J. Math. Kyoto Univ. JMKYAZ)
35-4 (1995) 611-630

Ergodic decomposition of probability measures on
the configuration space

Dedicated to Professor Takeshi Hirai on his 60th birthday
By

Hiroaki SHIMOMURA

Introduction

Let X be a locally compact space which satisfies the second countable

axiom. Any locally finite subset of X is called a configuration in X, that is a
subset y = X such that yn K is finite for any compact set K = X. Let us denote
by 4y the space of all infinite and by B, the space of all finite configurations
in X, and set I'y:= 4,UBy. We introduce a measurable structure € on I'y such
that 4 is a minimal o-algebra with which all the functions, yel'y - |ynB|eR
are measurable, where B runs through all the Borel sets in X and |[ynB| is the
number of the set ynB. It is known that (I'y, ¥) is a standard space (See,
theorem 1.2 in [3]) and hence any probability measure u on (I'y, €) is decomposed
into conditional probability measures with resect to any sub-o-field of 4. The
subject of this paper are two kinds of measures on (I'y, ¥) with well known
properties and their ergodic decompositions. The first one is a Diff,X-quasi-
invariant probability measure p, where X is a connected para-compact
C*-manifold and DiffoX := {y |y : diffecomorphism on X with compact support}.
In 1975, Vershick-Gel'fand-Graev introduced elementary representations U,
generated by these u’s and discussed fully their interesting properties in [5]. In
particular they showed that U, is irreducible if and only if pu is ergodic. Thus
our subject correspondes to an irreducible decomposition of U,. It will be shown
in section 1 that an ergodic decomposition of Diff,X-quasi-invariant probability
measure is actually possible.
The second one is a consideration of Gibbs measures u having been discussed
in great detail in statistical mechanics. An ergodic decomposition of such u
relative to the tail-o-field leads us to a remarkable fact that there exist typical
extremal measures which are regarded as a base on a convex set formed by such
ws. These contents will be discussed in section 2. In both of section 1 and
section 2, we denote a o-finite non atomic Borel measure on X by m. The direct
product m" of n copies of m is naturally regarded as a measure on
Xm= {(xy,-,x,)eX"|x; # x; for all i #j} and thus an image measure p,m" is
obtained by the natural map p,: (xl,---,x,,)e)?"—»{x,,~-,x,,}eB}:= {yelx||y| =n}.
We denote it by my .
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1. Ergodic decomposition of Diff,X-quasi-invariant measures

1.1. Basic notion and result. As before let X be a d-dimensional
C*-manifold and m be a locally Euclidean Borel measure on X with smooth
densities. And we associate with each Yy eDiffpX a transformation T, on I
such that T, {x,---,x,,---} = {¥(xy),--,¥(x,),~-}. A probability measure u
on (I'y, ¢) is said to be Diff,X-quasi-invariant, if and only if T,u~ u for all
VY eDiffy X, where the symbol ~ means the equivalence relation of measures.
Moreover p is said to be DiffX-ergodic, if u(4)=1 or 0 provided that
w(Ty(A)© A) = 0 for all y eDiffX. It is an aim of the present section that after

suitably setting a measure space (A4, A) we decompose p such as pu :J wAdl)
A
with DiffyX-ergodic measures p,. Besides it is to be desired that u,’s are mutually

singular.

Now let p be a DiffyX-quasi-invariant probability measure and put o:= u(By)
and B:= u(dy). Then we have u=ou, + fu,, where u,(E):= pu(EnBy)/o and
U(E):= p(Endy)/p for all E€e¥. Furthermore we put o,:= u,;(By). Then py, is
decomposed as

(l']) iul =Z:0=0an#l.n’

where p, ,(E) = u,(EnBy)/a, for all Ee¥. Since By (n=0, I,---) is a DiffoX-
invariant set, so p;, is a DiffyX-quasi-invariant measure. Here we give the
following theorem.

Theorem 1.1 ([5]). Any non zero o-finite Difl,X-quasi-invariant measure on
% is equivalent to my .

The proof will be seen in a discussion for the proof of Lemma 1.2 which
will be stated later on.
In anyway, it follows immediately from the above theorem that any non zero
o-finite Diff,X-quasi-invariant measure on By is DiffyX-ergodic. Hence y, , is
ergodic and (1.1) is actually an ergodic decomposition of y;. Next let us observe
U, so we shall assume that u(4y) = 1 from now on. Here we introduce a set
X2:i={(x1,s X, )€EX®|x; # x; for all i #j and the set {x,.---.x,,---} has no
accumulation points} and consider a cross section s of the natural map

p: (‘xl’.“7xn’”')e"\‘;00 - {xl""’xn"“}EAX.

Let us take and fix an increasing sequence {Y,} of connected open sets with
compact closure such that Y, c Y,,, and Y,1X. Then there exists a measurable
section s possessing the following property (P) with this {Y,}.

(P) If we have [yn Y| =k, [yn(N\Y)|=ka,-, [yn(LA\ Y, - )l =k, for yedy,
then the first k, elements of s(y) are in ynY,, the next k, element of s(y) are in
yn(Y;\ Y,) and so on.



Ergodic decomposition 613

We call it to be admissible. Notice that s(E) is a Borel set in X for any
Ee¥ndy, because s is one to one and measurable, and the space (I'y, %) is
standard.

For measures on the natural measurable space (X=, B(X®)) we also obtain the
notion of DiffyX-quasi-invariance and ergodicity with maps 7},: (Xgso Xy )EX®
- W (x,), - ¥(x,).--) e X for YyeDifffX. Here we shall define a new measure
ji on B(X®) from a given probability measure u taking the above measurable
admissible cross section s:

(12) AE):= Y e, (0) (s0) (E)

for all EeB(X~), where S, is the set of all finite permutations on N, {¢(6)},ce.
is a fixed positive sequence such that stew ¢(0) =1 and (sp)o is a image measure
of u by the map,

~

YEAx > S() = (X1, X ) D SO = (Xg 1) s X ) EX .

Theorem 1.2 (section 2 in [5]). Under the above notations,
(a) u is DiffyX-quasi-invariant if and only if so is [
(b) u is DiffyX-ergodic if and only if so is [i.
(¢) If a Borel probability measure pu, on X s S ,-quasi-invariant and
U1 (Uges, SUx)a) = 1, then pu, is equivalent to p,.
(d) A DiffyX-quasi-invariant probability measure ji on (X, B(X®)) is Diff,X-
ergodic if and only if i(A) =1 or O for any AeB, where B, = X, g7 (B(X ™))
and q,: (x,,---,x,,,---)eX~°° o Xpgre X )EX®. B_ is called the tail-o-field.

1.2. Diff, Y-quasi-invariant measure on B, and one parameter group of Diff,X.
In this paragraph the letter Y stands for connected open subset in X with compact
closure, and we observe subgroups of difftomorphisms on X whose support is
contained in Y which will be denoted by DiffyY. Using the sequence {Y,} already
stated in the admissible cross section, we have,

(1.3) Diff,X = U=, Diff,Y,.

Now from a trivial equality, y = (yn Y)U(yn Y¢) we can identify I'y with a product
space By and I'y.. Putmy:yely—>ynYeByand ny.: yely > ynY ely.. Since
By and [I'y. are naturally regarded as subspaces of I'y so the measurable structure
%y and €y. are induced from ¥ respectively. It is easy to see that the above
identification I'y ~ By x ['y. is an isomorphism with the measurable structure %
and €y x €y.. By the way probability measures v on (By, %y) naturally arises,
if we decompose DiffyY-quasi-invariant probability measures with respect to
sub-o-field ny.' (€y:). So we shall observe such v's, especially with v(B%) =1 for
a while. As before we define

(1.4) V(E) =3 e, (V) (E)

for all Ee®B(Y"), taking a measurable cross section s, of the natural map
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P 1ay)€Y" > {y,,--.y,}€B. Then v and 7 have the same kind of
quasi-invariance. Now Y" is covered by countable sets of the form O7 x - x O™
(m =1,---), where O is an open set with compact closure which is diffeomorphic
to R? by a map y" and O7'n O} = ¢ for i #j. Since Diff, Y acts on Y" transitively,
it follows that there exists an at most countable set {¢,} such that
Y™ = U, (0T x --- x OT) for each m. Hence #O7 x ---x O7) >0, if ¥ is
quasi-invariant under a group H, generated by such ¢,’s. Here we shall prepare
some basic lemma.

Lemma 1.1. There exists a one parameter group nt (i=1,---,d,1=1,---) of

DiffyR? which satisfies ni(t)(&) = (&1, & + t,-,&) for all & =(&,,-,¢,)eR? and
teR such that 11\;19<xdlfi| <l and |t| <L

Proof. For the existence of such one parameter group, we solve the following
differential equation (1.5) with a function f; of C®-class on R such that f;(s) = 1
on |s| <2l and fi(s) =0 on |s| > 3L

d

d7x = filx,)- filx,)e;
t

(1.5)

where ¢; = (0, -, f,---,O). Then the solution x(t, &) of (1.5) gives directly a desired
diffeomorphism.

Let G2 be a group generated by the one parameter groups =} (i = 1,---,d,
I=1,---). Then it is easily seen that

Proposition 1.1. For any 1eN and for any ©=(t;,---,t,)eR?, there exists
Y eGY such that

W(&) =&+t for all & with Max |&;] <L

Proposition 1.2. Any o-finite G3-quasi-invariant Borel measure on R® is
equivalent to the Lebesgue measure.

Now let us pull back each element of G by the maps Y7 (i=1,---,d, m=1,---)
and extend it to the element of Diff,Y. Then considering the restriction of v to
O7 x --- x 07, we deduce that

n»

Lemma 1.2. [n DiflyY there exist one parameter groups mn;, (i =1,---) and a
countable subgroup H, such that the following are equivalent for any Borel
probability measure v on By.

(a) v is quasi-invariant under the groups m;, (i=1,---) and H,.
(b) v is equivalent to my,.
(¢) v is DiffyY-quasi-invariant.
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The following lemma is an immediate consequence of the above lemma by
letting n run from 0 to oo.

Lemma 1.3. [n DiffyY there exists one parameter subgroups m;y (i=1,---)
and a countable group Hy such that the following are equivalent for any Borel
probability measure v on By.

(@) v is quasi-invariant under the groups m;y (i =1,---) and Hy.
(b) v is Diff,Y-quasi-invariant.

Next let us decompose a probability measure u on (I'y, €) into the regular

conditional probability measures {u’},.r,. on (By, €y) with respect to the map
7y. which satisfy

(1.6) u'(A) is a €y.-measurable function of yely. for each fixed Ae By, and

(1.7) u(A x B) =J W (A)myep(dy)

B

for all Ae¥, and Be®y..

Lemma 1.4. Under the above notations, the following are equivalent.
(a) u is DiffyY-quasi-invariant.
(b) u' is DiffyY-quasi-invariant for mycu-a.e. 7.

LT}

Proof. There is nothing to prove “(b) implies (a) Let us see the converse
relation. For this we calculate T,u(A4 x B), Yy eDiffyY in two ways. The first
one is,

(1.8) T,u(A4 x B) = u(T,”'(4) x B) = J T, W (A)myep(dy).
B

And the other one is,

dT,
(1.9) T, (A x B) = f J S () w2 (@) mye puldy).
BJa du
It follows from (1.8) and (1.9) that
dT,
(1.10) Twﬂ’(-)=j —W(Y’)uy(dv’)
¢ du

for my.pu-a.e. y, and thus we have
(1.11) T, W ~ @

for my.p-a.e. . Here we take an arbitrary one parameter group {i,},.g of DiffyY
and set

IT:= {(t, y)€R x I'ye| T, p" ~ p’} and

dT,
My:={(t, Y)eR x Iye| T, w(-) =j #(w’)u’(dv’)}-
“)
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Then 11, is a B(R) x ¥y.-measurable subset of /7 and for any fixed t the R-section
IT§ determined by ¢ has full measure for ny .. Thus by virtue of Fubini’s theorem
the I'y.-section [T} determined by y has full Lebesgue measure for ny.p-a.e. y. So
the I'y.-section [1” is Lebesgue measurable and it is a subgroup of R with positive
measure for my.p-a.e. y. This implies that /7" = R for ny.pu-a.e. 3. Now consider
groups m; y (i = 1,---) and Hy stated in Lemma 1.3. Applying the above arguments
to these subgroups, we conclude that u” is Diff, Y-quasi-invariant for zy.u-a.e. y.

From (1.3), Lemma 1.3 and Lemma 1.4 we have the following theorem.

Theorem 1.3. In Diff X, there exist one parameter groups m; (i = 1,---) which
are subgroups of Diffy(Y,) and a countable group G, such that the following are
equivalent for any probability measure p on (I'y, €).

(a) p is DiffyX-quasi-invariant.
(b) u is quasi-invariant under the groups m; (i =1,--) and G,.

1.3. Ergodic decomposition of Diff,X-quasi-invariant measure. Let y be a
Diff, X -quasi-invariant probability measure on (I'y, ) with u(dy) =1 and i be
the Borel measure on X defined by (1.2). We decompose ji into conditional
probability measures {i*},.z~ With respect to the tail-o-field B,. Namely,

(1.12)  G*(B) is a B ,-measurable function of xe X® for each fixed Be B(X ), and

(1.13)  a(AnB) = J *(B) ii(dx)

A

for all AeB, and Be®B(X®). Since the measurable space (X=, B(X®) is
standard, and B, is an intersection of a decreasing sequence of the countably

generated o-fields ¢, 1(B(X®)), so by the well known fact, (For example see
theorem 2.3 in [2])

(1.14) 4,€B, with i(A) =1 s.t., "xeA,, i*(-)=1 or 0 on B_.
Furthermore it follows easily from the construction of f,

(1.15) 34,eB_ with i(A,)) =1 s.t., Vxe A,, ji* is S, -quasi-invariant and
ﬁx(Uaeews(rx)a) = 1

Consequently putting u'*):= pii*, we have p*! ~ i* for all xe A, by virtue of (c)
in Theorem 1.2. Next we have for each fixed y e Diff X, T, i* ~ i* for j-a.e. x,
because every set in B, is DiffyX-invariant. So using Theorem 1.3 and
proceeding similar manner with the proof of Lemma 1.4, we deduce that

(1.16) I4,eB,, with i(A;) =1 s.t., "xe A;, u¥ is Diffy X -quasi-invariant.
Thus we have,
(1.17) Yxe A;NA,N A5, p*! is DiffyX-ergodic,

by virtue of (c¢) and (d) in Theorem 1.2. Since
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us~ (AN AN 45)) = Zae@w c(o)(swa(A NA;NA3) = fi(A;nA,NA;3) =1
so the following result is obtained.

Theorem 1.4. Let u be a DiffyX-quasi-invariant probability measure on (I'y, €)
with u(dy) = 1. Then there exists a family of DiffyX-ergodic probability measures
{W},eax) such that
(@ w(B)is a s~ (B,)-measurable function of ye Ay for each fixed Be¥, and

(b) uBns '(4) = w(B)u(dy) for all BE€ and AeB,.
s~ H(4)
Proof. For it we have only to put u’:= ps™ if yes~1(4,nA,nA;) and
u':= 6, otherwise, where 6 is some definite Diff,X-ergodic probability measure
on (I'y, €).

We wish to rewrite this decomposition in a somewhat elegant style which
is independent of the admissible sections. For this let us put

A, :={Be¥|T,B =B for all yeDiffX}.

Then we have s™'(B,) = U, as is easily seen. Moreover for the u in Theorem
1.4

w(A S A)=0 for all AcN, where A:= {yedy|u’(4) = 1}.

Because,

BN A) = J W(B)u(dp)

A

for all Be¥ by virtue of Theorem 1.4, while

by virtue of Theorem 1.4, while

w(B)p (A)u(dy) = f W (B)u(dy)-

A

u(BﬂA)=f

Ax

Theorem 1.5. Let u be a DiffyX-quasi-invariant probability measure on
(I'x, 6). Then there exists a family of probability measures {§'},.r, on (I'x, 6)
such that
(@) u’ is DiffyX-ergodic for each ye Iy,

(b) w(B) is an W -measurable function of y for each fixed Be€

(c) u(AnB) =J wW(B)u(dy) for all AeN, and Be®.

A

Proof. First we divide p into u, and p, as in the first place of this section
and decompose p, into u,, according to (1.1). Further we decompose u, into
{13},cax as in Theorem 1.4. Next we define {u’}, -, such that u” = p} for yedy
and p* = u, , for ye By. Then the result easily follows from what we stated.
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Lemma 1.5. For any Diffy X-quasi-invariant probability measures pu and v, the
following are equivalent.
(a) v is absolutely continuous with p.
(b) There exists Ae U, such that “v(B) =0 if and only if u(AnB)=0".

Proof. We have only to check the implication “(a) implies (b)”. From the
assumption there exists A,e% such that

“v(B) =0 if and only if u(AonB)=0".

Thus A, must satisfy u(A4, © T,(A4,)) = 0 for all yeDiffyX. It follows from the
above theorem that u’(A4, © T, (A4,)) = O for pu-a.e. y. Here let us take an arbitrary
one parameter group {y,} g contained in some Diff,Y. Then p’(4, © T,,(A,)) is a
B(R) x A -measurable function of (t, y)e R x I'y, which is easily checked, so by
virtue of Fubini’s theorem the Lebesgue measure of Q,:= {teR|u"(4, © T, (4,)) =
0} is full for p-a.e. y. As Q, is a group, so Q, = R for p-a.e. y. It follows from
Theorem 1.3 that a measure v’ defined by the restriction of u’ to the set A, is
Diff, X -quasi-invariant for p-a.e. y. Since u’ is DiffyX-ergodic, so u” ~ v’ unless
1 (Ap) =0. That is u’(4,) =1 or O for p-a.e. y. Thus we have u(4,© A4) =0
for an A defined by A:= {yely|u'(4,) = 1}eU,.

Theorem 1.6. For any DiffyX-quasi-invariant probability measures p and v,
(@ vSuifandonly if v<Sp on U,

(b) p is DiffyX-ergodic if and only if u(-)=1 or 0 on A,
(¢) If u and v are Diff,X-ergodic, then p~v or p | v.

Proof. (a) Suppose that v<p on A, and put A= (u+v)/2. Then by
virtue of the above lemma, there exists 4e A such that “u(B) =0 if and only
if A(AnB) =0". Especially we have u(4°) = 0 and thus v(4°) = 0. Consequently,
v(B) = v(Bn A) < 2A(AnB), which implies v(B)=0 if u(B)=0. The converse
relation is obvious. (b) and (c) easily follow from (a).

If we wish to be that factor measures {u'} -, appearing in Theorem 1.5
are mutually singular, then the following technique will be useful. First notice
that a minimal c-algebra 2 with which all the functions, ye I'y - p’(B)eR, where
B runs through %, are measurable is countably generated and thus 2 = g~ '(%(R))
with a suitable map g: I'y - R. It is not difficult to see,

(1.18) 9() =g, if and only if p =y

Further by virtue of (c) in Theorem 1.5 we have,

(1.19) J #(g~ H(E)uldy) = j xe(g(V))pu(dy)
9= '(F) g7 '(F)

for all E, F eB(R), and hence for p-a.e. y,

(1.20) 1 (g~ (E)) = xe(g()
for all Ee®B(R). Especially we have,
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(1.21) W Hgnh =1

for p-a.e. y. Now define u = p?, if t =¢g(y) and p, = 6, otherwise, where 0 is
some definite Diff,X-ergodic probability measure on (I'y, ¥). Then we have

(1.22) For each fixed Be¥, u/(B) is a universally measurable function of teR.

Because g{y|u’(B) < a} is an analytic set for every aeR. And further we have,

(1.23) u(Bng~'(E)) = J i (B)gu(dt)

E
for all Be% and Ee®B(R). Compairing u, with regular conditional probability
measure p(t, -) given g =t, we deduce that

(1.24) T, € B(R) with gu(T,) = 1 such that “te Ty, u, = p(t, - ).
Finally we put p,(-)=p(t, -), if te T, and p, = 6, otherwise. Then

Theorem 1.7. Let p be a DiffyX-quasi-invariant probability measure. Then
there exist a map g and a family of probability measures {i,},.g on (I'y, €) such that
(@) g is a measurable map from (I'y, U,) to (R, B(R)),

(b) u, is DiffyX-ergodic for every teR,

(¢) u(B) is a Borel measurable function of teR for each fixed Be¥,

(d) there exists a Borel set T, with gu(T,) =1 such that u(g~'{t})=1 for all
te Ty, especially p,(teTy) are mutually singular, and

(e) u(Bng YE)) =J w(Bygu(dt) for all Be€ and EeB(R).

E

2. Ergodic decomposition of Gibbs measure

2.1. Basic properties. In this section X is a general locally compact
topological space which satisfies the second countable axiom and m stands for
non atomic Radon measures on B(X) which is the natural Borel o-field on X. A
function U(x|y)e(— o0, o] defined on (x, y)e X x I'y is said to be a potential
if it satisfies

2.1) U(x|y) is a B(R) x €-measurable function, and
(2.2) Uxlyu{y}) + Uyly) = Ulylyu{x}) + U(x1]y)

for all x, yeX and yely. We shall extend the domain of definition of the
potential to B} such that

U@ly):=0 for n=0, U({x;, x,}17):= U(x;|yU{x;,}) + U(x,|y) for n=2, and
Ux]y) = U({xy, -, X— 1} lyU{x,}) + U(x,|y) for x:= {x,- -, x,} € By inductively.
These are well defined by the property (2.2).

Now let u be a probability measure on (/'y, ¥) and denote the conditional
expectation of a %-measurable function f on I'y with respect to the o-field
niye' (€ye) by Exp (f|%6y.). Let us proceed to the definition of Gibbs measure. A
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probability measure y on (I'y, ¥) is said to be (U, m)-Gibbsian or simply Gibbsian
(in a sense of Dobrushin, Ruelle, Lanford) for a potential U and a measure m
if and only if it satisfies,

(2.3) Eqi= Z:‘;On!“j exp (— U(x|ynK))my ,(dx) < oo
Bk

for p-ae. y, and

(2.4) Exp (f1€xo) (v) =

EK(“/)"Z,‘Z‘LOn!”J exp (— U(x|ynK))f(xU(ynK))mg,,(dx)
By

for each non negative bounded ¢-measurable function f on I'y. Notice that
we always have Zy(y)>1. And it is fairly easy to see that a set of all
(U, m)-Gibbsian measure is closed under the convex combination. From now
on we shall write

K
J exp (= U(x|ynK))f(x-ynK)m(dx)
instead of

noh! ™! J exp (— U(x[ynK9)) f(xU(ynK))my ,(dx)
Bk

according to [4].

Lemma 2.1. (2.3) and (2.4) is equivalent to the following condition (2.5).

K
(2.5) J f(v)u(dv)=f u(dy) J exp (— U(x|)f(x - y)m(dx)
I'x {yllynK|=0}

for each compact set K and non negative bounded €-measurable function f.

Proof. Suppose that (2.3) and (2.4) are satisfied and let yy, be the indicator
function of the set Ny:= {y||ynK|=0}. Then for f = yy, (2.4) gives

(2.6) EXp (tn, [ Gxo) () = Ex(7) .
Thus,

r

fuldy) = J Exp (f1€) () u(dy)

JvIx I'x

r K
= u(dy) Exp (XNKI%’,«)(V)J exp(— U(x|ynK)) f(x-ynK))m(dx)
JI'x

K
= u(dv)j exp (— Ux|y)f(x - y)ym(dx).

JN
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Conversely, Put Fg:= {y|Z¢(y) < oo} and substitute the indicator function xg,.
for f in (2.5). Then it yields that

W(Fge) = J xre, (V) Ex () uldy),
Nk

and thus u(F$) =0. The rest of the proof easily follows from (2.6) which is
easily derived from (2.5).

Let us look quickly how the Gibbsian property implies Diff,X-quasi-
invariance. So let u be a Gibbs measure and Y be any open subset with compact
closure. Then as is easily seen, (2.4) also holds for such Y provided that
m(Y\ Y)=0. Thus the conditional probability measure u’ with respect to
ny (Bye) is,

2.7 p(A) =Ey@p) 1y nt! J exp (— Ux|ynY9))my ,(dx)
AnBY}

for all Ae¥y. Hence we have,

Theorem 2.1. Let X be a connected o-compact C®-manifold and m be a
locally Euclidean Radon measure on X. Then under the assumption that the
potential function U(x|y) is always finite, any (U, m)-Gibbs measure u is
Diffy X -quasi-invariant.

Proof. Take a sequence {Y,} of connected open sets with compact closure
such that m(Y,\ ¥,) =0 and apply Lemma 1.4.

Let {U,} be a countable open base of X such that U, is compact for all
n, A be a collection of all the sets being finite union of U, (n =1,---), and &
be a countable field generatig %.

Lemma 2.2. [n order that a probability measure p on (I'y, €) is Gibbsian, it
is necessary and sufficient that (2.5) is satisfied for all Ke X" and ygz(= f), where
Xg is the indicator function of a set Be #.

Proof. We have only to check the sufficiency. Now it is immediate from
the assumption that (2.5) holds for all KeJ" and for all non negative bounded
%-measurable functions. Hence proceeding in the same way with the proof of
Lemma 2.1, we have for each Ke .~

(2.8) Zk(y) <
for u-a.e. y, and for each Ke %
29 Zx ' () = Exp (wic | ) ()

for p-a.e. y. Take any compact set K. Then there exists a sequence {K,} = A~
such that K, | K. It gives that
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{IlynK,l =0} T{yllynK| =0} and {y[ynK; =ynK}1Iy.

Here we notice that if yn K = ynK¢ for some n, then
K
Zx(y) < J exp (— Ulx|ynKp))m(dx) = Eg, (7).

Thus (2.8) and the above relation show that (2.3) holds for all compact sets
K. By the assumption (2.5) holds for all K,, so by virtue of Lebesgue-Fatou’s
lemma we have,

K
(2.10) f f(?)u(dv)zj u(d?)f exp (— U(x|ynK)) f(x - yn K))m(dx).
I'x Nk

And hence,
(2.11) Exp (f%k) () =
K
Exp (tn, | €xe) () - J exp (— Ux[ynK))f(x-ynK)m(dx)

for p-a.e. y. Especially,
(2.12) k()" = Exp (twy | €x) ()

for pu-a.e. y. Now let us consider the relation (2.9) for K = K,. As is easily
seen, mge (€xe) 1 g (Bxo), so the right hand side of (2.9) is

{ EXp (Xwx, | €ke) (7) < Exp (tny | €ke) ()

(2.13)
Exp (xny | €xs)(v) = Exp (xx | €xc)(y) as n— co.

While for the left hand side, first we put F_:= (>, Fg,. Then (2.8) gives
u(F,)=1. And if yeF, and ynK§ = ynK® for some N, then for all n > N,

Ex, () = ,Zol!“J exp (— U(x|ynK))mg, (dx) + &, p»
B'K"

where

tai= Y2000 1!“J exp (— Ulx|ynK9) my, ,(dx) <

B,
Z,‘";LHI!_IJ exp (— U(x[ynK))my,, ,(dx).
Bly
And if we take a sufficiently large L, the last term becomes smaller than ¢ for

a given ¢ > 0. Consequently for such an L,

ﬁnﬁﬂxn(v) <e+ Z,Zol!"f exp (— U(x|ynK))myg ,(dx) < & + Zx().

Bk
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So we have,
(2.14) fim 2y, (7) < Zx(y)

for p-a.e. y. It follows from (2.13) and easy calculations that

(2.15) Zx(1) " < Exp (tny | €xe) ()

for p-a.e. y. This and (2.12) show that (2.6) holds for all compact sets K. Now
the inequality (2.11) becomes,

K
(2.16) Exp (f1€k) (7) > Ek(y) ™" J exp (— Ux|ynK9)) f(x-ynK)m(dx)

for pu-a.e. y. By the way (2.16) becomes an equality for f = const, thus it is
actually an equality for any f > 0.

Let us take and fix an increasing sequence {K,} of compact sets such that
K,1 X, and consider the tail o-field €, := ;- n,}:‘ (€x). €, does not depend

on a particular choice of {K,}.

Theorem 2.1. Let p be a (U, m)-Gibbs measure and {y’,},.r, be a family of
conditional probability measure of u with respect to €,. Then u’, is (U, m)-
Gibbsian for p-a.e.y.

Proof. For Ae%, and Be ¥ we calculate u(AnB) in two ways. The first
one is,

n

wANB) = | ul(B)uldy),

JAa

and the other one is,

r

u(AnB) = u(dv)x,,(v)f exp (— U(x[yn K9))xp(x - yn K)m(dx),

J Nk

where K is taken from J#. These show that
K
(2.17) u‘Zo(B)=f u‘Zo(dv)J exp (— U(x[ynK9))xp(x - yn K)m(dx)
Nk

for u-a.e.d. Since A and & are countable, so the assertion directly follows
from Lemma 2.2.

Here we introduce a notion of ergodicity. A Gibbs measure u on (I'y, 4)
is said to be ergodic if and only if u(-)=1 or 0 on €,. As (['y,%) is a
standard space and 4, is an intersection of a decreasing sequence of countably
generated o-fields 7y (€x), so ul, is ergodic for almost all y by a well known

result (For example see theorem 2.3 in [2]) and the ergodic decomposition seems
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to be settled.

2.2. Ergodic measures as a base. However we will have a stronger result
that factor measures u’ (yel'y) do not depend on each yu. From now on we
take and fix a countable field %, generating € such that any finitely additive
finite measure on %, has a o-additive extension on €. The existence of such %,
is assured by the fact that (I'y, ¥) is standard. Now set

Q,:={y|Zg,(y) < o holds except finitely many n’s}

Ky
Q,:= {yeQ, [lim 5«,,(?)"j exp (= U(x]yn K5 xp(x -y N K;)m(dx)
exists for every Be %,}.

Then Q,, Q,€%, and for any (U, m)-Gibbs measure u, u(2,) =1 by virtue of
the martingale convergence theorem. And by the nice property of &%,, we can
define a probability measure w?(ye.Qz) on (I'y, ¥) as the extension of a finitely
additive measure:

K»
Be F, — lim Z, ()™ J exp (— Ulx|ynKi)xs(x -y K5ym(dy).
Let us make up a definition 0 as w? = for yeQ5, where { is some definite
(U, m)-Gibbs ergodic measure. Then
(2.18) wI(B) is a €-measurable function of ye Iy for each fixed Be¥.
Further by virtue of the martingale convergence theorem we have for any Gibbs

measure u,

(2.19) #(AnB) = f @) (B)pu(dy)

A

for all Ae¥, and Be%. Because (2.19) is first valid for Be %, and holds in
general by the extension property. It follows from (2.19) that

(2.20) ) = i,

for p-a.e. . Here we shall put

Q= {6erx|wfz(B>=J

K
w3 (dy) j exp (— U(x|ynK9))xp(x - yn K)m(dx)
Nk

for all Be %, and KeX'}.

Then Q2,€ %, and (2.20) gives u(Q,) = 1 for any Gibbs measure u. And it follows
from Lemma 2.2 that

(2.21) wy is (U, m)-Gibbsian for each 5€ ;.

Thus (2.19) derives that for e,
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(2.22) w3(ANB) = j w?(B)wj (dy)
4
for all Ae¥, and Be®¥. Finally we put
Q,:= {5€Q3|f {w9(B) — w3 (B)}?wi(dy) =0 for all Be%}.
rx

Then we have Q,€%, and for any (U, m)-Gibbs measure u,

J {09(B) — w3 (B)}? w3 (dy) u(dy) =j f {ul,(B) — 1% (B)}* 1%, (dy) u(dy) =
r I'x I'x JyI'x

Thus we have u(Q,)= Moreover it follows from (2.22) that w?(AnB)=
) (A)w?(B) for each 66!24, which implies w?(4) = 1 or 0 for all Ae%,. Thus

(2.23) ) is ergodic for each 5€Q,.
Define w; = ), if 6€Q, and w; = {, otherwise. Then we have,

Theorem 2.2. As for a convex set formed by all (U, m)-Gibbs measures, there
exists a family of probability measures {w,},.r, on (I'y, 6) such that
(@) o, is a (U, m)-Gibbs ergodic measure for each yely,
(b) w,(B) is a €,-measurable function of yely for each fixed BeE¥ and
(¢) for any (U, m)-Gibbs measure u

u(AnB) =J w,(B)u(dy) for all Ae€, and Be%.
A

Corollary. For any (U, m)-Gibbs measures p and v,
(@ pu=vifandonly if u=v on €,.
b)) vSpuifandonly if vSu on €.
(¢) If n and v are ergodic, then p=v or u | v.

Let us take and fix an above family {w,},., and consider a minimal o-field
% ., With which all the functions, y - w,(B) (Be %) are measurable. Since €, ,
is countably generated, so there exists a map h: Iy —> R such that ¥, ,=
h~'(B(R)). As before it is easily checked that

(2.24) w, = w, if and only if h(y) = h(y).
Further we claim that
(2.25) hw, = 6y,

for all yel'y, where J; is the Dirac measure at seR. For, put S:={yely]|
hw, = d,.,)}. Then we have Se¥, , and for any Gibbs measure p,

p(h™ " (EnF)) = J

h=1(F)

w,(h™ " (E))u(dy) = J xe(h(n))p(dy)
h=(F)
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for all E, Fe®B(R). Since both the integrants are €, ,-measurable, so it follows
that w,(h™'(E)) = xg(h(y)) for p-a.e. y, and thus u(S)=1. Especially we have,

(2.26) w,(S) = 1

for all yeI'y. Now for any fixed ye 'y let us take oe{6|w; = w,}nS. Notice
that the last set is not empty because we have w; = w, for w,-a.e.d by virtue
of the ergodicity of w,. Then,

w,(h™ ' (E)) = w,(h™ " (E)) = xg(h(0)) = xp(h(¥)).
We settle these arguments as the following theorem.

Theorem 2.3. Under the notation in Theorem 2.2, let €, , be the minimal
o-field with which all the functions, y — w,(B) (Be %) are measurable. Then there
exists a map h: I'y > R such that €, =h"'(B(R)) and we have
(@) o,=w, if and only if h(y) = h(y), and
(b) hw, = b, for all yelk.

Remark 2.1. As for the uniqueness of such a family {w,},.,, it is desirable
to state it without exceptional set instead of with exceptional set of measure
0. The following is an answer for this question. Namely, in order that such
families {w,},.r, and {w;},., coincide, it is necessary and sufficient that the
o-fields generated by them are the same one, ie., €, , =€y -

. ,(-)A(dy) is a bijection from a space of

all probability measures on (I'y, € ,.,,) to the space of all (U, m)-Gibbs measures.

Theorem 24. A4 map: l(-)—af w

The proof is obvious from what we have stated.
We conclude this paragraph with the following theorem.

Theorem 2.5. As for the convex set formed by all (U, m)-Gibbs measures,
there exist a map h: I'y > R and a family of probability measures {B.}.chiry, o0
(I, 6) such that
(@) h is a measurable map from (I'y, €,) to (R, B(R)),

(b) B, is a (U, m)-Gibbs ergodic measure for each teh(ly),

(¢) PB.(B) is a h(I'y)nB(R)-measurable function of teh(l'y) for each fixed Be¥,
and hence it is universally measurable,

d) B.(h '(x)) =1 for all teh(Iy), especially B.(teh(ly)) are mutually singular,
and

(e) for any (U, m)-Gibbs measure p,

w(Bnh™Y(E)) =J B.(B)hu(dt) for all Be€ and EcB(R).
E

Proof. Let us put f, = w,, if T =Ah(y). Then the well-definedness and (d)
come from Theorem 2.3. Next we shall show (c). Notice that for each fixed
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aeR, there exists some E, e B(R) such that {ye I'y|w,(B) <a} = h™'(E,). Hence
{teh(I')| B.(B) < a} = hiye Iyl w,(B) < a} = E,nh(I'y).

Since an image of a Borel set in a standard space by a Borel map is an analytic
set, so h(I'y) is universally measurable. The rest of the proof easily follows from
Theorem 2.2.

We remark that f.(teh(ly)) runs all over the set of all (U, m)-Gibbs ergodic
measures.

2.3. Specific Gibbs measures. First we shall characterize Gibbs measures
with total mass on By.

Theorem 2.6. If a (U, m)-Gibbs measure u on (I'y, €) have total mass on
By, then it follows that

X
(a) SI=J exp (— U(x|¢))m(dx) < oo,
and the explicit form of u is given by
X
(b) j f)udy) = S“J exp (— U(x| ¢))f(x)m(dx) for all non negative bounded
I'x

measurable function f.
Conversely if (a) holds, then a measure p given by (b) is (U, m)-Gibbsian with total
mass on By.

Proof. As is easily seen, By is an atom of €, so the measure u with total
mass on By must be ergodic. It follows from the martingale convergence theorem
that

Kn

exp (— U(x[ynK3) f(x-ynKy)m(dx)

(2.27) J f(®)p(dd) = lim X
e f exp (— Ulx|ynKS))m(dx)

for p-a.e. y. However ye By implies ynKj = ¢ for sufficiently large n, so (2.27)
is actually,

K,

J “exp (— U(x| #)f (x)m(dx)

(2.28) ff(v)u(du)ﬂi;n s
B J exp (— Ul(x| ¢))m(dx)

By the assumption we have u(By,,) >0 for some k and [, where By, =
{yeB%|y = K,}. Let us put the indicator function of By,, for f. Then the
numerator under the limit sign in (2.28) becomes

k't J jexp(— U({x{,,x;} | $))m'(dx)
K
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for all n > 1 which is independent of n. So we have
K»
limf exp (— U(x|¢))m(dx) = § < oo,

and (b) follows directly from (2.28).

Conversely, we claim that (2.5) holds for u defined by (b) under the assumption
(@). For it we have only to check it for functions f(y)xgy (y) (n =0, 1,---). It is
obvious for n =0, so let n > 0. Then,

K
f u(dv)f exp (— U(x|7)f(x - y)xpy (x - y)m(dx)
Nk

=Z:’=OJ u(dy)(n—l)!“f--- fexp(— U({xy,%,_,}

{y|lynK|=0,|ynKe|=1} xeKn 1!

[PNK)) - f({x15 5 X1y Uy N K))m" ™ (dx)

=5 g o0 [ [ e -Ulxi s
xekn-1 ye(Ke)!

exp (= U({yr, v IS ({xy, o Xumpy i v )m~Hdx)m' (dy)

=S_1n!_lz;l=0nclj‘”' J\J‘. Jexp(_ U({x“...’x"_l’yl"..’yl}ld))).
xeKkn -1 ye(Ke)!
f({xlr”"xn—l’ yl»'”ayl})m”_l(dx)ml(d)))

= S_ln!_lf“' jeXp(_ U({zl,---,z,,}|¢))f({zl,~-,z,,})m"(dz)
X"

= J SO xpy Muldy).

Theorem 2.7. If the potential U is constant, say U(x|y) = — log a, then the
convex set of all (U, m)-Gibbs measures consists of only a Poisson measure P,,
with intesity am. (P,, is of course ergodic by virtue of 0-1 law.)

Proof. Let u be any (U, m)-Gibbs measure. Then for each compact set K
we have,

K
”K#(B)=j ﬂ(dy)f exp (— U(x1y)) xp(x)m(dx)
Nk

= u(NQ) X2 on! ™ a"my (BN BY)

for all Be€x. So by virtue of Obata’s result [1], there exists a Borel probability

measure 4 on [0, o0) such that u =J P, A(dc) in the case m(X) = oo, or u is
0
a convex combination of my ,/m(X)" in the case m(X) < oo. First we shall

consider the infinite case. So let us take a set EeB(R) and a function
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1

lim_ n h’n(KH-l\Kl)l

=1 , if the limit exists.
h m(K;, 1\ K)

(2.29) p(y) =
0 , otherwise.

And we calculate J xe(p(y))u(dy) in two ways, noting that p(y) = ¢ for P,,-a.e.

r
y. the first one is,

I xe(p(y)) u(dy) = j xe(P()) Poy(dy) Aldc) = A(E),
I'x

I'x

and the other one is,

=) K
f xelp(y)) u(dy) = J A(dc) J P,.(dy) J a=lyg(p(x - yn K))m(dx)
I'x 0 Nk

= exp (am(K))j exp (— cm (K))A(dc).

E

These show that ¢ = a for A-a.e.c and hence u = P,,. Next we shall consider
the finite case. So there exists a non negative sequence {c,} with Y * ¢, =1
such that

(2.30) =3 cm(X) "my .
Then for each compact set K,

¢y = u(BY) = J

K
p(dy) f a'* g gy (x -y 0 K)m(dx)
Nk

K
= Z:io c,m(X)_'J' mX,l(dy)f a|£|XB',"()_C -y N K)m(dx).
Nk

So we have,
(2.31) =1 o{n=DmX)} 'a" ' m(K)'"'m(KY ¢,.
It follows from the mathematical induction for n that
¢, =n!"'a"m(X)cy, and ¢, = exp(— am(X)),
which follows from the normalizing condition. Thus we have
p=exp(—am(X)Y > n!"ta"my , = P,,.

Corollary. Let U be a potential defined by U(x|y) = — log p(y), where p is
a function defined by (2.29). If a Borel Radon measure m on X is infinite, then
the extremal points of the convex set of all (U, m)-Gibbs measures consists of
{Pem}ccto0.0)-  That is, for any (U, m)-Gibbs measure p,
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w(Bnp~ Y(E)) =f P..(B)pu(dc) for all Be€ and Ee B([0, 0)).
E
Proof. Let {® }.r, be as in Theorem 2.2. Then the % ,-measurabilty of p
implies that for each fixed yeI'y, there exists a constant a(y) such that

(2.32) p(o) = a(y)
for w,-a.e. 6. Thus by the above theorem we have
(2.33) 0, = Pyym
for all ye I'y. Especially for each compact set K,
@,(Ng) = Pypym(Ny) = exp (— a(y)m(K)).

It follows that a(y) is also a %,-measurable function of y, and therefore (2.32)
implies that for any (U, m)-Gibbs measure g,

(2.34) p() = a(y)

for p-a.e. y. Thus we have,

Pp(y)m(B)H‘(dy) = J‘ le(B)P,u(dC)

E

w,(B)u(dy) = J

p~UE)

M(Bﬂp“‘(E))=J

o~ Y(E)
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