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A coupling of infinite particle systems

By

T.S. MOUNTFORD

I n  th is  no te  w e  ex ten d  a  coupling technique introduced in  Mountford
(1993) t o  a  la rg e  c la ss  o f  in te rac ting  partic le  system s (IPSs) on the one
d im ensional la ttice . A  o n e  dimensional IPS i s  a  Markov process o n  state
space Dz  w here  Z is  the  integers a n d  ( in  th is  p ap e r)  D  is som e finite set of
possib le  spin  values. The generator for this process can be written as

Qf (77) = E v(i),) — f ( 0) cr (72 ,
T  p E D T

where the  first sum  is over fin ite  subsets of Z, T and w here 1.)17 denotes the
configuration with LT (y ) equal to 2.) (y) if y  E T  and equal to 77 (y) otherwise.
The function CT  ( 1) , 7) )  can be assumed to be zero if 1) (y) = 77 (y) for some y in
T . In  th is case for 1.) different from 7) on T, w e should think of the process as
satisfying

P[7)t+dt=1) on T = 6 .7 , (n t, v )d t+ 0  (do.
See Liggett (1985), especially section 1.3, for a discussion of existence ques-
tions. T hroughout th is paper w e w ill assume that the process

is of f in ite  range : there exists an R< co so that CT  , )  i s  zero if T has
length greater than R and such that for any x  in  Z and T containing x
of length at most R, C T  ,  )7) depends only on the spins 17 (x—R), 7)(x

— R + 1 ) , „ „  (x)   ( x + R ) .
and

h a s  bounded f lip  rate s  :  fo r  each  s ite  x, CT (1 ) ,  7 ) )  < 1 . The
xE T veDT

bound o f  1 is  a rb itra ry , any  bound  can  be  reduced  to  1 by resealing
time.

G iven these hypotheses, there exists a  un ique  Markov semigroup S (t) .
corresponding to operator Q .  It should be noted that if the "flip" functions c
are translation invariant, then (perhaps after resealing tim e) the bounded flip
rates hypothesis is guaranteed once the finite range hypothesis is satisfied.

A  probability measure y  on  Dz  i s  invarian t for the  process if fo r each f
continuous on Dz  and for each t>0
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f f (w)v (c1(0) = I S (t) f (w) v (cl co)

w here S is  th e  semi-group fo r  th e  p ro c e ss . T o  check th a t  a  measure is in-
varian t it is on ly  necessary  to  verify  th e  above equations fo r cylinder func-
tions f.

Our principal result is

Theorem One. L et n t be  a one dim ensional particle of  f inite range and
with bounded flip rates.

If  ti , is  a sequence of tim es tending to inf inity  such that 7) tn - > v  in  distribu-
tion, then v is an invariant measure for the process.

Remark 1. th e  hypotheses o f  th e  theorem  a re  c learly  no t th e  most
general and could be easily weakened but we feel that our simple assumptions
enhance the clarity of the paper.

Remark 2. T h is  resu lt im proves th e  resu lt ob ta ined  in  Mountford
(1993) in that w e no longer require the initial configuration to be "finite" and
we no longer require 50 to be an invariant measure.

Remark 3. Given assumption (ii) there  is  no problem with existence
of our process.

W e w ish to explain our motivation for the result. I t  is  w e ll k n o w n  (se e
e.g. Liggett (1985), Proposition 1.8 page 10) tha t if  a  particle system if Feller
(which is certainly the case for particle systems satisfying conditions ( i ) and
(ii) o f Theorem  One) and  tn  i s  a  sequence of tim es tending to infinity such

1 tnthat RS dt converges in distribution to m easure y  then y must be in-

variant. Thus if our particle system  nt adm its only one invariant measure, v,
it must be the case that as T tends to infinity

1 rj  0 PS  (t)dt— , v

in distribution for any initial probability rt. Theorem One enables us to make
the following immediate extension

Theorem Two. A  f in ite  range one dimensional interacting particle sys-
tem nt , with bounded flip  rates which has a unique invariant measure is ergodic.

This result is relevant to question 4. chapter one of Liggett (1985). It is only
a  p a r tia l answ er a s  it says no th ing  o f partic le  system s w ith  long range be-
haviour o r of higher dimensions; the m ethod given here is strictly one dimen-
sio n a l. I t seem s more than  plausible tha t the conclusion of Theorem Two is
true  in  higher d im ensions. Theorem One is, I hope, of interest, bu t a  problem
which limits its application is that the main criterion for the  uniqueness of in-
variant measures, th e  (s, M) criterion (see L iggett (1985) or fo r recent work
Maes and Schlossman (1993)), also establishes ergodicity. Indeed exponen-
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tial convergence is deduced, a  much stronger result than we show.
T he paper is planned a s  follows: in  §1 some elementary coupling results

a re  assembled, in  §2 we construct a  coupling which implies Theorem One, in
§3 we give some applications of Theorem One to cases not covered by theorem
Two.

This work was completed while the author was working at the Isaac New-
ton Institute, C am bridge. Their hospitality is gratefully acknowledged.

§1

In this section we establish crude bounds on how boundary behaviour can
p ro p a g a te . W e fix a  particular particle system  77t w ith flip functions c satis-
fying the hypotheses of Theorem O n e . L e t R E Z+  be  such  that CT is identical-
ly zero if T has length greater than R and such that CT (1), 17) only depends on
spins of n  a t  sites w ithin R of every s ite  in  T . L e t  N (T) be the set of sites
within R of every s i te  o f  T . W e say a  process y) performs a  T jump at time t
if nt (y) = ( y )  i f  and only if y  is outside T.

W e describe a  particle system yr as a  system  restricted to interval /, with
boundary conditions 0 (without loss of generality 0 is  in  D ), if  a ll sites out-
side  I are fixed at value 0 and a ll s ite s  in  I flip according to functions cz(—)
for T I . G iv e n  tw o  p a r t ic le  sy s te m s  77 and 77', both of range R, we say they
a re  naturally coupled if  whenever nt- = ri't_ o n  N (T) , th en  y2 performs a  T
jump at time t if and only if 77' performs a T jump at time t and in this case 77t

= n't on T .  Such couplings exist (see e.g. Durrett (1988), Liggett (1985)).

Lemma 1.1. Let ri t and  17' t be naturally coupled where
rlo= 77'o on [ — n, n],

ii) 77' is  a particle system restricted to an interv al containing [ —n, n] w ith zero
boundary conditions.

Then there exists a Poisson Process V (t) of  rate 2R such that for all tim es t r1t =
17't on [— n-PRV(t),n— RV(t)]

Proof : W e call a  site  x  vulnerable at tim e t if  there  exists s E [O, t ]  and
Iy xI R such  tha t 77,s (y ) is not equal to  17's (y). Let L (t) =sup Ix <R +1: x
is vulnerable at tim e 0  and  le t R (t) = inf —  (R  + 1 ) :  x  is vulnerable at
time 0  .  The following are obviously true:
i) 77t= 77't o n  [L (t) — (R —1) , R (t) (R-1)] ,
ii) L (0) —  n -FR, R (0) >n —R.
L ( t )  can only increase if there is a T  jum p (for r) or 77') with T  having right
endpoint in  [L (t) — (R-1), L (t)] flips, at which time L (t) will increase by at

m ost R . B y our bounded flip ra tes assumption, E CT (I), <R , where we
T  vEDT

sum over T with right endpoint in  the  in te rva l [L (t) — (R-1), L ( t) ] . S im i-
larly for the way R (t) d e c re a se s . The lemma follows.
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Corollary 1.1. Let n t and n' t be naturally coupled and
i) no=n'o o n  [-3 R 2S, 3R 2S],
ii) n' is restricted to [ -3 R 2 S, 3R 2S ] with zero boundary conditions.
For fixed M E Z + , the chance that n s =  s  on [—M, M] tends to one as S tends to
infinity.

W e now define (separately for each t )  another process Cf't, () . .s.L.td-K which
will be defined on  an  essentially finite state space w ith the  property that for
fixed M, as t  tends to infinity the  sp ins of C%  o n  [ — M, M] w ill be close to
those of ii t + „, provided their initial configurations are close. The process
is defined in three steps.
1. F irs t take  a  ra te  one  P o isson  p rocess. L e t i t s  f i r s t  [t-t 2 7 3 ]  points be

< r 2 ...z- ,2,3 (with slight abuse of notation for the last term). (As will be
seen in  the technical details we chose the term  t2 1 3 sim ply because 2/3 is
in the in terval (1/2, 1).)

2. O n  the  in te rv a l [ri, r1+1) (To is  ta k e n  to  b e  0 ) , w e le t  CP evolve as a
particle system  restricted to [ -4 R 2 (t — i) , 4R2 (t —  i)] with zero boundary
cond itions. W e take C P  to be the configuration restricted to this in-
terval. W e take CI" to be previously defined.

3. If  2.
1_12/3 is greater than or equal to t4-K , then  CK 't is fully defined on the

in terva l [0, t ±K] and no further definition a re  r e q u ir e d . If not then we
le t Cf' t evolve o n  [ r1_1213, t + K ]  a s  a  particle system  restricted to [ -4 R 2

(t — [t — t2 7 3 ]) , 4R 2 (t — [t t 2 7 3 ] ) ]  with boundary conditions equal to 0 and
such  tha t C1-‘,Lt

(2/3 is  equa l to  VR2/3- o n  [— 4R2 ( t —  [t—  t2 / 3 ]) , 4R 2 (t — [t —

t 2 " ] ) ] .

Note by regarding CK 't a s  being in  the state space D on time in-

te rv a l [ri, r1+1), we can think of CK 't a s  being a  continuous time Markov chain
[t-t2/3]

o n  th e  fin ite  sta te  space U  E 0 -4R 2(i-i) ,4R 2(i-in  w hich  jum ps (w here  th is
i=o

t o  D
t-4R2(t-i-1),4R2ct-i-D]makes sence) from D at constant rate 1.

Lemma 1.2. For fixed M E Z + and K E R+  i f  Cff't= no on interval of site
[ — 4R2 t, 4R 2 t ]  and the two processes are naturally  coupled, then the chance that

CM=-- -nt+k on [ — M , M ] goes to one as t tends to infinity.

Proof. Lemma 1 .1  together with the Markov property applied to times ri
gives the following: for every E>O, there exists a  V such that

inf P [CV i , o n  [ - 4 R 2 (t — i) -I-- V, 4R 2 (t — i) — V ]] >1— E

The Central Limit Theorem implies that
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t d - K — r t - t z 1 3

2/3
>1 in probability

t
Putting these facts together w e see that w ith probability tending to one  as t
tends to infinity,

6 6 6t +K t213 and T ir t -t2 / 3  V - rt.: Z/3 o n  [ -3 R 2 -

5
t2 / 3 , 3/e-

5
12/3 15

T h e  result now  follow s from  C orollary 1.1 and the Markov property.

§2

In this section we prove Theorem O n e . T h e  essential step is to establish

Proposition 2.1. For any fixed M E Z + and T E R + there ex ist a coupling
of Cs

T 't and  C9't su c h  th at as t  tends to inf inity , the probability  that M t =  CP̀
tends to one.

Given this result Theorem One follows quickly and simply, therefore we feel it
m akes sense to  show  how  it follow s from  Proposition 2.1 before descending
into the  technicalities necessary fo r the  proof of Proposition 2.1. In  th e  se-
quel we will drop the superscript 0 and write for CP.

Prrof of Theorem O n e . Let tn tending to infinity be such that rbn converges
to y  in  d is tr ib u tio n . It is sufficient to show tha t fo r each cylinder function f
and each T E R + , I f (w) y (do)) = f S (T) f  (w) y (d co) . Here, as before, S (t) is
th e  semigroup corresponding to th e  in te rac ting  partic le  system . L et f  have
support in  [ — M, M].

First by definition of weak convergence

f f (w) v (dw) = limE[f (ntn) ] .
n — c e

Lemma 1.2 implies that

lim E  (7 I tn)] =  limE [f (Ct ) ]
n - 0 0 n—■00

Proposition 2.1 yields the equality

limE [t. (Crt ) ] = limE [f ]  .
n — o n

We apply Lemma 1.2 to obtain

limE rf (Ctrn'+nr) .= limE VO7tn+T) ] . = limE [S (T)f (ritn)

But S (T)f is  a  continuous function since, a s  previously noted, )7t is Feller, so
this last lim it must equal J.  S (T) f (w)v (dw) and we are done

It only rem ains to  prove Proposition 2.1. T h e  ideas fo r  th e  proof a re  very
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close to those of M o u n tfo rd  (1 9 9 3 ) . W e can and will regard the processes

vsr,/ ,s'_0 t-FT  as finite state M arkov chains o n  th e  se t  U
t -  3:  D t-4R2()- 4R2(t-in .i =t2 

W e w ish to couple the processes so that w ith probability tending to one as t
tends to infinity,

C. = CIA:tr. fo r all s  E [T t - t 2 / 3 ,  t ]

The process Ç  ( T t )  can be constructed in tw o steps as follows
FIRST STEPS: Choose the  sequence of sta tes that C̀ jum ps to (i.e. pick a  realiza-
tion of the embedded discrete time M arkov chain): X0,X1,...XN 1,..X N,... where N i

= i n f  in : 
X n  

E  
D I - 4 R 2 ( t - i ) , 4 R 2 ( t - i n .

 X 0 is sim ply 720 restric ted  to  the in terval [—
4/et, 4R 2 t] .
SECOND STEP: Given this sequence X i , there  is, for each state X i, a  jump rate  q
(X i ). It is obtained by adding all the  flip  rates of the sites of configuration
X i p lus the  un it flip ra te  at w hich the process m oves its boundary inwards if

E D [ - 4 R 2 0 -0 ,4 R 2 ( t - i n

1 1 
ponential random variables 6.0 , e l , e2,... of means q (X0) ' g (X1)

i -1 i

We obatain  C̀ by taking C=X, for s E  [  E  e i, E  e i) , here e_ 1 is taken to be O.
) = - 1  1=-1

The above recipe can also be used to construct the process Ç.
W e w ill construct a  coupling o f  tw o processes C a n d  C T  by  em ploying  the
above construction for both processes and  choosing th e  same embedded dis-
crete time M arkov chain realization Xo, X1, X2,... but different exponential ran-

T,t .dom  variables (eo,e1,...) , ,..) to  construct C̀  and T he exponential
random variables w ill be chosen w ith th e  aim of ensuring that fo r a ll i  large

enough Ee, = — T . W e w ill shortly describe the  coupling explic ity , but
J=0

first w e require a simple lemma.

Lemma 2.1. Given x >  0, we can couple together two mean v  exponential
random variables X  and Y  so that with probability e— r h ', X = Y -1-x.

Proof. L et Z  b e  a  random  variable, independent o f  X  w ith  distribution
equl to a  Y . T h e n  b y  memoryless properties of exponential random variables

Y= hx>x) (X — x) f x < x Z

is an exponential random variable of mean v  with the desired property.
W e can now describe the  coupling of two sequences o f independent exponen-
tial random variables we e m p lo y . W e call it the  ABL coupling because it is a
continuous version of a  discrete coupling employed by A ndjel, B ram son and

fo r  i Gt —  1-2 1 3 . Choose independently o f each other ex-



Infinite particle systems 49

Liggett (1988).
W e w rite the sequences of exponential random variables that we wish to

couples as led , eT I . We will choose the  pa irs  (en, 4 . )  so that
n -1

Mn = er — e1

is  a martingale. (e_ i an d  e_T i  a r e  taken to be zero.) W e define the following
stopping times for the martingale M:

Vo =0,
for i odd, Vi = inf In> V,_1: Tl
for i even, V i =inf  In> Vi_1: M TI,

W e choose (ei, e n  independently until i = V,; then w e choose (ei, e n  so that
w ith probability e

( T - M v i E ( e i )  

M  V i+ 1 =  T. By Lemma 2.1 th is  is  possib le . If
Mvi+i is equal to  T, then thereafter w e chose ei =e r, ensuring that thereafter
Mn = T .  If Mv1+1 is  no t equal to  one, w e choose (ei , eT ) independently until
tim e V2; then  (aga in  a s  with Lemma 2.1) , w e choose  (ev2,  e v ) so that w ith
probability e (

M v 2 — T ) / E ( e v 2 )  
M 2 + 1 =  T. A g a in  if M v 2 + 1 = T ,  we choose subsequent

ei, ers so  that Mn rem ains equal to  T .  O therwise we continue with indepen-
dent ei, el' un til V3 and so  o n .  W e say the ABL couples successfully by time
n if Mn+i = T .  Of course this implies that M r  is equal to  T  for all subsequent
r.

F o r th is  couplig to  w ork to  our purpose w e m ust first estab lish  a  crite-
rion  fo r the  coupling to be successful, and  secondly show  that this criterion
will be relevant to the exponential sequences we use to construct C` a n d  

T , t .

Lemma 2.2. There exists a function f c ( )  such that lim  f ,(x ) =1 and

if eo , eh ... eN  and es', el' ,... el; are sequences of independent exponential random vari-
ables with
a) E[e;]=E[er] l for each i and
h) E[e j /E [e,+1] is less than or equal to c <co , then the chance that the ABL

N

coupling of the sequences succeeds by time N is at least f ,  ( (E[e,] 2  .

Proof. Given th e  memoryless property  o f exponential random variables,
the, is  n is not equal to V , for some i, w e can think of M a -1-1 a s  being obtained
from Mn b y ,  w ith  probability  1/2 adding a n  exponential random  variable of
mean E [ei] and w ith probability 1/2 subtracting an  exponential random vari-
able of mean E [e d .  Given this characterization and using again the memory-
less property of exponential random variables, we see that provided Mvn is not
equal to T, then IMvn—  TI is distributed like an exponential random variable of

i =0
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mean E [en ] on  the  event Vn = r. Therefore, given Lemma 2.1 and property
(ii) of the sequence E [e j,  we find that

r —

P [M vn + i*T IM v„*T , V ,G 0 0 ] J 0 e ' e 'd x = 1

1+c

Therefore for any n E Z + , we have

P [M N * T ]  ( 1 4 _1
c ) n + P [V „ > N - 1]

The desired result clearly follows as P [V n > N — 1] tends to  zero as (E
i=0

[e i ] )  2 tends to infinity if all the summed terms are less than one.

In working towards the second objective, w e first record some necessary facts
about the sequence q (Xn) •

Lemma 2.3. The sequence q (Xn ) satisfies
i) 19 (Xn - - q (Xn+1) I <8R 2 +2R +1
ii) For some K> 0 not depending on t q(Xn + 1 )1q (Xn ) >K for all n<N.

Proof. w e conside r inequa lity  (i). T h is  d e a ls  w ith  th e  difference in
jump rate resulting from the jump of Ct to  Xn + i from X .  T h e r e  are two kinds
of ju m p  to  c o n sid e r . T he  jum p corresponding to a  rk and  the  jump corres-
ponding to a  flip of Ct . In the f irs t case the flip ra te  at X n _i has no contribu-
tion from 8R2 s ite s  which contribute to q  (X n ). Also the  flip rates of at most
2R +1 sites has a lte red . S ince  the total flip ra te  a t  a  single site  is a t m ost 1
the result follows.

(ii) follows from (i) as if n<N, then the flip rate, q (Xn )  is at least 1.

Lemma 2.4. Let A k  (k=1, 2,... t —421 ') be the sequence of states the pro-
cess visits in the random time interval [1-k-1,Tk) . (Necessarily) given our cou-
pling, A k  is also equal to the sequence of states visited by C` in the time interval

[TIT-LTD) Let Frk, be the sigma field generated by Ct;
ists h > 0  (not depending on t) so that for all k t -1 -213,

p F V   1   2>  h 1 > h
q(X i) t—k l

XI E A k

Then there ex-

Proof. Let Y1 b e  the configuration taken by C i k - l •

L et Y2,Y3,... be  th e  subsequent s ite s  visitd b y  C .  Suppose th a t  Y1 has jum p
rate  equal to V>30 R 2 . It follows from Lemma 2 .3  (i) tha t the jump rates q
(Y2), q  ( Y3) ,...Yv/30R2 a re  a ll in  th e  in te rv a l [2V/3, 4V/3]. A lso if  a  s ite  IT;

has flip rate G, then the chance that its next jum p corresponds to  a point r k is
precisely 1 - 1 / G . Therefore, the chance th a t Y2,17 3,...Yv/30R2 are  all in A k  is at

le a s t e q u a l to  (1 — 3/2V) 
v 1 3 0 R 2 .

 I f  th is  even t of probability bounded aw ay
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from 0 o c c u rs  th e n  E
X, EA k  

q
 ( X .) 2 >

 3 0 R 2 \ 4 V/ 160R2 V
1 V   (  3   ) 2 ,  3  Now observe that

since we assum ed that the to tal flip  ra te  a t  a  given site  w as a t m ost one, the
rate V can be at most 8R2 (t — k ) + 1 . The result follows.

Corollary 2.4. Let B (t) denote the sequence of states X i visited by  b e -

fore r t _ t 2/3. As t tends to infinity  E 1 tends to infinity  in probability
X ie B  ( t  

q (X i ) 2

Proof of Proposition 2.1. C orollay 2.4 establishes that a s  t  tends to infin-

ity E 1  tends to infinity in probability . L em m a 2 .3  p a r t  (ii) shows
X e  EB (t) 

q (X t ) 2

that we may apply Lemma 2.2 to the sequences e , ,e r .  This gives us the Prop-
osition.

§3

In this section we present two applications of Theorem One which are close
to the author's interests and which are  not covered by Theorem Two.

Corollary 3.1. Consider an annhilating branching process n t for which
the branching coefficient A  is greater than  1/3  and such that n o *  O. Then Ti t

converges to product measure 1 + 2  in  distribution as t tends to infinity.

Proof. Neuhauser and  S udbury  (1992) show ed that the  anhilating bran-
ching process possessed only two extremal invariant measures: the  nu ll mea-

su re  and  product measure
1 + 2

 F u r th e rm o re  it  w a s  s h o w n  th a t  if  r2i 0 ,•
then the position of the nearest occupied site  to  the  origin at tim e t  was tight
as t  varied . W e estab lish  the Corollary by assuming the converse and obtain-
ing an d  co n trad ic tio n . If  th e  C orollary  is no t tru e , then  w e  can  find  to in -
creasing to infinity such that n tn converges in mean to a  probability measure y
not equal to  th e  product m easure . Theorem  O ne  te lls  u s tha t y  m ust be in-
variant; hence it m ust b e  a  convex combination of th e  null m easure and the
product m easure. H ow ever since the position of the nearest occupied site of
nt is tigh t a s  t  varies, y can put no m ass on O. T h is establishes a  contradic-
tion.

Corollary 3.2. Let n t b e  a  critical one-dim ensional cataly tic surface
m odel(possibly  w ith particles m oving by  exclusion) . See Grannen and Swindle
(1990) or Mountford (1992) for d e tails . If  )70=- 0, then n t converges in distribu-

tion to 2  -1 2  + I.

Proof. A s with Corollary 3 .2  we suppose  the  converse . A s before there
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m ust exist tn  tending to  infin ity  such that i t  converges to  y in distribution
1 1where y * -

2
5

-

1 + —
2
5

+ 1 .

given that the flip ra tes are  defined in a translation invariant manner and that
17o 0 ,  m ust be the case tha t y is a lso  transla tion in v a r ia n t. B u t Mountford
(1992) establishes that the only such measures are of the form y= cy5_1+ (1 —
a) 5+1. By the symmetry of 1 and  — 1, i t  must be the case tha t a is equal to
1/2. This contradiction establishes the corollary.
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