (Xa—q (Xur1) |[<8R?+2R+1
ii)  For some K>0 not depending on t q(Xnt1)/q(Xn) >K for all n<N.

Proof. we consider inequality (i). This deals with the difference in
jump rate resulting from the jump of {’ to X,41 from X,. There are two kinds
of jump to consider. The jump corresponding to a 7, and the jump corres-
ponding to a flip of {‘. In the first case the flip rate at X, has no contribu-
tion from 8R? sites which contribute to ¢ (X,). Also the flip rates of at most
2R+ 1 sites has altered. Since the total flip rate at a single site is at most 1
the result follows.

(ii) follows from (i) as if n<N, then the flip rate, g (X,) is at least 1.

Lemma 2.4. Let Ay (k=1, 2,... t—t*"®) be the sequence of states the pro-
cess  visils in the vandom time interval [t4-1,74) . (Necessarily) given our cou-
pling, Ay is also equal to the sequence of states visited by (' in the time interval
[tF_1,tf).) Let Fr,_, be the sigma field genevated by (y; t <Tx—1. Then there ex-
ists h>0 (not depending on t) so that for all k<t— "3,

P >h

1 ,o h
Z Q(Xi) >t_k|F2'k—l
X1€Ak
Proof. Let Y, be the configuration taken by (-,

Let Y, Ys,... be the subsequent sites visitd by {. Suppose that Y; has jump
rate equal to V>30 R% It follows from Lemma 2.3 (i) that the jump rates ¢
(Y2), q (Ys),...Yy/s0r: are all in the interval [2V/3, 4V/3]. Also if a site V;
has {lip rate G, then the chance that its next jump corresponds to a point 7y is
precisely 1—1/G. Therefore, the chance that Y,V3,...Yy 3052 are all in Ay is at

least equal to (1 —3/2V) V7% If this event of probability bounded away
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1 V {3\, 3
from O occurs then X;k q(X;)2> 0% (W>Z—W . Now observe that
since we assumed that the total flip rate at a given site was at most one, the

rate V can be at most 8R%(t—F%) +1. The result follows.

Corollary 2.4. Let B(t) denote the sequence of states X; visited by { be-
1

q(X)?

Proof of Proposition 2.1. Corollay 2.4 establishes that as t tends to infin-

ity Z

N2
XieeB(t) g (Xi)

that we may apply Lemma 2.2 to the sequences e;, ef. This gives us the Prop-
osition.

fove Ty_pzs.  As t tends to infinity Z
XieB(t)

tends to infinity in probability

tends to infinity in probability. Lemma 2.3 part (ii) shows

§3

In this section we present two applications of Theorem One which are close
to the author’s interests and which are not covered by Theorem Two.

Corollary 3.1. Consider an annhilating branching process 1, for which
the branching coefficient A is greater than 1/3 and such that no# 0. Then 7,

converges to product measure L distribution as t tends to infinity.

Proof. Neuhauser and Sudbury (1992) showed that the anhilating bran-
ching process possessed only two extremal invariant measures: the null mea-

sure and product measure 1]? Furthermore it was shown that if n,#0,

then the position of the nearest occupied site to the origin at time t was tight
as t varied. We establish the Corollary by assuming the converse and obtain-
ing and contradiction. If the Corollary is not true, then we can find ¢, in-
creasing to infinity such that 1., converges in mean to a probability measure v
not equal to the product measure. Theorem One tells us that v must be in-
variant; hence it must be a convex combination of the null measure and the
product measure. However since the position of the nearest occupied site of
7. is tight as t varies, v can put no mass on 0. This establishes a contradic-
tion.

Corollary 3.2. Let m: be a crilical one-dimensional catalytic surface
model (possibly with particles moving by exclusion) . See Grannen and Swindle
(1990) or Mountford (1992) for details. If 9o=0, then 1, converges in distribu-

. 1 1
tion to 55_14-55“.

Proof. As with Corollary 3.2 we suppose the converse. As before there
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must exist {, tending to infinity such that 7, converges to v in distribution
1 . .
where v$%5_1+§5+1. By Theorem One v must be invariant. Furthermore,

given that the flip rates are defined in a translation invariant manner and that
No =0, must be the case that v is also translation invariant. But Mountford
(1992) establishes that the only such measures are of the form v=ad_;+ (1—
a) 0+1. By the symmetry of 1 and —1, it must be the case that a is equal to
1/2. This contradiction establishes the corollary.
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