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0. Introduction and result

A differential operator P is said to be hypoelliptic, if for any C® function
f in some open set U all solutions u to Pu = f belong to C*(U). Also P is
said to be analytic hypoelliptic, if fe C*(U) implies ue C®(U). Let  be an
open set in R" and X ,..., X, be real vector fields with analytic coefficients. It
is well known that, if X,,..., X, and their commutators [X;, X;,1,....[X;, [X},....,

[X;._,» X;]1---1... generate the tangent space T,R" for all xe £ then the operator
(n P=Y Xx?

is hypoelliptic in (L. Hormander [7]).

Note that such an assumption as above is not sufficient for analytic hypo-
ellipticity (¢f. F. Treves [12], D. S. Tartakoff [11] and A. Grigis-J. Sjostrand [4]).
Indeed, there are some negative results. Some hypoelliptic operators of type (1)
were shown to be not analytic hypoelliptic. Such operators can be seen, for
example, in the following papers: M. S. Baouendi- C. Goulaouic [1], G. Métivier
[8], B. Helffer [6], Pham The Lai-D. Robert [9], N. Hanges-A. A. Himonas [5]
and M. Christ [2]. The purpose of the present paper is to give new examples
of hypoelliptic operators which fail to be analytic hypoelliptic.

Here, we consider the operator

2 2
2 P:a+<x"a—X'va~>

0x?

in R3. If the non negative integers k, [ satisfy k < I, then Hormander’s theorem
can be applied, hence the operator P is hypoelliptic. With this hypothesis the
result of the present paper is following

Theorem. The operator P in (2) is not analytic hypoelliptic, if either of the
Jfollowing assumptions is satisfied:
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I+1
I—k

is not a positive integer.

(1) The both | — k and ;+ : are odd integers.

The operator P in (2) with k =0 was considered by M. Christ [2] (see also
N. Hanges-A. A. Himonas [5]). He proved that such operators are not analytic
hypoelliptic except the case | = 1 (see the assumption (i) in Theorem). Our proof
of Theorem is based on his method, so Theorem is an extension of his result.

The present paper is organized as follows: First, we shall explain the outline
of a proof of Theorem in Section 1. A lemma, which is essential to a proof of
our Theorem, will be proven in Section 2. Section 3 will be devoted to a proof
of Proposition 2 which is also necessary for a proof of the lemma.

1. Outline of Proof
Theorem will be proved, if we construct a non real analytic solution u to
Pu=0. To do so, for {(eC, set
2

d
(3) PC = — dxz + (ka — xl)z.

The argument as in the following lemma is standard (cf. [1], [2], [5] and [8]).

Lemma 1. If there exist {eC and fe L*(R) not identically equal to zero
satisfying P, f =0, then the operator P in (2) is not analytic hypoelliptic.

Proof. Let F be defined by
RS
n&%o=Je“"“v'f(+

0

Since the function f is of class L*(R), the above integral converges in a region
|yl <¢ for some &¢>0. Also it is easy to see that PF =0, since we have
P,f=0. On the other hand, one can show that F is not real analytic at
(x, y,2)=1(0,0,0). In fact, observe that

k+1

w00ﬂ|ﬂwf e~ s

1 I+ 1
um15i—r(i(+n)

o"F

k+1 k+1

The last relation obviously yields that, if f(0) # 0, then there is no constant C
I+1
< C™*'m!, because E% >1. In case f(0)=0, f#0

m

F
such that (27(0, 0, 0)
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and the uniqueness of the solution imply that f'(0) # 0. In this case, we have

I+ 1 I+ 1 1
1O —m+ 1+ — ).
SO <k+l(m ) k+1>

am +1 F
ot"™ox

0,0, 0)

Thus F is not real analytic also in this case.

By virtue of Lemma 1, it suffices to show the existence of (e C and fe L*(R)
as in Lemma 1 from one of the hypotheses in our Theorem. To show this, we
use M. Christ’s procedure.

The next result is well known in much greater generality (¢f. E. A. Coddington-
N. Levinson [3] or Y. Sibuya [10]).

Proposition 1. For each (€C, there exist unique solutions f.*,f~ to
P f,* =0, P f,” =0, respectively, having the following asymptotic behaviors:

—L
(i) ) =1x] 2e7*9(1 + 0(Ix| ™) as x — oo,
L
(ii) S ) =1Ix] 27O 4+ O(1x|7Y) as x> —oo,
1+1 xk+l
where ¢C(x)=I ] _Ck+l Moreover, for each xeR, these functions are
+

holomorphic with respect to {€C and also real valued for {eR.

Y. Sibuya called f,* (resp. f,”) a subdominant solution on positive (resp.
negative) real axis in his book [10]. For our purpose, it suffices to show the
existence of {eC where f,* and f,” are linearly dependent. Because, for such
{eC, the both subdominant solutions decay exponentially as x — + oo, hence
remain bounded. Next consider the wronskian

W) = £ ) (f) () — (1) () 7 (%)

Then it is also obvious that the existence of { e C mentioned above is equivalent
to that of {eC with W({)=0.

The following lemma is essential to the proof of our Theorem. It gives
some information concerning zeros of W({).

Lemma 2. The Wronskian W({) is an entire function of order More

precisely, there exist positive constants C and ¢ such that

(i) WO < Cexp(CILITY.  for all LeC,
(i) WO = cexpelllih).  for all (eR,.

Moreover, if | —k is an odd integer, then the inequality (i) holds for all {eR.

A proof of Lemma 2 will be given in the next section. Taking Lemma 2
for granted, let us prove our Theorem.
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First we consider the case (i), i.e., the case in which is not a positive

integer. Suppose that W({) # 0 for arbitrary {eC. Then, the function
w({) = log W({) = log [W({)| + i arg W({)

is defined as an entire function with respect to {. By Lemma 2, it satisfies

+

IRew(?)| < log C + C[LIik,  teC.

. I+1
Hence, w({) must be a polynomial of at most degree [—i—]. On the other
hand, it follows also from Lemma 2 that I—k

1+

IRew({)| > loge +el{|”"%,  (eR,.

—_

=

I+1 [+ 1 I+ 1
However, note that, if l~+—k¢N then [Ii;jl is smaller than l+_k This

contradicts to Lemma 2, so the function W({) has zeros.
An argument of a proof in the case (ii) is similar. The above argument
gives that, if W({)# 0 for any (eC, then W({) = ¢"® with polynomial P({) of

I+ 1 . .
degree N = l_-tlg (which is a positive odd integer in this case). Put

P)=ANY + Ay IV 4+ A,
Since W({) is real valued for {eR, all 4; are real. Let us now observe that
(W)l =eexpelll"), (eR,
implies Ay > 0. On the other hand,
IW(O)| = eexp (elCI™),  (eR_

and the hypothesis that N is an odd integer imply Ay < 0. Thus, there is a
contradiction, therefore W({) has zeros. This completes the proof.

2. The estimates of the wronskian

In this section, we show the estimates of the wronskian in Lemma 2. First
we give a proposition, which is related to Proposition 1 in the preceding
section. From the proposition below, we can get an information concerning
dependence of f,*(x) on {eC. Its proof will be given in the next section.

e

Proposition 2. Put A = Cy(1 + |L|)~k. If we take the positive constant C,
sufficiently large, then the following inequalities hold with a constant C (independent
of {) satisfying 0 < C < 1.

~1 1
(1) |fc+(X)—|x| 2e M"’|$C|x| 2|e ¢;(x)|’
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L Il
(7)Y (x) + [x]2e™%) < Clx[2 e,

for x> A.
s _1
(if) | (x) — |x| Ze!"D'%W| < Clx| 2]el~ V'),

1 l
- 5 — 1 5 -t
(7Y (x) = [x[2el =195 < Cx[2 ]l =00,
for x < — A.

Let us start the proof of Lemma 2. Suppose {eR. Then f,*(x) and f;” (x)
are real valued. Moreover, it follows from Proposition 2 that f,*(x) >0,
(f"Y(x) <0 for x> A4 cmdfc x) >0, (f;)(x) >0 for x < — A. Note that the
equation (f;)"(x) = (x* 2fC (x) forces fc (X)(f,)'(x)>0 for all xeR.
Furthermore, observe that fF) () (x) >0 and the boundary condition
fH(A4) >0, (fc )(A) <0 imply f,*(x) >0, (f;*)(x) <0 for x < A. Thus one can
see that f,*(x)>0, (f;")(x) <O for all xeR, and similarly that fo(x) >0,
(f;Y(x)>0 for all xeR.

We are going to estimate a lower bound on the wronskian W({) for
{eR. Firstly, the preceding observation yields that

=) ) (Y0 £ (0)
= O

So our remaining task is to estimate fg+ (0) and (f;7)'(0) from below.
Set

{gc(x) =¢A _%e"”“’"
u(x) = fr(x) — g¢(x).

Notice that Proposition 2 implies f;"(A)Z(SA—%e_““" and —(f;*)’(A)ZéA%e_"‘("
for some positive constant 6. Hence, if we take ¢ > 0 sufficiently small, it holds
that u(4) > 0 and u'(4) < 0.

Observe next

4) Pg, = {(xX*"1(Ix'""* = k0)} 9.

1
whence P,g,(x) > 0 for x > |{|'~%. Thus it holds that
t9¢

2
% = — P+ (x*¢ — x")*u
= Pg. + (x*¢ — x)?u
1
> (x*¢ — x)?u, for |{I"*¥<x < A.

1
-k

Therefore, u(x) satisfies u”’(x)>0 for [{|I"*<x <A and u(4) >0, u'(4) <0,
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1
whence u(x) >0 and u'(x )< 0 for |{|'"* < x < A. As a consequence, by setting

1 l+ 1
x = {1k, y =

, the following inequalities are valid for { > O:

fg+ () = gr(x)

—sA_%ex {( : ! >|¢|"+Tl}
P k+1 141 ’

— (Y W) = —giy)

1 \Kt=k N
=6'(1+ > okt 4ok
k+1

Observe that the uniqueness of f,*, f;” implies

(- 1 — k = odd,
fg()_{f (=) od

fi" (= x) I —k =even.

Moreover, the argument at the begining of the present section gives that
50 = f"(x) and — (Y0 > = (f")(y). Thus, if | —k is an even integer
and { > 0, it holds that

W) = — 7 0)(f*)(0)
> — f () () ()

1
— >0,
k+1 [+1

we have established the estimate (ii) of Lemma 2 in case [ — k is an even integer.

Next let us consider the case in which | — k is an odd integer. If { >0,
the relation (4) implies that P_,g_,(x) >0 for 1 <x < A. Hence the above
argument also gives

where C is a positive constant independent of {. Since we have

()= =gl (1)
= A B(1 4 [t
Thus if | — k is an odd integer and { > 0, we have
W) = £ (0)(f;)(0)
=1 O)(f2)(0)
=[G (S (1)
- gg(xc)(g—g),(l)

Vo

\%
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— 82A-l(1 + C)e—d);(x:)"d'—;(l).

Observe that

(v v \as (L ¢
_d"(x‘)_d"‘(l_(k_l"l 1+1>Cl <1+1+k+1>’

1 I+ 1
— —— >0 and ! > 1. So, the estimate (ii) of Lemma 2 holds
k+1 [1+1 | —k

also in the case | — k is odd and { > 0.
The case in which | —k is an odd integer and { <O can be treated in a
similar way. Indeed, in this case, it holds that
W) = — ()0 £ (0)
— (£ (0) f2(0)
- gé(])g—g(x—g)

82A_'(l _ C)e—'ﬁ-g(x—c)—dt;(l)‘

where

%

Hence, observing

¢()¢>(1)(' ')m'”f(‘ C)

—_ _AAX_ —_ = _— —_ _ 5

e ™ k+1 [+1 I+1 k+1

one can see that the estimate (i) in Lemma 2 holds in this case. This finishes
the proof of the lower bound.

Now we turn to estimate an upper bound on W({) for arbitrary {eC. First
notice that Proposition 2 yields

_1
+ 31— ec(A
(5) { £ (A)] < CA Fjem %),

1
I(fF) (A)] < CAZ[e™ W),

where C is a positive constant independent of {€ C. On the other hand, observe
that

d2
@f{'(X) =[x = X2 ()

20
< CILFF 1T (),
for 0 < x < A, whence

2

R LA 0012 + 10 @)1

d
dx
20

< CILIFF{LER 4 P + 1) )12,

for 0 < x < A. Furthermore, by Gronwall’s inequality, it follows
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21
—k

1O +1(£7) ()2

2L
-k

6) 14
AP+ 1) (A) e 4,

As a consequence of (5) and (6), one can see that, for large |{],

< C{|gf

1+1

O < €yl 2R

1+1

I(f,7) ()] <C|C|2(l ~1 oCIEI*

Since the above argument can also be applied to the estimates for f,”(0) and
(f;)(0), we finally see that the wronskian have the upper bound

+1
-k

Wl < CeXp(CICI ).

This completes the proof of Lemma 2.

3. Proof of Proposition 2

-1
Proposition 2 asserts that, in some sense, |x| 2e”*®™ approximates to f;*(x)

_1L ) . . .
in the region x > A4, and [x| 2e'”"'%“ approximates to f,”(x) in the region
x < — A. In the present section, we show this for f,*(x), since the proof for
S (x) will be completely parallel.

1
Set A4 = Co(1 + )%,

1
(7) G(x) = ——==—=e*®
Jé' (%)
and
®) W) = G(x) — f* (%),

Here, we abbreviate ¢,(x) as ¢(x). It will be shown that, if we take C, sufficiently
large, then we have

|w(x)|

9 - <
©) X TG )]

C, <

with a positive constant C, independent of {e C. Observe now that, by taking
C, sufficiently large, the inequality

IA
9
™
=
N~

for x> A

holds with a constant C, satisfying 0 < C, < 1. Hence, from (7), (8) and (9) one
can get
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_1 1
IfH () — |x| 27X < Clx| 2[e”*™ for x> A

with a constant C satisfying 0 < C < 1.
Now, denote by u, = u,(x) the solution in the interval [4, y] of the initial
value problem:

{Pcuy(x) = P,G(x), A<x<y,
uy(y) = uy(y) = 0.

We shall prove that the inequality

(10) lu,(x) < Clx| """ 'G(x)], A<x<y

holds with a constant C independent of y and {. Also we shall prove that, for
Y1, ¥, satisfying 4 < x <y, <y,, the inequality

(1 iy, (x) = u,, ()] < Cly, |77 G(x)]

holds with a constant C independent of y,, y, and {. This granted, u, converges
uniformly on arbitrary compact set of [A4, co) as y tends to co. It is also clear
that the limit function w(x) satisfies P,w = P,G and

lw(x)| < Clx|™' 1 G(x)] for A <x< 0.

Thus, one can see that the function G(x) — w(x) is a solution to P,(G —w)=0
having the same asymptotic behavior as f,*(x). Hence, we have fi* =G —w
and w satisfies (9).

Now let us prove (10). Set

1
Y =logG=—¢(x)— 5 log ¢'(x)

and
d ~ d
D=E+w’, D=—37c+'//
Then, we have
~ d?
Deb=— WPy
=P, + E,

where

Notice that the inequality

|E(x)| <Clx|7%, x>4
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holds with a constant C independent of (. Also observe that P,G(x) =

1 "
— e~ *™®  whence
<~ /¢’(x)>
IPCG(x)ISC|x|_2|G(x)|, x> A

holds with a constant C independent of .
With y fixed and abbreviating u, as u, put

B = sup _|+(lx)|_<oo.
Asxs<y|x] |G(x)]

We shall show that B has a bound independent of y and {. Put v = Du. Then,
we have

d -
eV —e’v=Dv=DoDu
dx

= Pu+ Eu = P,G + Eu.

Since we have v(y) =0, one has for A <s<y

e'Pu(s) = JS e'O[P,G(1) + (Eu)(t)]dt,

y

whence we have
y
lo(s)] < e Y@ | |e*DI[Clt]"21G(t)] + Clt|™ 2 |u(e)|]dt
s
T A | 1, ,
< Clsl2[e®@| | It] 2[e *@[[|t] 2 "|e O + [t|*|u(t)|]dt
s
L L yoo_1_,
< Cls|Z[e?@] - [s|7272|e” 29| + Cls2[e*@| | [t] 2 "|e”*Du(r)|dt
S

_3,_
2! 2

L yooo_1_
(12) = C|s| |e‘¢‘s’|+C|s|2|e“"s)|J [t] 2 2le'*""’u(t)ldt.

.. ~ vd .
Furthermore, from the equalities, v = Du= —¢ T e Yu it follows that, for
A <x <y, we have X

y
lu(x)| < ¥ j le™"“v(s)|ds

_L y
< C|x| 2|e"°""’|j [s| 7' 2ds
X
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1 y y —1_5
+ Clx| 2|e"“’"|j |s|‘|e2¢“’lj [t] 2 “|e *Wu(t)| dtds
S=Xx t=s
v

_1_ t
< Clx|7'"7HG(x)| + CIG(x)] [e] 2 2Ie’""'u(t)lf |s|'|e?*| dsdt
[y 1
< CIx|™ NG + CIGE)] | 111727 [e™*®u(r)| - |€2#0| dt
v
< Clx|7'"7MGX)| + CIGx)| | [t|"*7*Bdt

< Clx|"""YGx)|[1 + B|x|'"1].

Take the positive constant C, large enough such that C|x|™'"! <1 holds for
x > C,. Then, from the last inequality, we obtain B < 2C. All constants denoted
by C are independent of y and {, so the inequality (10) is established.

We turn to show (11) for A <x <y, <y,. By the above argument, already
we have

uy,(y1) < Cly |77 HG(y)l.

Also it follows from (12) that, for 4 <s < y,, we have

B 372 e S |52 s
Du,(s) < C|s| le | + C|s|?|e*™] |t le u,,(t)|dt
S
1 v2
< CIsI7 2G| + ClsP ] | 1172 e~ 200 dy
s

_5,_
< Cls|™'72[G(s)| + Cls| 2" P |emew)]
< Cls|™'"2|G(s)].

Set wy = u,, —u,, and v = Dw,. Recall that u, (y,) = u}, (y,) = 0. Thus by the
above observation, we have

-3,
W )l < Cly, "N G(y,)| < Cly,| 27 e o)

and

-1- -31-2, _
o)1 < Clys 721G ()] < Cly, |27 % 0],

Let us estimate w,(x) for A < x <y,. Since we have

d -
eV —e’v=Dv=DoDw,
ds

= Pw, + Ew, = Ew,,
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it holds that for 4 <s <y,

Y1
|4 Po(s)] < [ Vo(yy)] + f ¥ O (Ew,) (1) dt

s

Y1

- - -1_3
<Cly |7 e 2“"”"I+J‘ [t] 2 " wy(1)ldt

s

. d .
Moreover, since we have — e’ ;lme‘“’w, = v, the argument to get (10) also gives
X

that, for 4 < x <y,, we have

y

Ie--ﬂ(x)wl(xn < |ewy1)wl(yl)| + J |e""“’v(s)lds

X

S Cly, |77 4 Cly, | 7372 e 2000|2000

Y1 —-1—2 t
+ [t] 2 “le *Dw, ()] | |e 2| dsdt
X

X

Y1

1
<Cly "7+ CJ (17277 e Ow, ()] - | €2 dr.

X

Setting now
5, Wy ()|
A<x<y |G(x)|

we consequently obtain that

yi
B, <Cly,|"" '+ CJ B, |t|"'"2dt

<Cly|™" '+ B, -CH x|
B
sClm"“+7‘.

Thus, the inequality B, <2C|y,|™'~! holds, so (11) is established.
Finally we give a proof of the inequality:

1 1
(13) () () + | x[2e*W] < Clx[2[e7*™],  for x > 4,
with a constant C satisfying 0 < C < 1. First observe that
(') =(G—w) =G + Dw—y'w.

Concerning the first term on the right hand side, by taking the constant C,
sufficiently large, the inequality
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L L
[G'(x) + [x|2e™*¥| < C|x[2[e™*™], x> 4

holds with a constant C with 0 < C < 1. Also observe that

~ -31-2
[Dw(x)| < Clx| 2 “le™*™],  x>4

and

_1_
W W) < Clx| 27 e @], x> A

They are consequences of (12) and (10) respectively, by taking the limits as y
tends to co. Thus, combining these inequalities, we obtain (13). The proof of
Proposition 2 is now complete.
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