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Introduction

L e t X  b e  a  locally com pact space which satisfies the  second  countable
a x io m . Any locally finite subset of X  is called a configuration in X , th a t is  a
subset y c  X  such that y n K  is finite for any compact set K  c  X .  Let us denote
by .61„ the  space of all infinite and  by  B x  t h e  space o f all finite configurations
in X, and set T x := rl u B .  We introduce a  measurable structure W on T x  such
tha t ce is  a  m inim al a-algebra w ith w hich all th e  functions, Y ET x —>ly  nB leR
are measurable, where B  runs through all the Borel sets in X  and ly n ill is  the
num ber of the set y n B .  I t  is  k n o w n  th a t  (T i , ( e )  i s  a  s ta n d a rd  space (See,
theorem 1.2 in [3]) and hence any probability measure y on (Tx , W) is decomposed
into conditional probability measures with resect to any sub-a-field of W . The
subject o f  th is paper a re  tw o k inds o f  measures o n  (Tx , W ) with well known
properties a n d  their ergodic decom positions. T h e  first one  i s  a D iffo X-quasi-
inva rian t p robab ility  m easu re  /2 , w here  X  is a  connected  para-compact
Cm-manifold and Diffo X := {010 : diffeomorphism on X  with compact support}.
In 1975, Vershick-Gel'fand-Graev introduced elem entary representations U ,
generated by these ,i's and discussed fully their interesting properties in  [5 ] .  In
particular they showed that Um is irreducible if and  only if  y  is ergodic. Thus
our subject correspondes to  an irreducible decomposition of U . It w ill be  show n
in section 1 tha t an ergodic decomposition of Diff0 X-quasi-invariant probability
measure is actually possible.
The second one is  a  consideration of G ibbs measures ,u having been discussed
in  great detail in  statistical m echanics. A n ergodic decomposition o f  such 12
relative to  the tail-a-field leads u s  to  a  remarkable fact that there exist typical
extremal measures which are regarded as a  base on a convex set formed by such
y's. T h e s e  contents will be discussed in  s e c t io n  2 . In  b o th  of section 1 and
section 2, we denote a  a-finite non atomic Borel measure on X  by m . The direct
p ro d u c t m " o f  n  c o p ie s  o f  m  is n a tu ra lly  r e g a rd e d  a s  a  m easure  on
5(:= {(x,,•••,x„)e X " x i 0  x ;  f o r  a ll i a n d  thus an im age measure p m "  is
obtained by the natural map p„: (x,, • • , x„)eïn.-4 fx•••,xnleBnx:= {Y ErxIlY 1= n} .
W e denote it by
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1. Ergodic decomposition of Diffo X-quasi-invariant measures

1.1. B asic  n o tion  an d  result. A s  b e fo re  let X  b e  a  d-dimensional
Cm-manifold and  m  b e  a  locally Euclidean Borel measure o n  X  with smooth
densities. A nd  w e associate w ith each t/i e Diffo X  a transform ation To  o n  T x

s u c h  t h a t  T,,, {x,,• ••, x„,• • •} = {t/i(x, •••, t//(x • • •}. A  probability  m easure  p
o n  (T x , W ) is  s a id  to  b e  Diff0 X-quasi-invariant, if  a n d  only  i f  T,p ,•-• p fo r all

E D iff,X , where th e  sym bol ' '  m eans th e  equivalence re la tion  of measures.
M oreover /2 i s  s a id  t o  b e  Diff0 X -ergodic, i f  p(A )= 1 o r  0  provided that
p(Tq, ( A ) e  A ) = 0  for all Ill e Diffo X .  It is an  aim of the present section that after

suitably setting a  measure space (A , 2) we decompose I/ such a s  p  =  f  p,2(d1)

with Diffo X-ergodic measures p,. Besides it is to be desired that p,'s are mutually
singular.
N ow  le t p  b e  a  Diffo X -quasi-invariant probability measure a n d  p u t 1:= p(13,)
a n d  fl:=  p(A x ). T hen  w e have p  =  a p , + / p 2 ,  w h e re  p i (E):= ,u(E nBx ) la  and
ti2(E):=11(EnA x)Ifl for all E E '.  F urtherm ore  w e put a„:= il1(B 1). Then p ,  is
decomposed as

(1.1) 0 P. 1 n

where p i ,„(E)= p 1 (En.131)1cx„ fo r a ll E e c e .  Since B 1 (n 0, 1,•••) is  a  Diffo X-
invariant se t, s o  p ,,„ i s  a  Diff0 X -quasi-invariant m easure . H ere  w e g ive  the
following theorem.

Theorem 1.1 ( [ 5 ] ) .  A ny non zero o- -finite Diff 0 X -quasi-invariant measure on
Brk is equivalent to m x . ,,.

The proof  w ill be seen in  a  discussion for the proof o f  Lemma 1.2 which
will be stated later on.
In  anyway, it follows immediately from the  above theorem  that any non zero
a-finite Diffo X-quasi-invariant measure o n  13̀ax  i s  Diff0 X -e rg o d ic . Hence fu n  is
ergodic and (1.1) is actually an ergodic decomposition of p i . N e x t  let us observe
P2' so w e shall assume tha t p(A x ) = 1  from  now o n .  Here we introduce a set

{(x,,•••,x n ,•••)E X "  x, xi  fo r  a ll i j  and the  se t lx ,,•••,x„,•••1  has no
accumulation points} and consider a cross section s  of the natural map

p: (x,,•••,x„,•••)e

L e t u s  take  a n d  fix  a n  increasing sequence {K }  o f connected open  se ts with
compact closure such that Y„ Y , ,  a n d  Y „ x .  Then there exists a  measurable
section s  possessing the following property (P) w ith this {K}.

(P )  If  w e have 1Y=k 1, 1Y  M Y 2 \ Y 1) I= 'n(Y n\ -1)1 =k ,„••• for yeA x ,
then the .f irs t k , elem ents of  s(y) are in y 0 Y ,, the next k 2 elem ent of  s(y ) are in
y n ( Y2 \ )  and so  on.

A
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W e  c a ll it  to  b e  adm issible. N otice th a t  s(E) i s  a  B o re l se t  in  i - c° fo r  any
Ee(enA x ., because s  is  one  t o  o n e  an d  measurable, a n d  th e  space ( r x , W) is
standard.
For measures on  the  natural measurable space 93(k-')) we also obtain the
notion of Diff0 X-quasi-invariance and ergodicity w ith  m aps to : (x,,•••x„,•••)E.k. '

(xi), • • • , ikx„), • • • ) E 's °  for lE D if f 0 X .  Here we shall define a  new measure
o n  0 ( 7 ' )  from a  given probability measure i t  taking the  above measurable

admissible cross section s:

(1.2) (E) : = c (o-) (sit) o- (E)

for all E e /i( ), where S oo i s  the set of all finite permutations on N,
is a  fixed positive sequence such that E c re „  c(o-) = I and (sy )a is a image measure
of it  by the map,

yE A x s ( y )  =  ( x 1 ,... , s(y)a := (x o.( , ) , • • ,

Theorem 1.2 (section 2 in  [ 5 ] ) .  Under the above notations,
(a) y  is Diff o X -quasi-invariant if  and only  if  so is
(b) y  is Diffo X -ergodic if  and only  if  so is rt.
(c) I f  a B ore l p robab ility  m easure  y ,  o n  5C''' is S -q u as i- in v arian t  and
Iii(U.,ee co s (rx )a)= 1 , then pit, is equivalent to y i .
(d) A  Dif f o X -quasi-invariant probability  m easure II o n  ( 1 " , .0 (F ° ) )  is Dif f 0 X-
ergodic if  and only if  ii(A )= 1 or 0 for any  A E 93,0 , where = c ° 1  q ,'(0 (5 Z '))
and q n : ,,•-•,x„„•••)E,17'.B called the tail-a-field.

1.2. Dill*, Y-quasi-invariant measure on By  and one parameter group of Diffo X.
In this paragraph the letter Y stands for connected open subset in X  with compact
closure, and  w e observe subgroups of diffeomorphisms o n  X  whose support is
contained in Y which will be denoted by Diffo  Y . Using the sequence { Y„} already
stated in the admissible cross section, we have,

(1.3) DiffoX = 1 Diff, Y„.

Now from a trivial equality, y = (y n Y)u(y n Y ') we can identify T x  w ith a  product
space B y  and T .  Put m :  y E y  n Ye B y  and ny c: ye r x  y n YCE T Y .  S in c e
By  and T .  are naturally regarded as subspaces of T x  so the measurable structure
WI  a n d  (6 „  are  induced from (6' respectively . It is easy  to  see that the above
identification B y  x  F „ is  a n  isomorphism with the measurable structure ce
and ( C y X  WI,— B y  the way probability measures y  on  (By , WO naturally arises,
i f  w e decom pose Diffo  Y-quasi-invariant probability m easures w ith respect to
sub-a-field nio l  (ce y ,) .  So we shall observe such Vs, especially with v (13)= 1 for
a  w h ile . A s before we define

(1.4) i(E) = E o.e „(s„v)a(E)

fo r  a l l  E E23(i'"), tak ing  a  measurable cross section S
II

 o f  th e  natural m ap
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p: (y , • • • , y„)e n {y , • • • , y,} E B .  T h e n  y  a n d  i; h a v e  t h e  s a m e  k in d  of
quasi-invariance. N ow  -fin is covered by countable sets of the form Or x ••• x 0,T
(m = 1,•-•), where 07' is an open set with compact closure which is diffeomorphic
to Rd by a m ap  le  and T. n 07 = o for i j .  Since Diffo Y acts on  r'n transitively,
it f o l lo w s  th a t  th e r e  e x is t s  a n  a t  m o s t  c o u n ta b le  s e t  {tpk } su ch  th a t
r T n  =  WC -  1 (POT X  •••  X  On fo r  each  m .  H ence i7(O r x  ••• x  0„m)> 0 ,  i f  i5 is
quasi-invariant under a  group H „ generated by such yok 's. Here we shall prepare
some basic lemma.

Lem m a 1.1. There ex ists a  one param eter group 7r (i = 1 ,••• ,d , 1  = 1 ,•••) of

Diffo R d  which satisfies tr!(t)( ) = (1,• • • t,• • • , U  for all = (1,• • • , U  E Rd  and
te ll su c h  th at Max< 1  and t  < 1 .

1 < t< d

P ro o f  For the existence of such one parameter group, we solve the following
differential equation (1.5) with a  function f ,  of C "-class o n  R  such that f i (s)  = 1
o n  Is] 21 a n d  .f i (s) =  0  on 31.

dx
 =  f,(x,)•••f,(x d )e,

dt
(1.5)

x(0) =

where e i = 0). Then the solution x(t, of (1.5) gives directly a  desired
diffeomorphism.

L et G`d' be  a  group generated by the  one  parameter groups 7r! (i = 1, ••• , d,
I =  1,•••). Then it is easily seen that

Proposition 1.1. Fo r any  1 E N  an d  f o r any  t  =  (t,,• • • ,t d )E R d
,  there exists

tit e C2, such that

11/(0  = f o r all w i t h  Max< 1.
1 < i< d

Proposition 1.2. A ny  a-f in ite  G,?-quasi-inv ariant B orel m easure o n  Rd  i s
equivalent to the L ebesgue measure.

Now let us pull back each element of G,(1 by the maps te  (i =  1,•••,d, m =
and extend it to the element of D iff ,Y . Then considering the restriction of î  to
Or x ••• x 07, 1 ,  we deduce that

Lem m a 1.2. In  Diffo Y there exist one parameter groups m 1 ( i  =  1 ,— )  and a
countable subgroup H „ su c h  th at the  f o llow ing are equiv alent f or any  Borel
probability  measure y on B .
(a) y  is quasi-invariant under the g ro u p s  m  (i = 1 ,••-) and H .
(b) y  is equivalent to m x ,„.
(c) y  is Diff0Y -quasi-invariant.
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The following lemma is a n  immediate consequence o f the  above lemma by
letting n  run from  0 to cc.

Lemma 1.3. In  Diffo Y  there ex ists one param eter subgroups n i ,„ (i= 1 ,— )
and a countable group H ,  such that the follow ing are equivalent f o r any  Borel
probability  measure y  o n  B .
(a) y  is quasi-invariant under the groups n i , , ( i =1 ,— ) and H .
(b) y  is Duff, Y -quasi-invariant.

Next le t us decompose a  probability measure y  on (Fs , W ) in to  the regular
conditional probability measures /k r  Y r y E r  y r  o n  (13y, cey) w ith respect to  the  map
7r, which satisfy

(1.6) f.LY(A) is  a  „,-m easurable function of  y  [ ' ,  f o r each f ixed A  e By , and

(1.7) p(A  x B )= pv(A )n y cp(dy)
JB

for a ll A E Wy and  Be W y e .

Lemma 1.4. Under the above notations, the following are  equivalent.
(a) /2 is  Diff0 Y -quasi-invariant.
(b) ttY  is Diff0 Y -quasi-invariant f o r irm u-a.e.

P ro o f . There is nothing to prove "(b) implies (a)". Let us see the converse
relation. F o r  this we calculate T ( A  x B ), 1// D iff, Y  in  tw o  w a y s . The first
one is,

(1.8) ti(A  x B ) = p(T 1 (A ) x B) = te(A )n,,u(dy ).

A nd the other one is,

(1.9) T,k,u(A x B ) = (y)te(dy')nycli(dy).
dliB  A r

It follows from (1.8) and (1.9) that

(1.10) TçjtY ) =    (Yr)/IY(dY')
"  d i t

for n y ,p -a.e . y, and thus w e have

(1.11) Tote

for n y ,p-a.e. y. Here we take an  arbitrary one param eter group ICI", of Diffo Y
and set

11:= {(t, y )e R  x F„1 To d e  i l l  and
dT

17,:= { (t, y )e R x F,„1 T .4'( • ) =

dp
(dy')}
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Then H o  is  a  23(R) x Wy c.-measurable subset of H  and for any fixed t the R-section
1-4  determined by t has full measure for 7-cy ,p. Thus by virtue of Fubini's theorem
the r y ,-section HI, determined by y has full Lebesgue measure for n y ,p-a.e. y. So
the T y e-section HY is Lebesgue measurable and it is a  subgroup of R with positive
measure for iry ,p-a.e. y. T h i s  implies that HY  = R for iry ,p-a.e. y. Now consider
groups rci ,y  (i = 1,...) and H y  stated in Lemma 1.3. Applying the above arguments
to these subgroups, we conclude that pY is Diffo  Y-quasi-invariant for my u-a.e. y.

From  (1.3), Lemma 1.3 and  Lemma 1.4 we have the following theorem.

Theorem 1.3. In Diff o X , there exist one param eter groups rt, (i = 1,-.) which
are subgroups of  Dif f 0 (n ,)  and  a countable group G, such that the following are
equivalent f o r any  probability  m easure p on (Tx , W).
(a) y  is Diff0 X -quasi-invariant.
(b) p  is quasi-invariant under the groups n i ( i = 1 ,...)  and Go .

1.3. E rgod ic  decomposition of Diff0 X-quasi-invariant measure. L et p. b e  a
Diff0 X-quasi-invariant probability measure o n  (T x  , (6) w ith p(t1 ,) = 1 and  fi be
the Borel measure o n  1  defined by (1.2). We decompose  ji into conditional
probability measures {fix}x d . with respect to  the  tail-o- - fie ld  0 .. Namely,

(1.12) re(B) is a 0-m easurable function of  X EX  f or each fixed Be /3(1"), and

(1.13) rt(A n B) = f  iix(B)rt(dx)
A

fo r  all A  e 23. a n d  B e 2 3 ( 1 " ) .  Since th e  m easurable space (i " . 3 (1 " ) )  is
standard, and is  an intersection of a decreasing sequence o f the  countably
generated o- -fields q,;-1 (0 ( Î ' ) ) ,  s o  b y  th e  w ell know n fac t, (F or example see
theorem 2.3 in  [2])

(1.14) 3241 E O . with rt(A ,)= 1 s t . ,  V X E A 1  re( • ) = I or 0  on O oo .

Furthermore it follows easily from the construction of

(1.15) 3 A 2 e 0  with ri(A 2 ) = 1 s t . ,  Vxe A 2 , fix is  a- co -quasi-invariant and
ilx (UffEeco s(Fx )a) = 1 .

_
Consequently putting pix ] := pre , we have pixl fix for a ll x e A 2 by  v irtue  of (c)
in  Theorem 1.2. Next we have for each fixed ifr e Diff,X, Tip re r e  for fi-a.e. x,
because every s e t  i n  13o3 i s  Diff0 X-invariant. S o  u s in g  T h e o re m  1.3 and
proceeding similar manner with the proof o f Lemma 1.4, we deduce that

(1.16) 3/13E0„, w ith [4)4,1= 1 s.t., v xe 24 3 , !IN  is Dif f o X-quasi-invariant.

Thus we have,

(1.17) vxcA,nA2nA3, p [ x] is D if f 0 X-ergodic,

by virtue of (c) and (d) in  Theorem 1.2. Since
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4s -
1 (A 1 n A2 n A3 )) =  I a c , c0 c(0- )(sp)0- (A1 n A2 n A3 ) = MA I  n A2 n A3 ) =  1

so  the following result is obtained.

Theorem 1.4. Let ti be a Diff o X -quasi-invariant probability measure on (T i , cg)
with p(A x ) = 1. T hen there ex ists a fam ily  of  Dif f 0 X -ergodic probability measures
f iel y€ , (, ) such that
(a) If (B ) is a s 1 ( 3 )-measurable function of  y eA x  f or each  .f ix ed B ec ', and

(b) ti(B ns -  (A )) = gY (B)it(dy) for all B e W  and A eT1„,.
fs_,(A)

P ro o f . F o r  it  w e  have o n ly  to  p u t p 7 :— /./wY)3 i f  y e n A 2 n A3 ) and
pY := 0, otherwise, where 0  is some definite Diff0 X -ergodic probability measure
on  (F x  , (O.

W e w ish  to  rewrite this decomposition in  a  somewhat elegant style which
is independent of the adm issible sections. For this let us put

:=  { B E I  To B  =  B  for a ll t/2 e Diff,X}.

Then we have s - 1 (0 .,)  9 1 . 9 ,  as is easily seen. M oreover for the /2 in Theorem
1.4

0(24 e 2) = 0  for a ll A e %„,„ where :Li:— {y e A x l (A ) = 1}.

Because,

tt(B n'ii) =f if (B )g(dg)

for a l l  B e ' b y  v ir tu e  of Theorem 1.4, while

by virtue of Theorem 1.4, while

g(B n A ) = f  gy(B )gY (A ),u(dy)= p7 (B)ti(dy).
x

Theorem 1.5. L e t  it b e  a D if f 0 X -guasi-invariant probability  m easure on
(Fx , W ) . Then there ex ists a fam ily  of  probability  m easures { tel y a -x  o n  (Fr , W)
such that
(a) 1.1Y is Diff o X -ergodic f o r each Y E 1x '

(b) ,i(B ) is an 91 w -measurable function of  y  for each f ix ed B ecg

(c) p ( A  n B)= f ptY (B)g(dy) f o r all  A E 9 1  and B e .
A

P ro o f . First we divide it  into /2, and /22 a s  in  th e  first place of this section
and decompose g ,  in to  pi ,„ according to (1.1). Further we decompose /22 in to
{/2121),E,,,, as in Theorem 1.4. Next we define {/./7 1y c r x  such that p 7 = 14 for yeA x

and /2Y =  g,,,, for y eBnx . Then the  result easily follows from what we stated.
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Lemma 1.5. For any  Diff,X-quasi-invariant probability measures y  and v, the
following are  equivalent.
(a) v is absolutely continuous with y.
(b) There ex ists AeW o,  such that "v (B )=  0 if  and only  if  y(A nB )=  0".

P ro o f . We have only to check the implication "(a) im plies (b)". F rom  the
assumption there exists A 0  e ' su c h  th a t

"v (B )=  0  if and only if p(A 0 n B) = 0".

Thus A , m ust satisfy y(A, e T,(240 )) = 0  for a ll tp e Diffo X . It fo llow s from  the
above theorem that OA ° e To (A o )) = 0 for p-a.e . y . Here let us take an arbitrary
one parameter group Ii/i tI t e , contained in some Diffo  Y . Then O A ° e Tv,,(A 0 )) is a
93(R) x 91,o -measurable function of (t, y)e R x Tx , which is easily checked, so by
virtue of Fubini's theorem the Lebesgue measure of Q y := {t e RI O A , e T;,„(Aon=
ol is full for p-a.e. y. As Q y is  a group, so Q y =  R  fo r p -a .e . y . It follows from
Theorem 1.3 that a  m easure v defined by the restriction of pY to  the set A o  is
Diff0 X-quasi-invariant fo r  p -a .e . y . Since p Y  is D iff0 X-ergodic, so pY vY unless
py(A,)= O. T h a t  i s  O A ()) = 1 o r 0  fo r  p -a .e . y . Thus w e have y(A, e A) = 0
fo r an  A  defined by A := {y e F x 1p7 (A 0 ) =  1}E91..

Theorem 1.6. For any  Diff0 X-quasi-invariant probability  measures p  and v,
(a) v p  if  and only  i f  v y  on
(b) y  is  Diff0 X-ergodic i f  and only  if  p (. )=  1  or 0 on 9100 .
(c) I f  y  an d  v are  Diffo X-ergodic, then y  v or p 1v.

P ro o f . (a) S u p p o s e  that v p  on 91,0 a n d  p u t  A = (p +  v )I2 . Then by
virtue of the  above lemma, there exists A e91 0, su ch  th a t "p (B )=  0  if and  only
if A(A n B) = 0 " .  Especially we have p

(Ac) = 0 and thus v (Ac) = O. Consequently,
v(B)= v(B n A) _.2.1(A n B ), w hich im plies v(B )= 0  i f  y(B) = O. The converse
relation is obvious. (b) and (c) easily follow from (a).

I f  w e  w ish  to  be  tha t factor measures IpYl y „ x  appearing  in  Theorem 1.5
are  mutually singular, then the  following technique w ill be  usefu l. F irst notice
that a minimal o--algebra 9  with which all the functions, y e yv(B)eR, where
B runs through W, are measurable is countably generated and thus =  g -

1 (.4 (R ))
with a  suitable map g: T x  R . I t  is  n o t  d if f ic u lt  to  se e ,

(1.18) g(y)= g(y'), if  and only  if  pY=

Further by virtue of (c) in Theorem 1.5 we have,

(1.19) pl(g-1(E))p(dy)= xE(g(y))y(dy)
i g _ .  (F) .) g  1 (F)

for a ll E, F e 93(R), and  hence for p-a.e. y,

(1.20) p y (g '(E ))=  x E (g(y))

for all E e 93(R). Especially we have,
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(1.21) - 1 {g(y)} 1

for p-a.e. y. Now define p; =  pY , if t = g(y) and p: =  0, otherwise, where 0 is
some definite Diffo X-ergodic probability measure on (TX, W ). Then we have

(1 .22) For each f ixed Bece, p(B) is a  universally  measurable function of  te R.

Because g{y p 1' (B) a}  is an analytic set for every a e R .  And further we have,

(1.23) p(B ng - 1(E)) = f p;(B)gp(dt)

for a ll B EY  and E e 23(R). Compairing p; with regular conditional probability
measure p(t, • ) given g = t, we deduce that

(1.24) aT1 e 93(R) with gp(T,)= 1 such that v t e T1 , p; = p(t, • ).

Finally we put pr ( • ) = p(t, • ), if te  T, and p, = 0, otherwise. Then

Theorem 1.7. L et p  be  a  Diff0 X-quasi-invariant probability  m easure. Then
there exist a map g and a family of probability measures Ip t I,E,  on (F x , ce) such that
(a) g  is a  m easurable m ap from  (T x , 21,0 )  to  (R, O(R)),
(b) p, is Diffo X-ergodic f o r every  teR,
(c) pi (B) is  a Borel measurable function o f  te  R f o r each .fixed BEY ,
(d) there ex ists a B orel se t To w ith  gp(To ) = 1 such that pt (g - 1 {t} )=  1  f o r all

te To , especially  11,(t e To )  are  mutually singular, and

(e) p (B n g f-1(E)) = pt (B)gp(dt) f o r all B e W and Ee 93(R).
E

2. Ergodic decomposition of Gibbs measure

2.1. B asic properties. In  th is  section X  i s  a  general locally  compact
topological space which satisfies the second countable axiom and m  stands for
non atomic Radon measures on 23(X) which is the natural Borel a-field on X .  A
function U (x y) e ( co, co] defined on (x, y)e X x  Fx  is  s a id  to  b e  a potential
if it satisfies

(2.1) U(x I y) is  a  O(R) x v-measurable function, and

(2.2) U(x y U {y}) + u(Y =  u(Y  Y  {x }) + Y)

for all x , ye X  and y e Fx . W e shall extend the dom ain o f definition of the
potential to E l such that
U(01 Y):= 0  for n = 0 ,  U( {x, , x 2 }  y):= U(x i  vu {x2 } ) + U(x 2 1y) for n = 2 , and
U(.x I y) = U( {x i , • • • , xn _ y u {x„} ) + U(xn I y) for x := fx, , • • • , x„} e Bnx  inductively.
These are well defined by the property (2.2).
N ow  let p  b e  a  probability measure on (F x  , (6) and denote  the conditional
expectation of a  '-m easu rab le  func tion  f  on  F ,  w ith  respect t o  the a-field
71)7 e  y 0  by Exp (fI 4 .  Let us proceed to the definition of Gibbs m easure . A
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probability measure p on (Fr , (6) is said to be (U, m)-Gibbsian or simply Gibbsian
( in  a  sense o f Dobrushin, Ruelle, Lanford) fo r  a  potential U  a n d  a  measure m
if and only if it satisfies,

(2.3)
-

f irk 
exp ( —  U1-1c I y K`Dmic,n(dx) < oo

for pt-a.e. y , and

(2.4) ExP Wicc) (Y) =

EK17) - 1 /:= 0 n !' f  e x p  (—  u()_c Iy n 1(c))f()_c u (y n 1 ( c ))//1K,n(d )S)

for each non negative bounded W-measurable function f  on Fs . Notice that
w e alw ays have S K ( y )  1 .  A n d  it is  fa ir ly  e a sy  to  s e e  th a t  a  s e t  o f  all
(U, m)-Gibbsian measure is closed under th e  convex combination. From now
o n  we shall write

exp ( —  U(x1 y n 1(c)) f Os • y n Kcjm(d.x)

instead of

E : = 0  n! - 1 e x p  (  —  U(.1c y ni<c))f(- u n Kcl)mic,i(d)s)
L/37(

according to [4].

Lem m a 2.1. (2.3) and (2.4) is equivalent to the following condition (2.5).

(2.5) f (Y)12 (dY) = p(dy) exp ( —  1./(.1c y)) f Os • y)m(d.x)
J r

f o r each com pact set K  and non negative bounded (6-measurable function f.

P ro o f .  Suppose that (2.3) and (2.4) are satisfied and let xN „ be the indicator
function of the set N K  := lynKi = 0 1 .  Then for f =  x N .  ( 2.4) gives

(2.6) Exp (zK I , ( Y) = SI( (y ) 1 •

Thus,

f Glii(dy) = ExP (f  I WK)(Y)12 (dY)
F xJ r x

= f/ 1 (d))) ExP ( X N K  ( eic-)(1))1 exp (— U(..N I y n 1<c)) f Of • Y n 1(c))/n(d)s)
r .

= t i ( d Y ) 1  exP — UOS Y)).R.N • y)m(d)s).
N K
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Conversely, P u t FB  :=  fy (y) < a )} and  substitute the  indicator function xF ,,,
for f  in  (2 .5 ) . Then it yields that

111(F Kc) = X I I ., E K(Y )fi(dY ) ,

NK

a n d  thus j ( F )  =  O . T h e  rest o f  th e  proof easily follows from (2.6) which is
easily derived from (2.5).

L e t  u s  lo o k  qu ick ly  how  th e  G ib b sia n  property im plies D iff 0 X-quasi-
invariance. So let p, be a Gibbs measure and Y be any open subset with compact
c losu re . T hen  a s  is  easily  seen , (2 .4 ) a lso  ho lds f o r  s u c h  Y  provided that
m ( \ Y )  =  O . T h u s  th e  conditional probability m easure le  w ith  respect to
7E1, 1  ( C6 y ) is,

(2.7) u(A ) = (y) =0 n! - e x p  (  —  U ( . x  Y n  c))114( b_C)
A n in,

for all AEW y . Hence we have,

Theorem 2.1. L e t  X  be a connected a-compact C"-m anifold and  m  b e  a
locally  Euclidean R adon m easure o n  X . T h e n  u n d e r th e  assum ption that the
potential f unction  U (x ly ) is alw ay s f in ite , any  (U , m )-G ibbs m easure  y  is
Diff0 X-guasi-invariant.

P ro o f . Take a  sequence { Y„} of connected open sets w ith compact closure
such that m( \ Y„) = 0 and  apply Lemma 1.4.

L e t { U }  b e  a  countable open base of X  such  tha t Un i s  compact for all
n,,Y r be  a collection of a ll the sets being finite union of U  =  1,...), and 2i;
be a  countable field generatig

Lemma 2.2. In  order that a probability  measure y  on (F x , (6) is Gibbsian, it
is necessary and suff icient that (2.5) is satisf ied f or all K eJl . and  x B (= f ) ,  where
xB  i s  the indicator function of  a set B e . .

P ro o f . W e have on ly  to  check the sufficiency. Now it is immediate from
the assumption that (2.5) holds for a ll K E 1 7 . a n d  fo r  a ll non  negative bounded
W.-measurable functions. Hence proceeding in  th e  sam e w ay w ith the  proof of
Lemma 2.1, we have for each Ke.Y r

(2.8)

for p-a.e. y , and for each K e .ftç

(2.9) E IC-  1 (y )  = ExP (XNK  ( eKc)(y)

for p-a.e. y. Take any compact set K .  Then there exists a  sequence {K„}
such that K n K .  It gives that
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{yllynx„1 = 0} 1{Yllynxi 0 } a n d  lylYnKc=ynKcITTx•
Here we notice tha t if y n K` = y n K`, for some n, then

EKG) f exP ( — U()_clY K))frn(d-lc.) = Ex,,(Y)•

Thus (2.8) a n d  th e  above relation show  th a t (2.3) holds fo r  a ll  compact sets
K .  By the assumption (2.5) holds for a ll K„, so by virtue o f Lebesgue-Fatou's
lemma we have,

(2.10) f  i(dy)i it(dy) exp (— [1(- I Y n K cn f y n KC)) m(dx).
f r x N K

And hence,

(2.11) Exp ( f W ic) (Y)

Exp (XN. Wxc)(Y) • exp (— U()_c Iy n 10 ) f1  • y n ioni(d)s)

for ji-a.e. y. Especially,

(2.12) EK(yr 1 E x p  (xN .  WK4 (Y)

fo r y-a.e. y. N ow  le t  u s  consider the relation (2.9) fo r  K =  K .  A s  is easily
seen, 7r4 1 ((eg ) (cel„  so  the  right hand side of (2.9) is

(2.13) ExP (XN.„ (Y) E x P  (XN. (Y)
Exp (xNi< '< ) (Y )  —> ExP (XI( I 'K ') (Y ) a s  n co.

W hile fo r  th e  le f t h an d  side, f irs t w e  put F : =  n ,F „„ . T hen  (2.8) gives
p(F,„) ) =

where

1. And if y F o,  and

5  K (Y) = E L
I _ 0  1! - 1 f

y n Kcjv = y n I ( ' for some N , then for all n > N,

exp ( — U(.x I y n1(`))m ic/(4) + gL,„,

gL o:=  Eix=c+i /1 exp (— U(xly n 10)m K , i (dx)
Bk.

E,-= L + , n- i exp (— U ()sly n 10)m 3 (dx).f
Bi c ,

And if w e take a  sufficiently large L , the  last term becomes smaller than c for
a  given g > 0. Consequently for such an  L,

E11m K,( E 0 IL ' f  exp ( — U(x I Y n Kepnlic,i1dx) E + LEK (Y)
Bic
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So we have,

(2.14) EK (V) EK(Y)

for p-a.e. y. It follows from (2.13) and easy calculations that

(2.15) K()))- 1E xP1X N K IWKO(Y)

for p-a.e. y. This and (2.12) show that (2.6) holds for all compact sets K .  Now
the inequality (2.11) becomes,

(2.16) Exp ( f  , „ ) ( y ) K (y) -  f  e x p  (—  U()_c y n K9) f Os • y n K9m(cb_c)

fo r p-a.e. y. B y th e  w ay (2.16) becomes a n  equality for f = const, thus it is
actually an  equality for any f >  O.

L et us take and  fix a n  increasing sequence {K} of compact sets such that
K t, x, and consider the tail a-field ( e . : =  n n --1 (W O . W oo does not depend
o n  a  particular choice o f {K}.

Theorem 2.1. L et p be a (U, m)-Gibbs measure and {pYc o } y E r x  be a f am ily  of
conditional probability  m easure o f  p  w ith respect to  (60 ,3 . T hen pYc o i s  (U, m)-
Gibbsian f o r p-a.e.y.

P ro o f .  For A e W   and Be Y7  we calculate p(A n B) in  tw o  w ays. The first
one is,

p (A n B )  f pYo o (B)p(dy),
A

and the other one is,

p(A flB) = P(dY)XA(Y) exp  (—  U  I y n 10)xd.lc • ynxim(d)s),
N K

where K  is  taken  from  X '. T hese  show that

(2.17) /16.9(B) =  f (dY) f  exp  (  U 0 s1  y n 1<c)))63( • y n Ke)m(d)s)
N K

fo r p-a.e.S . Since ,Y7- a n d °".,  a re  countable, so the assertion directly follows
from Lemma 2.2.

Here we introduce a  no tion  o f ergodicity. A  G ibbs measure p  on  (Fi ,
is  s a id  to  b e  ergodic if  a n d  on ly  if  p (• )=  1  o r  0  o n  C o . A s  (Fx , W ) i s  a
standard space and it' an intersection of a decreasing sequence of countably
generated a-fields nie(WK ), so Woo i s  ergodic for alm ost all y  by  a  well known
result (For example see theorem 2.3 in  [2]) and the ergodic decomposition seems
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to be settled.

2.2. Ergodic measures a s  a  b a s e . However we will have  a  stronger result
th a t factor m e a su re s  j (y e Ex )  d o  not depend o n  each p. From  now  o n  we
take a n d  fix a  countable field .a", generating s u c h  t h a t  any finitely  additive
f inite m easure on gr-0 h as  a a-additive extension on W . The existence of such
is assured by the fact that (Es , W) is s ta n d a rd . Now set

Q, := {y I E K (Y ) < oc  holds except finitely many n's}

Q 2 :=  1Y G Q1 Ilirn EK „ (Y)— exp ( — U ()sly 11 K)) x ,()s • y n 1()m(d, )

exists for every BE . }.

Then Q1 , 0 2 e C o a n d  fo r  any (U, m)-Gibbs measure p, p(Q 2 ) = 1 by virtue of
the martingale convergence theo rem . A nd by  the  nice property of A ) , we can
define a  probability measure col,

°
(y e0 2 ) on  (Ex , W) as the extension of a finitely

additive measure :

B e urn K ( Y ) ' e x p  ( — U(.1clynK)))(B (./c • y n K)m(d.x).

L et us m ake up a  definition co? as co? =  for y e 0, where is  so m e  d e f in ite
(U, m)-Gibbs ergodic measure. Then

(2.18) w10(B) is  a (6 0,-measurable function of y  e Ex  f o r each f ixed B e (e.

Further by virtue of the martingale convergence theorem we have for any Gibbs
measure p,

(2.19) It(A nB )-- 4(B)kt(dy)
A

fo r a ll A eW so a n d  B e (C . Because (2.19) is first valid fo r B E ,970  and  holds in
general by the extension property. It follow s from  (2.19) that

(2.20)

for p-a.e. y. Here we shall put

0 y=Y co

1 1K
Q, := {6 e F x  co's) (B) = (dy) exp (— U()_c y n K`))XB(N • y n K e )nl(dIC)

NK
for a ll Be ..°F,„ a n d  K .

Then Q3 e C ,  and (2.20) gives 12(03) =  1 for any Gibbs measure p. And it follows
from Lemma 2.2 that

(2.21) a ,:  is (U,m)-Gibbsian f o r each (5 e523 .

Thus (2.19) derives that for (5E03
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(2.22) co2(A n B )= o(B )w (dy )
,4

for a ll A e Wc,  and  B e '.  F in a lly  w e  put

Q4 := e Q3 1 f Ico?(B ) —  ?(B )} 2 co(A dy) = 0  for a l l  B  „Fo } .
Tx

Then we have Q 4  e(6  a n d  fo r  any (U, m)- Gibbs measure p,

10 4(B) - 4(B )} 2  0 4(dY )Ii(dY )= 114(B ) —  (B)} 2 14(4)Ii(dY ) = 0

T h u s  w e  have  14 2 4 ) = 1. M oreover it fo llow s from  (2 .22) that co,?(A nB)=
cog (A)co,?(B) for each 5 EQ 4 , which implies 4(A ) = 1 or 0 for all A E .  Thus

(2.23) cog is ergodic f o r each SeS2 4 .

Define co, =  wg, if 5eS2 4  a n d  cob = C , otherwise. Then we have,

Theorem 2.2. As f o r a convex set formed by all (U, m)-Gibbs measures, there
ex ists a fam ily  o f  probability  measures Iw y l y, r .  on (Fx , W) such that
(a) coy  i s  a (U, m)-Gibbs ergodic measure f o r each y eFx ,
(b) coy (B) is  a  W .-m easurable function o f  ye Fx  f o r each .f ix ed B eW  and
(c )  for any  (U, m )-Gibbs m easure p

,u(A nB )= coy (B )p(dy ) f o r all A  E W . and B E .
A

Corollary. For any (U, m)-Gibbs measures p and y,
(a) p = y  if  and  only  if  p  = y  on W ..
(b) y i t  i f  and only  if  v  p  o n  W . .
(c) If  p and y  are ergodic, then p = y  or p  i v .

Let us take and fix an  above family {co y }y E r x  a n d  consider a minimal a-field
'Œ(O  w hich all the functions, y c o y (B) (B e(6) are measurable. Since W co ,„,

is countably  generated , so  there  exists a  m a p  h: Fx -- R  su c h  th a t c '
h - 1 (0 ( R ) ) .  As before it is easily checked that

(2.24) coy = w y i f  an d  only  if  h(y )= h(y ').

Further we claim that

(2.25) hw y = S h (y )

fo r  a ll y c F x ,  where Ss  i s  the  D irac  m easure  a t s E  R . F o r , p u t S := {Y er
hcoy = S h ( y ) }. Then we have S e Wco ,. a n d  fo r  any Gibbs measure p,

X1

p (h '(E f IF ) )= coy (h '(E ))p (dy )= xE(h(y))p(dy)
h - l ( F )
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for all E, Fe 23(R). Since both the integrants are re.„-measurable, so it follows
tha t co y (h - 1 (E))= ZE(h(Y)) for ic-a.e. y, and thus tt(S )=  1. Especially we have,

(2.26) wy(S) = 1

for all y e E x .  Now for any fixed y e F , le t us take a e IS = wyl s. Notice
th a t the  la st se t is not em pty because w e have co, = w y f o r  co y -a.e.c5 by virtue
of the ergodicity of coy . Then,

co y (h - 1 (E))= co c (h -  '1E» = XE(11(0")) = ZE1111Y)).

W e settle these arguments as the following theorem.

Theorem 2.3. Under the notation in Theorem 2.2, let co , .  b e  the minimal
a-f ield w ith which all the functions, y -> w(B) (B e (6) are m easurable. T hen there
ex ists a  m ap h: F ,->  R such that ce = h - 1 (21(R)) and we have
(a) coy = coy ,  if  and  only  i f  h(y)=  h(y'), and
(b) hco y = 6„ ( y )  f or all y e T x .

Remark 2.1. As for the uniqueness of such a  family {wy l y e r x , it is desirable
to  sta te  it w ithout exceptional se t instead o f  with exceptional se t o f  measure
O. T he following is a n  answer fo r th is question . Namely, in  order that such
families tw y l y a -x  a n d  {co;}y E r x  coincide, it is necessary a n d  sufficient that the
a-fields generated by them are  the same one, i. e ., W = ce ,„ , , .

1Theorem 2.4. A  m ap: 4 .) -> c o y ( . ) 4 d y )  is a bijection f rom  a  space of
F X

all probability  m easures on (Fr , ce )  to  the space o f  all (U, m)-Gibbs measures.

The proof  is obvious from what we have stated.

W e conclude this paragraph with the following theorem.

Theorem 2.5. A s f o r the  convex set form ed by  all (U, m )-Gibbs m easures,
there ex ist a  m ap h: r, —› R and a fam ily  o f  probability measures HS 1- r , r e h ( r x )  on
(Fx , c e )  such that
(a) h  is a  measurable map from  (F x , (Co )  to  (R, O(R)),
(b) B , is  a (U , m )-G ibbs ergodic m easure for each r e h(F x ),
(c) f3 (B ) is a  h(F 5 )n23(R )-m easurable function of  r e h (F x ) f o r each  f ix ed  B e ',

and hence it is universally measurable,
(d) 13,(11- 1 (T)) =  1 f o r all T E N r,) ,  especially fi t (t eh(Fx )) are  mutually singular,

and
( e )  f or any  (U, m)-Gibbs measure 12,

tt(B nh -  (E)) = fl t (B )h ii(d r )  f o r all B e  an d  E (R).

P ro o f . L e t u s  p u t fi, = w y ,  if T  = h(y). Then the  well-definedness and (d)
come from Theorem 2.3. N ext w e shall show (c). Notice th a t for each fixed
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a E R, there exists some Ea el3(R) such that {Y rx i Wy (B) < a} = h -  (Ea ). Hence

IT E h(Fx )I f3,(B)._ a}  = rxIaly(B) —‹ a}  = E a n h(T x ).

Since an image of a Borel set in a standard space by a Borel m ap is an  analytic
set, so h(Fx ) is universally measurable. The rest of the proof easily follows from
Theorem 2.2.

W e remark that flt (t E h(15 )) runs all over the set of all (U, m)-Gibbs ergodic
measures.

2.3. Specific Gibbs measures. First we shall characterize G ibbs measures
with total mass on B .

Theorem 2.6. I f  a  (I. m )-Gibbs m easure y  on (T x , (6) hav e total m ass on
Bx ,  then it follow s that

(a) S := J exp  ( —  U(z I 0))m(dx) < oo,

and the explicit form  o f  y  is given by

(b) f (y )y (dy )= exp ( —  U(z14)))f(z)m(dx) f o r all non negative bounded
f rx

measurable function f .
Conversely if  (a) holds, then a measure y  given by (b) is (U, m)-Gibbsian with total
mass on B .

P ro o f .  As is easily seen, B x  is  an  atom  of (6 '., so the measure y  with total
mass on Bx  m ust be ergodic. It follows from the martingale convergence theorem
that

f K,,
exp ( —  U(z1 y n Kcn)) f ()_c • y n Kc)m(d)s)

(2.27)
f  

f  (.5)y (d6) = lim  K,,Jax exp (— U(zly n Kcn)) m(4 )

for y-a.e. y. However y e B ,  implies y n Kc„ = 0 for sufficiently large n, so  (2.27)
is actually,

(2.28)
isx 

f 00(4) = 

B y  th e  assum ption w e have y (B 5 1 ) >  0 fo r  som e k  a n d  1, w here Bx, k, i —
{y E 4 1 y  c  1 ( 1 } . Let us p u t  th e  indicator function o f  Byck, i  for f . T hen the
numerator under the lim it sign in  (2.28) becomes

• • • exp ( — U({x i , • • x ,}  I 0))/ni(dx)

fK,,
exp ( — 44) f (.)rn(dx)

exp ( — 44)rn(d.x)
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for a ll n  >  1 which is independent of n. So we have
K„

liM exp (—  U(Ic (i)))m(dx) =  S  <  oo ,

and (b ) follows directly from (2.28).
Conversely, we claim that (2.5) holds for it  defined by (b ) under the assumption
(a). For it w e have only to check it  for functions f  (y )x ,(y ) (n  = 0, 1,•••). It is
obvious for n  = 0 , so  le t n >  O. Then,

I N K  
ti(dT) eXP (1C • y)X131( • Y)M(4)

=  v  n
L d  I 0 f(1, i I YnK I =0, l yn K'  1 =I}

p(dy)(n — I)! - 1 exp(—  U({x 1 ,•••,x ,}
xeK"

ly n K T • f ( tx , ,• • • ,x n _ il  W ynropni -
1(dx)

=s - 1 E7= 0 {1!(n-1)!} - 1  f ••• f  e x p ( — U({xi,•••,xn-/}1{Yi,•• • 411)
xeK" - '1* f  ye(K91

• exp ( — {Y • • • , 4))).Ï ( {x , • , xn- Y 1, • ", Yi})in" - 1 (dx)m t (dY)

=  S - i n L 1 E7 = 0 „C1 f ••• Texp(— )) •
xeK

I 4)
" if  

f  ({x1,• • • ,

=  S 'n ! "  • • • f  ex p (—  U (Iz i,•••,z nI O ))f (f z i ,•••,z n I)mn(dz)
x"

= f ( y ) x ex  (Y)tt(dv).
Bx

Theorem 2.7. If  the potential U  is constant, say  U (x ly )= —  log a, then the
convex se t o f  all (U, m )-Gibbs measures consists o f  only  a Poisson m easure Pa n ,
w ith intesity  a m .  (P a m  is o f  course ergodic by  v irtue o f  0 - 1  law.)

P ro o f .  Let it  be any (U, m )-G ibbs m easure. Then for each compact set K
we have,

g J O )  =  f  ii(dy) exp ( — OS Y)) X.13(.1)m(d)s)
N K

=  it(N K )E :_ o n! an m K,n(B n Erk)

for all BereK . So by virtue of O b ata  s  result [1 ] ,  there exists a Borel probability

)mn - i (dx)m'(dy)

fmeasure .1. o n  [0 , co) such that it = P c m .1.(dc) in  the  case m (X ) =  co, o r  j i  is
Jo

a  convex combination o f  mx /m (X )" in  th e  c a se  m (X ) <  co. First we shall
consider the  infinite c a s e .  So le t us take a  se t Ee 23(R) a n d  a  function

CO



K

= c,m(x) - if
N K

 m x ,i (dy) alL̀ l xr k ()s, • y n Kc)m(dx).

cn = 11,(131) = ti(dY ) f  a i  x  n o s  y n Ke)m(d)s)
NK

(2.29) P(7)=

Ergodic decomposition 629

li m  —

1
E7= ,

y n (K i +  \ K i)I
 ,  i f  t h e  l i m i t  e x i s t s .

" n m (K i+,\K i)

O,  o t h e r w i s e .

And we calculate XE(PG))/1 (dY) in  two ways, noting that p(y) = c  for Pc„,-a.e.
FX

y. the first one is,

f r x

,E(p(y)),(dy)= xE(p(y))pcm(dy)(dr)= A(E),
FX

and the other one is,
co

X E(P(Y ))11 (d Y )  = 2(dc)f
f  P

c m (dY )1 XE(PCN • y n Kc))m(dx)
r x N K

= exp (am(K)) exp ( —  cm (K))2(dc).
JE

These show th a t c = a  for A-a.e.c and hence p =  Pam . Next we shall consider
the  finite c a s e . So there exists a  n o n  negative sequence {c„} with En"  0 c = 1
such that

(2.30) ,u =

Then for each compact set K,

So we have,

(2.31) c „ =  E7=0 { ( n  —  1)! m ( X ) 11 -

1 an-
tmoKr -

im(Kc) l ci .

It follows from the mathematical induction for n  that

c„ =  n! 'anm (X )"c 0 , a n d  c , = exp ( —  am(X )),

which follows from the  normalizing cond ition . Thus we have

p = exp ( —  am (X ))E n°0_ 0 n !  1 a " M X ,r t  =  
P am .

Corollary. L et U  be  a potential def ined by  U(x ly )= —  log p(y ), where p is
a function def ined by  (2.29). I f  a B orel R adon m easure m  o n  X  is infinite, then
the ex trem al points o f  the  convex s e t  o f  all (U, m )-Gibbs m easures consists of
{PanIce[0, oo) •  T hat is, f o r any (U, m)-Gibbs measure
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u(B n (E)) = Pc „,(B)pu(dc) f o r all B e (6 and E 0 0 )) .

P ro o f . Let Icarl „ r x  b e  as in Theorem 2.2. Then the W.-measurabilty of p
implies that for each fixed y E Tx , there exists a constant a(y) such that

(2.32) 1 (a)= a(Y)

for wy -a.e. a. Thus by the above theorem we have

(2.33)W  =  P a(Y)m

for all y E T x . Especially for each compact set K,

co(N K ) = Pa ( y ) „,(N K ) = exp ( —  a(y)m(K)).

It follow s that a(y) is  a lso  a  W.-measurable function of y, and therefore (2.32)
implies that for any (U, m)-Gibbs measure p,

(2.34) P(y) a(Y)

for p-a.e. y. Thus we have,

p(B n p - 1 (E))= w y (B)p(dy)= Pp(y)m(B)a(dy)= P(B )pu(dc).
)9  -  ( E) )9  -  ( 12)

DEPARTMENT O F  MATHEMATICS

F U K U I UNIVERSITY

R eferences

[ 1 ] N. O b ata , Measures on the configuration sp ace , 1-42, unpublished.
[ 2 ] H. Shim om ura, Ergodic decomposition of quasi-invariant measures, P u b l RIMS, Kyoto

Univ., 14 (1978), 359-381.
[ 3 ] H. Shim om ura, Poisson measures on the configuration space a n d  unitary representations of

the group of diffeomorphisms, J . of M ath. K yoto Univ., 34 (1994), 599-614.
[ 4 ] Y. Takahashi, Characterization o f G ib b s measures, Seminar o n  probability, 46 (1977) (in

Japanese).
[ 5 ] A. M. Vershik, I. M. Gel'fand and M . I. G raev , Representations o f  th e  group o f  diffeomor-

phism s, U sp. M at. Nauk, 30 (1975), 3-50 (= Russ. Math. Surv., 30 (1975), 1-50).


