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Elliptic cohomology of classifying spaces
of cyclic groups and higher level modular forms

By

SHUMA MORIMOTO and GORO NISHIDA

O. Introduction

The subject o f elliptic cohomology Ell * ( — ) defined by P. S. Landweber,
D. C. Ravenel and R . E . Stong (see [14]) is one of the most important subjects
in  a lgebra ic  topo logy . T hey  used  th e  e llip tic  cu rve  defined  by  th e  Jacobi
quartic y 2 = 1 - 25x 2 - 1- sx4 in projective 3 - space and the associated formal group
law (so called the Euler formal group law):

F (x  )  =
xA/R (y) - FyA/R (x) 

, y
1— Ex2y 2

w here R (x) = 1 —  25x 2E x 4 . The coefficient ring Ell * is  iden tif ied  w ith

Z[1] [5, 6, A - 1 ]  the ring of meromorphic modular forms on r, over Z M .
L a te r  A .  B a k e r  [ 1 ]  has defined  e llip tic  cohom ology  based  o n  th e

modular forms on SL2(Z) over Z [1
6 ] and  the  elliptic cohomologies o f higher

level have been defined by J-L. Brylinski (c f . [3 ]) . A . B a k e r  [2 ]  has shown
that given a prime p>  3, the supersingular reduction of Ell * ( — ) at p ,  namely
reduction w ith respect to  th e  ideal 1 2 g ene ra ted  by  p  and v i ,  is essentially
isomorphic to the Morava K (2) -theory.

O n the other hand , T . T orii [17 ] has show n the  fo llow ing . Let BZ/(pn)
be the  classifying space o f the  cyclic group Z / (p )  for a  prim e p  and K (r) *
(— )  b e  th e  p -a d ic  M o ra v a  K -th e o ry , th e n  t h e  r in g  K(r) * (B Z /(pn)) is
described as the  totally ramified extension of K (r) * Z p  [C p n -  , obtained by
adding th e  ro o ts  o f  th e  eq u a tio n  [pn] (x )  = 0  fo r  th e  p n - sequence of the
Lubin - Tate formal group law of height r. W here w e denote by C i a primitive
/ - th  root of unity.

From now on, we assume that p  is  an odd p r im e . By the above result, we
m ay  expec t tha t th e  elliptic cohomology E// * (BZ/(pn ) )  o f  B Z /(pn) can be
described  by  level 2pm  m odular form s for 0  m ‹ n .  T h e  purpose o f  this
paper is  to  show tha t th is  is  true  a fte r  certain completion of E l l* .  W e shall
s tu d y  th e  leve l 2  e llip tic  cohom ology . N ow  th e  m a in  r e s u lt  is  s ta te d  as
follows.
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Theorem 0.1. There is an algebra isomorphism:

(BZ/ (pn)) [Cp.]) II *0 E „. ( E l  * (2Pm)) [Cpn])
05m Sn

Here TR is an arbitrary maximal graded ideal of Ell * containing I2= (p, vi) , K* is
the quotient f ield of  Ell* and Ell (F, ( 2 r) ) * is  the graded ring of  modular forms
on F i  (2e) ov er Z W .

N ow  w e sta te  som e p o in ts  in  p ro o f . I t  is  w e ll-k n o w n  (c f . [1 1 ])  that
there is an isomorphism:

Ell * (BZ/(lon ) ) -- E ll*E [x ]]/ ( [pn ] (x)) .

The ring E l l  [ [x i ]  / ([p n ] (x )) is  a  complete topological ring  in  a  natural way.
In section 3 we shall show an equality:

[pn] (x) =u (x) I I  op. (x) ,
0 Sm

w here Opm (x ) a re  monic irreducible polynomials and  u (x) E  Ell* [[x ]] i s  a
unit. T h i s  means the ideal generated by [pn] (x) is seen as an  ideal generated
b y  th e  p o ly n o m ia l HosnisnOpm (x). M o r e o v e r  w e  s h a l l  s h o w  t h a t  the
polynomials çb m ( X )  a re  described by using the Jacobi sine (Proposition 3 .2 ).
Therefore the study of Ell * (BZ/(pn ) )  can be reduced to the algebraic one Ell *
[x] / (q5pm(x)). If we consider the quotient field K *  of Ell*, then we can show
the following isomorphism

: K* (Cpn)[x]/ (0 pn (X )) — K * (Cp.) Ell *  (F1 (2e)).
This implies Theorem 0.1.

T h is  paper is organized a s  fo llo w s. In  section 1, w e study  the  graded
rings of modular forms of h ighe r leve l. In particular the structure of those as
modules over the ring of level 2 m odular form s w ill be studied. Section 2  is
devoted to  th e  study  o f  th e  Jacobi s in e  a n d  associa ted  m odular form s. In
sections 3, pn - sequence [pn] (x) of the formal group law is described in  terms
of polynomials associated with Jacobi s in e . T h e  m a in  theorem  is proved in
sections 4, 5.

1. Modular forms of higher level

First w e recall som e defin itions o f  m odular form s and  graded  rings of
m odular fo rm s ( c f .  [ 1 6 ] ) .  L e t r  E  SL 2 (R ) a n d  k  b e  a n  in te g e r . F o r  a
meromorphic function f  defined on the upper half plane .f), we put

f Irrik(r) =f  (r• (7-, k

where r • r-=̀:ir-+± db and / (r, r) =cr+d, for 1- E ,  and r=(", 
d ) *
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Definition 1.1. L e t  F  b e  a  subgroup  o f  S L 2 (Z ). W e  d e f in e  an
automorphic form on  F  of weight k  a s  a  meromorphic function f  on and at
each cusps of F  such that f;7],, (1") = f (r )  for a ll TE F .  The C - vector space of
a ll such  functions is denoted  by  A n (F ) , a n d  define A ( F )  kEZA 2k (F).
T h e n  i t  is  a  graded  f ie ld  under a  na tu ra l r in g  s t ru c tu re . W e also define
g raded  subrings M (F )  c g * (F )  of A ( F )  a s  follows; g * (F )  consists of
elem ents of A ( F )  w h ich  a r e  holomorphic on a n d  M ( F )  consists  of
elements o f  g* (F) w hich  a r e  holomorphic a t  c u s p s  o f  F .  A n  element of
g (F )  (resp. M * (F )) is  c a lle d  a  meromorphic (resp. holomorphic) modular
form.

Remark. W e give an  automorphic form a  grading twice of its weight,
so that the coefficient ring Ell* of the elliptic cohomology theory is isomorphic
to  g * (r i (2 ))  a s  a  graded rings for a congruence subgroup F1(2 ) of SL2(Z)
defined below.

F o r exam ple, it is w ell-know n that for a principal congruence subgroup
F1(2) (defined later), M *(F1(2)) is isomorphic to C [5, d, w here  d and E are
modular forms on r1 (2 ) of weight 2 and 4, respectively. A lso w e define A =
4096s (6 2 — s) 2 , then it is a  cusp form on SL2(Z) of weight 12. Moreover their
q-expansions at ioo are calculated as

5 ( r )  =
(

Gi)qn = — - 3 q - 3 q 2 + . . . (1.2)
n 2 1  d ln ,2 ,rd

e)qn= q+ 8 q 2 +28q 3  • • • (1.3)
n 2 1  c i ln ,2 ,1

0 3

A (r) =q H (1— qn) 2 4 =q —24q2 +252q 3 + •-, (1.4)
n=1

(cf. [7 ,19 ,10 ,16 ]).

Remark. P. S . Landweber [12] considered the  modular forms on the
theta group Fo w hich is conjugate to our F1(2). So our m odular form s 5 , E
are conjugate to his 6,E respectively, however ours do not coinside with his.

W e can regard A ( F )  and g* (F ) a s  C -a lg eb ra s . Let F  b e  a  Fuchsian
group of the f irs t  k in d . T h e n  the subring A 0 (F )  C A (F )  is the function field
of the closed Riemann surface  w h e r e  =F/ (1 -±  fl F )  and U
{cusps}. Moreover A ( F )  becomes a graded field, so A ( F )  is isomorphic to

A0(F) [x, x - ] ,  where deg x = 4  o r  2  according to F  contains ( ° , )  or not.

(cf. [16, Proposition 2 .1 5 ])  Let F  b e  a norm al subgroup of F'. T h e n  A (F )
is  a Galois extension of graded fields A * (F ')  with the Galois group G =F7F,
and  the  usual Galois th eo ry  can  b e  ap p lied . F o r  example, fo r  any group A

=_A * (F ) Airsuch as F cA  Œ r, one has A (A )
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F or any automorphic function f E Ao(F) , one can choose a polynomial of
j - function g (j) E C  [i ]  such that f  g ( j )  has no pole on Thus we see that
A 0(F) is a quotient field of ,N (F) and A* (r) A 0 (r) ogo(ris* (r).

Definition 1.5. L et us define the  following subgroups of SL2(Z) for
n E N.

b
F ( n ) =  (

a

c d  
)E S L2 (z)

F i ( n ) =  (a 6 ) E  SL2 (Z)
c d

( a  db (01  01 )
mod n },

( a  db ) — ( 1 *0 1 )

(1 .6)

mod n 1, (1.7)

A  subgroup F  of SL2(Z) containing F (n ) fo r som e n  is called  a congruence
subgroup, and the smallest number n is called the level of F.

Let F be a  modular subgroup and R be a  sub ring  o f C . We define g*  (F) R

and M* (F) R  to  be subrings of M* (F) a n d  g * (F) , consisting of modular forms
whose q-expansion coefficients are contained in the ring R at each cusps of F.
For a congruence subgroup F of level 2n, le t us define a  graded ring E l l (F )
=  g*(F ) zE'i'c"] . W e will be concerned mainly with modular groups contained
in F i  (2). Therefore we use the following notation:

F(2) = F n F1 (2) .

The following proposition is easily proved from the q - expansions of ô  and E.

Proposition 1.8. Let R be a subring of C containing Z[1]. Then

M* (F (2)) R R  [d , e ],  8  *  (Fi (2) ) R  R [6 , E,

In  particular we have Ell*(F1(2)) E, A- 1 1, denoted simply by Ell*
Now a  key theorem  fo r o u r  argument i s  the  following (c f. [4 , Chapter VII]
and also see [3]).

Theorem 1.9. (P. Deligne and M. Rapoport, and J - L . B ry lin sk i) . Let
F  be a congruence subgroup of level n, then we have

(i) Ell4*(F(2)) is a finitely generated z cn] - algebra
(ii) g4* (F(2)) 

===E//4* (F(2)) OZG,
where A4* means EDkeill 4k, for a graded module A .

Corollary 1.10. Ell4* (F(2)) is a finitely generated Ell* - module.

Proof. S ince  by  T heorem  1 .9  E //4* (F (2 )) is  fin ite ly  genera ted  a s  a n
Ell *

- a lg e b r a .  S o  t o  s h o w  th a t E //4 * (F (2 ))  is  f in ite ly  g e n a ra te d  a s  a n
Ell * -m odule, it is enough to show that all elem ents in E// 4 * (I'm ) are  integral
over E l l * .  Since Ell* [C ] i s  a  finitely generated Ell *

- m odule, so w e have
only to prove that all elem ents of E//4* (F(2) are integral over Ell*[Co] . Now
given an fE Ell an (F(2)) , consider a polynomial:
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(x) f irg]2n) ,

where the  product is taken over a  representatives g  of F 1 (2) /F( 2). Then we
easily  see  tha t a ll of the coefficients of the polynom ial are fixed under the
ac tion  o f the  group F i (2 ), i.e. t h e y  a re  m odular form s o n  F 1 ( 2 ) .  B y  the
assumption on  the  q-expansions of f ,  w e a lso  see  tha t the ir  q-expansions at
each cusps are  contained in  Z  C n] ( (q )). S o  th e y  a re  contained in  g*

z{1.

— Ell* [ç]. T h is  s h o w s  that f  is integral over Ell*[Cn].

We denote a graded quotient field of Ell* by K* and that of Ell* (F) by K* (F) .

Theorem 1.11. L e t F  be a congruence subgroup F (n) or a  modular
subgroup conjugate to F 1 (n). T h e n

(i) K* (C )  ®En.[WEll* (F)2)) -=- K*(F(2))
(ii) [K * (r(2)) : K * (Cn)] = [F1(2) : (2)]

Proof. Note that Ell* (F (n) (2)) is a graded integral domain with the action
of the group G = ri (2)/F (n) (2) and satisfies the following equality;

E l l * [ ]  =  Ell* (F (n) (2)) G

Also for a subgroup F(2) of Fi (2) containing F (n) (2), we put H —F(2)/Fm)(2.
Then we have the following equality;

Ell* (F)2)) = Ell* (F (n) (2)) I I •

We define a ring homomorphism ç5 : K*(Cn)®En.[WEI1*(F (2)) — >K* (F(2)) by

0( Ici® c) =

w here a ,  b E E ll*  [Cn] a n d  c E E//* (F (2 )). i t  is  e a s y  to  s e e  th a t  th is  is
well - d e f in e d . F o r  Vy EE//* (F(2)) w e p u t z = Ilg • y , w here th e  product is
taken over the cosets G/H except e H . This defines well since y  is fixed under
the action of H .  M oreover it is easy to see that yz is  in E ll* [ Ça]. T h e n  w e
define an inverse ring homomorphism 0 by

o  (xy  y lz  o x z ,

where x, y Ell* (F (2)) . B y definition, it is easy to  verify  that 0 ° = -  id  and
0 . 0 = i d .  This show s the assertion (i).

F or the  proof o f  (ii), we define E,,, = (I) kEz.K*(Cn) E ll. [C,J Ell4k  (Fm ) and
Eodd = e kez  K  * (C )  E ll* [c „]E ll4 k -F2 (r (2 ) ) In Theorem 2.14 we will see that Eodd
*  {W . So w e can choose a non-zero element x EE odd, and multiplying it with
elements o f E odd w e have  a n  isomorphism of K * (Cn) - modules Eodd and  Eev.
T hen  w e  a re  enough to  check th a t  th e  ra n k  o f  Ee ,  is  e q u a l to  h a lf  of the
num ber [F1 (2) : F ) 2 ) ]. W hile  by  T heorem  1.9, we have

A o (F1 (2) ) OK.,(0Egn=1" A 0 (r, (2)) 00.g4* (F (2)) .
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Since it is isomorphic to A2* (F(2)) , its  rank  as an  A* (F1 (2)) -vector space is
equal to the covering degree of r(2)\,*—>r, (2) V v . I t  is known to be equal
to the desired value [F 1 (2) : F(2)]/2.

Remark. Let F  be a  subfield of C containing Cn . Then we can prove
tha t FOz[c.,]Ell* (F(2)) is a  free  F O z [ c . ] E l l * [ C ]  - module w ith  ra n k  [F 1 (2)
F(2)]. T he poin t of the  proof is tha t FOz[c.,]E//*[Cn] i s  a  graded principal
ideal d o m a in . So FOz[c,JE//* (I 'm ) is  a free FOz[c,JE/i*[Cn] - module, since it
h a s  no  to rsion  e lem en ts . T h e  rank  o f  it can  be  ca lcu la ted  sim ilarly  to  the
case of Theorem 1.11.

2. The Jacobi sine and its property

In  th is  section, w e shall define Jacobi sines and  associated higher level
m odular form s. W e first recall the definition of Jacobi form s (cf. [ 7 ] ) .  For
a function f defined on DXC, TESL2(Z) and k E Z, we put

f  Erik = f ( r  (r, z ))i

where r (z-, z) — (T• (r2; )•

Definition 2.1. Let k E Z  be an  integer and r sL2 (z) be a  modular
su b g ro u p . A  function X C C satisfying the following conditions is called
a Jacobi form on F of weight k  (of index 0).

(i) f  is  meromorphic in both variables and meromorphic at cusps of F.
(ii) f (r, —)  is periodic relative to the lattice Lr = <47zi,r, 4n-i > .
(iii) A z) =f (r, z) , for all TE F.

The following proposition is obvious by definition.

Proposition 2.2. Let f  a Jacobi form on F of weight k. Then

(i) e(f. (r, z )) is a Jacobi form on r of weight k.
(ii) For an element rESL2 (Z) , z )  i s  a Jacobi form of weight k on

the conjugate subgroup rrri.
Now define an action of the group SL2 (Z )  on C/L, as

47-ci (a t— F P ) • (
a b 

) = (  (aa Pc) (ab+ 13d)) .
c  d

Let T (n) be a  subset of C /L , consisting of n-torsion p o in ts .  Then it is easy
to see that the action of SL2 (Z) is restricted to T (n) and T (n) is decomposed
in to  t h e  o r b i t s  T (n) = U m in T *(m ), w h e re  T  * (m ) i s  a  su b se t  o f  C/L,
consisting of exact m-torsion po in ts . N o te  tha t T * (1) =  IC  T h e n  w e  re c a ll
a basic property of Jacobi forms.
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Theorem 2.3. ( [5]). Let f  be a Jacobi form on F of  weight k. For an
interger n EZ and z oEC /L „ let go (r, zo) be the n-th  coeff icient in the Laurent
expansion of f e r,  4  at z = z o . Then gn(r, zo) is a modular form on F[2 0 ] of weight
k ±n, where Fizo] -=-  trE r Iz o •r=z o l.

Now we define Jacobi sines by using the WeierstraB frfunctions. Let 77
be one of the half period points co1=2ri,co2=27rir and 0)3= coico±co2 of C A ,.
Then the Jacobi sine with respect to 77 is defined as

2 (‘ z)— (r, 77)) s,(r, (r, z)

w h e r e  (r, z ) is the WeierstraB .f) - function relative to L .

Theorem 2.4. The Jacobi sine satisfies the following properties:
(i) s o (r, z+17) =- — s (r,
(ii) s  (r, z+47ri) = so (r, z ) and so (r, z+47 -1-ir)=s ,,(r,
(iii) sn (r, z ) 00 if zEP <47rir, 47ri, ri>cC
(iv) sn (r, z ) =z +0 ( z 2 )  as z —* 0.

Proof. Easy from the definition, see  [19] .

I t 's  e a s y  to  check th a t  a  function satisfies th e  above 4  conditions is
uniquely determ ined. D . Zagier has show n i n  [19] th a t th e  function sn h a s

the  following expansion . L e t q= e 2iti r  a n d  C =ez. Then fo r  lql <m in (10 -, IC
we have

0 0

1 = 1  E a r  (c, _
(r, r , _

r=1

where ar are defined as follows.

a r =2 (( 
2r- 1 2 r - 1

-(d—i) H-r + W d - 3 )  + 1, n

/ 
\

E  e r - i z [m ] .

Also we have

1 — 1 C+ + 1  (1 22brICi — Cswz(r, z) 4
1 r=1

where 6,- are defined as follows.

l
b r =

E
d  — 1  )  

q  E  Z [L 'q Z 7_1].
2r-1

n=1 2,I'dln

(2. 5)

(2 .6)

n= 1 dln
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Proposition 2.7. Let r E S L 2(Z ) . Then we have

sd[ri-i ( r, z) sin

where 77 • r is the action of SL2(Z) on the set T* (2) = {wi, w2, (031.

Proof. Since SL2(Z) is generated by ( 0
1 ,1) and  (o

i  0
1), it suffices to prove

I 0 -
the proposition in cases of r = ( 0  i ) and r =

(i o 
1

But it is easy to check that

the left hand side satisfies the properties in Theorem 2.4 for 17'= 1 7  y. So by
the uniquencess of the Jacobi sine, we obtain the assertion.

L et F , be an  isotropy subgroup of SL2(Z) fixing 77. Then by Proposition
2.7, it is easily verified that the Jacobi sine .30  (r, z ) is  a  Jacobi form on F, of
weight — 1. Also as some of other properties of Jacobi sines;

Proposition 2.8. (i) s 0 (r, z )  is an odd function.
(ii) s0 (r, z ) satisfies the following differential equation.

(  
 d s , ( r ,  z ) ) 2

=1 — 250 (r)s„ (r, z) 2 + en (r) s,(r, z) 4 , (2.9)dz

where 5,7 (r) and s, ( r )  are modular forms on r, of  weight 2 and 4, respectively.
(iii) Suppose that 77' 77. Then the function ic ,(r)  =s,(r, z) sn (r, z+ 77')

— en— 1is ' onconstant with respect to z, and satisfies the equality x i )  ( r ) 2 ( r )  .

Proof. ( i)  i s  e a s y .  F o r  (ii), see  fo r  exam ple [12, 19]. T h e  property
(iii) is easily verified by the differential equation (2.9).

Especially, th e  modular forms 5. 1 (T ) and So n (r ) correspond to  the  ones
( r )  a n d  s ( r )  in  t h e  p rev ious section, re spec tive ly . O n  th e  other hand

0,02(r) and sw , ( r)  are  modular forms on F 1 (2) =-( °
1
 -

0
] )F i  (2) ( ) of weight 201

a n d  4, respec tive ly . S ince  (°, 0
1)0 = i co , th e  q-expansions o f  5 2 ( r)  and

s o„ ( r )  at i  co a re  equal to  that o f 5,02 (r )  a t  0, respec tive ly . T hey  a re  listed
below (cf. [19]).

CO

Li 1  3
5 '  el.) 1 16+ 32  E ( E  u p 2  16 2 ' 7 2  • • . '

n=1 din,21'd

(2.10)

s2 (r) —  2 15-6  ± 116 ( ( _ 1 3 )q 2 256 +256
n=1 (11/2

Remark. 0W3 and s cp3 a r e  modular forms on Fo and  P . S . Landweber
used those forms in his paper as ô  and s respectively ([12]).

(2.11)

Now we define modular forms associated with Jacobi sines. Let Â be an
element of the group C/L r . We put



1 _.1 — 4 - 1 -/-q2nva  (q ,)  ,
.3.2 (r, .1) —

4- 1  (V  +  1 ) (V -1 ) - 1  (1+ q.zv 0 (q2.)) , a 0 ,

4  1 - 1- q2nva (q2n),

n -1  
2  '

n+1 
2
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e2(r) sa,, (7- , 2). (2.12)

Then we have the following proposition.

Proposition 2.13. L et r E F I  ( 2 )  .  Then e,11E,1-1=e.i.r.

Proof. The proof is easy.

Let A be a torsion point of C/L, with order n. Then there exists rESL2(Z)
such that A •

Theorem 2.14. Let A, n and  r be as above. Then we have
(i) e2ED I-2((T F).(n)r - i ) (2))
(ii) e2 is non-vanishing on and cusps equivalent to i  co over F1 (2).

Proof. Let A = 47ci(azin b / n ) .  Since th e  modularity of e2 o n  ( F i  (n)
r i ) (2 ) follow s by Theorem  2.3, so  it is enough to  check the q-expansions at
c u s p s .  Note th a t an y  cu sp  s  o f  rF).(n) T - 1  is  e q u iv a le n t to  ioo o r  0 b y  an
element a of Fi (2). T h en  b y  Proposition 2.13 the  q-expansion of e2 a t  s  is
equal to  that of eka a t io o  o r  0. So it suffices to  check the q-expansions at
io o  a n d  0. B y  th e  e x p a n s io n  (2 .5 ), e a s ily  w e  h a v e  th a t  t h e  following
q-expansions.

(V— cwb) - 1 + qnno(qn)

=, a v i d_ q r u a (q n )

a=0,

n -1  
—  2  '

n±1 
<a<n - 12  —

 

C,bi— a ± l u a  ( q n )

 

where q), = e 2 l i r  a n d  ua (qn) E Z [12- , Cn] [ [qn]]. W hile by the expansion (2.6)
the q-expansions at 0 are  seen as follows.

where va  (q2n) E Z [i, C,1] [ [q2n] . B y this expression, we obtain the assertion
for a * O .  For a=0, note tha t C,b, - 1- 1 is a unit in Z [ ].

3 .  Formal group law of elliptic curves

In  th is section w e shall study multiplication-by-n sequence of the formal
g roup  law  assoc ia ted  w ith  e llip tic  cu rves. T h e  re su lts  in  th is  section are
essentially given by J. Ig u s a  ([8 ]).  In  th e  previous section, we defined the
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Jacobi sine  s(r, z )  = z ) .  B y th e  d iffe ren tia l equation  (2 .9 ) and the
expansion s (r, z )  = z  + O (z2 ) a t  z  = 0 , w e  see  tha t s ( r , z )  param etrizes an
elliptic curve:

E/C : y 2 = 1 — 25 (1-) x2 +6 (z -) x4 .

Thus we have a local isomorphism from the additive g ro u p  C a r  to  E .  Hence
we obtain a  formal group law F  associated with the  elliptic curve E  w ith the
formal inverse of s (r, z ) as its  logarithm:

dx s - 1  (r z ) =
0 /1-25 (r).x 2 -ke (r)x 4

The formal group law F  is called the Euler formal group law and is seen to be
defined over Z [1] [5, E]M *  ( F  1 ( 2 ) )  z  .  W e  reg a rd  th e  form al group F
defined over z [5, E, A - 1 ]

F o r  a  non-negative integer n, define an  n-sequence [n] (x) E Ell* [[x ]]
inductively by

[0] (x) =0, [n] (x) = x + F [n —1] (x) .

Before studying the n-sequence we state the following lemma:

Lemma 3.1. (i) e22 e24-‘022 =E - 1 .
n - 1 n 2 -1

(ii) L et n be odd. Then 1-10*AET(n) e =n  ( - 1 )  2 e 4

Proof. By P roposition  2 .8  (iii) the  assertion  (i) is  easily  ob ta ined . Let
C  (r)  = 11 0* ,le T (n)e2. Then c (r) is fixed under the action of the group r1 (2) , we
se e  th a t c ( r )  i s  a  m odular form  o n  F 1 ( 2 )  o f  weight — (n 2 —  1 ) .  B y  the
q-expansion of e2, we have

c (r) =In  (-1 )  
n - 1

q  n 2 :1-1 + • • • at ico,

n ( - 1) Y qn 2 - 1 +••• a t  O .

n2-1 
Hence by the q-expansions of e (r), we see that e ( r)  4  c  ( r)  is  a holomorphic

n2-1  
m odular form  o n  F 1 (2 )  i.e . E ( r )  4  c (r) E M* (F1 (2) ) C [5, s ] .  B u t  t h e

n2 -1 n2-1 
weight of s ( r )  4  c  (r) is equal to 0, so E ( r )  4  c  (r) must be c o n s ta n t. Then
we obtain th assertion from the above q-expansions.

Remark. The property (ii) is also seen by calculating the  divisor of
s (r, nz±w 2) relative to the la ttice  L  and by P roposition  2 .8  (iii) (cf. [13]).

Theorem 3.2. L e t n  be odd. Then there exist fn, gn Z [11 [5, E] [X ]
(i) [n] (x )  = f  n  ( X ) Z [ ]  [5, s ]  [[x ] ] .

gn (X) 2
satisfying the following conditions:

n - 1  n2-1  

(x) is an odd polynomial: f n (x) =n x +•-•+ ( - 1 )  2 e  4 e 2 .
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(iii) gn  (x ) is an odd polynomial with constant term gn (0) =1.

Proof. First define polynomials over Ell* (F (n) (2)) as

n -1  n 2 -1 
f  n  (x ) =  (-1 ) 2  5  4 II (x — e 2) ,

AET (n)

gn  (X )  =  (  1)
n - 1

2 n H (x —  e,H-(02)
o*A T (n)

In  th e  previous section w e  saw  the  elliptic function s  ( r, z )  h a s  th e  divisor
div ( s )  =  (0) ± (0)1) ( w 2 )  ( w 3 )  .  S o  w e  can  ca lcu la te  th e  d iv isors of
s (r, nz ), fn (s (r, z )) and gn (s (r, z )) considered as elliptic functions relative to
the lattice L ,

div s (r, nz) =  E «,0+ (0)1+,1) — (0)2+2) — (0)3+2)) ,
An T (n)

div ( s  ( 7 ,  z )) =  E  ( (2 )+ (w i+ 2 ) )  — n 2 (0)2) — n 2 (0)3)
Ae T (n)

div gn (s z )) =  E  ((,02+2 )+ (,03+2 ))-n2  (oh) — 142 (w3) ,
An T (n)

Also regard the Taylor expansion of s  (r, z )  a t z  = 0  as a  pow er series over
Q[15, s ]  w ith  th e  leading term  z. Then comparing th e  leading term s of the
Taylor expansions of these elliptic functions and by Lemma 3.1, we have

s (r, nz) f n z ) )  gn ( r ,  z ) )  •

On the other hand by the definition of the Euler formal group law we have

[n] (s (r, z )) =s (r, nz)

as power s e r ie s .  This show s (i).
W e consider the coefficients of  f ,  (x) a n d  gn  (x )  a s  m odular form s on

F (n) (2). T h e n  b y  T h e o re m  2 .1 4  a n d  L e m m a  3 .1 , w e  s e e  th a t  th e y  are
holomorphic modular forms on F (n) (2 )  defined over Z C n t  M o r e o v e r  w e
see that they are  actually holomorphic modular forms o n  F i (2 ) . L e t u  be  an
element of the Galois group G ( Z  ,  C n ] / Z M )  ( Z /n Z )  a n d  act a s  u

w here  (n , m ) = 1 . T hen  a acts the q - expansion of the modular form e2 (r)
a s  (e,i (r))  = ( 2 - ) , where for u • (47ri (az - ± l/n ) )  =47t-i ( a r+ m l / n ) .  On the
other hand the coefficients of f ,  (x) a r e  symmetric functions of {eA}A multiplied

n - 1  n 2 -1 
b y  (—  1 )  2  e  4 .  So their q-expansions a re  fixed  under the  ac tion  o f a.
T hen  by  Galois theo ry  w e  see  tha t the coefficients of the q-expansions are
contained in the subring Z  .  T h i s  s h o w s  tha t a ll of the coefficients of the
polynomial fn (x) are holom orphic m odular form s on F 1 (2 )  o v e r  Z  [+ ] . The

(3.3)

(3.4)

(3.5)
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rest of the assertion follows from Lemma 3.1.

Definition 3.6. Let n  be a  non-negative integer and p an  odd prime.
Then we define a polynomial O n(x) by

pn (X) = (x—e2). (3.7)
A E T . (e )

n -1  n 2 -1 
Theorem 3.8. (i) fp n (x )=  H i)  2  e  4 117=o0p, (x) .
(ii) Opn(x) is a  monic irreducible polynomial over Ell*.

Proof. T h e  p r o p e r ty  (i) fo llo w s  fro m  t h e  defin ition  o f  f n (x) . By
Proposition 2 .13  w e  se e  th a t the  G alo is g roup  of the polynom ial Op, (x )  is
F1 (2)/F 1 (2pi ) S L 2 (Z/ (pi ) )  and it acts transitively on the set of the solutions
of Op. (x). So the polynomial Op, (x) must be irreducible.

Let R b e  a  graded ring  containing Z [i] [ 5 ,  s ]  [s  1]  (for example, Ell* or
Ell* (F ) )  and p be an odd p r im e . We define I2 , 1) C R be a  graded ideal
of R generated by p and v i ,  where vi  i s  the image of Hazewinkel generator vi
under the elliptic genus go. (cf. [6, 15, 18]).

Proposition 3.9. çbpn (X) = 5p 2 n — P 2 n - 1 )  mod /2

Proof. It is  enough  to  p rove  tha t pn (X) =  H i )  2 5  4  fpn(x) =x P 2 n  mod
12 . F o r  n  =  0 , th e r e  is  n o th in g  to  p r o v e . W e  p ro v e  th is  a sse rtion  by
induction on n  for 1. Since w e think o f graded ideals, w e m ay assume

-= 1. For the case of n= 1, b y  [8, 9] we have

0 p (X) XP 2  m o d  , P y  (5)),

where P ( x )  i s  th e  n - t h  L egendre  po lynom ia l. O n  the  o th e r  h a n d  it  is
well - know n that v i  = P1p-i)/2 (5, s) (c f . [6 ]  a n d  [13] ). S o  w e  ob ta in  the
a sse rtio n  fo r  n  =  1 .  N e x t w e  suppose  th a t  th e  a s se r t io n  i s  correct for
n - 1, then by the proof of Theorem 3.2, we have

[pn ] (x) = Opn (x) hn (x) ,

where hn (x) is  a  un it o f E l l * [ [ x ] ] .  Using the  resu lt of n = 1 case, w e have

[P] (x) =uxP 2 mod 12+ (x° 2 + i ) , where u is a unit in E ll* . Inductively we have

[Pn ]  (X) XP2n mod /2+ (x P 2 n + 1 )

where un is  a unit in E ll* . By these two equalities we have

0 (X) V n  XP 2 n  m o d  +  (x 2 1),

where un i s  a unit in E ll* . Since 0 pn (X ) is  a polynomial w ith the highest term
XP 2 n  , the assertion follows.
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4. Graded field of automorphic forms of higher level

In this section, we shall study Ell* (F 1 (2p')) =EU* (F (pn)  (2>).
an E ll-a lg e b ra  homomorphism:

a: Ell * [x] (q5pn (x)) Ell*(F i(2Pn))

by  u(x ) =e 2„ where 2 1 =  . In  Theorem 1.11 w e saw  that K * (r rr

E ll  (F1
E/ /

(2pn)) i s  a  graded quotient field of Ell * (F1 (2pn)). W e denote  it as
K* (F1 (2p.) ) . Then we have

Theorem 4.1. a is extended as an isomorphism of graded fields.

a: K*(Cpn) [xi I (0 pn (x) ) K * (F1 (2p) ).

Proof. It i s  e a s y  t o  s e e  t h a t  a  c a n  b e  e x te n d e d  a s  K*
- algebra

homomorphism. By Theorem 3 .8  the left hand side is a graded field. So a is
injective. Then it is enough to check that the dimension of the both sides are
e q u a l .  The dimension of K * (Cpn) [ x ]  /  (00  (x ) ) over K * (Cpn) is equal to  the
degree of the polynom ial çbpn(x ). B y th e  definition o f  Opn(x), it is  equa l to
p2n p 2 ( n - 1 ) .  O n the  other hand by Theorem  1.11, w e saw  tha t o f the  right
hand side is equal to [F1(2) : ri (2e)] , p 2n _p2(n-1) .

5. A topological interpretation

In th is section, w e shall state our main result. F irst w e begin w ith som e
defin itions. Let

t : B Z /(Pn)+ — ' B Z /(Pn -1 )+,

be a  transfer of the covering B i : BZ/(pn - 1)—q3Z/(pn), where n  N and p is
an  odd prime, and i : Z /  n(p

)  •n i s  a  na tu ra l in c lu s io n . W e define a
spectrum T (pn )  as a stable fiber of the transfer t.

T (pn)—>BZ/ (pn) BZ/ (pn-1),.

Let E *  ( — ) be a  complex oriented cohomology th e o r y .  L e t [n] (x) E E * [ [x]
be the n - sequence of the formal group law of E .  S i n c e  [A (x) is  divisible by
x  a n d  [pn] (x) = [p] ( [p ']  ( x ) ) ,  w e see that there  is a  pow er series, Ilpn (x) E
E * [[x ]] s u c h  th a t  [ p n ]  (x ) (x

) [pn—l] (x) . H e n c e  w e  h a v e  [pn] (x ) =
ll7=o2 p ,( x ) .  Then T . T orii [17] has shown the following.

Proposition 5.1. There is a unit u E E *  (BZ/(pn)) such that

t* (1) =u2pn (x ),

where t *  : E *  (BZI(Pn  1 )) — 'E *  (BZ/(pn)) is the induced homomorphism.

We define
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Corollary 5.2. Let j  :  T (pn)—>BZ/ (pn) .4_ be the  inc lusion  m ap . Then
the homomorphism:

E *  (BZ/ (pn) + ) — T *  (T (pn))

identified with the reduction map:

E * [[x ]] / ( [Pn ]  (X ) ) * [[x ]]/  (2 pn (X ) )  .

I n  t h e  c a s e  o f  E * ( _ )  E 1 1 * ( _ ) ,  w e  h a v e  s h o w n  t h a t  [pn] (x) =
f (x) / gp. (x) i n  T h e o re m  3 .2 . T h e re fo re  w e  h a v e  a n  equality  o f  ideals
(2 pn ( X ) )  = (Opn (X ) )  . W e fix a maximal ideal 1J1 containing 1 2 a n d  A denoted
a graded completion with respect to T h e n  w e  have

Theorem 5.3. There are isomorphisms of E ll-a lgebras;

Ell * (BZ/ (pn)) AE l l '* [ x ] /  f pn ( x ) ) ,

Ell * (T (pn) ) ̂ Ell[x]/ (g5pn(x)).

Proof. By Proposition 3.9, the representatives of E ll[[x ]]/  (O pn (x )) are
given by polynomials. So we have a homomorphism of  Ell algebra:

Ell[[x]]/ (Opn(x)) — >Ell>i\;[x]/ (q5pn(x)).

It is easy to see that this homomorphism gives an isomorphism.

Since fpn(x) = ( - 1) 2 E  4  H o flO p m  ( X )  a n d  p m  (X ) a re  irreducible,
te n so r in g  th e  q u o t ie n t  f ie ld  K *  w e  o b t a in  t h e  following K*-algebra
isomorphism;

Theorem 5.4. K*OEu* Ell* (BZ/ (Pn )) A rU2=0 K*OEUX11* (T
 ( p m ) )

 A -

Now our final result follows by Theorem 4.1 and Theorem 5.3.

Theorem 5.5. We have an isomorphism of graded fields:

K* ( pm ) ®EuX/
1* (T (pm) ) A K *  (F1 (2PM

)  )

where K*(F1(21, '" ) )  is the graded quotient field of Ell * (F 1 (2Pm ) ) •
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