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The cohomology rings of BO (n) and BSO (n)

with Z.» coefficients
By

Martin CADEK and JiFi VANZURA

1. Introduction

The cohomology rings of the classifying spaces for the groups O (n) and
SO (n) with Z; and Z [1/2] coefficients have been known for a long time, see
[MS]. 1In 1960, E. Thomas found the group structure of H* (BO (n)) with in-
teger and Zom coefficients [T]. The integer cohomology ring is much more
complicated so that it lasted till the year 1982 than its structure was written
down in terms of generators and relations independently by E. H. Brown [B]
and M. Feshbach [F]. The aim of this note is to describe the cohomology rings
of BO(n) and BSO (n) with Zam coefficients in a similar way.

2. Notation and main results

Let n be a positive interger or e, The letters w; and p; will stand for
the i-th Stiefel-Whitney class and the i-th Pontrjagin class of the universal
vector bundle over BSO (n) or BO (n). The Bockstein homomorphism associ-
ated with the exact sequence 0—Z—Z—Z,—0 will be denoted 6. The map-
pings 6: H* (X, Zs)— H* (X Zsm) and pxH* (X,Z)— H* (X,Z,) are induced from
the inclusion Z;—Z» and reduction mod k, respec-tively. For a fixed m =2,
we will write only o instead of pam. For the symmetric difference of two sets
I and J we will use the symbol

A, ) =aup)—uny .
Definition. Let By be the set consisting of the elements
zi, X1, yr and u, if n 1s even ,

where 1€Z, 1<i<n/2 and I ranges over all finite nonempty subsets of the positive
integers less than n/2.

Let Oy be the set consisling of the elements

Z2i,Xr1,Yr
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where i €Z, 1 <i<n/2 and I ranges over all finile nonempty subsets of {1/2} U
HEZ; 1<1<n/2} with the exception that I does not contain both 1/2 and n/2 for
n>1.

Next in the polynomial rings Zsm[S.] and Zam [0,] we denote

Ig:ya:O
21/2=—X{1/2}
Zﬂzl

r
21— Hzis
s=1

for 1= i1, is,.... i+, and

IM—X{ns2t * TM—{1/2,n/2}
YM=ZXins2t * YM-11/2,n/2}

for 11/2, n/2} SMCS {1/2} U €Z:1<1<n/2}.

Remark. In the following theorems the elements zi, un, x1, yr, 1= i,
is... i,/ can be taken to be the reduced Pontrjagin class ppi, the reduced Euler
class oen, 00 (waiwaiy*w2iy) and 6 (waiswzi,..w2i,) , respectively.

Theorem 1. For 1<n<0c0 and m =2, the cohomology ring
H* (BSO (n);Zym) is isomorphic to the polynomial ring over Zom generated by the
elements of Bn modulo the ideal generaled by the following five geneval types of re-
lations. In all the velations I and | are finite subsets of the positive integers less
than n/2, 1% ¢ but | can be empty.

1) 2xr;=0

(2) 2y1=O

(3) yry;=0

(4) Xix)= Z T AT-{i}, HEU—{iDnj
iel

(5) Xiyr— Z ity aa—tiv HZU—{innj
iel

Theorem 2. For 1 <un <00 and m=> 2, the cohomology ring H* (BO
(n);Zam) is isomorphic lo the polynomial ring over Zam generaled by the elements of
0, modulo the ideal genevated for n odd or o by relations (1) - (5) and for n even
by relations (1)-(5) together with

(6) w2 =Xi/212ns2
(7) Xin/20Y 1= Y U—tns20ui1/212n/2 if n/2€I1,1/2€]
(8) Lin/20Y 1= X 1/21Y U=11/2D Uin/2) if 1/2€1, n/2&1

In the velations I and | ave finite subsets of {1/2t U | € Z;1 <1<n/2} which do
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not contain both 1/2 and n/2, I ¢ but | can be empty.

Remark. The sets appearing on the right hand sides of relations (4)
and (5) can be empty or can contain 1/2 together with n/2. To get relations
between generators in such a case it is necessary to use the notation intro-
duced above.

3. Proofs

The proofs of both theorems follow the same lines. The proof of Theorem
2 is a little bit more difficult since w1 # 0 in this case. We carry it out in de-
tails and at the end we outline the differences in the proof of Theorem 1.

Define ¢: Zym[0,] — H* (BO (n);Z2m) on generators in the following way

¢ (zi) = ppi
¢ (xr) = p0wr=p00 (waiwaiz.. w2iy)
[ (yI) =06w;=10 (Wznwziz-..wzu) ,

I= iy, ia,..., i,} and extend it into a ring homomorphism. Denote £, the ideal in
Z:n [0,] generated by relations (1) - (8). We will show that ¢ ($,) =0. (Here
we use the convention wg=1, pg=1, p1,2=p0w,.) Relatios (1), (4) and (6) in
H*(BO (n);Zsm) arise from the relations which hold in H* (BO (n);Z) after ap-
plication of the mapping o. See [B] and [F]. Relations (2) and (3) are con-
sequences of the definition of 6. To prove (5), (7) and (8) in
H*(BO (n) ;Z2m), we use the formula

9) 0(osr + y) =px + Oy for r€EH*(XZ), y EH* (X, Z,)

which is an easy consequence of the definition of cup product and 6. Realizing
that p2p;=w3; and p.0=Sq" we get

00w 6w;=0(p20w; * wy) =6(Sq*w; * wy)

=0 < Z Sq'wsi * wi-yy * w,>

iel

=0 < sz5wz,' * Oapann-tiy * wA(I—h‘)J))
iel

= Zp5um * Ppuap—iiy * Owaa—w.p -

iel
If n/2 I and 1/2€1 we have
06w, 6w;= 0020wy * wr) =0 (Sq"wn * wy)

=0 (wlwnwl) =0 (wu—m/znuu/z;wfz)
= a(wu—«n/znuu/z;p?j’n/z) = e(w(l—(n/Z))u(l/Z}) OPnrz .

Finally, for 1/2€1 and n/2€ I we obtain
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pﬁw,,@w,z 0(0251,0” ° ‘U)I) = O(Sqlwn ° wl)

=0 (wlwan) =0 (w%wu—u/znuu/z»)
=0 (025w1w(1—<1/z;)u(n/2}) :1051010 (w(l—(x/znu(n/z;) .

Put R, = Zym [0,) /$,. Since ¢ ($,) =0, ¢ induces the ring homomor-
phism @: R, — H* (BO (n);Zm). Now we will split R, and H* (BO n):Zom) as
groups into direct sums 7 @ AU and pH* (BO (n);Z) ® Sym such that

O/T: T — pH* (BO (n):;Z)
(D/GU Oll_)Szm

will be isomorphisms of groups. To make these decompositions possible we
will find the complement of ker Sg' in the Z,-vector space H* (BO (n);Z) expli-
citly.

Consider the following slight modification of the Stiefel-Whitney classes

V1= W1, V2 =Wai, Vzie1 =Waiv1 T W12 .

We have Sq*v;=v%, Sq'vpi41=0 if i>1, Sq'vgi=vzi41 if i <n/2 and Sq'v,=vw, if
n is even. If k ranges over all the multiindices (ky, ka,..., kn), ki=>0, the ele-
ments v* = [1%2; v¥ form a basis of H* (BO (n);Z,). (For n=o0, the multiin-
dex is a sequence with only finite number of k;>0. Moreover, we put kw=0.)
Let U be the set of all multiindices # which satisfy one of the following
conditions:
a) There exist an index 7, 1 <i <u/2, with ks odd and if iy is the biggest
such integer, then kzj41=0 for all j >1,.
b) For all 1<i<n/2, kyi+1=0, ks are even and ki+k, is odd.
Denote S the vector space over Z, spanned by the monomials v*, kEU. We
show that S; is a complement of ker Sg* in H*(BO (n);Z;).
If kEU then S¢'v*=vF+elements from S,, where By=k,+1, k;=Fk;, 1 2>2, if
k satisfies b) and Eaiy=kaio— 1, Eaigr1 = kzies1+ 1, k;=Fk; otherwise, if k satisfies
a). In both cases € U and it is uniquely determined by k€ U. It means that
Sq'v*, kE U, are linearly independent in H* (BO (1) ;Z;) and ker Sq'NS,= {0} .
Let v* be a monomial not lying in Sz, i.e. k&€ U. First suppose that all ky;,
1<i<n/2 are even. If ky+k, is even for n even or ky is even for # odd or oo,
then v* € ker Sq*. If k,+k, is odd for n even or k; is odd for n odd or ©°, then
there is j, 1 <j <u/2 such that kgj4+; #0. Let jo be the biggest such j. There

is a multiindex I, Sq*v'=0, such that for n even we get

v =0l vi" V'V =01 V" 0! Sq vz
=Sq" Wk v v'va;) +Sq' (W1 V") v'va,
=Sq" W' vi"'vgje) Hoi T UR v'vz,
where the first summand belongs to ker Sq' and the second one to S;. For n

odd or oo it is not necessary to single out the v,. In this case it can be in-
corporated into v’.
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Now suppose that at least one ky, 1<i<n/2, is odd. Since k€& U there
are jo>>1io such that iy is the biggest integer i <n/2 with ks odd and jo is the
biggest integer j >1io such that k41 #0. If n is even put k2;=2m;+¢€;, €,=0 or
1, for 1<i<n/2 11—0 ln:(), lz,:Zmi, lzj+1:kzj+1 for 1Sj<n/2, ]'5&]'0, lzjo+1:
kajor1—1, I= {i;ei=1}. We get

k ] 1
vl vn vv2]°+l l—l V2i —U v v H vziSq V2jo

iel iel
=S‘ll<1"1‘l vy 02 H l’2i>+ (kytky) vEHY 0k vy, H Vai
iel iel
ko kn |
+ z : V1" Un" V' UieV2r41 H Vai
rel iel-{r}

where the first summand lies in ker Sg' and the rest is a sum of v*, p € U.
For n odd or o, we put I, =k, and omit k, and v, in the computations. So
every v* can be expressed as a sum of elements from ker Sq¢* and S,.

Define Sz, =6S,. Since 2xr=0 for every torsion element of H*(BO (n):Z),
we can use Lemma 6.7 from [T]. It implies

H*(BO (n) Zym) = pH* (BO (n);Z) ®Som ,

which is one of the required splittings. Moreover, as an easy consequence we
get that 6: S, — Sym is an isomorphism (see also [T], Lemma 6.11).

Let J be the subring in R, generated by z;, 1 <i<u/2 and x;, where [
ranges over all finite nonempty subsets of {1/2} U i€ Z;1<1<yn/2| which do
not contain both 1/2 and n/2 for n>1. From the description of H* (BO (n):Z)
in [B] and [F] it follows that @/7: J — pH* (BO (n);Z) is a ring isomor-
phism.

Let kyi=2m;+e,e;=00r 1,i€ {1/2} U I€Z: 1<1<n/2}, for a multiindex
k. LetI,= 1i; &;=11. We define s* in the following way. Put

(2] ["z']
sk=xv% P H xtF -

i=1 j=1

.

Here again the notation preceding Theorem 1 must be taken into account. In
any case we have

O (s*) ="

(It can be verfined using formula (9).)

Let 9 be a subgroup of R, generated by s¥ where kEU. Since 6: S, — Sym
is a group isomorphism and v* ® € U, form a basis of S, we get that
@/U: U — Sym is a group isomorphism as well.

oH* (BO (n);Z) N Szm= 10 and ®/T, ®/U are group isomorphisms, hence
TNU= 0. It suffices to show that every element of R, is a sum of elements
from subgroups  and 4.

First of all, every element of &, is a sum of elements from J and elements
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of the form

Using successively relations (5) and, if necessary (6) - (8), we get that this
element is a sum of s*. Let us deal with an element s* with & not lying in U.
First, suppose that all ks, 1<i<n/2, are even. If ki+k, is even for n even or
k1 is even for n odd or oo, then s*=0 (see the definition of s* and the notation
preceding Theorem 1). If ky+Fk, is odd for n even on k; is odd for n odd or
oo, there is j, 1 <j <n/2, such that kzj4+1#0. Denote the biggest such j by jo
and put lyj+1 =kej1 for 1 <7 <u/2, j 7o, and lzje+1 = kzje+1 — 1. We have [, =
{1/2} or /2! and using the relation (5) for xruijnye, we get

(%] jo
s*=x1 H 2" X oy
i=1 j=1
[z] jo
=t || 2 || 2l cnyye=s"

Il
-
-

I
—

where p € U and consequently, s*=s" €. (If I, = /2, then Xpayyo =
Yusamszo and [,=11/2n/24l )

Now suppose that some ky;, 1 <i<n/2 is odd. Since k€ U, there are 1o
<jo such that i, is the biggest i, 1 <i<u/2, with ky; odd and j, is the biggest
].>io such that k2j+1 x0. Put 12j+1=k2j+1 for IS] <1’L/2, j#jo, 12j0+1:k2j0+1— 1,
Iy=li:e;=11. Then

n
[7] jo
k_—_m mi 12
s =x P X oy
i=1 j=1
n
[7] )
— m mi I .
=2, xiAh 27" n T X Yawotion—in
relk i=1 j=1

which is a sum of s?, p € U. Here we have again applied relation (5) for
T1utjoty 8-

Thus @: R, =T ® U— H* (BO (n); Zym) is a group isomorphism and a
ring homorphism, which completes the proof of Theorem 2.

Finally, we mention some changes which are necessary for the proof of
Theorem 1 and which simplify it. Since w;=0 in H¥*(BSO (n); Z), we have v;
=wj, Sq'wzi =wzis1 if i <n/2 and Sq'w;=0 otherwise. All multiindeces ¥ have
k=0 and the set U is defined only by condition a), which is the most substan-
tial change. So all the parts of the previous proof concerning condition b)
are omitted. In some other parts the cases #n even and n odd or © must be
treated separately. Nevertheless, the proof is principally the same as that of
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Theorem 2.
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