Ergodic decomposition of probability measures on the configuration space

Dedicated to Professor Takeshi Hirai on his 60th birthday

By

Hiroaki Shimomura

Introduction

Let X be a locally compact space which satisfies the second countable axiom. Any locally finite subset of X is called a configuration in X, that is a subset $\gamma \subset X$ such that $\gamma \cap K$ is finite for any compact set $K \subset X$. Let us denote by Δ_X the space of all infinite and by B_X the space of all finite configurations in X, and set $\Gamma_X := \Delta_X \cup B_X$. We introduce a measurable structure \mathscr{C} on Γ_X such that \mathscr{C} is a minimal σ -algebra with which all the functions, $\gamma \in \Gamma_x \to |\gamma \cap B| \in \mathbf{R}$ are measurable, where B runs through all the Borel sets in X and $|\gamma \cap B|$ is the number of the set $\gamma \cap B$. It is known that $(\Gamma_{\chi}, \mathscr{C})$ is a standard space (See, theorem 1.2 in [3]) and hence any probability measure μ on (Γ_x, \mathscr{C}) is decomposed into conditional probability measures with resect to any sub- σ -field of \mathscr{C} . The subject of this paper are two kinds of measures on (Γ_X, \mathscr{C}) with well known properties and their ergodic decompositions. The first one is a Diff_0X -quasiinvariant probability measure μ , where X is a connected para-compact C^{∞} -manifold and $\text{Diff}_0 X := \{ \psi \mid \psi : \text{ diffeomorphism on } X \text{ with compact support} \}.$ In 1975, Vershick-Gel'fand-Graev introduced elementary representations U_{μ} generated by these μ 's and discussed fully their interesting properties in [5]. In particular they showed that U_{μ} is irreducible if and only if μ is ergodic. Thus our subject correspondes to an irreducible decomposition of U_{μ} . It will be shown in section 1 that an ergodic decomposition of Diff_0X -quasi-invariant probability measure is actually possible.

The second one is a consideration of Gibbs measures μ having been discussed in great detail in statistical mechanics. An ergodic decomposition of such μ relative to the tail- σ -field leads us to a remarkable fact that there exist typical extremal measures which are regarded as a base on a convex set formed by such μ 's. These contents will be discussed in section 2. In both of section 1 and section 2, we denote a σ -finite non atomic Borel measure on X by m. The direct product m^n of n copies of m is naturally regarded as a measure on $\widetilde{X}^n := \{(x_1, \dots, x_n) \in X^n | x_i \neq x_j \text{ for all } i \neq j\}$ and thus an image measure $p_n m^n$ is obtained by the natural map $p_n : (x_1, \dots, x_n) \in \widetilde{X}^n \to \{x_1, \dots, x_n\} \in B_X^n := \{\gamma \in \Gamma_X | |\gamma| = n\}$. We denote it by $m_{X,n}$.

Communicated by Prof. T. Hirai, October 31, 1994

1. Ergodic decomposition of Diff₀X-quasi-invariant measures

1.1. Basic notion and result. As before let X be a d-dimensional C^{∞} -manifold and m be a locally Euclidean Borel measure on X with smooth densities. And we associate with each $\psi \in \text{Diff}_0 X$ a transformation T_{ψ} on Γ_X such that $T_{\psi} \{x_1, \dots, x_n, \dots\} = \{\psi(x_1), \dots, \psi(x_n), \dots\}$. A probability measure μ on (Γ_X, \mathscr{C}) is said to be $\text{Diff}_0 X$ -quasi-invariant, if and only if $T_{\psi}\mu \simeq \mu$ for all $\psi \in \text{Diff}_0 X$, where the symbol \simeq means the equivalence relation of measures. Moreover μ is said to be $\text{Diff}_0 X$ -ergodic, if $\mu(A) = 1$ or 0 provided that $\mu(T_{\psi}(A) \ominus A) = 0$ for all $\psi \in \text{Diff}_0 X$. It is an aim of the present section that after suitably setting a measure space (Λ, λ) we decompose μ such as $\mu = \int_{\Lambda} \mu_l \lambda(dl)$ with $\text{Diff}_0 X$ -ergodic measures μ_l . Besides it is to be desired that μ_l 's are mutually

with $Din_0 x$ -ergodic measures μ_l . Besides it is to be desired that μ_l s are multisingular.

Now let μ be a Diff₀X-quasi-invariant probability measure and put $\alpha := \mu(B_X)$ and $\beta := \mu(\Delta_X)$. Then we have $\mu = \alpha \mu_1 + \beta \mu_2$, where $\mu_1(E) := \mu(E \cap B_X)/\alpha$ and $\mu_2(E) := \mu(E \cap \Delta_X)/\beta$ for all $E \in \mathscr{C}$. Furthermore we put $\alpha_n := \mu_1(B_X^n)$. Then μ_1 is decomposed as

(1.1)
$$\mu_1 = \sum_{n=0}^{\infty} \alpha_n \mu_{1,n},$$

where $\mu_{1,n}(E) = \mu_1(E \cap B_X^n)/\alpha_n$ for all $E \in \mathscr{C}$. Since B_X^n $(n = 0, 1, \dots)$ is a Diff₀X-invariant set, so $\mu_{1,n}$ is a Diff₀X-quasi-invariant measure. Here we give the following theorem.

Theorem 1.1 ([5]). Any non zero σ -finite Diff₀X-quasi-invariant measure on B_X^n is equivalent to $m_{X,n}$.

The proof will be seen in a discussion for the proof of Lemma 1.2 which will be stated later on.

In anyway, it follows immediately from the above theorem that any non zero σ -finite Diff₀X-quasi-invariant measure on B_X^n is Diff₀X-ergodic. Hence $\mu_{1,n}$ is ergodic and (1.1) is actually an ergodic decomposition of μ_1 . Next let us observe μ_2 , so we shall assume that $\mu(\Delta_X) = 1$ from now on. Here we introduce a set $\tilde{X}^{\infty} := \{(x_1, \dots, x_n, \dots) \in X^{\infty} | x_i \neq x_j \text{ for all } i \neq j \text{ and the set } \{x_1, \dots, x_n, \dots\}$ has no accumulation points} and consider a cross section s of the natural map

$$p: (x_1, \cdots, x_n, \cdots) \in \widetilde{X}^{\infty} \to \{x_1, \cdots, x_n, \cdots\} \in \mathcal{A}_X.$$

Let us take and fix an increasing sequence $\{Y_n\}$ of connected open sets with compact closure such that $\overline{Y}_n \subset Y_{n+1}$ and $Y_n \uparrow X$. Then there exists a measurable section s possessing the following property (P) with this $\{Y_n\}$.

(P) If we have $|\gamma \cap Y_1| = k_1$, $|\gamma \cap (Y_2 \setminus Y_1)| = k_2, \dots, |\gamma \cap (Y_n \setminus Y_{n-1})| = k_n, \dots$ for $\gamma \in \Delta_X$, then the first k_1 elements of $s(\gamma)$ are in $\gamma \cap Y_1$, the next k_2 element of $s(\gamma)$ are in $\gamma \cap (Y_2 \setminus Y_1)$ and so on.

We call it to be admissible. Notice that s(E) is a Borel set in \tilde{X}^{∞} for any $E \in \mathscr{C} \cap \mathscr{A}_X$, because s is one to one and measurable, and the space (Γ_X, \mathscr{C}) is standard.

For measures on the natural measurable space $(\tilde{X}^{\infty}, \mathfrak{B}(\tilde{X}^{\infty}))$ we also obtain the notion of $\operatorname{Diff}_0 X$ -quasi-invariance and ergodicity with maps $\tilde{T}_{\psi}: (x_1, \cdots, x_n, \cdots) \in \tilde{X}^{\infty} \to (\psi(x_1), \cdots, \psi(x_n), \cdots) \in \tilde{X}^{\infty}$ for $\psi \in \operatorname{Diff}_0 X$. Here we shall define a new measure $\tilde{\mu}$ on $\mathfrak{B}(\tilde{X}^{\infty})$ from a given probability measure μ taking the above measurable admissible cross section s:

(1.2)
$$\tilde{\mu}(E) := \sum_{\sigma \in \mathfrak{S}_{\infty}} c(\sigma)(s\mu)\sigma(E)$$

for all $E \in \mathfrak{B}(\tilde{X}^{\infty})$, where \mathfrak{S}_{∞} is the set of all finite permutations on N, $\{c(\sigma)\}_{\sigma \in \mathfrak{S}_{\infty}}$ is a fixed positive sequence such that $\sum_{\sigma \in \mathfrak{S}_{\infty}} c(\sigma) = 1$ and $(s\mu)\sigma$ is a image measure of μ by the map,

$$\gamma \in \varDelta_X \xrightarrow{s} s(\gamma) = (x_1, \cdots, x_n, \cdots) \xrightarrow{\sigma} s(\gamma) \sigma := (x_{\sigma(1)}, \cdots, x_{\sigma(n)}, \cdots) \in \widetilde{X}^{\infty}.$$

Theorem 1.2 (section 2 in [5]). Under the above notations,

- (a) μ is Diff₀X-quasi-invariant if and only if so is $\tilde{\mu}$.
- (b) μ is Diff₀X-ergodic if and only if so is $\tilde{\mu}$.

(c) If a Borel probability measure μ_1 on \tilde{X}^{∞} is \mathfrak{S}_{∞} -quasi-invariant and $\mu_1(\bigcup_{\sigma\in\mathfrak{S}_{\infty}}s(\Gamma_X)\sigma)=1$, then $p\mu_1$ is equivalent to μ_1 .

(d) A Diff₀X-quasi-invariant probability measure $\tilde{\mu}$ on $(\tilde{X}^{\infty}, \mathfrak{B}(\tilde{X}^{\infty}))$ is Diff₀Xergodic if and only if $\tilde{\mu}(A) = 1$ or 0 for any $A \in \mathfrak{B}_{\infty}$, where $\mathfrak{B}_{\infty} = \bigcap_{n=1}^{\infty} q_n^{-1}(\mathfrak{B}(\tilde{X}^{\infty}))$ and $q_n: (x_1, \dots, x_n, \dots) \in \tilde{X}^{\infty} \to (x_{n+1}, \dots, x_m, \dots) \in \tilde{X}^{\infty}$. \mathfrak{B}_{∞} is called the tail- σ -field.

1.2. Diff₀ Y-quasi-invariant measure on B_Y and one parameter group of Diff₀X. In this paragraph the letter Y stands for connected open subset in X with compact closure, and we observe subgroups of diffeomorphisms on X whose support is contained in Y which will be denoted by Diff₀Y. Using the sequence $\{Y_n\}$ already stated in the admissible cross section, we have,

(1.3)
$$\operatorname{Diff}_{0} X = \bigcup_{n=1}^{\infty} \operatorname{Diff}_{0} Y_{n}.$$

Now from a trivial equality, $\gamma = (\gamma \cap Y) \cup (\gamma \cap Y^c)$ we can identify Γ_X with a product space B_Y and Γ_{Y^c} . Put $\pi_Y : \gamma \in \Gamma_X \to \gamma \cap Y \in B_Y$ and $\pi_{Y^c} : \gamma \in \Gamma_X \to \gamma \cap Y^c \in \Gamma_{Y^c}$. Since B_Y and Γ_{Y^c} are naturally regarded as subspaces of Γ_X so the measurable structure \mathscr{C}_Y and \mathscr{C}_{Y^c} are induced from \mathscr{C} respectively. It is easy to see that the above identification $\Gamma_X \simeq B_Y \times \Gamma_{Y^c}$ is an isomorphism with the measurable structure \mathscr{C} and $\mathscr{C}_Y \times \mathscr{C}_{Y^c}$. By the way probability measures ν on (B_Y, \mathscr{C}_Y) naturally arises, if we decompose Diff₀ Y-quasi-invariant probability measures with respect to sub- σ -field $\pi_{Y^c}^{-1}(\mathscr{C}_{Y^c})$. So we shall observe such $\nu's$, especially with $\nu(B_Y^n) = 1$ for a while. As before we define

(1.4)
$$\tilde{v}(E) = \sum_{\sigma \in \mathfrak{S}_n} (s_n v) \sigma(E)$$

for all $E \in \mathfrak{B}(\tilde{Y}^n)$, taking a measurable cross section s_n of the natural map

Hiroaki Shimomura

 $p_n: (y_1, \dots, y_n) \in \tilde{Y}^n \to \{y_1, \dots, y_n\} \in B_Y^n$. Then v and \tilde{v} have the same kind of quasi-invariance. Now \tilde{Y}^n is covered by countable sets of the form $O_1^m \times \dots \times O_n^m$ $(m = 1, \dots)$, where O_i^m is an open set with compact closure which is diffeomorphic to \mathbb{R}^d by a map ψ_i^m and $O_i^m \cap O_j^m = \phi$ for $i \neq j$. Since Diff₀Y acts on \tilde{Y}^n transitively, it follows that there exists an at most countable set $\{\varphi_k\}$ such that $\tilde{Y}^n = \bigcup_{k=1}^{\infty} \varphi_k(O_1^m \times \dots \times O_n^m)$ for each m. Hence $\tilde{v}(O_1^m \times \dots \times O_n^m) > 0$, if \tilde{v} is quasi-invariant under a group H_n generated by such φ_k 's. Here we shall prepare some basic lemma.

Lemma 1.1. There exists a one parameter group π_i^l $(i = 1, \dots, d, l = 1, \dots)$ of $\text{Diff}_0 \mathbf{R}^d$ which satisfies $\pi_i^l(t)(\xi) = (\xi_1, \dots, \xi_i \stackrel{i}{+} t, \dots, \xi_d)$ for all $\xi = (\xi_1, \dots, \xi_d) \in \mathbf{R}^d$ and $t \in \mathbf{R}$ such that $\max_{1 \le t \le d} |\xi_i| < l$ and |t| < l.

Proof. For the existence of such one parameter group, we solve the following differential equation (1.5) with a function f_l of C^{∞} -class on **R** such that $f_l(s) = 1$ on $|s| \le 2l$ and $f_l(s) = 0$ on $|s| \ge 3l$.

(1.5)
$$\begin{cases} \frac{d\mathbf{x}}{dt} = f_l(x_1)\cdots f_l(x_d)\mathbf{e}_i\\ \mathbf{x}(0) = \xi, \end{cases}$$

where $\mathbf{e}_i = (0, \dots, \overset{i}{1}, \dots, 0)$. Then the solution $\mathbf{x}(t, \xi)$ of (1.5) gives directly a desired diffeomorphism.

Let G_d^0 be a group generated by the one parameter groups π_i^l $(i = 1, \dots, d, l = 1, \dots)$. Then it is easily seen that

Proposition 1.1. For any $l \in \mathbb{N}$ and for any $\tau = (t_1, \dots, t_d) \in \mathbb{R}^d$, there exists $\psi \in G_d^0$ such that

$$\psi(\xi) = \xi + \tau$$
 for all ξ with $\max_{1 \le i \le l} |\xi_i| < l$.

Proposition 1.2. Any σ -finite G_d^0 -quasi-invariant Borel measure on \mathbf{R}^d is equivalent to the Lebesgue measure.

Now let us pull back each element of G_d^0 by the maps ψ_i^m $(i = 1, \dots, d, m = 1, \dots)$ and extend it to the element of Diff₀Y. Then considering the restriction of \tilde{v} to $O_1^m \times \cdots \times O_n^m$, we deduce that

Lemma 1.2. In Diff₀Y there exist one parameter groups $\pi_{i,n}$ ($i = 1, \cdots$) and a countable subgroup H_n such that the following are equivalent for any Borel probability measure v on B_Y^n .

- (a) v is quasi-invariant under the groups $\pi_{i,n}$ $(i = 1, \dots)$ and H_n .
- (b) v is equivalent to $m_{X,n}$.
- (c) v is $Diff_0 Y$ -quasi-invariant.

The following lemma is an immediate consequence of the above lemma by letting n run from 0 to ∞ .

Lemma 1.3. In Diff₀Y there exists one parameter subgroups $\pi_{i,Y}$ (i = 1, ...)and a countable group H_Y such that the following are equivalent for any Borel probability measure v on B_Y .

- (a) v is quasi-invariant under the groups $\pi_{i,Y}$ $(i = 1, \dots)$ and H_Y .
- (b) v is $Diff_0 Y$ -quasi-invariant.

Next let us decompose a probability measure μ on (Γ_X, \mathscr{C}) into the regular conditional probability measures $\{\mu^{\gamma}\}_{\gamma \in \Gamma_{Y^c}}$ on $(\mathfrak{B}_Y, \mathscr{C}_Y)$ with respect to the map π_{Y^c} which satisfy

(1.6) $\mu^{\gamma}(A)$ is a $\mathscr{C}_{Y^{c}}$ -measurable function of $\gamma \in \Gamma_{Y^{c}}$ for each fixed $A \in B_{Y}$, and

(1.7)
$$\mu(A \times B) = \int_{B} \mu^{\gamma}(A) \pi_{Y^{c}} \mu(d\gamma)$$

for all $A \in \mathscr{C}_{Y}$ and $B \in \mathscr{C}_{Y^c}$.

Lemma 1.4. Under the above notations, the following are equivalent.

- (a) μ is Diff₀Y-quasi-invariant.
- (b) μ^{γ} is Diff₀Y-quasi-invariant for $\pi_{Y^c}\mu$ -a.e. γ .

Proof. There is nothing to prove "(b) implies (a)". Let us see the converse relation. For this we calculate $T_{\psi}\mu(A \times B)$, $\psi \in \text{Diff}_0 Y$ in two ways. The first one is,

(1.8)
$$T_{\psi}\mu(A \times B) = \mu(T_{\psi}^{-1}(A) \times B) = \int_{B} T_{\psi}\mu^{\gamma}(A)\pi_{Y^{c}}\mu(d\gamma).$$

And the other one is,

(1.9)
$$T_{\psi}\mu(A \times B) = \int_{B} \int_{A} \frac{dT_{\psi}\mu}{d\mu} (\gamma')\mu^{\gamma}(d\gamma')\pi_{\gamma c}\mu(d\gamma)$$

It follows from (1.8) and (1.9) that

(1.10)
$$T_{\psi}\mu^{\gamma}(\cdot) = \int_{(\cdot)} \frac{dT_{\psi}\mu}{d\mu}(\gamma')\mu^{\gamma}(d\gamma')$$

for $\pi_{Y^c}\mu$ -a.e. γ , and thus we have

$$(1.11) T_{\psi}\mu^{\gamma} \simeq \mu^{\gamma}$$

for $\pi_{Y^c}\mu$ -a.e. γ . Here we take an arbitrary one parameter group $\{\psi_t\}_{t\in \mathbb{R}}$ of Diff₀ Y and set

$$\Pi := \{(t, \gamma) \in \mathbf{R} \times \Gamma_{Y^c} | T_{\psi_t} \mu^{\gamma} \simeq \mu^{\gamma} \} \text{ and}$$
$$\Pi_0 := \{(t, \gamma) \in \mathbf{R} \times \Gamma_{Y^c} | T_{\psi_t} \mu^{\gamma}(\cdot) = \int_{(\cdot)} \frac{dT_{\psi_t} \mu}{d\mu} (\gamma') \mu^{\gamma}(d\gamma') \}.$$

Then Π_0 is a $\mathfrak{B}(\mathbf{R}) \times \mathscr{C}_{Y^c}$ -measurable subset of Π and for any fixed t the **R**-section Π_0^t determined by t has full measure for $\pi_{Y^c}\mu$. Thus by virtue of Fubini's theorem the Γ_{Y^c} -section Π_0^γ determined by γ has full Lebesgue measure for $\pi_{Y^c}\mu$ -a.e. γ . So the Γ_{Y^c} -section Π^γ is Lebesgue measurable and it is a subgroup of **R** with positive measure for $\pi_{Y^c}\mu$ -a.e. γ . This implies that $\Pi^\gamma = \mathbf{R}$ for $\pi_{Y^c}\mu$ -a.e. γ . Now consider groups $\pi_{i,Y}$ ($i = 1, \cdots$) and H_Y stated in Lemma 1.3. Applying the above arguments to these subgroups, we conclude that μ^γ is Diff₀Y-quasi-invariant for $\pi_{Y^c}\mu$ -a.e. γ .

From (1.3), Lemma 1.3 and Lemma 1.4 we have the following theorem.

Theorem 1.3. In $\text{Diff}_0 X$, there exist one parameter groups π_i $(i = 1, \cdots)$ which are subgroups of $\text{Diff}_0(Y_{k_i})$ and a countable group G_0 such that the following are equivalent for any probability measure μ on (Γ_X, \mathscr{C}) .

- (a) μ is Diff₀X-quasi-invariant.
- (b) μ is quasi-invariant under the groups π_i $(i = 1, \dots)$ and G_0 .

1.3. Ergodic decomposition of Diff₀X-quasi-invariant measure. Let μ be a Diff₀X-quasi-invariant probability measure on (Γ_X, \mathscr{C}) with $\mu(\Delta_X) = 1$ and $\tilde{\mu}$ be the Borel measure on \tilde{X}^{∞} defined by (1.2). We decompose $\tilde{\mu}$ into conditional probability measures $\{\tilde{\mu}^x\}_{x\in\tilde{X}^{\infty}}$ with respect to the tail- σ -field \mathfrak{B}_{∞} . Namely,

(1.12)
$$\tilde{\mu}^{x}(B)$$
 is a \mathfrak{B}_{∞} -measurable function of $x \in \tilde{X}^{\infty}$ for each fixed $B \in \mathfrak{B}(\tilde{X}^{\infty})$, and

(1.13)
$$\tilde{\mu}(A \cap B) = \int_{A} \tilde{\mu}^{x}(B)\tilde{\mu}(dx)$$

.

for all $A \in \mathfrak{B}_{\infty}$ and $B \in \mathfrak{B}(\tilde{X}^{\infty})$. Since the measurable space $(\tilde{X}^{\infty}, \mathfrak{B}(\tilde{X}^{\infty}))$ is standard, and \mathfrak{B}_{∞} is an intersection of a decreasing sequence of the countably generated σ -fields $q_n^{-1}(\mathfrak{B}(\tilde{X}^{\infty}))$, so by the well known fact, (For example see theorem 2.3 in [2])

(1.14)
$${}^{\exists}A_1 \in \mathfrak{B}_{\infty} \text{ with } \tilde{\mu}(A_1) = 1 \text{ s.t., } {}^{\forall}x \in A_1, \ \tilde{\mu}^x(\cdot) = 1 \text{ or } 0 \text{ on } \mathfrak{B}_{\infty}.$$

Furthermore it follows easily from the construction of $\tilde{\mu}$,

(1.15) ${}^{\exists}A_2 \in \mathfrak{B}_{\infty}$ with $\tilde{\mu}(A_2) = 1$ s.t., $\forall x \in A_2$, $\tilde{\mu}^x$ is \mathfrak{S}_{∞} -quasi-invariant and $\tilde{\mu}^x(\bigcup_{\sigma \in \mathfrak{S}_{\infty}} s(\Gamma_X)\sigma) = 1$.

Consequently putting $\mu^{[x]} := p\tilde{\mu}^x$, we have $\mu^{[x]} \simeq \tilde{\mu}^x$ for all $x \in A_2$ by virtue of (c) in Theorem 1.2. Next we have for each fixed $\psi \in \text{Diff}_0 X$, $T_{\psi}\tilde{\mu}^x \simeq \tilde{\mu}^x$ for $\tilde{\mu}$ -a.e. x, because every set in \mathfrak{B}_{∞} is $\text{Diff}_0 X$ -invariant. So using Theorem 1.3 and proceeding similar manner with the proof of Lemma 1.4, we deduce that

(1.16)
$${}^{\exists}A_3 \in \mathfrak{B}_{\infty}$$
 with $\tilde{\mu}(A_3) = 1$ s.t., ${}^{\forall}x \in A_3$, $\mu^{[x]}$ is $\operatorname{Diff}_0 X$ -quasi-invariant.

Thus we have,

(1.17)
$$\forall x \in A_1 \cap A_2 \cap A_3, \ \mu^{[x]} \text{ is } \operatorname{Diff}_0 X \text{-} ergodic,$$

by virtue of (c) and (d) in Theorem 1.2. Since

$$\mu(s^{-1}(A_1 \cap A_2 \cap A_3)) = \sum_{\sigma \in \mathfrak{S}_{\infty}} c(\sigma)(s\mu)\sigma(A_1 \cap A_2 \cap A_3) = \tilde{\mu}(A_1 \cap A_2 \cap A_3) = 1$$

so the following result is obtained.

Theorem 1.4. Let μ be a Diff₀X-quasi-invariant probability measure on (Γ_X , \mathscr{C}) with $\mu(\Delta_X) = 1$. Then there exists a family of Diff₀X-ergodic probability measures $\{\mu^{\gamma}\}_{\gamma \in \Delta(X)}$ such that

(a)
$$\mu^{\gamma}(B)$$
 is a $s^{-1}(\mathfrak{B}_{\infty})$ -measurable function of $\gamma \in \Delta_X$ for each fixed $B \in \mathscr{C}$, and
(b) $\mu(B \cap s^{-1}(A)) = \int_{s^{-1}(A)} \mu^{\gamma}(B)\mu(d\gamma)$ for all $B \in \mathscr{C}$ and $A \in \mathfrak{B}_{\infty}$.

Proof. For it we have only to put $\mu^{\gamma} := \mu^{[s(\gamma)]}$ if $\gamma \in s^{-1}(A_1 \cap A_2 \cap A_3)$ and $\mu^{\gamma} := \theta$, otherwise, where θ is some definite Diff₀X-ergodic probability measure on (Γ_X, \mathscr{C}) .

We wish to rewrite this decomposition in a somewhat elegant style which is independent of the admissible sections. For this let us put

$$\mathfrak{A}_{\infty} := \{ B \in \mathscr{C} \mid T_{\psi} B = B \text{ for all } \psi \in \operatorname{Diff}_{0} X \}.$$

Then we have $s^{-1}(\mathfrak{B}_{\infty}) \subset \mathfrak{A}_{\infty}$, as is easily seen. Moreover for the μ in Theorem 1.4

$$\mu(A \ominus \tilde{A}) = 0$$
 for all $A \in \mathfrak{A}_{\infty}$, where $\tilde{A} := \{\gamma \in \Delta_X \mid \mu^{\gamma}(A) = 1\}.$

Because,

$$\mu(B\cap \widetilde{A}) = \int_{\widetilde{A}} \mu^{\gamma}(B) \mu(d\mu)$$

for all $B \in \mathscr{C}$ by virtue of Theorem 1.4, while

by virtue of Theorem 1.4, while

$$\mu(B \cap A) = \int_{\Delta_X} \mu^{\gamma}(B) \mu^{\gamma}(A) \mu(d\gamma) = \int_{\widetilde{A}} \mu^{\gamma}(B) \mu(d\gamma).$$

Theorem 1.5. Let μ be a Diff₀X-quasi-invariant probability measure on $(\Gamma_{\chi}, \mathscr{C})$. Then there exists a family of probability measures $\{\mu^{\gamma}\}_{\gamma \in \Gamma_{\chi}}$ on $(\Gamma_{\chi}, \mathscr{C})$ such that

- (a) μ^{γ} is Diff₀X-ergodic for each $\gamma \in \Gamma_{\chi}$,
- (b) $\mu^{\gamma}(B)$ is an \mathfrak{A}_{∞} -measurable function of γ for each fixed $B \in \mathscr{C}$
- (c) $\mu(A \cap B) = \int_{A} \mu^{\gamma}(B)\mu(d\gamma) \text{ for all } A \in \mathfrak{A}_{\infty} \text{ and } B \in \mathscr{C}.$

Proof. First we divide μ into μ_1 and μ_2 as in the first place of this section and decompose μ_1 into $\mu_{1,n}$ according to (1.1). Further we decompose μ_2 into $\{\mu_2^{\gamma}\}_{\gamma \in \Delta_X}$ as in Theorem 1.4. Next we define $\{\mu^{\gamma}\}_{\gamma \in \Gamma_X}$ such that $\mu^{\gamma} = \mu_2^{\gamma}$ for $\gamma \in \Delta_X$ and $\mu^{\gamma} = \mu_{1,n}$ for $\gamma \in B_X^n$. Then the result easily follows from what we stated. **Lemma 1.5.** For any Diff_0X -quasi-invariant probability measures μ and ν , the following are equivalent.

- (a) v is absolutely continuous with μ .
- (b) There exists $A \in \mathfrak{A}_{\infty}$ such that "v(B) = 0 if and only if $\mu(A \cap B) = 0$ ".

Proof. We have only to check the implication "(a) implies (b)". From the assumption there exists $A_0 \in \mathscr{C}$ such that

"
$$v(B) = 0$$
 if and only if $\mu(A_0 \cap B) = 0$ ".

Thus A_0 must satisfy $\mu(A_0 \ominus T_{\psi}(A_0)) = 0$ for all $\psi \in \text{Diff}_0 X$. It follows from the above theorem that $\mu^{\gamma}(A_0 \ominus T_{\psi}(A_0)) = 0$ for μ -a.e. γ . Here let us take an arbitrary one parameter group $\{\psi_i\}_{i \in \mathbb{R}}$ contained in some $\text{Diff}_0 Y$. Then $\mu^{\gamma}(A_0 \ominus T_{\psi_i}(A_0))$ is a $\mathfrak{B}(\mathbb{R}) \times \mathfrak{A}_{\infty}$ -measurable function of $(t, \gamma) \in \mathbb{R} \times \Gamma_X$, which is easily checked, so by virtue of Fubini's theorem the Lebesgue measure of $Q_{\gamma} := \{t \in \mathbb{R} \mid \mu^{\gamma}(A_0 \ominus T_{\psi_i}(A_0)) = 0\}$ is full for μ -a.e. γ . As Q_{γ} is a group, so $Q_{\gamma} = \mathbb{R}$ for μ -a.e. γ . It follows from Theorem 1.3 that a measure v^{γ} defined by the restriction of μ^{γ} to the set A_0 is $\text{Diff}_0 X$ -quasi-invariant for μ -a.e. γ . Since μ^{γ} is $\text{Diff}_0 X$ -ergodic, so $\mu^{\gamma} \simeq v^{\gamma}$ unless $\mu^{\gamma}(A_0) = 0$. That is $\mu^{\gamma}(A_0) = 1$ or 0 for μ -a.e. γ . Thus we have $\mu(A_0 \ominus A) = 0$ for an A defined by $A := \{\gamma \in \Gamma_X \mid \mu^{\gamma}(A_0) = 1\} \in \mathfrak{A}_{\infty}$.

Theorem 1.6. For any Diff₀X-quasi-invariant probability measures μ and ν , (a) $\nu \leq \mu$ if and only if $\nu \leq \mu$ on \mathfrak{A}_{∞} .

(b) μ is Diff₀X-ergodic if and only if $\mu(\cdot) = 1$ or 0 on \mathfrak{A}_{∞} .

(c) If μ and ν are Diff₀X-ergodic, then $\mu \simeq \nu$ or $\mu \perp \nu$.

Proof. (a) Suppose that $v \leq \mu$ on \mathfrak{A}_{∞} and put $\lambda = (\mu + \nu)/2$. Then by virtue of the above lemma, there exists $A \in \mathfrak{A}_{\infty}$ such that " $\mu(B) = 0$ if and only if $\lambda(A \cap B) = 0$ ". Especially we have $\mu(A^c) = 0$ and thus $\nu(A^c) = 0$. Consequently, $\nu(B) = \nu(B \cap A) \leq 2\lambda(A \cap B)$, which implies $\nu(B) = 0$ if $\mu(B) = 0$. The converse relation is obvious. (b) and (c) easily follow from (a).

If we wish to be that factor measures $\{\mu^{\gamma}\}_{\gamma \in \Gamma_X}$ appearing in Theorem 1.5 are mutually singular, then the following technique will be useful. First notice that a minimal σ -algebra \mathscr{D} with which all the functions, $\gamma \in \Gamma_X \to \mu^{\gamma}(B) \in \mathbb{R}$, where *B* runs through \mathscr{C} , are measurable is countably generated and thus $\mathscr{D} = g^{-1}(\mathscr{B}(\mathbb{R}))$ with a suitable map $g: \Gamma_X \to \mathbb{R}$. It is not difficult to see,

(1.18)
$$g(\gamma) = g(\gamma'), \text{ if and only if } \mu^{\gamma} = \mu^{\gamma'}.$$

Further by virtue of (c) in Theorem 1.5 we have,

(1.19)
$$\int_{g^{-1}(F)} \mu^{\gamma}(g^{-1}(E))\mu(d\gamma) = \int_{g^{-1}(F)} \chi_{E}(g(\gamma))\mu(d\gamma)$$

for all $E, F \in \mathfrak{B}(\mathbf{R})$, and hence for μ -a.e. γ ,

(1.20)
$$\mu^{\gamma}(g^{-1}(E)) = \chi_{E}(g(\gamma))$$

for all $E \in \mathfrak{B}(\mathbf{R})$. Especially we have,

Ergodic decomposition

(1.21)
$$\mu^{\gamma}(g^{-1}\{g(\gamma)\}) =$$

for μ -a.e. γ . Now define $\mu'_t = \mu^{\gamma}$, if $t = g(\gamma)$ and $\mu'_t = \theta$, otherwise, where θ is some definite Diff₀X-ergodic probability measure on (Γ_X , \mathscr{C}). Then we have

(1.22) For each fixed $B \in \mathscr{C}$, $\mu'_t(B)$ is a universally measurable function of $t \in \mathbf{R}$.

Because $g\{\gamma \mid \mu^{\gamma}(B) \le a\}$ is an analytic set for every $a \in \mathbb{R}$. And further we have,

(1.23)
$$\mu(B \cap g^{-1}(E)) = \int_{E} \mu'_{t}(B)g\mu(dt)$$

for all $B \in \mathscr{C}$ and $E \in \mathfrak{B}(\mathbb{R})$. Compairing μ'_t with regular conditional probability measure $p(t, \cdot)$ given g = t, we deduce that

(1.24)
$$\exists T_1 \in \mathfrak{B}(\mathbf{R}) \text{ with } g\mu(T_1) = 1 \text{ such that } \forall t \in T_1, \ \mu'_t = p(t, \cdot).$$

Finally we put $\mu_t(\cdot) = p(t, \cdot)$, if $t \in T_1$ and $\mu_t = \theta$, otherwise. Then

Theorem 1.7. Let μ be a Diff₀X-quasi-invariant probability measure. Then there exist a map g and a family of probability measures $\{\mu_t\}_{t\in\mathbb{R}}$ on (Γ_X, \mathscr{C}) such that (a) g is a measurable map from $(\Gamma_X, \mathfrak{A}_{\infty})$ to $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$,

- (b) μ_t is Diff₀X-ergodic for every $t \in \mathbf{R}$,
- (c) $\mu_t(B)$ is a Borel measurable function of $t \in \mathbf{R}$ for each fixed $B \in \mathscr{C}$,
- (d) there exists a Borel set T_0 with $g\mu(T_0) = 1$ such that $\mu_t(g^{-1}{t}) = 1$ for all $t \in T_0$, especially $\mu_t(t \in T_0)$ are mutually singular, and

(e)
$$\mu(B \cap g^{-1}(E)) = \int_E \mu_t(B)g\mu(dt) \text{ for all } B \in \mathscr{C} \text{ and } E \in \mathfrak{B}(\mathbb{R}).$$

2. Ergodic decomposition of Gibbs measure

2.1. Basic properties. In this section X is a general locally compact topological space which satisfies the second countable axiom and m stands for non atomic Radon measures on $\mathfrak{B}(X)$ which is the natural Borel σ -field on X. A function $U(x|\gamma) \in (-\infty, \infty]$ defined on $(x, \gamma) \in X \times \Gamma_X$ is said to be a potential if it satisfies

(2.1)
$$U(x|\gamma)$$
 is a $\mathfrak{B}(\mathbf{R}) \times \mathscr{C}$ -measurable function, and

(2.2)
$$U(x \mid \gamma \cup \{y\}) + U(y \mid \gamma) = U(y \mid \gamma \cup \{x\}) + U(x \mid \gamma)$$

for all $x, y \in X$ and $\gamma \in \Gamma_X$. We shall extend the domain of definition of the potential to B_x^n such that

 $U(\phi | \gamma) := 0 \text{ for } n = 0, \ U(\{x_1, x_2\} | \gamma) := U(x_1 | \gamma \cup \{x_2\}) + U(x_2 | \gamma) \text{ for } n = 2, \text{ and} \\ U(\underline{x} | \gamma) = U(\{x_1, \dots, x_{n-1}\} | \gamma \cup \{x_n\}) + U(x_n | \gamma) \text{ for } \underline{x} := \{x_1, \dots, x_n\} \in B_X^n \text{ inductively.} \\ \text{These are well defined by the property (2.2).}$

Now let μ be a probability measure on $(\Gamma_{\chi}, \mathscr{C})$ and denote the conditional expectation of a \mathscr{C} -measurable function f on Γ_{χ} with respect to the σ -field $\pi_{\gamma c}^{-1}(\mathscr{C}_{\gamma c})$ by $\operatorname{Exp}(f|\mathscr{C}_{\gamma c})$. Let us proceed to the definition of Gibbs measure. A

probability measure μ on (Γ_X, \mathscr{C}) is said to be (U, m)-Gibbsian or simply Gibbsian (in a sense of Dobrushin, Ruelle, Lanford) for a potential U and a measure m if and only if it satisfies,

(2.3)
$$\Xi_K := \sum_{n=0}^{\infty} n!^{-1} \int_{B_K^n} \exp\left(-U(\underline{x} \mid \gamma \cap K^c)\right) m_{K,n}(d\underline{x}) < \infty$$

for μ -a.e. γ , and

(2.4)
$$\operatorname{Exp} \left(f | \mathscr{C}_{K^{c}} \right)(\gamma) = \mathcal{Z}_{K}(\gamma)^{-1} \sum_{n=0}^{\infty} n!^{-1} \int_{B_{K}^{n}} \exp\left(- U(\underline{x} | \gamma \cap K^{c}) \right) f(\underline{x} \cup (\gamma \cap K^{c})) m_{K,n}(d\underline{x})$$

for each non negative bounded \mathscr{C} -measurable function f on Γ_X . Notice that we always have $\Xi_K(\gamma) \ge 1$. And it is fairly easy to see that a set of all (U, m)-Gibbsian measure is closed under the convex combination. From now on we shall write

$$\int_{0}^{K} \exp\left(-U(\underline{x} \mid \gamma \cap K^{c})\right) f(\underline{x} \cdot \gamma \cap K^{c}) m(d\underline{x})$$

instead of

$$\sum_{n=0}^{\infty} n!^{-1} \int_{B_K^n} \exp\left(-U(\underline{x} \mid \gamma \cap K^c)\right) f(\underline{x} \cup (\gamma \cap K^c)) m_{K,n}(d\underline{x})$$

according to [4].

Lemma 2.1. (2.3) and (2.4) is equivalent to the following condition (2.5).

(2.5)
$$\int_{\Gamma_{\mathbf{X}}} f(\gamma) \mu(d\gamma) = \int_{\{\gamma \mid |\gamma \cap K| = 0\}} \mu(d\gamma) \int^{K} \exp\left(-U(\underline{x} \mid \gamma)\right) f(\underline{x} \cdot \gamma) m(d\underline{x})$$

for each compact set K and non negative bounded C-measurable function f.

Proof. Suppose that (2.3) and (2.4) are satisfied and let χ_{N_K} be the indicator function of the set $N_K := \{\gamma | | \gamma \cap K | = 0\}$. Then for $f = \chi_{N_K}$ (2.4) gives

(2.6)
$$\operatorname{Exp}\left(\chi_{N_{K}} \middle| \mathscr{C}_{K^{c}}\right)(\gamma) = \Xi_{K}(\gamma)^{-1}$$

Thus,

$$\int_{\Gamma_{\mathbf{X}}} f(\gamma)\mu(d\gamma) = \int_{\Gamma_{\mathbf{X}}} \operatorname{Exp}\left(f \mid \mathscr{C}_{K^{c}}\right)(\gamma)\mu(d\gamma)$$
$$= \int_{\Gamma_{\mathbf{X}}} \mu(d\gamma) \operatorname{Exp}\left(\chi_{N_{K}} \mid \mathscr{C}_{K^{c}}\right)(\gamma) \int^{K} \exp\left(-U(\underline{x} \mid \gamma \cap K^{c})\right) f(\underline{x} \cdot \gamma \cap K^{c}) m(d\underline{x})$$
$$= \int_{N_{K}} \mu(d\gamma) \int^{K} \exp\left(-U(\underline{x} \mid \gamma)\right) f(\underline{x} \cdot \gamma) m(d\underline{x}).$$

Conversely, Put $F_K := \{\gamma | \Xi_K(\gamma) < \infty\}$ and substitute the indicator function $\chi_{F_{K^c}}$ for f in (2.5). Then it yields that

$$\mu(F_{K^c}) = \int_{N_K} \chi_{F_K^c}(\gamma) \Xi_K(\gamma) \mu(d\gamma),$$

and thus $\mu(F_{\kappa}^{c}) = 0$. The rest of the proof easily follows from (2.6) which is easily derived from (2.5).

Let us look quickly how the Gibbsian property implies $\text{Diff}_0 X$ -quasiinvariance. So let μ be a Gibbs measure and Y be any open subset with compact closure. Then as is easily seen, (2.4) also holds for such Y provided that $m(\overline{Y} \setminus Y) = 0$. Thus the conditional probability measure μ^{γ} with respect to $\pi_{Y^c}^{-1}(\mathscr{C}_{Y^c})$ is,

(2.7)
$$\mu^{\gamma}(A) = \Xi_{\gamma}(\gamma)^{-1} \sum_{n=0}^{\infty} n!^{-1} \int_{A \cap B_{\gamma}^{n}} \exp\left(-U(\underline{x} \mid \gamma \cap Y^{c})\right) m_{\gamma,n}(d\underline{x})$$

for all $A \in \mathscr{C}_{Y}$. Hence we have,

Theorem 2.1. Let X be a connected σ -compact C^{∞} -manifold and m be a locally Euclidean Radon measure on X. Then under the assumption that the potential function $U(x|\gamma)$ is always finite, any (U, m)-Gibbs measure μ is Diff_0X -quasi-invariant.

Proof. Take a sequence $\{Y_n\}$ of connected open sets with compact closure such that $m(\overline{Y}_n \setminus Y_n) = 0$ and apply Lemma 1.4.

Let $\{U_n\}$ be a countable open base of X such that \overline{U}_n is compact for all n, \mathcal{K} be a collection of all the sets being finite union of U_n $(n = 1, \dots)$, and \mathcal{F} be a countable field generatig \mathcal{C} .

Lemma 2.2. In order that a probability measure μ on $(\Gamma_{\chi}, \mathscr{C})$ is Gibbsian, it is necessary and sufficient that (2.5) is satisfied for all $K \in \mathscr{K}$ and $\chi_B(=f)$, where χ_B is the indicator function of a set $B \in \mathscr{F}$.

Proof. We have only to check the sufficiency. Now it is immediate from the assumption that (2.5) holds for all $K \in \mathscr{H}$ and for all non negative bounded \mathscr{C} -measurable functions. Hence proceeding in the same way with the proof of Lemma 2.1, we have for each $K \in \mathscr{H}$

$$(2.8) \qquad \qquad \Xi_K(\gamma) < \infty$$

for μ -a.e. γ , and for each $K \in \mathscr{K}$

(2.9)
$$\Xi_{K}^{-1}(\gamma) = \operatorname{Exp}\left(\chi_{N_{K}} \mid \mathscr{C}_{K^{c}}\right)(\gamma)$$

for μ -a.e. γ . Take any compact set K. Then there exists a sequence $\{K_n\} \subset \mathscr{K}$ such that $K_n \downarrow K$. It gives that

Hiroaki Shimomura

$$\{\gamma \mid |\gamma \cap K_n| = 0\} \uparrow \{\gamma \mid |\gamma \cap K| = 0\} \text{ and } \{\gamma \mid \gamma \cap K_n^c = \gamma \cap K^c\} \uparrow \Gamma_X.$$

Here we notice that if $\gamma \cap K^c = \gamma \cap K_n^c$ for some *n*, then

$$\Xi_{K}(\gamma) \leq \int^{K_{n}} \exp\left(-U(\underline{x} \mid \gamma \cap K_{n}^{c}))m(d\underline{x}) = \Xi_{K_{n}}(\gamma).$$

Thus (2.8) and the above relation show that (2.3) holds for all compact sets K. By the assumption (2.5) holds for all K_n , so by virtue of Lebesgue-Fatou's lemma we have,

(2.10)
$$\int_{\Gamma_{\mathbf{X}}} f(\gamma)\mu(d\gamma) \geq \int_{N_{\mathbf{K}}} \mu(d\gamma) \int^{\mathbf{K}} \exp\left(-U(\underline{x} \mid \gamma \cap K^{c})\right) f(\underline{x} \cdot \gamma \cap K^{c}) m(d\underline{x}).$$

And hence,

(2.11)
$$\operatorname{Exp}\left(f|\mathscr{C}_{K^{c}}\right)(\gamma) \geq \operatorname{Exp}\left(\chi_{N_{K}}|\mathscr{C}_{K^{c}}\right)(\gamma) \cdot \int^{K} \operatorname{exp}\left(-U(\underline{x}|\gamma \cap K^{c}))f(\underline{x} \cdot \gamma \cap K^{c})m(d\underline{x})\right)$$

for μ -a.e. γ . Especially,

(2.12)
$$\Xi_{K}(\gamma)^{-1} \geq \operatorname{Exp}\left(\chi_{N_{K}} \mid \mathscr{C}_{K^{c}}\right)(\gamma)$$

for μ -a.e. γ . Now let us consider the relation (2.9) for $K = K_n$. As is easily seen, $\pi_{K_n^c}^{-1}(\mathscr{C}_{K_n^c}) \uparrow \pi_{K_c^c}^{-1}(\mathscr{C}_{K_n^c})$, so the right hand side of (2.9) is

(2.13)
$$\begin{cases} \operatorname{Exp}\left(\chi_{N_{K_{n}}} \middle| \mathscr{C}_{K_{n}^{c}}\right)(\gamma) \leq \operatorname{Exp}\left(\chi_{N_{K}} \middle| \mathscr{C}_{K_{n}^{c}}\right)(\gamma) \\ \operatorname{Exp}\left(\chi_{N_{K}} \middle| \mathscr{C}_{K_{n}^{c}}\right)(\gamma) \rightarrow \operatorname{Exp}\left(\chi_{K} \middle| \mathscr{C}_{K_{n}^{c}}\right)(\gamma) \text{ as } n \to \infty. \end{cases}$$

While for the left hand side, first we put $F_{\infty} := \bigcap_{n=1}^{\infty} F_{K_n}$. Then (2.8) gives $\mu(F_{\infty}) = 1$. And if $\gamma \in F_{\infty}$ and $\gamma \cap K_N^c = \gamma \cap K^c$ for some N, then for all $n \ge N$,

$$\Xi_{K_n}(\gamma) = \sum_{l=0}^{L} l!^{-1} \int_{B_{K_n}^l} \exp\left(-U(\underline{x} \mid \gamma \cap K^c)\right) m_{K_n, l}(d\underline{x}) + \varepsilon_{L, n}$$

where

$$\varepsilon_{L,n} := \sum_{l=L+1}^{\infty} l!^{-1} \int_{B_{K_n}^l} \exp\left(-U(\underline{x} \mid \gamma \cap K^c)\right) m_{K_n,l}(d\underline{x}) \le \sum_{l=L+1}^{\infty} l!^{-1} \int_{B_{K_n}^l} \exp\left(-U(\underline{x} \mid \gamma \cap K^c)\right) m_{K_n,l}(d\underline{x}).$$

And if we take a sufficiently large L, the last term becomes smaller than ε for a given $\varepsilon > 0$. Consequently for such an L,

$$\lim_{n} \Xi_{K_{n}}(\gamma) \leq \varepsilon + \sum_{l=0}^{L} l!^{-1} \int_{B_{K}^{l}} \exp\left(-U(\underline{x} \mid \gamma \cap K^{c})\right) m_{K,l}(d\underline{x}) \leq \varepsilon + \Xi_{K}(\gamma).$$

So we have,

(2.14)
$$\overline{\lim_{n}} \, \Xi_{K_{n}}(\gamma) \leq \Xi_{K}(\gamma)$$

for μ -a.e. γ . It follows from (2.13) and easy calculations that

(2.15)
$$\Xi_{K}(\gamma)^{-1} \leq \operatorname{Exp}\left(\chi_{N_{K}} \mid \mathscr{C}_{K^{c}}\right)(\gamma)$$

for μ -a.e. γ . This and (2.12) show that (2.6) holds for all compact sets K. Now the inequality (2.11) becomes,

(2.16)
$$\operatorname{Exp}\left(f|\mathscr{C}_{K^{c}}\right)(\gamma) \geq \Xi_{K}(\gamma)^{-1} \int^{K} \operatorname{exp}\left(-U(\underline{x} \mid \gamma \cap K^{c})\right) f(\underline{x} \cdot \gamma \cap K^{c}) m(d\underline{x})$$

for μ -a.e. γ . By the way (2.16) becomes an equality for f = const, thus it is actually an equality for any $f \ge 0$.

Let us take and fix an increasing sequence $\{K_n\}$ of compact sets such that $K_n \uparrow X$, and consider the tail σ -field $\mathscr{C}_{\infty} := \bigcap_{n=1}^{\infty} \pi_{K_n}^{-1}(\mathscr{C}_{K_n})$. \mathscr{C}_{∞} does not depend on a particular choice of $\{K_n\}$.

Theorem 2.1. Let μ be a (U, m)-Gibbs measure and $\{\mu_{\infty}^{\gamma}\}_{\gamma \in \Gamma_{X}}$ be a family of conditional probability measure of μ with respect to \mathscr{C}_{∞} . Then μ_{∞}^{γ} is (U, m)-Gibbsian for μ -a.e. γ .

Proof. For $A \in \mathscr{C}_{\infty}$ and $B \in \mathscr{F}$ we calculate $\mu(A \cap B)$ in two ways. The first one is,

$$\mu(A\cap B)=\int_A \mu_\infty^{\gamma}(B)\mu(d\gamma)$$

and the other one is,

$$\mu(A \cap B) = \int_{N_{K}} \mu(d\gamma) \chi_{A}(\gamma) \int^{K} \exp\left(-U(\underline{x} \mid \gamma \cap K^{c})\right) \chi_{B}(\underline{x} \cdot \gamma \cap K^{c}) m(d\underline{x}),$$

where K is taken from \mathcal{K} . These show that

(2.17)
$$\mu_{\infty}^{\delta}(B) = \int_{N_{\kappa}} \mu_{\infty}^{\delta}(d\gamma) \int^{K} \exp\left(-U(\underline{x} \mid \gamma \cap K^{c})\right) \chi_{B}(\underline{x} \cdot \gamma \cap K^{c}) m(d\underline{x})$$

for μ -a.e. δ . Since \mathscr{K} and \mathscr{F} are countable, so the assertion directly follows from Lemma 2.2.

Here we introduce a notion of ergodicity. A Gibbs measure μ on (Γ_X, \mathscr{C}) is said to be ergodic if and only if $\mu(\cdot) = 1$ or 0 on \mathscr{C}_{∞} . As (Γ_X, \mathscr{C}) is a standard space and \mathscr{C}_{∞} is an intersection of a decreasing sequence of countably generated σ -fields $\pi_{K_n}^{-1}(\mathscr{C}_{K_n})$, so μ_{∞}^{γ} is ergodic for almost all γ by a well known result (For example see theorem 2.3 in [2]) and the ergodic decomposition seems

to be settled.

2.2. Ergodic measures as a base. However we will have a stronger result that factor measures μ_{∞}^{γ} ($\gamma \in \Gamma_{X}$) do not depend on each μ . From now on we take and fix a countable field \mathscr{F}_{0} generating \mathscr{C} such that any finitely additive finite measure on \mathscr{F}_{0} has a σ -additive extension on \mathscr{C} . The existence of such \mathscr{F}_{0} is assured by the fact that (Γ_{X} , \mathscr{C}) is standard. Now set

$$\Omega_{1} := \{ \gamma \mid \Xi_{K_{n}}(\gamma) < \infty \text{ holds except finitely many } n\text{'s} \}$$
$$\Omega_{2} := \{ \gamma \in \Omega_{1} \mid \lim_{n} \Xi_{K_{n}}(\gamma)^{-1} \int^{K_{n}} \exp\left(-U(\underline{x} \mid \gamma \cap K_{n}^{c})\right) \chi_{B}(\underline{x} \cdot \gamma \cap K_{n}^{c}) m(d\underline{x}) \text{ exists for every } B \in \mathscr{F}_{0} \}.$$

Then $\Omega_1, \Omega_2 \in \mathscr{C}_{\infty}$ and for any (U, m)-Gibbs measure $\mu, \mu(\Omega_2) = 1$ by virtue of the martingale convergence theorem. And by the nice property of \mathscr{F}_0 , we can define a probability measure $\omega_{\gamma}^0(\gamma \in \Omega_2)$ on (Γ_X, \mathscr{C}) as the extension of a finitely additive measure:

$$B \in \mathscr{F}_0 \to \lim_n \Xi_{K_n}(\gamma)^{-1} \int^{K_n} \exp\left(-U(\underline{x} \mid \gamma \cap K_n^c)\right) \chi_B(\underline{x} \cdot \gamma \cap K_n^c) m(d\underline{x}).$$

Let us make up a definition ω_{γ}^0 as $\omega_{\gamma}^0 = \zeta$ for $\gamma \in \Omega_2^c$, where ζ is some definite (U, m)-Gibbs ergodic measure. Then

(2.18) $\omega_{\gamma}^{0}(B)$ is a \mathscr{C}_{∞} -measurable function of $\gamma \in \Gamma_{\chi}$ for each fixed $B \in \mathscr{C}$.

Further by virtue of the martingale convergence theorem we have for any Gibbs measure μ ,

(2.19)
$$\mu(A \cap B) = \int_{A} \omega_{\gamma}^{0}(B) \mu(d\gamma)$$

for all $A \in \mathscr{C}_{\infty}$ and $B \in \mathscr{C}$. Because (2.19) is first valid for $B \in \mathscr{F}_0$ and holds in general by the extension property. It follows from (2.19) that

$$(2.20) \qquad \qquad \omega_{\gamma}^{0} = \mu_{\infty}^{\gamma}$$

for μ -a.e. γ . Here we shall put

$$\Omega_3 := \{ \delta \in \Gamma_X \, | \, \omega_\delta^0(B) = \int_{N_K} \omega_\delta^0(d\gamma) \int^K \exp\left(-U(\underline{x} \, | \, \gamma \cap K^c)\right) \chi_B(\underline{x} \cdot \gamma \cap K^c) m(d\underline{x})$$

for all $B \in \mathscr{F}_0$ and $K \in \mathscr{K} \}.$

Then $\Omega_3 \in \mathscr{C}_{\infty}$ and (2.20) gives $\mu(\Omega_3) = 1$ for any Gibbs measure μ . And it follows from Lemma 2.2 that

(2.21)
$$\omega_{\delta}^{0}$$
 is (U, m) -Gibbsian for each $\delta \in \Omega_{3}$.

Thus (2.19) derives that for $\delta \in \Omega_3$

Ergodic decomposition

(2.22)
$$\omega_{\delta}^{0}(A \cap B) = \int_{A} \omega_{\gamma}^{0}(B) \omega_{\delta}^{0}(d\gamma)$$

for all $A \in \mathscr{C}_{\infty}$ and $B \in \mathscr{C}$. Finally we put

$$\Omega_4 := \left\{ \delta \in \Omega_3 \mid \int_{\Gamma_X} \left\{ \omega_{\gamma}^0(B) - \omega_{\delta}^0(B) \right\}^2 \omega_{\delta}^0(d\gamma) = 0 \quad \text{for all } B \in \mathscr{F}_0 \right\}.$$

Then we have $\Omega_4 \in \mathscr{C}_{\infty}$ and for any (U, m)-Gibbs measure μ ,

$$\int_{\Gamma_{\mathbf{X}}} \int_{\Gamma_{\mathbf{X}}} \left\{ \omega_{\gamma}^{0}(B) - \omega_{\delta}^{0}(B) \right\}^{2} \omega_{\delta}^{0}(d\gamma) \mu(d\gamma) = \int_{\Gamma_{\mathbf{X}}} \int_{\Gamma_{\mathbf{X}}} \left\{ \mu_{\infty}^{\gamma}(B) - \mu_{\infty}^{\delta}(B) \right\}^{2} \mu_{\infty}^{\delta}(d\gamma) \mu(d\gamma) = 0$$

Thus we have $\mu(\Omega_4) = 1$. Moreover it follows from (2.22) that $\omega_{\delta}^0(A \cap B) = \omega_{\delta}^0(A)\omega_{\delta}^0(B)$ for each $\delta \in \Omega_4$, which implies $\omega_{\delta}^0(A) = 1$ or 0 for all $A \in \mathscr{C}_{\infty}$. Thus

(2.23)
$$\omega_{\delta}^{0}$$
 is ergodic for each $\delta \in \Omega_{4}$.

Define $\omega_{\delta} = \omega_{\delta}^{0}$, if $\delta \in \Omega_{4}$ and $\omega_{\delta} = \zeta$, otherwise. Then we have,

Theorem 2.2. As for a convex set formed by all (U, m)-Gibbs measures, there exists a family of probability measures $\{\omega_{\gamma}\}_{\gamma \in \Gamma_{X}}$ on $(\Gamma_{X}, \mathscr{C})$ such that

- (a) ω_{γ} is a (U, m)-Gibbs ergodic measure for each $\gamma \in \Gamma_{\chi}$,
- (b) $\omega_{\gamma}(B)$ is a \mathscr{C}_{∞} -measurable function of $\gamma \in \Gamma_{\chi}$ for each fixed $B \in \mathscr{C}$ and
- (c) for any (U, m)-Gibbs measure μ

$$\mu(A \cap B) = \int_A \omega_{\gamma}(B) \mu(d\gamma) \quad for \ all \ A \in \mathscr{C}_{\infty} \ and \ B \in \mathscr{C}.$$

Corollary. For any (U, m)-Gibbs measures μ and ν ,

- (a) $\mu = v$ if and only if $\mu = v$ on \mathscr{C}_{∞} .
- (b) $v \leq \mu$ if and only if $v \leq \mu$ on \mathscr{C}_{∞} .
- (c) If μ and ν are ergodic, then $\mu = \nu$ or $\mu \perp \nu$.

Let us take and fix an above family $\{\omega_{\gamma}\}_{\gamma\in\Gamma_{X}}$ and consider a minimal σ -field $\mathscr{C}_{\infty,\omega}$ with which all the functions, $\gamma \to \omega_{\gamma}(B)$ $(B \in \mathscr{C})$ are measurable. Since $\mathscr{C}_{\infty,\omega}$ is countably generated, so there exists a map $h: \Gamma_{X} \to \mathbb{R}$ such that $\mathscr{C}_{\infty,\omega} = h^{-1}(\mathfrak{B}(\mathbb{R}))$. As before it is easily checked that

(2.24)
$$\omega_{\gamma} = \omega_{\gamma'}$$
 if and only if $h(\gamma) = h(\gamma')$.

Further we claim that

$$h\omega_{\gamma} = \delta_{h(\gamma)}$$

for all $\gamma \in \Gamma_X$, where δ_s is the Dirac measure at $s \in \mathbf{R}$. For, put $S := \{\gamma \in \Gamma_X \mid h\omega_\gamma = \delta_{h(\gamma)}\}$. Then we have $S \in \mathscr{C}_{\infty,\omega}$ and for any Gibbs measure μ ,

$$\mu(h^{-1}(E \cap F)) = \int_{h^{-1}(F)} \omega_{\gamma}(h^{-1}(E)) \mu(d\gamma) = \int_{h^{-1}(F)} \chi_{E}(h(\gamma)) \mu(d\gamma)$$

for all $E, F \in \mathfrak{B}(\mathbb{R})$. Since both the integrants are $\mathscr{C}_{\infty,\omega}$ -measurable, so it follows that $\omega_{\gamma}(h^{-1}(E)) = \chi_{E}(h(\gamma))$ for μ -a.e. γ , and thus $\mu(S) = 1$. Especially we have,

$$(2.26) \qquad \qquad \omega_{\nu}(S) = 1$$

for all $\gamma \in \Gamma_X$. Now for any fixed $\gamma \in \Gamma_X$ let us take $\sigma \in \{\delta \mid \omega_{\delta} = \omega_{\gamma}\} \cap S$. Notice that the last set is not empty because we have $\omega_{\delta} = \omega_{\gamma}$ for ω_{γ} -a.e. δ by virtue of the ergodicity of ω_{γ} . Then,

$$\omega_{\gamma}(h^{-1}(E)) = \omega_{\sigma}(h^{-1}(E)) = \chi_{E}(h(\sigma)) = \chi_{E}(h(\gamma)).$$

We settle these arguments as the following theorem.

Theorem 2.3. Under the notation in Theorem 2.2, let $\mathscr{C}_{\infty,\omega}$ be the minimal σ -field with which all the functions, $\gamma \to \omega_{\gamma}(B)$ ($B \in \mathscr{C}$) are measurable. Then there exists a map $h: \Gamma_X \to \mathbf{R}$ such that $\mathscr{C}_{\infty,\omega} = h^{-1}(\mathfrak{B}(\mathbf{R}))$ and we have (a) $\omega_{\gamma} = \omega_{\gamma'}$ if and only if $h(\gamma) = h(\gamma')$, and

(b) $h\omega_{\gamma} = \delta_{h(\gamma)}$ for all $\gamma \in \Gamma_X$.

Remark 2.1. As for the uniqueness of such a family $\{\omega_{\gamma}\}_{\gamma\in\Gamma_{X}}$, it is desirable to state it without exceptional set instead of with exceptional set of measure 0. The following is an answer for this question. Namely, in order that such families $\{\omega_{\gamma}\}_{\gamma\in\Gamma_{X}}$ and $\{\omega_{\gamma}'\}_{\gamma\in\Gamma_{X}}$ coincide, it is necessary and sufficient that the σ -fields generated by them are the same one, *i.e.*, $\mathscr{C}_{\infty,\omega} = \mathscr{C}_{\infty,\omega'}$.

Theorem 2.4. A map: $\lambda(\cdot) \to \int_{\Gamma_X} \omega_{\gamma}(\cdot) \lambda(d\gamma)$ is a bijection from a space of all probability measures on $(\Gamma_X, \mathscr{C}_{\infty,\omega})$ to the space of all (U, m)-Gibbs measures.

The proof is obvious from what we have stated.

We conclude this paragraph with the following theorem.

Theorem 2.5. As for the convex set formed by all (U, m)-Gibbs measures, there exist a map $h: \Gamma_X \to \mathbf{R}$ and a family of probability measures $\{\beta_t\}_{t \in h(\Gamma_X)}$ on (Γ_X, \mathscr{C}) such that

- (a) h is a measurable map from $(\Gamma_{\chi}, \mathscr{C}_{\infty})$ to $(\mathbf{R}, \mathfrak{B}(\mathbf{R}))$,
- (b) β_{τ} is a (U, m)-Gibbs ergodic measure for each $\tau \in h(\Gamma_{\chi})$,
- (c) $\beta_{\tau}(B)$ is a $h(\Gamma_X) \cap \mathfrak{B}(\mathbb{R})$ -measurable function of $\tau \in h(\Gamma_X)$ for each fixed $B \in \mathscr{C}$, and hence it is universally measurable,
- (d) $\beta_{\tau}(h^{-1}(\tau)) = 1$ for all $\tau \in h(\Gamma_X)$, especially $\beta_{\tau}(\tau \in h(\Gamma_X))$ are mutually singular, and
- (e) for any (U, m)-Gibbs measure μ ,

$$\mu(B \cap h^{-1}(E)) = \int_E \beta_\tau(B) h \mu(d\tau) \quad for \ all \ B \in \mathscr{C} \ and \ E \in \mathfrak{B}(\mathbb{R}).$$

Proof. Let us put $\beta_{\tau} = \omega_{\gamma}$, if $\tau = h(\gamma)$. Then the well-definedness and (d) come from Theorem 2.3. Next we shall show (c). Notice that for each fixed

 $a \in \mathbf{R}$, there exists some $E_a \in \mathfrak{B}(\mathbf{R})$ such that $\{\gamma \in \Gamma_X \mid \omega_\gamma(B) \le a\} = h^{-1}(E_a)$. Hence

$$\{\tau \in h(\Gamma_{X}) \mid \beta_{\tau}(B) \leq a\} = h\{\gamma \in \Gamma_{X} \mid \omega_{\gamma}(B) \leq a\} = E_{a} \cap h(\Gamma_{X}).$$

Since an image of a Borel set in a standard space by a Borel map is an analytic set, so $h(\Gamma_x)$ is universally measurable. The rest of the proof easily follows from Theorem 2.2.

We remark that $\beta_{\tau}(\tau \in h(\Gamma_X))$ runs all over the set of all (U, m)-Gibbs ergodic measures.

2.3. Specific Gibbs measures. First we shall characterize Gibbs measures with total mass on B_x .

Theorem 2.6. If a (U, m)-Gibbs measure μ on $(\Gamma_{\chi}, \mathscr{C})$ have total mass on B_{χ} , then it follows that

(a)
$$S := \int^{x} \exp(-U(\underline{x} \mid \phi))m(d\underline{x}) < \infty$$
,

and the explicit form of μ is given by

(b) $\int_{\Gamma_x} f(\gamma)\mu(d\gamma) = S^{-1} \int^x \exp\left(-U(\underline{x} \mid \phi)\right) f(\underline{x}) m(d\underline{x}) \text{ for all non negative bounded}$ measurable function f.

Conversely if (a) holds, then a measure μ given by (b) is (U, m)-Gibbsian with total mass on B_x .

Proof. As is easily seen, B_X is an atom of \mathscr{C}_{∞} , so the measure μ with total mass on B_X must be ergodic. It follows from the martingale convergence theorem that

(2.27)
$$\int_{B_{\mathbf{X}}} f(\delta)\mu(d\delta) = \lim_{n} \frac{\int_{k}^{K_{n}} \exp\left(-U(\underline{x} \mid \gamma \cap K_{n}^{c})\right) f(\underline{x} \cdot \gamma \cap K_{n}^{c})m(d\underline{x})}{\int_{k}^{K_{n}} \exp\left(-U(\underline{x} \mid \gamma \cap K_{n}^{c})\right)m(d\underline{x})}$$

for μ -a.e. γ . However $\gamma \in B_X$ implies $\gamma \cap K_n^c = \phi$ for sufficiently large *n*, so (2.27) is actually,

(2.28)
$$\int_{B_X} f(\gamma)\mu(d\mu) = \lim_n \frac{\int_{K_n}^{K_n} \exp\left(-U(\underline{x} \mid \phi)\right) f(\underline{x})m(d\underline{x})}{\int_{K_n}^{K_n} \exp\left(-U(\underline{x} \mid \phi)\right)m(d\underline{x})}$$

By the assumption we have $\mu(B_{X,k,l}) > 0$ for some k and l, where $B_{X,k,l} = \{\gamma \in B_X^k | \gamma \subset K_l\}$. Let us put the indicator function of $B_{X,k,l}$ for f. Then the numerator under the limit sign in (2.28) becomes

$$k!^{-1}\int\cdots_{K_l^k}\int\exp\left(-U(\{x_1,\cdots,x_l\}\,|\,\phi)\right)m^l(dx)$$

for all $n \ge l$ which is independent of n. So we have

$$\lim_{n}\int^{K_{n}}\exp\left(-U(\underline{x}\,|\,\phi)\right)m(d\underline{x})=S<\infty,$$

and (b) follows directly from (2.28).

Conversely, we claim that (2.5) holds for μ defined by (b) under the assumption (a). For it we have only to check it for functions $f(\gamma)\chi_{B_X^n}(\gamma)$ $(n = 0, 1, \dots)$. It is obvious for n = 0, so let n > 0. Then,

$$\begin{split} &\int_{N_{\kappa}} \mu(d\gamma) \int^{\kappa} \exp\left(-U(\underline{x} \mid \gamma) f(\underline{x} \cdot \gamma) \chi_{B_{x}^{n}}(\underline{x} \cdot \gamma) m(d\underline{x})\right) \\ &= \sum_{l=0}^{n} \int_{\{\gamma \mid |\gamma \cap K| = 0, |\gamma \cap K^{c}| = l\}} \mu(d\gamma) (n-l)!^{-1} \int \cdots_{x \in K^{n-1}} \int \exp\left(-U(\{x_{1}, \cdots, x_{n-l}\} \mid |\gamma \cap K^{c})) \cdot f(\{x_{1}, \cdots, x_{n-l}\} \cup (\gamma \cap K^{c})) m^{n-l}(dx) \\ &= S^{-1} \sum_{l=0}^{n} \{l! (n-l)!\}^{-1} \int \cdots_{x \in K^{n-l}} \int \int \cdots_{y \in (K^{c})^{l}} \int \exp\left(-U(\{x_{1}, \cdots, x_{n-l}\} \mid |y_{1}, \cdots, y_{l}\}) \right) \\ &\cdot \exp\left(-U(\{y_{1}, \cdots, y_{l}\} \mid \phi)) f(\{x_{1}, \cdots, x_{n-l}, y_{1}, \cdots, y_{l}\}) m^{n-l}(dx) m^{l}(dy) \\ &= S^{-1} n!^{-1} \sum_{l=0}^{n} C_{l} \int \cdots_{x \in K^{n-l}} \int \int \cdots_{y \in (K^{c})^{l}} \int \exp\left(-U(\{x_{1}, \cdots, x_{n-l}, y_{1}, \cdots, y_{l}\} \mid \phi)) \right) \\ f(\{x_{1}, \cdots, x_{n-l}, y_{1}, \cdots, y_{l}\}) m^{n-l}(dx) m^{l}(dy) \\ &= S^{-1} n!^{-1} \int \cdots_{x^{n}} \int \exp\left(-U(\{z_{1}, \cdots, z_{n}\} \mid \phi)) f(\{z_{1}, \cdots, z_{n}\}) m^{n}(dz) \\ &= \int_{B_{x}} f(\gamma) \chi_{B_{x}^{n}}(\gamma) \mu(d\gamma). \end{split}$$

Theorem 2.7. If the potential U is constant, say $U(x|\gamma) = -\log a$, then the convex set of all (U, m)-Gibbs measures consists of only a Poisson measure P_{am} with intesity am. (P_{am} is of course ergodic by virtue of 0–1 law.)

Proof. Let μ be any (U, m)-Gibbs measure. Then for each compact set K we have,

$$\pi_{K}\mu(B) = \int_{N_{K}} \mu(d\gamma) \int^{K} \exp\left(-U(\underline{x} \mid \gamma)\right) \chi_{B}(\underline{x}) m(d\underline{x})$$
$$= \mu(N_{K}) \sum_{n=0}^{\infty} n!^{-1} a^{n} m_{K,n}(B \cap B_{K}^{n})$$

for all $B \in \mathscr{C}_K$. So by virtue of Obata's result [1], there exists a Borel probability measure λ on $[0, \infty)$ such that $\mu = \int_0^\infty P_{cm}\lambda(dc)$ in the case $m(X) = \infty$, or μ is a convex combination of $m_{X,n}/m(X)^n$ in the case $m(X) < \infty$. First we shall consider the infinite case. So let us take a set $E \in \mathfrak{B}(\mathbb{R})$ and a function

(2.29)
$$\rho(\gamma) = \begin{cases} \lim_{n} \frac{1}{n} \sum_{l=1}^{n} \frac{|\gamma \cap (K_{l+1} \setminus K_l)|}{m(K_{l+1} \setminus K_l)}, & \text{if the limit exists} \\ 0, & \text{otherwise.} \end{cases}$$

And we calculate $\int_{\Gamma_x} \chi_E(\rho(\gamma))\mu(d\gamma)$ in two ways, noting that $\rho(\gamma) = c$ for P_{cm} -a.e. γ . the first one is,

$$\int_{\Gamma_{\mathbf{X}}} \chi_{E}(\rho(\gamma)) \mu(d\gamma) = \int_{\Gamma_{\mathbf{X}}} \chi_{E}(\rho(\gamma)) P_{cm}(d\gamma) \lambda(dc) = \lambda(E),$$

and the other one is,

$$\int_{\Gamma_{X}} \chi_{E}(\rho(\gamma))\mu(d\gamma) = \int_{0}^{\infty} \lambda(dc) \int_{N_{K}} P_{cm}(d\gamma) \int^{K} a^{|\underline{x}|} \chi_{E}(\rho(\underline{x} \cdot \gamma \cap K^{c}))m(d\underline{x})$$
$$= \exp(am(K)) \int_{E} \exp(-cm(K))\lambda(dc).$$

These show that c = a for λ -a.e. c and hence $\mu = P_{am}$. Next we shall consider the finite case. So there exists a non negative sequence $\{c_n\}$ with $\sum_{n=0}^{\infty} c_n = 1$ such that

(2.30)
$$\mu = \sum_{n=0}^{\infty} c_n m(X)^{-n} m_{X,n}$$

Then for each compact set K,

$$c_n = \mu(B_X^n) = \int_{N_K} \mu(d\gamma) \int^K a^{|\underline{x}|} \chi_{B_X^n}(\underline{x} \cdot \gamma \cap K^c) m(d\underline{x})$$

= $\sum_{l=0}^{\infty} c_l m(X)^{-l} \int_{N_K} m_{X,l}(d\gamma) \int^K a^{|\underline{x}|} \chi_{B_X^n}(\underline{x} \cdot \gamma \cap K^c) m(d\underline{x}).$

So we have,

(2.31)
$$c_n = \sum_{l=0}^n \left\{ (n-l)! m(X)^l \right\}^{-1} a^{n-l} m(K)^{n-l} m(K^c)^l c_l.$$

It follows from the mathematical induction for n that

$$c_n = n!^{-1} a^n m(X)^n c_0$$
, and $c_0 = \exp(-am(X))$,

which follows from the normalizing condition. Thus we have

$$\mu = \exp((-am(X))\sum_{n=0}^{\infty} n!^{-1}a^n m_{X,n} = P_{am}.$$

Corollary. Let U be a potential defined by $U(x|\gamma) = -\log \rho(\gamma)$, where ρ is a function defined by (2.29). If a Borel Radon measure m on X is infinite, then the extremal points of the convex set of all (U, m)-Gibbs measures consists of $\{P_{cm}\}_{c\in[0,\infty)}$. That is, for any (U, m)-Gibbs measure μ ,

Hiroaki Shimomura

$$\mu(B \cap \rho^{-1}(E)) = \int_E P_{cm}(B)\rho\mu(dc) \quad for \ all \ B \in \mathscr{C} \ and \ E \in \mathfrak{B}([0, \infty)).$$

Proof. Let $\{\omega_{\tau}\}_{\tau \in \Gamma_X}$ be as in Theorem 2.2. Then the \mathscr{C}_{∞} -measurability of ρ implies that for each fixed $\gamma \in \Gamma_X$, there exists a constant $a(\gamma)$ such that

(2.32)
$$\rho(\sigma) = a(\gamma)$$

for ω_{γ} -a.e. σ . Thus by the above theorem we have

(2.33)
$$\omega_{\gamma} = P_{a(\gamma)m}$$

for all $\gamma \in \Gamma_X$. Especially for each compact set K,

$$\omega_{\gamma}(N_{K}) = P_{a(\gamma)m}(N_{K}) = \exp\left(-a(\gamma)m(K)\right).$$

It follows that $a(\gamma)$ is also a \mathscr{C}_{∞} -measurable function of γ , and therefore (2.32) implies that for any (U, m)-Gibbs measure μ ,

$$(2.34) \qquad \qquad \rho(\gamma) = a(\gamma)$$

for μ -a.e. γ . Thus we have,

$$\mu(B\cap\rho^{-1}(E))=\int_{\rho^{-1}(E)}\omega_{\gamma}(B)\mu(d\gamma)=\int_{\rho^{-1}(E)}P_{\rho(\gamma)m}(B)\mu(d\gamma)=\int_{E}P_{cm}(B)\rho\mu(dc).$$

DEPARTMENT OF MATHEMATICS FUKUI UNIVERSITY

References

- [1] N. Obata, Measures on the configuration space, 1-42, unpublished.
- [2] H. Shimomura, Ergodic decomposition of quasi-invariant measures, Publ RIMS, Kyoto Univ., 14 (1978), 359–381.
- [3] H. Shimomura, Poisson measures on the configuration space and unitary representations of the group of diffeomorphisms, J. of Math. Kyoto Univ., 34 (1994), 599-614.
- [4] Y. Takahashi, Characterization of Gibbs measures, Seminar on probability, 46 (1977) (in Japanese).
- [5] A. M. Vershik, I. M. Gel'fand and M. I. Graev, Representations of the group of diffeomorphisms, Usp. Mat. Nauk, 30 (1975), 3-50 (= Russ. Math. Surv., 30 (1975), 1-50).