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Elliptic cohomology of classifying spaces
of cyclic groups and higher level modular forms

By

SHUMA MoRIMOTO and GORO NISHIDA

0. Introduction

The subject of elliptic cohomology El*(—) defined by P. S. Landweber,
D. C. Ravenel and R. E. Stong (see [14]) is one of the most important subjects
in algebraic topology. They used the elliptic curve defined by the Jacobi
quartic y*=1—20x%+ex* in projective 3-space and the associated formal group
law (so called the Euler formal group law):

Flx,y) :vaZﬁ +y/R (%) '

1—ex??

where R(x) =1 — 26x* + ex*. The coefficient ring Ellsx is identified with
Z[3] [0, &, A™] the ring of meromorphic modular forms on I's over Z[3].

Later A. Baker [1] has defined elliptic cohomology based on the
modular forms on SL2(Z) over Z [¢] and the elliptic cohomologies of higher
level have been defined by J-L. Brylinski (cf. [3]). A. Baker [2] has shown
that given a prime p>> 3, the supersingular reduction of Ell*(—) at p, namely
reduction with respect to the ideal I, generated by p and vi, is essentially
isomorphic to the Morava K (2) -theory.

On the other hand, T. Torii [17] has shown the following. Let BZ/(p")

be the classifying space of the cyclic group Z/(p") for a prime p and K (r) *
(=) be the p-adic Morava K-theory, then the ring K (»)*(BZ/(p")) is

described as the totally ramified extension of K (r) « = Z, [{yn-1], obtained by
adding the roots of the equation [p"] (x) = 0 for the p"-sequence of the
Lubin-Tate formal group law of height ». Where we denote by {; a primitive
I-th root of unity.

From now on, we assume that p is an odd prime. By the above result, we
may expect that the elliptic cohomology E!*(BZ/(p™)) of BZ/(p") can be
described by level 2p™ modular forms for 0 <m <u. The purpose of this
paper is to show that this is true after certain completion of Ellx. We shall
study the level 2 elliptic cohomology. Now the main result is stated as
follows.
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Theorem 0.1.-  There is an algebra isomorphism:
KxQpu, (EU*(BZ/(p") [Cp] ) = 1T Ka®p,, (Ellx (T1(20™)) [Epn]) 1
0<m<n

Here M is an arbitrary maximal graded ideal of Ellx containing I,= (p, vy), Kx is

the quotient field of Ellyx and Ell(T'y (2p™) )« is the graded ring of modular forms
on T1(2p™) over Z[3].

Now we state some points in proof. It is well-known (cf. [11]) that
there is an isomorphism:

Eu*(BZ/ (") = Els[[x11/([p"]1 x)).

The ring Ellx[[x]1]/ ([p"] (x)) is a complete topological ring in a natural way.
In section 3 we shall show an equality:
P 1) =u@®@) I @pmx),
0<m<n
where ¢,m(x) are monic irreducible polynomials and u (x) € Ellx [[x]] is a
unit. This means the ideal generated by [p"] (x) is seen as an ideal generated
by the polynomial Ilo<ms<n@pm(x). Moreover we shall show that the
polynomials @m (x) are described by using the Jacobi sine (Proposition 3.2).
Therefore the study of El* (BZ/(p")) can be reduced to the algebraic one Ellx

[x]/ (¢pm (x)). If we consider the quotient field K« of Ellx, then we can show
the following isomorphism

0 K (Cpn) [x]/ (@pn (2) ) Z K (Lpn) Qa1 Ellx (1 (2p7)).

This implies Theorem 0.1.

This paper is organized as follows. In section 1, we study the graded
rings of modular forms of higher level. In particular the structure of those as
modules over the ring of level 2 modular forms will be studied. Section 2 is
devoted to the study of the Jacobi sine and associated modular forms. In
sections 3, p"-sequence [p"] (x) of the formal group law is described in terms
of polynomials associated with Jacobi sine. The main theorem is proved in
sections 4, 5.

1. Modular forms of higher level

First we recall some definitions of modular forms and graded rings of
modular forms (cf. [16]). Let 7 € SL,(R) and k be an integer. For a
meromorphic function f defined on the upper half plane £, we put

flne(@ =f(r-0)j (7, O 7*,

where 1+ 7= and j (7, 7) =ct+d, for € $ and 7=(" )

c d
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Definition 1.1. Let I' be a subgroup of SL:(Z). We define an
automorphic form on I' of weight k as a meromorphic function f on § and at
each cusps of I' such that fin, () =f(y) for all yET'. The C-vector space of
all such functions is denoted by Az (I'), and define A% (") = @ xezAz (T).
Then it is a graded field under a natural ring structure. We also define
graded subrings Mx () C &x(") of Ax(") as follows; 8% (') consists of
elements of Ax([") which are holomorphic on § and M« (I') consists of
elements of 8x(I') which are holomorphic at cusps of I An element of
8« (") (resp. Mx(I')) is called a meromorphic (resp. holomorphic) modular
form.

Remark. We give an automorphic form a grading twice of its weight,
so that the coefficient ring Ellx of the elliptic cohomology theory is isomorphic
to 8x([1(2)) as a graded rings for a congruence subgroup I'1(2) of SL,(Z)
defined below.

For example, it is well-known that for a principal congruence subgroup
I, (2) (defined later), M« (I'1(2)) is isomorphic to C[d, €], where § and ¢ are
modular forms on I'1 (2) of weight 2 and 4, respectively. Also we define A=
4096¢ (62—¢)?, then it is a cusp form on SL2(Z) of weight 12. Moreover their
g-expansions at 100 are calculated as

6 =—2-3) () d)er=—g-3-3"+ (1.2

n>1 din2krd
S(T)=Z< Z d3>q”=q+8q2+28q3+-" (1.3)
n21 din2t}
A7) =q T (1—¢") =g —24¢2+ 2524+ -~ (1.4)
n=1
(cf. [7, 19, 10, 16]).
Remark. P. S. Landweber [12] considered the modular forms on the

theta group I'y which is conjugate to our I';(2). So our modular forms 0, &
are conjugate to his 0, respectively, however ours do not coinside with his.

We can regard A% (') and 8«(I') as C-algebras. Let I' be a Fuchsian
group of the first kind. Then the subring Ao(I') CAx(I") is the function field

of the closed Riemann surface I\9*, where T=I/({£1} NT) and H*=HU
{cusps}. Moreover A (") becomes a graded field, so A (") is isomorphic to
Ao(T) [x, x7*], where deg x =4 or 2 according to I' contains (_01 _01) or not.

(cf. [16, Proposition 2.15]) Let I be a normal subgroup of I'”. Then A« (I")
is a Galois extension of graded fields A« (') with the Galois group G=T"/T,

and the usual Galois theory can be applied. For example, for any group A
such as TCACT, one has Ax (A) =A4 ()T,
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For any automorphic function f€ A¢(I"), one can choose a polynomial of
j-function g(j) €C[j] such that f * g(j) has no pole on §. Thus we see that
Ao(T) is a quotient field of Ho (') and AxT) =4, () Qs.n8x (T).

Definition 1.5. Let us define the following subgroups of SL,(Z) for

n€N.
_Jfa b a b)\_ 10
F(n)—{<c d>ESLz(Z) (C d>_<0 1) modn], (1.6)

_ a b a b _ 1 =k
I“l(n)—l<c d>€SLz(Z) (C d)—(o 1) modn], 1.7)

A subgroup I' of SLy(Z) containing I' (n) for some # is called a congruence
subgroup, and the smallest number » is called the level of T".

Let I' be a modular subgroup and R be a subring of C. We define x (") ¥
and M« (') ® to be subrings of Mx(I') and 8« (I"), consisting of modular forms
whose g-expansion coefficients are contained in the ring R at each cusps of I
For a congruence subgroup I'" of level 2n, let us define a graded ring Ell«(T")
=8+()%E% We will be concerned mainly with modular groups contained
in "1 (2). Therefore we use the following notation:

F(Z):Fnrl(z).
The following proposition is easily proved from the g-expansions of d and e.

Proposition 1.8. Let R be a subring of C containing Z[3]. Then
My ([, (2))R=R[0, e], 8+ (2))R=R[d, e, A7'].

In particular we have Ell«(I',(2)) ZZ[0, e, A~'], denoted simply by Ellx
Now a key theorem for our argument is the following (cf. [4, Chapter VII]
and also see [3]).

Theorem 1.9. (P. Deligne and M. Rapoport, and J-L. Brylinski). Let
I be a congruence subgroup of level n, then we have

(i)  Ellex (T2) is a finitely generated Z[3, &) -algebra

(ii) 84x(T») ZElUs (o) Ozt c)C,

where Asx means DyezAak, for a graded module Ax.
Corollary 1.10. Ellyx(Cp) is a finitely genevated Ellx-module.

Proof. Since by Theorem 1.9 Eli44 () is finitely generated as an
Ellsx-algebra. So to show that Ell«I ) is finitely genarated as an
Ellx-module, it is enough to show that all elements in Elly« (I'(z) are integral
over Ellx. Since Ellx [{,] is a finitely generated Ellx-module, so we have
only to prove that all elements of Ellyx (I’ are integral over Ell«[{,]. Now
given an f€Elly, (o), consider a polynomial:



Elliptic cohomology 705
¢ (X) =IL(X— ligian),
g

where the product is taken over a representatives g of I';(2) /T z. Then we
easily see that all of the coefficients of the polynomial are fixed under the
action of the group I';(2), i.e. they are modular forms on I';(2). By the
assumption on the g-expansions of f, we also see that their g-expansions at
each cusps are contained in Z[3, ] ((q)). So they are contained in 8,21 O

=FEI*[,). This shows that f is integral over Ells[{a].
We denote a graded quotient field of Ellx by K« and that of Ellx (") by K« ().

Theorem 1.11. Let T be a congruence subgroup I'(n) or a modular
subgroup conjugate to T'1(n). Then

(i) Kx (L) QruiciEllxTa) =K+ (Tea).

(i) [Kx(Tw) :Kx()]1=1[T1(2) : T].

Proof. Note that Ellx (' () 2)) is a graded integral domain with the action
of the group G=TI"1(2) /T’ () 2 and satisfies the following equality;

Ellx [ =Elx ([T (n) @) ©.

Also for a subgroup ' of I'; (2) containing I' (n) @, we put H=T'@)/T ) .
Then we have the following equality;

Ellx (F(z)) =FEllx (F (n) (2)) H-
We define a ring homomorphism ¢ : K« ({n) Qg icgElls (F2) =K« (Tw) by

i)t

where a, b € Ellx [{»] and ¢ € Ellx«(T')). It is easy to see that this is
well-defined. For Vy€El« () we put z=1IIg+ y, where the product is
taken over the cosets G/H except eH. This defines well since y is fixed under
the action of H. Moreover it is easy to see that yz is in Ellx[{s]. Then we
define an inverse ring homomorphism ¢ by

X 1
¢(y) yz®xz,
where x, y EEll«(I'z)). By definition, it is easy to verify that ¢°¢=1id and
¢ep=1id. This shows the assertion (i).

For the proof of (ii), we define E¢ = @D rezKx ({n) @ pu, g1 Ellax (T2y) and
Eodd=®keZK*(Cn) ®[;”‘[("]E”4k+2 (F(z)). In Theorem 214 we will see that Eodd
# {0}. So we can choose a non-zero element x € Eo4q, and multiplying it with
elements of E,s; we have an isomorphism of Kx({,) -modules E,ss and Ee,.
Then we are enough to check that the rank of E,, is equal to half of the
number [I";(2) :T'e]. While by Theorem 1.9, we have

Ao(T1(2)) u0Eer=A0([1(2)) Q.84 (L)
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Since it is isomorphic to Az« (I'w), its rank as an A« (I (2)) -vector space is

equal to the covering degree of ﬂ\@*—m (2)\9* It is known to be equal
to the desired value [I';(2) : T'e)]/2.

Remark. Let F be a subfield of C containing {,. Then we can prove
that FQz Ellx(Tw) is a free F® ) Ellx[{,] -module with rank [I';(2) :
I'e]. The point of the proof is that F@z g Ellx[{,] is a graded principal
ideal domain. So F®z Ellx([) is a free FQzi¢ Ellx[{,] -module, since it
has no torsion elements. The rank of it can be calculated similarly to the
case of Theorem 1.11.

2. The Jacobi sine and its property

In this section, we shall define Jacobi sines and associated higher level
modular forms. We first recall the definition of Jacobi forms (cf. [7]). For
a function f defined on §XC, yESL;(Z) and kEZ, we put

flo(z, 2) =1(r+ (1, 2))j (7. ©) 7%,
where 7+ (7, 2) = <r°2', ﬁ)

Definition 2.1. Let k€ Z be an integer and [ ©SL,(Z) be a modular
subgroup. A function f:§) X C—C satisfying the following conditions is called
a Jacobi form on I of weight £ (of index 0).

(i) fis meromorphic in both variables and meromorphic at cusps of I'.

(ii)  f(z, —) is periodic relative to the lattice L.= <4mit, 4mi>.

(i) fline (7, 2) =f (7, 2), for all yET.

The following proposition is obvious by definition.

Proposition 2.2. Let f a Jacobi form on I of weight k. Then

(i) £(f(r, 2)) is a Jacobi form on T of weight k.

(ii) For an element YESLy(Z), fline (T, 2) is a Jacobi form of weight k on
the conjugate subgroup Y7 "

Now define an action of the group SLz(Z) on C/L; as
b
4mi(ar+B) - (a 4 >=4m‘((aa+/3c)f+ (ab+pBd)).
¢

Let T (n) be a subset of C/L; consisting of n-torsion points. Then it is easy
to see that the action of SL»(Z) is restricted to T (1) and T (n) is decomposed
into the orbits T ()= Uy, Tx(m), where Tx(m) is a subset of C/L.
consisting of exact m-torsion points. Note that Tx(1) ={0}. Then we recall
a basic property of Jacobi forms.
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Theorem 2.3. ([5]). Let f be a Jacobi form on I' of weight k. For an
interger n€Z and 20EC/Ly, let gn(T, 20) be the n-th coefficient in the Laurent
expansion of f(T, z) at 2z=2z0. Then gn(7, 20) is a modular form on T ) of weight
k+n, where Tz ={7ET | 20 r=20).

Now we define Jacobi sines by using the WeierstraB® $-functions. Let 5
be one of the half period points wy=2mi,w,=27i7 and w3= ww+ w; of C/L..
Then the Jacobi sine with respect to 7 is defined as

_2(9(r,2)—9H(z, n))

9’ (7, 2)

sp(t, 2) =

where § (7, z) is the WeierstraB -function relative to L.

Theorem 2.4. The Jacobi sine satisfies the following properties:
(i) splr, z+n)=—s,(7, 2)

(il) sy (7, z4+4m) =s,(1, 2) and s, (7, z+4mit) =3, (7, 2)

(iii) sy (7, 2) #0 if 2€& <4mit, 4mi, n><C

(iv) sp(r,2)=2z4+0(?) asz— 0.

Proof. Easy from the definition, see [19].

It's easy to check that a function satisfies the above 4 conditions is
uniquely determined. D. Zagier has shown in [19] that the function s, has

the following expansion. Let ¢=e?™" and {=¢*. Then for |g|<min (|2, |C

|_%) , we have

. = 1 —i 1_p-lyera1
Sw1 (T. Z) C%_C__;_ lar(cz C 2) , (2.5)
r=
where a, are defined as follows.

_ O [[d—1) +r 3d—3) +r . 2
ZZ(( o1 )+< o1 ))q € ¢ Z[[q]].

n=124d|n

Also we have

P (1 sz, (=), (2.6)

where b, are defined as follows.

=i Z(—n%(’;d__ll )q% e G731,

n=1dln
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Proposition 2.7.  Let YE€SLy(Z). Then we have
Snllrl—l(f, Z) :Snr(f. 2),

where 0*7 is the action of SL2(Z) on the set T« (2) ={w,, wa, ws}.

Proof. Since SL»2(Z) is generated by (i, :) and (? N ) it suffices to prove

the proposition in cases of y= (0 1) and 7= (] _01 ) But it is easy to check that

the left hand side satisfies the properties in Theorem 2.4 for n’=7n 7. So by
the uniquencess of the Jacobi sine, we obtain the assertion.

Let I'; be an isotropy subgroup of SL,(Z) fixing 5. Then by Proposition
2.7, it is easily verified that the Jacobi sine s, (7, z) is a Jacobi form on I'; of
weight —1. Also as some of other properties of Jacobi sines;

Proposition 2.8. (i) so(7, 2) is an odd function.
(ii) sy (7, 2) satisfies the following differential equation.
2
(4ol 1 g5, (005, (. )P4 ey (Dsn(r 2%, (2.9)

where 0, (7) and &,(7) are modular forms on T'y of weight 2 and 4, respectively.
(iii)  Suppose that 7' #1n. Then the function k,(T) =s,(7, 2) s, (7, 2+ 7)
is constant with respect to z, and satisfies the equality k,(7)*=¢,(r) %

Proof. (i) is easy. For (ii), see for example [12, 19]. The property
(iii) is easily verified by the differential equation (2.9).

Especially, the modular forms d,,(7) and €., (7) correspond to the ones
0(r) and e(r) in the previous section, respectively. On the other hand
0w, (7) and €4, (7) are modular forms on I''(2) = (0 _]>F1 (2)( . 0) of weight 2

and 4, respectively. Since <? 01> = {00 the g-expansions of 0u,(7) and

€0, (7) at 190 are equal to that of 0u,,(7) at O, respectively. They are listed
below (cf. [19]).

_1,3 g1 31,
0w, (T) 16+2 ( Z d)q2—16+2q2+ , (2.10)
n=1 d|n,2ktd
d n_ 1 .
€a(7) = 256 162(2( b d) A (2.11)
n=1 dln
Remark. Ows and Ew, are modular forms on I's and P. S. Landweber

used those forms in his paper as § and & respectively ([12]).

Now we define modular forms associated with Jacobi sines. Let A be an
element of the group C/L.. We put
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e (T) =suwn (1, A). (2.12)

Then we have the following proposition.

Proposition 2.13.  Let Y€1 (2). Then eilin=enr.
Proof. The proof is easy.

Let A be a torsion point of C/L. with order n. Then there exists yESL;(Z)
such that A » =%

Theorem 2.14. Let A, n and 7 be as above. Then we have

() e€EU((GTi0) 1™ @)
(ii) ez is non-vanishing on O and cusps equivalent to i  over I'1(2).

Proof. Let A=4mi(at/n+b/n). Since the modularity of e¢; on (yT';(n)

771 (o follows by Theorem 2.3, so it is enough to check the g-expansions at

cusps. Note that any cusp s of yI'1(n) 77! is equivalent to ico or 0 by an

element ¢ of I';(2). Then by Proposition 2.13 the g-expansion of ¢; at s is
equal to that of e;s at 100 or 0. So it suffices to check the g-expansions at
ico and 0. By the expansion (2.5), easily we have that the following
g-expansions.

(=G Hgmmolgn), a=0,

1 =20+ i e (gn) 1<a <5

—g o+ g (g), " <a<n—l.

2mit

where go=¢ n and u.(gs) €Z[3, (] [[ga)]. While by the expansion (2.6)
the g-expansions at 0 are seen as follows.

47 (G D) (G =1) 7 (1 +g2nv0 (g20) ), a=0,

1l g g, 1<e<27h
Sw: (T, /2)
4_1+anva (QZn). n;—l <aln—1.

where v,(q2n) €Z[3, &) [[g2n]]. By this expression, we obtain the assertion
for a#0. For a=0, note that {2+1 is a unit in Z[{,].

3. Formal group law of elliptic curves

In this section we shall study multiplication-by-n sequence of the formal
group law associated with elliptic curves. The results in this section are
essentially given by J. Igusa ([8]). In the previous section, we defined the
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Jacobi sine s(z, z2) = s, (7, 2). By the differential equation (2.9) and the
expansion s(z, 2) =z+ 0(%) at z=0, we see that s(r, z) parametrizes an
elliptic curve:

E/C :y*=1—26 (1) x4 (1) x*.

Thus we have a local isomorphism from the additive group C/L: to E. Hence
we obtain a formal group law F associated with the elliptic curve E with the
formal inverse of s (7, 2) as its logarithm:

o= dx .

0 /1—26(0) x2+e () x*
The formal group law F is called the Euler formal group law and is seen to be
defined over Z[3] [0, €] = M4« T1(2))%% . We regard the formal group F

defined over Z[3] [0, &, A"l ZEll4.
For a non-negative integer #, define an n-sequence [n] (x) € Elix [[x]]
inductively by

(0] @) =0, [n] &) =x+rln—1] (x).

Before studying the n-sequence we state the following lemma:

Lemma 3.1. (i) elerrw,=¢e?
2_)

(ll) Let n be odd. Then HO*AET(n) er=n (—1)11;_18_”T

Proof. By Proposition 2.8 (iii) the assertion (i) is easily obtained. Let
¢(7) =Ilossermes. Then ¢ (7) is fixed under the action of the group I'1 (2), we
see that ¢(7) is a modular form on I';(2) of weight — (®? —1). By the
g-expansion of ¢;, we have ’

—_ 2
B n(—l)%q'n«t L at 100,

c(7)

n—-1

n(—=1)"7¢" '+ at0.

Hence by the g-expansions of €(7), we see that ¢ (1) e (D) is a holomorphic
modular form on I'1(2) ie. e(7) %c(z‘) €EM«T(2)) =C [0, ¢]. But the

2] A 2-1
weight of &(7) "% ¢ (7) is equal to 0, so & () “% ¢ () must be constant. Then
we obtain th assertion from the above g-expansions.

Remark. The property (ii) is also seen by calculating the divisor of
s(t, nz+w,) relative to the lattice Lr and by Proposition 2.8 (iii) (cf. [13]).

Theorem 3.2. Let n be odd. Then there exist fn, gn € Z[3] [0, €] [x]
satisfying the following conditions: () [n] &) =—’i—<é>)—ez 116, ] [[1].

n
gn
n—1 n2-1

(i) fn(x) is an odd polymomial: fr (x) =nx+---+ (—1) 2 & * x™.
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(iii) gn(x) is an odd polynomial with constant term g, (0) =1.

Proof. First define polynomials over Ellx(I' (n) @) as

fult) = (=D 5" T (x—ey), (3.3)
AeT(n)

@) =(=1"n I (t—errnn) (3.4)
01T (n)

In the previous section we saw the elliptic function s(z, z) has the divisor
div(s) = (0) + (wy) — (w2) — (ws). So we can calculate the divisors of
s(t, nz), fu(s(t, z)) and ¢.(s(z, z)) considered as elliptic functions relative to
the lattice L.

divs(enz)= ), ((D+(@+D) = (0+2) = (3+2)),

AeT(n)
div fu(s (2,2)) = ). () + (@ +2) —n (@) —n* (@),
A€T(n)
div g, (s (2. 2)) = ) ((@rk2) + (@3 +2) —n (@) —n?(wy),
A€T(n)

Also regard the Taylor expansion of s(7, z) at z=0 as a power series over
Q[6, €] with the leading term z. Then comparing the leading terms of the
Taylor expansions of these elliptic functions and by Lemma 3.1, we have

_fals(z, 2))
s(t, nz) —‘;—;i(;—;). (3.5)

On the other hand by the definition of the Euler formal group law we have
[n] (s(z, 2)) =s(z, nz)

as power series. This shows (i).

We consider the coefficients of f,(x) and ¢»(x) as modular forms on
I'n) . Then by Theorem 2.14 and Lemma 3.1, we see that they are
holomorphic modular forms on I (#) defined over Z [3, {x]. Moreover we
see that they are actually holomorphic modular forms on I';(2). Let ¢ be an
element of the Galois group G (Z[3, &) /Z[3]) = (Z/nZ)* and act as o : {i—
{r where (n, m) =1. Then 0 acts the g-expansion of the modular form e;(7)

‘as 0(ex (7)) =esa (1), where for 0+ (4mi(ar+1/n)) =4mi(ar+mi/n). On the
other hand the coefficients of f,(x) are symmetric functions of f{e;}; multiplied

n—1

by (—1) TSLII. So their g-expansions are fixed under the action of o.
Then by Galois theory we see that the coefficients of the g-expansions are
contained in the subring Z [3]. This shows that all of the coefficients of the
polynomial f,(x) are holomorphic modular forms on I';(2) over Z [3]. The
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rest of the assertion follows from Lemma 3.1.

Definition 3.6. Let n be a non-negative integer and p an odd prime.
Then we define a polynomial ¢ (x) by
pm)= I (x—ea). (3.7
AETL(p")

n2—1

Theorem 3.8. (i) fo(x) = (—1)"T & T Mgy (x).
(ii) @pn(x) is a monic irreducible polynomial over Ellx.

Proof. The property (i) follows from the definition of f,(x). By
Proposition 2.13 we see that the Galois group of the polynomial ¢ (x) is
I (2) /T, (2p') =SL,(Z/ (p*)) and it acts transitively on the set of the solutions
of ¢y (x). So the polynomial ¢ (x) must be irreducible.

Let R be a graded ring containing Z[3] [0, €] [e7'] (for example, Ellx or
Ell4(T)) and p be an odd prime. We define I;= (p, v;) CR be a graded ideal
of R generated by p and v,, where v; is the image of Hazewinkel generator v,
under the elliptic genus ¢. (cf. [6, 15, 18]).

Proposition 3.9. ¢, (x) =" mod I,

Proof. 1t is enough to prove that G (x) (x) =2 mod
Io. For m = 0, there is nothing to prove. We prove this assertion by
induction on # for n=1. Since we think of graded ideals, we may assume
e=1. For the case of n=1, by [8, 9] we have

pn—1 pam—1
=17 T fm

0, (x) =x** mod (p, P!;—1(5))

where P,(x) is the n-th Legendre polynomial. On the other hand it is
well-known that v; = Py_1,2 (0, €) (cf. [6] and [13]). So we obtain the
assertion for m = 1. Next we suppose that the assertion is correct for
n—1, then by the proof of Theorem 3.2, we have

"] (&) = Opn () hn (1),

where hy (x) is a unit of Ellx[[x]]. Using the result of n =1 case, we have
[p] (x) =ux?® mod I,+ (x***!), where u is a unit in Ellx. Inductively we have

"] (x) =un 2 mod I+ (™),
where u, is a unit in Ellx. By these two equalities we have
0(x) =va2®™ mod L+ (x**"*1),

where uy is a unit in Ellx. Since 0 (x) is a polynomial with the highest term
x* the assertion follows.
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4. Graded field of automorphic forms of higher level

In this section, we shall study Ellx(I;(2p")) =Ell« (T (") @). We define
an Ellyx-algebra homomorphism:

o Ell*[x]/(¢pn (x)) — Ellx (' (an))

by o(x) =e,, where 2;=%%. In Theorem 1.11 we saw that Kx({pm) @ g, g
Ell«(T',(2p")) is a graded quotient field of Ellx(I'i(2p")). We denote it as
K«(T1(2p")). Then we have

Theorem 4.1. 0 is extended as an isomorphism of graded fields.
0: K (Cpn) [x]/ (@pn (x)) — K4 (1 (2p7)).

Proof. It is easy to see that o can be extended as Kx-algebra
homomorphism. By Theorem 3.8 the left hand side is a graded field. So o is
injective. Then it is enough to check that the dimension of the both sides are
equal. The dimension of Kx({ym) [x]/ (¢pn(x)) over K« ({pn) is equal to the
degree of the polynomial @y (x). By the definition of @ (x), it is equal to

p? —p*»=V  On the other hand by Theorem 1.11, we saw that of the right
hand side is equal to [I';(2) : Iy (2p") ] =p? —p**~ 1.

5. A topological interpretation

In this section, we shall state our main result. First we begin with some
definitions. Let

t: BZ/ (pn) + BZ/(pn_l) +,

be a transfer of the covering Bi : BZ/(ph‘l)—>BZ/(p”), where n €N and p is
an odd prime, and i : Z/(p""")—Z/(p") is a natural inclusion. We define a

spectrum T (p”) as a stable fiber of the transfer ¢.
t
T (p")——BZ/ (p") +—— BZ/ p" ") +.

Let E¥(—) be a complex oriented cohomology theory. Let [n] (x) € Ex[[x]]
be the n-sequence of the formal group law of Ex. Since [p] (x) is divisible by

x and [p*] (x) = [p] ([p""] (x)), we see that there is a power series, Ay (x) €
E«[[x]] such that [p"] (x) = Apm(x) [p"'] (x). Hence we have [p*] (x) =
7oA (x). Then T. Torii [17] has shown the following.

Proposition 5.1. There is a unit u €E* (BZ/(p")) such that
t* (1) :M/zpn (X) ,

where t* : E*(BZ/(p"*))—E*(BZ/(p")) is the induced homomorphism.
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Corollary 5.2. Let j : T(")—BZ/ (") + be the inclusion map. Then
the homomorphism:

7*: E*(BZ/(p") ) —E*(T ("))
identified with the reduction map:
Ex[[x]1/([p"] &) —Ex«[[x]11/ (A4 (x)).

In the case of E*(—)=EU*(—), we have shown that [p*"] &)=
fon(x) /gy (x) in Theorem 3.2. Therefore we have an equality of ideals
(Apn(x)) = (Ppn(x)). We fix a maximal ideal M containing I and A denoted
a graded completion with respect to . Then we have

Theorem 5.3. There are isomorphisms of Elly-algebras;
EU*(BZ/ (™))" = Elg[x]/ (fpm(x)),
E*(T (") " = Eug[x1/ (gpn(x)).

Proof. By Proposition 3.9, the representatives of Ellf[[x]]/ (¢pm(x)) are
given by polynomials. So we have a homomorphism of Ellx-algebra:

Eg [[x11/ (¢pn (x) ) =El% [x]/ (@pn (1) ) .
It is easy to see that this homomorphism gives an isomorphism.
Since fon(x) = (—1) 2 e e <nPpm (x) and @pm (x) are irreducible,

tensoring the quotient field K« we obtain the following Ksx-algebra
isomorphism;

Theorem 5.4.  K«Qy, EU*(BZ/ (p"))" = -0 KsQp Ell* (T (™)) ".
Now our final result follows by Theorem 4.1 and Theorem 5.3.
Theorem 5.5. We have an isomorphism of graded fields:
K (Com) Qe EU* (T (™)) " = K4 (I (20™) ",
where K« (I'1(2p™)) is the graded quotient field of Ellx (', (2p™)).
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