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Equivalence-singularity dichotomy for the
Wiener measures on path groups
and loop groups
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1. Introduction

In this paper, we will show a dichotomy between the equivalence and the
singularity for the Wiener measure on path groups and loop groups under their
group transformations. It is a natural extention of the following well-known fact
for the abstract Wiener space: the Wiener measure is equivalent to its shifted
measure by an element of Cameron-Martin subspace, and singular by other
elements (see an excellent review [6].) As for path groups, the criterion for
equivalence is known which we here call the finite energy condition (see
Albeverio-Heegh-Krohn [1] and Shigekawa [8]). As for loop groups, the finite
energy condition also gives a sufficient condition for the equivalence (Malliavin-
Malliavin [7]). We will show that this condition also gives the criterion for
equivalence in the case of loop groups. To show the dichotomy, we give a
simple proof of the ergodicity for the Wiener measures on path groups and loop
groups under the actions of finite energy paths and loops. This was first proved
by Gross [3], by using the Ito-Wiener multiple integral expansion and of the
support theorem. In this paper, we will give a proof based on the notion of
quasi-homeomorphism and quasi-sure analysis.

The organization of this paper is as follows. In section 2, we show ergodicity
on path groups. Section 3 is devoted to show the ergodicity on loop groups. In
section 4, we show the equivalence-singularity dichotomy.

2. Ergodicity on path groups

In this section, we will prove the ergodicity on path groups under the action
of finite energy paths. For the proof, we shall define the gradient operator which
was first introduced by Gross [2]. Comparing this with H-derivative on the
Wiener space, we will obtain ergodicity.

Let G be a d-dimensional compact connected Lie group and g be its Lie
algebra. Suppose we are given an Ad(G) invariant inner product (-,-),. We
shall fix an orthonormal basis {A4,}4., of g with respect to this inner
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product. For geG, (Adg); denotes the components of Adg: g— g with respect
to the basis {4,}¢_,. Denote by PG the path group:

@.1) PG:= {yeC([0, 11— G); y(0) = ¢}

where e is the identity of G. We denote by L, the left multiplication in PG by
k. Let I be the unique strong solution to the following stochastic differential
equation:

d
dy, = ) A,()-dB;
a=1
2.2)
Yo =6
where o stands for the Fisk-Stratonovich symmetric integral.
Denote by W the d-dimensional Wiener space, i.e.

2.3) W= {BeC([0, 1] R%; B, = 0}

with the standard Wiener measure m. Let p be the image measure of m by I.
I is a measure theoretical isomorphism from (W*, m) to (PG, p) ([8, Lemma 3.2]).
Let K be the set of paths of finite energy:

k=(k)i i It
2.4) Koe {kePG; (k,) is absolutely continuous w.r.t t}

and (o |k, 'k,|2dt < o

We shall frequently use such matrix notation k;” 'k, for ease of reading instead
of (Lk‘-n)*li,. Let H be the set of g valued finite energy paths:

25) e {heC([O, g h = (h,) is absolutely continuous w.r.t. t}

and (g |h,|2dt < 00, hy =0

H is a Hilbert space with the inner product:

(2.6) (a, b)y:= j 1 (,, b,), dt.

0

29

H is usually called the Cameron-Martin subspace. Let C,(PG) be the set of
cylindrical functions:

There exi ®(G") such th
2.7) Co(PG):= {F: PG R | €TC eXists JeC®(G") suc at}

F(y) =f()’zl»---,)’z,.) n=12,..

We denote by 2 the set of functions F on PG which satisfy following
conditions.

(1) F is in LP(PG, p) for any p > 1.

(2) For any he H, e F(e™y) is an L? (PG, p) valued differentiable function.

d . . .
(3) The derivative d—F (€*y)|.=o is continuous in h. In other words, there
&

d
exists VFe(\,., L?(PG, u; H) such that (VF, h), = & F(e*})],—o-
€
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For later use, we note the following fact.

Proposition 2.1. Let k be a path of finite energy. Then, the measures p o L, *
and p are equivalent and its Radon-Nikodym derivative
dpo Lt
du
d ! . , 1! ,
= €Xp { Z J (Ad')),_ 1);‘(kt_1k1)idB{ S I Ikz—lktlg dt}
Li=1Jo 2 Jo

L

(2.8) Ji(y):= )

is in 9, where y =1(B) and k[ 'k, =Y {_ (k7 'k);A.. Moreover, for any heH,
the L? (PG, p) valued function ¢+ J.. is differentiable and its derivative j, is

. d d ! N .
Jni=—Jeml=o = Z (Ady, 1);(hz)idBtl'
de iLj=1dJo

Proof. See [7, Theorem 2.3.1] and [3, Corollary 3.6].

Following [3], we shall define the gradient operator. For this, we need the
following.

Proposition 2.2. The operator V which sends Fe€ 2 to VF is a closable operator
from L*(PG, p) to L*(PG, u; H).

Proof. 1t is sufficient to show that the adjoint operator is densely
defined. Let F, p€2 and he H. Then,

(2.9) (VF, o- h)Lz(PG.u;H) = I(VF(})), Myo(y)du

_ i &h
—J(dgF(e v))

d r
= — | F(e")o(y)du

e(y)du

£=0

=0
d [ —¢h
=— | F(Y)o(e™ ™) Jon(y) dp

e=0
n

= — |FO» Vo), hydu + J F@)em)ja(y)du.

This shows that
(2.10) Dom(V*) o 2@ H, V(¢ @ h) = — V¢, hy + jro.
The proof is complete.

We denote the closure of V also by ¥ and call it the gradient. To show
the ergodicity, we shall characterize K-invariant functions.
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Definition 2.3. (1) Let F be a bounded Borel measurable function on PG,
and v be a probability measure on PG. We call F a K-invariant function
(with respect to v) if for every keK,

@.11) F(ky) = F(y) v-a.e.

(2) A probability measure v on PG is called ergodic under the action of K
if every K-invariant function is a constant function v-a.e.

Clearly, the K-invariant function with respect to u is in 2, and
(2.12) VF =0.

Let D be the H-derivative on W¢. Following [3, Theorem 3.14], the relation
between D and V is

(2.13) FeDom(V) if and only if FoIeDom(D) and

(2.14) (VF,VE)y = (D(F o I), D(F o I)).

(2.14) allows us to use some known facts on the Wiener space.
Theorem 24. pu is ergodic under the action of K.

Proof. Combining (2.12), (2.13) with (2.14), we obtain that, if F is
K-invariant,

(2.15) D(F-1)=0.
It is well-known that this implies
(2.16) F oI = const. m-a.e.

So, the proof is completed.

3. Ergodicity on Loop groups

In the previous section, we have shown ergodicity on path groups. In this
section, we shall turn to loop groups. First, we review the quasi-sure analysis
(see, e.g. [5]). Let X be a Polish space, and m be a Borel probability measure
on X. Suppose that a strongly continuous contraction semigroup (7)., on
L?(X, m) is given. We assume further that the semigroup is symmetric and
Markovian. Then, by the interpolation theorem, (T;),~, can be defined on
LP(X, m) as a strongly continuous contraction semigroup for p > 1. For r >0,
p=1, set

and define a Banach space (%, ,, | - Il,,,) by
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%, .= V(L?(X, m)) and
lull,, = lfll, for u=V¥f felL?(X, m)

where | f |, denotes the LP-norm of f. Then, the (r, p)-capacity C, , is defined
as follows: For an open set G < X,

Tz
€% p»

C, ,(G):=inf {||ul? u>1 m-ae on G}

r,p rp;

and for an arbitrary set B < X,
,.»(B):=inf {C, ,(G); G is open and G > B}

We note that if &, ,nC,(X) is dense in % ,, we can take a quasi-continuous
modification with respect to C, , for any fe#, ,. For fe(), ,#,,, we denote
by f one of its quasi-continuous modification with respect to all C, ,.

In the case of the path group, we take L:= — F*F as the generator of
(T.);>0. (2.14) shows that L can be identified with the Ornstein-Uhlenbeck
operator on W9, In particular, the (r, p)-capacity associated with Lis tight ([10]).

Let = be the map from PG to G defined by n(y) = y(1). We denote by QG
the based loop group n~!(e). Following [4, Chapter 5.9, we know that 7 is
non-degenerate in the sense of Malliavin (see also [7], 3.1). So, we can take a
family of measures (,),.q on PG supported on (7 '(g)),.¢ Which satisfies, for any

fe nr ¥4 r p’
3.1) f fdu= J p(g)dg Jf(v) dy,

(3.2) the function gr—»ff(y)dug is continuous

where dg is the Haar measure on G and p(g)dg is the distribution of =. Now,
we begin with a localization of quasi-invariance. This was shown in [7], but
our statement is slightly different.

Lemma 3.1. Let k be a path of finite energy. Then, pu, and pq)-1,° Ly"
are equivalent.

Proof. Let f be in C3(PG) and ¢ be in C*(G). Noting that Jee(), , % ,.
we obtain

(3.3) jf (ky)p o m(ky)u(dy) = ff ()@ o n(y) J(y)u(dy)

= j o(9)p(g)dg ff(v)ik(y)ug(dy).
On the other hand,

(3.4) jf (ky) @ o m(ky)u(dy) = j @(k(1)g)p(9)dg Jf (ky) y(dy)
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k()=
- f o@p(e) P9 44 J £ ey o).
p(g)

Since (3.3) equals to (3.4) for any ¢ € C*(G), we obtain

pk(1)~'g)
r(g)

By the continuity condition (3.2), (3.5) holds for all ge G. This shows that

(3.5) Jf () T () 1y (dy) = jf (ky) ti1)-14(dy) for a.a. geG.

(3.6) .ug~”k(1)‘lg0LI:1'
The proof is complete.
To show ergodicity, we take a measurable map s from G to PG which satisfies
3.7 nos =id; and
(3.8) s(G) c K.

The existence of such s is clear from the local triviality of the fibre bundle
(PG, mn, G). For instance, in the neighborhood U of e, we can take as s the
unique geodesic from e fo the point of U. We shall fix such s. Define the map
f: PG — QG by

fG):=sy) ™'y
Let A be a subset of 2G, and we define A as

A= U s(g)A.
geG
For ease of reading, we set
A, = s(g)A
X, =7n"'(g).
Lemma 3.2. Let k be in PG and A and A be as above. Then
(kA & ANX, = kAyay-1, O A,
where A denotes the symmetric difference of sets.
Proof. We first show that
(3.9) (kA¥NX, = (kAxq)-1,) N X,.
In fact, the complement of left hand side is

(3.10) (kAY nX,)F = (kA)U(X,)

=(Uk4pu( U X)
h

leG,l#g
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= (kAyq)- 10U U X))

leG,l#g

= (kAy1)- 1)U X,.

In the same way, we obtain

(3.11) ANX,=AnX,.
Combining (3.10) with (3.11), we have
(3.12) (kAnA¥nX, = (kA uA)nX,

= ((kAnX,)u(ANnX,

= ((kAy1)- 1) N X )U(A5N X))
= ((kAy1)-1,) UAD)IN X,
Then, we have
(3.13) (kAN AnX, = {(kAUA)n(kAnAF}UuX,
= {(kAuA)n X, n{(kAnAFnX,}
= {(kAUA)N X} n{(kAc)-1,n AN X}
= {(kAw1)- 1) UAG N {(kAx(y)- 1,0 A0 N X g}
= (kAy1)-1,UA)N(kAy1y-1,N Ay
= kAyq)-1, D A,
The proof is complete.
Now, we will show the ergodicity. We set K,:= KnQG.
Theorem 3.3. p, is ergodic under the action of K,.

Proof. First, we note that, with the same notation in Lemma 3.3, if 4 is
a K,-invariant set with respect to u,, then 4 is K-invariant with respect to u. In
fact, since p, is supported on X,, we have for any keK,

r

(3.14) pkA A A) = | py(kA & A)p(g)dg

~

= | p, (kA & AN X,)p(g)dg

r

= | py(kAxy-14 & Ayplg)dg

.
= | ugks(k(1)"'g)4 A s(g) A)p(g)dg

»

= | #y(s(9)(s(g) " "ks(k(1)"'g)A A A)) p(g)dg.
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Since s(g)e K, by Lemma 3.1 and the asumption on A4, we have

(3.15) u(kA A A) = 0.
Then by Theorem 2.4, we have
(3.16) u(A) =0 or 1.
If we assume p(A) =0,
(3.17) 0 = u(A)

= | 1,(A)p(9)dg

[ ~
= | u(AnX,)p(g)dg
= | uy(A4,)p(g)dg.

So we obtain

(3.18) uy(A,) =0 for a.a. g.
Again by Lemma 3.1, we have

(3.19) | Uo(A) = 0.

By the same argument, we obtain u,(4) = 1 assuming u(4) = 1. The proof is
complete.

4. Equivalence-Singularity dichotomy

In this section, we will show the equivalence-singularity dichotomy.
As for the equivalence on path groups, we know Proposition 2.1 in one
direction, and the inverse was shown in [8]. We shall restate it as follows:

Theorem 4.1. Let k be in PG. Then, pu- L;' is equivalent to u if and only
if kisin K.

As for loop groups, Lemma 3.1 corresponds to Proposition 2.1. So, we shall
show the inverse of Lemma 3.1. For 0 <t <1, we denote by %, the o-field
olys;s<t].

Theorem 4.2. Let k be in QG. Then, u,o L' is equivalent to u, if and
only if k is in K.

Proof. We only have to show only if part.

Suppose that u, - L; ! and p, are equivalent. Since uelg% ~ y|§%, we obtain

poL;! |y% ~ yl;%. By Theorem 4.1, we have that k is absolutely continuous on
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[0, 3] and

1
4.1) Jz Ik, V|2 dt < oo
0

Since y, is invariant under the transformation (Ty), =7, _,, we obtain g,~pu,> Ly ' o
T~!'. Noting that TL, = Ly, T, we have

(42) Aue ~ iue ° L;'(lk) .

So, we obtain by the same argument for k, k is absolutely continuous on [4, 1]
and

1

4.3) J |k, 1k, |2 dt < oo.
1
2

Combining (4.1) and (4.3), we have
1

(44 j e 12 dt < oo.
0

Remark 4.3. So far we have considered the left action. By the symmetry
of the measures u and u, under the transformation y+—y~', we can replace left
by right.

Now, we recall a wel-known fact about ergodic measures. Let (£2, %) denote
a measurable space, and (T),., denote a family of measurable isomorphisms on
(2, B). Let P,, P, be two measures on (22, #) which are quasi-invariant under

('I:z)aeA .

Fact. If P, and P, are both ergodic under (T,),.,, then P, and P, are either
equivalent or singular.

For the case that Q is a vector space and (T),., are shifts, the proof is
given in [9]. One can show the general case with minor modifications. We
shall apply this fact to 4 and p,. Here, we restate our results.

Theorem 4.4. Let u be the Wiener measure on the path group PG. Then,
for ke PG,

(1) po L. is equivalent to u if and only if keK.

(2 woLg' is singular to pu if and only if ke K*.

Proof. By Theorem 2.5 and Remark 4.3, we can apply the fact above to
the case P, =y, P, =poL;' and (Ry)k. SO, poL;' is either equivalent or
singular to u. We have already shown the criterion for equivalence in Theorem
4.1. The proof is complete.

For the loop group, we have, by the same proof, the following.

Theorem 4.5. Let pu, be the pinned Wiener measure on the based loop group
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QG. Then, for ke QG,

[t]
(2]
[3]
[4]
[51

(6]
71

[8]
[91

(10]

(1) p,o Lyt is equivalent to p, if and only if keK,.
(2) p,oLg' is singular to p, if and only if keK§.
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