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O. Introduction and result

A  differential operator P  is said to be hypoelliptic, if for any  C "  function
f  in  some open  se t U  a ll solutions u t o  Pu = f  belong to  C ( U ) .  Also P  is
said to be analytic hypoelliptic, if  fe  C I U )  implies u E C w (U ). L e t  Q  b e  an
open set in  R" and X 1 ,..., X r be  real vector fields with analytic coefficients. It
is well known that, if X and their commutators [X i „
[X i k _„ X ] . . . ] g e n e r a t e  the tangent space Tx R" for all x E Q then the operator

P  =  E
i =

is hypoelliptic in  Q  (L. H6rmander [7]).
N ote that such a n  assumption a s  above is not sufficient for analytic hypo-

ellipticity (cf . F. Treves [12], D. S. Tartakoff [11] and A. Grigis-J. Sj6strand [4]).
Indeed, there are some negative results. Some hypoelliptic operators of type (1)
w ere show n to be not analytic  hypoelliptic . Such operators can be seen, for
example, in the following papers: M. S. Baouendi- C. Goulaouic [1], G. Métivier
[8 ], B. Helffer [6], Pham The Lai-D. Robert [9], N. Manges -A. A. Himonas [5]
and  M . C hris t [2 ]. T he  purpose of the present paper is to give new examples
of hypoelliptic operators which fail to be analytic hypoelliptic.

Here, we consider the  operator

0 2 4_ ( xk a x i  a

13x 2a y at )
in  R3 . If the non negative integers k,1 satisfy k <1,
can be applied, hence the  operator P  is hypoelliptic
result of the present paper is following

Theorem. The operator P  in (2) is not analy tic
following assumptions is satisfied:
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(1)

(2)

then H6rmander's theorem
W ith this hypothesis the

hypoelhptic, if  either of  the



am F (0, 0, 0)
k -F I

=  f ( 0 )  f  Tr. e -  ' 1 ' 1  d r
0Or"

570 Toshihiko Hoshiro

1 + 1
1 k
 i s  n o t  a  positive integer.

—  

1 1
(ii) The both 1 — k and 

 +  
are odd integers.

1 — k

The operator P  in  (2) with k = 0 was considered by M. Christ [2 ] (see also
N. Hanges-A. A. Himonas [5]). He proved that such operators are not analytic
hypoelliptic except the case 1 = 1 (see the assumption (i) in T heorem ). Our proof
of Theorem is based o n  his method, so Theorem is an extension of his result.

The present paper is organized as follows: First, we shall explain the outline
o f a  proof of Theorem in Section 1. A  lemma, which is essential to a  proof of
our Theorem, will be proven in Section 2. Section 3 will be devoted to a  proof
of Proposition 2 which is also necessary fo r  a  proof of the lemma.

I. O u tlin e  o f Proof

Theorem will be proved, if we construct a  n o n  real analytic solution u to
P u  0. T o  do so, for E  C, set

(3 )
d

2

= + (xk C — x 1)2 .
dx 2

The argument as in the following lemma is standard (cf. [1], [2], [5] and [8]).

Lemma 1. I f  there ex ist Ce C  and fE L (R )  not identically  equal to zero
satisfying .13 f  0, then the operator P  in (2) is not analy tic hypoelliptic.

P ro o f .  Let F  be defined by

F(x, y , t) = so
k k 1

t t  -F  tt i o, j ' ( , 7 1  +1 x ) d

Since the function f  is  of class L"(R ), the  above integral converges in a region
I I  E  fo r  som e e > 0. A ls o  it  is  e a s y  to  s e e  th a t  P F  0, since  w e have
Pd . 0 .  O n  th e  o th e r  h an d , o n e  c a n  show  th a t  F  is  no t rea l ana ly tic  a t
(x, y, z) = (0, 0, 0). In fact, observe that

(0)I •

1 + 1
 F

(1+ 1 
 ( m  +  1 ) ) .=

k  +  1 k  +  1

The last relation obviously yields that, if f(0) 0 ,  then there  is no constant C
Om F 1 + 1

su c h  th a t   (0, 0, 0) C 'm ! ,  because -  >  1. In  case f (0) = 0, f  0
a t ' k + 1



1+1
 F

( 1 1+1
 ( m  +  1 )  +=  If OH

k  +  1 k  +  1  

) .
k  +1 )

0 ' 1 F
Otmax 

(0, 0, 0)
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and the uniqueness of the solution imply that [ (0) 0  0 .  In  this case, we have

Thus F  is not real analytic also in  this case.

By virtue of Lemma I, it suffices to show the existence of C e C and f E L'(R)
as in  Lemma 1 from one of the hypotheses in  ou r T heorem . T o  show this, we
use M. Christ's procedure.

The next result is well known in much greater generality (cf  E. A. Coddington-
N. Levinson [3] o r  Y. Sibuya [10]).

Proposition 1. F o r each E C ,  th e re  e x is t  unique solutions 4 + f to
PJC F 0 ,  13 4 -  0 ,  respectively, having the following asymptotic behaviors:

(i) 4+ (x )  =  x  / e — k (x ) (1 + 0(1x1 - 1 )) a s  x

(ii) (x )= x e( - 1 ) 1 Ç'ç( x) (1 + 0(ix1 - 1 )) a s  x—> —co,

x
1

x
k + 1

w here (/) (x) —   . M oreover, f o r  each  x E 12, these functions are
1 + 1 k  +1

holomorphic w ith respect to  C E C  and also real v alued for Ce R.

Y. Sibuya called 4 +  (resp . 4 - )  a  subdominant solution on positive (resp.
negative) real ax is in  h is book  [ 1 0 ] .  F o r  our purpose, it suffices to show the
existence of C E C where 4 +  a n d  f c  are  linearly dependent. Because, for such
CEC, t h e  both subdom inant solutions decay exponentially a s  x ±  co, hence
rem ain bounded. Next consider the  wronskian

W(0 = f  (x) (fc- )' (x) - ( J Y (x)4 -  (x).

Then it is also obvious that the existence of C e C mentioned above is equivalent
to  tha t of C e C w ith  W(C) = 0.

T he  following lem m a is essential to th e  proof o f  our Theorem . It g ives
some information concerning zeros o f  W(C).

1+ 1
Lemma 2. T he Wronskian W (4) is an entire function o f  order . More

1 kprecisely , there exist positive constants C  and e such that —

1+1 

(i) WIC/1 C exP (C11 1 - 9, f o r all (E C ,
1+ 1

(ii) W ( ) 1 exp f o r all 12+  .

Moreover, i f  1— k is an  odd integer, then the inequality (ii) holds f o r a l l  e R.

A  proof o f  Lemma 2  will be given in  th e  next sec tion . Taking Lemma 2
for granted, le t u s prove our Theorem.
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/ + 1
First we consider the case (i), i.e ., the case in which  is  n o t  a positive

1 — k
in teg e r. Suppose th a t  W(C) 0 0 for arbitrary C e C .  Then, the function

w(C) = log W(C) = lo g  W(C)1 + i arg W(C)

is defined a s  an  entire function with respect to C. B y  L e m m a  2, it satisfies
1-1-1

Re w ( ) (  log C + C  1"  , C e C.

/
Hence, w()  m u s t  b e  a polynom ial of at m ost degree 

[ +  1 
] .  O n  t h e  o t h e r

—hand, it follows also from Lemma 2 that / k

L-F 1
IRe w (CH > log r, + EICI I - k

 , C e R + .

/ + 1[  / + 1 1 . 1 + 1
However, n o te  th a t , if 0 N then is  sm a lle r  th a n  . This

1— k 1— k 1— k
contradicts to Lemma 2, so  the function W(C) has zeros.

A n  argum ent o f a  proof in  the  case  (ii) i s  sim ila r . T h e  above argument
gives that, if  W(C) 0 0 for any  C e C, then  W(C) = ei ' ( °  w ith polynomial p(c) of

1+1 . .
degree N = (which is a positive odd integer in  th is  c a se ) . Put

/ — k

P ( ) =  ANCN  ±  A N - 1 CN •  +

Since W(C) is real valued for C e R, all A i  a r e  real. L et us now  observe that

W(C)1 e exp (el(I N ), Celt. +

implies A N  > O. O n  the  other hand,

W(C)1 > e exp (E E R_

a n d  th e  hypothesis that N  is  a n  odd integer im ply A N  < O. T h u s , th e r e  is  a
contradiction, therefore W(C) has ze ro s. This completes the  proof.

2. The estimates of the wronskian

In  this section, we show the estimates of the wronskian in  Lemma 2 .  First
w e  g iv e  a  p roposition , w h ic h  is  re la te d  to  P roposition  1 in  t h e  preceding
sec tion . F rom  the proposition below , w e can  get an inform ation concerning
dependence of 4 ±  (x) o n  C c C . Its proof w ill be g iven in  the  next section.

Proposition 2. Put A  = C 0 ( 1  + ! M " .  If  w e tak e  the positive constant C o

sufficiently large, then the following inequalities hold with a constant C (independent
o f  0  satisfying 0 < C <1.

(i) lf,+(x)—  x  2 e - 00-01 <  C x
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(4)'(x) + I xl 2 e- g x ) 1 < C lx12 1e- " ( x ) 1,
f o r  x > A.

(ii) 1.fC (x )-1 x 1  l e( - 1 ) 1 " n  < C le(-1)'"(x)1,

I (4 - )'(x) — I < C Ix 12 e.( - 1 )̀ "dx)1,
f o r  x < —  A.

Let us start the proof of Lemma 2. Suppose C e R . Then 4 + (x) and 4 -  (x)
a r e  rea l v a lu ed . M o reo v e r, it  fo llo w s fro m  Proposition 2  th a t  4 + (x) > 0,
(4 + )' (x) < 0 for x >  A  and 4 -  (x) > 0, (4 - )'(x) > 0  for x < — A .  N ote tha t the
equa tion  ( fc+)"(x) = (x  x 1)2

.fc
+ (x )  forces 4 + (x)(4)" (x) 0  f o r  all x E R.

Furtherm ore, observe  th a t  f c+(x)(4 + )"(x) 0  a n d  t h e  boundary  condition
4+ (A) > 0, (4 + )' (A) < 0  imply 4 + (x) > 0, (4 + )'(x) < 0 for x  A .  Thus one can
se e  th a t 4 + (x) > 0, (4 +)' (x) < 0  fo r  a l l  x e R, a n d  sim ila rly  tha t 4 - (x) > 0,
(4 - )'(x) > 0  for a ll x e R.

W e  a r e  go ing  to  e stim a te  a  low er bound  o n  t h e  wronskian W(C) for
e R . F irs tly , the  preceding observation yields that

W( )  = 4 + (0 )(4 - )( 0 ) -  (.fC)( 0 )4 -  (0 )
4+(tJ)(4 - r (0).

So our remaining task is to estimate f c+ (0) and W HO) from below.
Set

{ gc(x) = EA - ft
u(x ) =f(x ) —  Ox).

_
Notice that Proposition 2 implies 4 + (A )> A  2  e — k (A ) a n d  —(4 + )'(A)...5A 2 e - # (A )

for some positive constant 6. Hence, if we take E  > 0  sufficiently small, it holds
that u(A) > 0  and  u'(A) < O.

Observe next

(4) p Ixk — 1 (i x l — k k o }

whence Pc0 x )  > 0  for x > Thus it holds that

dx2 =
+ (x k C — x1)2 u

=  pc gc ( x k x1)2 u

> (X k
■ 2

— x' ) 2 u,U, f o r  1(1t-k < x  <  A .

d 2 u

Therefore, u(x) satisfies u"(x) >  0  for1 k  < x  <  A  a n d  u(A ) > 0, u' (A ) <O,
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whence u(x) > 0 and u'(x) <O  f o r  ICI"  < x < A .  A s a  consequence, by setting
1 + 1 1-k

,  the  following inequalities are  valid for C > 0:
k + 1

4 + (x) g (x )

1  

=
1 - k  

_VC =

 

I ) 1 + 1 

= A  2  exp f( 10 - k } ,k + 1 1 + 1

(4 + ) (Yd g(.1)
(1  +  l y 1" ) 1 — kI 1.

= e •   .10-k . A  2 .

k + 1 ) k + 1

Observe tha t the  uniqueness of f c+, f c  implies

(x) = { f  +,5( x )
, 1  — k = odd,

4  ( — x) , I — k = even.

M oreover, the  a rgum en t a t  t h e  begining o f  t h e  present section gives that
4 +  (0) ( x , )  a n d  — (4+ )'(0) —  ( f  y ( )  T h u s ,  if  1 — k is  a n  even integer
and  C > 0, it holds that

W( ) —  4+ (0) (4+Y(0)

— (xc) (A+ Myc)
> — g (x) g (y )

• C exp
11  )  1+1 

k + 1 1 + 1

1 1
where C is a positive constant independent of C. S ince  w e  have    > 0,

k + 1 1 + 1
we have established the estimate (ii) of Lemma 2 in case 1 — k is an even integer.

N ext le t u s  consider the  case  in  which 1 — k is  a n  o d d  in teg e r. I f  C > 0,
the  re la tion  (4) im p lie s  th a t P_ cg_ c(x) > 0  f o r  1 x  A .  H ence th e  above
argument also gives

(f 
) ' (1) > g ,  c(l )

= eA - /(1 +

Thus if / — k is a n  odd integer and C > 0, we have

1,174 + (0) (4— )' (0)
= — 4+ (0)(f _+4)' (0)
• — 4+ (x)(f _+)' (1)
> — g c(xc) (g _cr (1)
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= E2 A - 1 11 + O e - k(x0 - 15-01) .

( 1 1 0-1

+ 1 1+ 1 )
C l - k  (

1 + 1
+  

k +  1 )'

1 1 / 1
where     >  0  and  +  >  1 .  So, the estimate (ii) of Lemma 2 holds

k + 1 1 + 11 — k
also in the case 1— k is  odd  a n d  > O.

T he case  in  which 1 — k  is  a n  odd integer and ç  < O  c a n  b e  tre a te d  in  a
similar w a y . Indeed, in  this case, it holds that

W(C) — ( A-F ) (

0 )4- (J)
=  —  1.fc+ 1' (0 ) f -+c(0 )
>  —  g(l)g

=  E
2 A -1 0 oe- _ c(x _ 0 0 1 )

Hence, observing

— 0-c(x-d (/)c( 1) =  ( k +
1

1 ) 1+1(
1(11 - k

1+ 1 1+ 1 k + 1)'

one can see that the estimate (ii) in  Lemma 2  holds in  this c a se . T h is  finishes
the proof of the lower bound.

Now we turn to estimate an  upper bound o n  W( ) for a rb itra ry  e C .  First
notice tha t Proposition 2  yields

(5) { (A) I CA e ,

 

612

4 + (x)
dx 2

I -  x 1 12  14 + (x)I

for 0 < x < A, whence

 

21
c I k I (x) I,

d 21 

d x
{V - k ifc + 14 2  + 1(4 4 )'14 2 1

1 21 
C k 110  k IA+  (X)12 1 ( Y (X)12 }

for 0 < x < A .  Furthermore, by Gronwall's inequality, it follows

1(4 ± )'(A)I CAlle - k ( A ) 1,

where C is a positive constant independent of CE C .  O n the other hand, observe
that
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21
(6) ICIL- k 14+0)1 2 + I(4+ ) (0)12

2 /  
< C IIC I I — k 14 ± (A)1 2 1 (4 ± ) (A )1 2 } e C iC il-k A .

A s a  consequence of (5) and (6), one can see that, for large ICI,
_ I 1 , 1

14+ ( ) )1 211 -10 eC K II-k

1+, 

R fy (o )l<  cic1 2(1_0ecio-k .

Since the  above argument can  a lso  be  app lied  to  the  estimates for f c
-  (0) and

(fC)'(0), we finally see that the  wronskian have the upper bound
1+1

1W(C)1 <_ C exp (C  CI 1 -

This completes the proof of Lemma 2.

3. Proof of Proposition 2
_

Proposition 2 asserts that, in some sense, I x l  2 e - °' (x) approximates to 44- (x)
in  th e  region x > A , a n d  I x l  2 e( - 1 " 0 x) approxim ates to  f ( x )  in  th e  region
x < — A .  In  th e  present section, w e show th is for .f4.+ (x), since the  proof for

(x) will be completely parallel.

Set A  = C 0 (1 +) I - k,

(7) G(x) = 
(/;.' (x)

and

(8) w(x) = G(x) (x).

Here, we abbreviate Oc(x) as 0 ( x ) .  It will be shown that, if we take C o sufficiently
large, then we have

(9)
w(x)I sup C , <  09

,c AIX1 - 1 - 1 1G(X)1

with a positive constant C , independent of e C .  O b s e rv e  now that, by taking
Co sufficiently large, the inequality

_ / 12X <  C 2 X  2 fo r  x > A

   

holds w ith a constant C 2  satisfying 0 <  C 2  G  1. Hence, from (7), (8) and (9) one
can get
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14+  (x) — 2 e' (x) 1 < C lx1 2 l e '" x ) 1 fo r  x > A

with a constant C  satisfying 0 < C < 1.
Now, denote by uy = u(x) the solution in  the interval [A, y] of the initial

value problem :

Pu (x )  = l31 G(x), A  < x  < y,
tu(y) = uy(y) = O.

W e shall prove that the  inequality

(10) luy(x)1 Clx1 - 1 - 1 1G(x)1, A  < x  < y

holds with a constant C  independent of y  and  C. A lso  w e sha ll p rove  tha t, for
Yi' y 2  satisfying A x Yi < y 2 , the inequality

(11) (x) — uy 2 (x)f C  y IG(x)I

holds with a constant C independent of Y i '  y 2  a n d  C. This granted, uy converges
uniformly on  arbitrary compact set of [A, co) as y tends to  oo . It is also clear
that the limit function w(x) satisfies P4 w  .I3 G and

w(x)I C lx1 - ' 1 IG(x)i fo r  A  <x < oo .

Thus, one can see that the  function G(x) — w(x) is  a  solution to  ./3 4 (G — w) 0
having th e  same asymptotic behavior as 4 +  (x). Hence, we have 4 +  G  — w
and w satisfies (9).

Now le t us prove (10). Set

tfr = log G = — 4)(x) — 
1
-  log 4)' (x)
2

and

d d
D = + 5 +

dx dx

Then, we have

D  D

-  

=  
d 2

d x 2  
+ (0 2 + 0"

= 1=1 + E ,

where

E 1  ( 4 ) ) 1 ( °2  4 ) 4  4 )

Notice tha t the inequality

1E(.01 C 1-3C1 x  > A
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h o ld s  w ith  a  c o n s ta n t  C  independent o f  C. A l s o  observe  t h a t  1 'W (x )

\ ./d)'(x)
"(x), whence

G(x)1 Clxl -
 2  1G (x)I, x  > A

holds with a  constant C  independent of C.
W ith y  fixed and  abbreviating uy  a s  u, put

uB  =  s u p  1 x / 1 <  co.
A .)c y 1X1- 1 - 1  1G(X)1

We shall show that B  has a  bound independent of y  and C. Put y = ./3u. Then,
we have

d
 e'f r v  = Dv = D
dx

=  P  +  Eu = P G  + Eu.

Since we have v(y) = 0, one has for A < s < y

= f  se' fr (s) v(s) e'fr(')[13 G(t) + (Eu)(t)] dt,
Y

whence we have

100 f
Y

 le " ) I[Clt1 - 2 1G(t)I + Clt1- 2 10)1] dt

Y _1 -1-2
< CIS12 1e4" 1 21e-°(t)1[1t1 2 + 16 - 2 1/40] dt

I ±  CIS12

Y -1-2
e le°(s)1 2 le u(t)I dt< C si2 to(s) . s - 21—  2 e  —  20(s)

—al 2
(12) =  C I S I

—  2
2l e - °(s)( + C I s12 le(s)1 2 u(t)1 dt.

Furtherm ore, from  th e  equalities, y =
d

e'fr u  it fo llo w s  th a t , for
A  < x < y, we have dx

J114 4  <  le° ( x ) 1 y le- `11(s) v(s)1 ds

- (x)195(x)1 Y  1s 1-1-2d s

x
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Y Y -1-2C1x1 2 1 e - # ( x ) I Isl̀ le2°(s)1 1t1 21  e u(t)Idtds
t = s

Y

< C1X1 - I - 1 1G(X)1 C1G(X)1 1t1 2  ' . 1e 11(t)1 1s111e"(s)1dsdtJ[

C1X1 - 1 - 1 1G(X)1 C1G(X)1 1t1 2 le -'5 (1 )101 • le 2 4 4 t ) 1dt
Y

C I xl - I -  G (x ) I + C G(x ) f t r  2 1 -  3 13 dt
J X

Clx1 - 1 - 1 1G(x)1[1 + Blx1 - 1 - 1 ].

Take the positive constant Co la rg e  enough such that C I x1 - 1 - 1  <  holds for
x  Co . Then, from the last inequality, we obtain B  < 2 C . All constants denoted
by C  are independent of y  and so  the inequality (10) is established.

W e turn to show (11) for A x y 2 .  By the above argument, already
we have

u„(y 1 ) IG(Y1)1-

Also it follows from (12) that, for A  s  < y 2 ,  we have

-11-2 Y2

u 2 (s) C ls1  2 l e - °(x)1 C1S121e°(s)1 j t1 2 l e — " I ) u
Y 2
(01 dt

Y2

▪ CIS1 - 1 - 2 1G(S) CIS121e(S)1 t 2 d t

▪ C1S1 - 1 - 2 1G(S)1 C1S1 2 le - '6 (x )1

C 1S1- 1 - 2  10)1.

Set w, = u y i  — uy 2  a n d  y  =  B w „ . Recall that u 1 (y1 )  =  u (y 1 ) = 0. Thus by the
above observation, we have

4 - 1- 3

I "11(01 C IY1 1G(Y1)1 C 13'11 2 le -(6 (Y ')1

and

- -
1101)1 CIY11-1- 2 1G(Y1)1 CIY111/2 le - ° Y 1 ) 1 .

L et us estimate w 1 (x) for A  x <  y Since we have

et) = Dv = D o  13w
ds

= Pw 1 + Ew  , = Ew
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it holds that for A  < s < y ,

f y i
le * (s ) V (S )I <le° V(Y1)1 + le1W (EV V 1)(t)Idt

s

<  C l y i l -21-2 1e -2401) 1 -  -

2-2 1W1(01 dt.

d
Moreover, since we have — e w1 = y , the argument to get (10) also gives

dx
that, for A  < x  < y  ,, we have

I e - 4 (x)w 1(x)1 <  el/6 ' 1 ) w i(Y1)1 + le-41(s)v(s)Ids

< C lyi I - 1 - 1  

+  c lyi I -21-2 le - zgyo l . le 2Ø(yo l

+  f
Yi t

Itl 21e-°(`)14' 1(01 le -  2 `"s) Idsdt
x

-1  -2
C 1 1 - 1 - 1  +  C Itl 201 In

le-q5(i)V121(t)1• 1 e 2 Ø ( t ) 1 dt.
x

Setting now

iwi(x)1=  sup < co,
1G(X)1

we consequently obtain that

Yi
B, < CIY 11 - 1 - 1  + C 16-1-2 dt

< C y 1 +B 1 C x L
B,

< CI.Y 11-1-1 2

Thus, the  inequality B , < 2Cly ,1 - 1 - 1  holds, so (11) is established.
Finally we give a  proof of the inequality :

(13) 1(4 ) ' ( x )  +  x e ' ( x ) I <  C x
 e x > , f o r  x  >  A,

with a constant C  satisfying 0 < C <  1 . F ir s t  observe that

(4 + )' = (G — w)' = G' + Dw —

Concerning th e  first te rm  o n  th e  righ t hand  side, by  tak ing  the constant Co

sufficiently large, the inequality
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G' (x) +1x 1 e - `1' (x) 1  <  C x Ie , x  >  A

holds with a  constant C  w ith 0 < C  < 1. A l s o  observe that

and

- -3 / —2
113 W(X)1 CI ,C1 2

I tlijx ) w(x)I I xl 1 le —‘b(x) 1,

x  > A

x > A .

They a re  consequences of (12) and (10) respectively, by taking th e  lim its as y
tends to co. Thus, com bining these inequalities, w e obtain (13). The proof of
Proposition 2 is now complete.
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