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Asymptotics of the Infimum of the Spectrum of
Schriidinger Operators with Magnetic Fields*
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Naomasa UEKI

1. Introduction
Let D be a  domain in R d given a  Riemannian metric and b be a  1- form on

D .  L e t  L  (b )  b e  th e  se lf - a d jo in t o p e ra to r  c o rre sp o n d in g  to  t h e  closed
extension of the form

q (b) ((p) = II (id + e x t ( b ) ) ( P P , ( 1 . 1 )

for any q) E Cô° (13): L  (b) is  the  Schr6dinger operator w ith a  magnetic field db
and the Dirichlet boundary condition. For the notation, see Section 2 below.

In  th is paper w e  g ive  som e low er estim ates o f  th e  asymptotics of the
infimum, inf spec L  (b), o f  t h e  spectrum  o f  th e  operator L (V )) a s  th e  real
p a r a m e te r  tends to infinity. W e  in tend  pa rticu la rly  to  its  application to  the
study of the asymptotics of the function

I : =E  [exp( - 4 : b  (X  (s, x)) °dX  (s, x))X  (t, x)= yi , (1.2)

as t e n d s  to infinity, where X  (s, x) is the absorbing barrier Brownian motion
o n  a  domain D, x ,  y  a r e  fixed p o in ts  in  D , and  E [ •  ]  i s  th e  conditional
expec ta tion . T h is  is  c a lle d  th e  stochastic  oscilla tory  in tegral in  Malliavin
[11], Ikeda and Manabe [7] and so o n . T h e  connection between the operator
L (b )  a n d  th e  function / ( ) is  g iv e n  b y  th e  Feynman - Kac - Itô  form ula (see
(2 .1 7 ) b e lo w ) . B y  th is  fo rm ula  and  ou r e stim a te  o f  in f  spec L ( b), w e
o b ta in  s o m e  u p p e r  e s t im a te  o f  t h e  a b so lu te  value i ( ) o f  / ( ) .
Accordingly, we obtain some results on the existence and the regularity of the
density of the conditional probability with respect to the Lebesgue measure

P ( fo b (X  (s, x)) °dX  (s, x) Ed 2 X (t, x ) =y )/c/À . (1.3)
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Moreover we consider the  same problem for the  operator LN (b )  w ith the
Neumann boundary condition: LN (b ) is the self - adjoint operator corresponding
to the closed extension of the form q (b) (ço) in  (1 .1) for any ço E .  For
the  no ta tion , s e e  Section 4  b e lo w . F o r  th is  o p e ra to r , w e  sh o u ld  use  the
reflecting barrier Brownian motion XN (s, x )  instead of X (s, x )  i n  (1 .2 ) and
( 1 .3 ) .  F o r  th is  c a se , w e  c o n s id e r  o n ly  a  h a lf  sp a c e  a s  t h e  dom ain D.
However in both the Dirichlet and Neumann cases, our results are  extended to
suitable Riemannian manifolds easily, since w e can consider th e  asymptotics
locally by the IMS localization (see Lemma 2.1 below).

In  p a rticu la r , a  low er bound o f  th e  spectrum  fo r  th e  uniform magnetic
fie ld  and  the  N eum ann  boundary condition is  ob ta ined  (see  T heo rem  4.1
below ). A ccordingly , the  transverse  analyticity , w hich w as proved for the
absorbing barrier B row nian m otion in  [22], is p roved  a lso  fo r the  reflecting
barrier B row nian motion: the density i n  (1 .3 ) where X (s, x )  is replaced by
XN (s, x )  is  rea l ana ly tic  in A  w hen d b  i s  nondegenerate at everyw here (see
Corollary 2 of Theorem 4.2  below).

The idea of considering the asymptotics of the spectrum to investigate the
asymptotics of the function I ( )  in  (1 .2 ) is appeared in  Malliavin [12], [13]:
he gives a  lower bound of the asymptotics of the spectrum when the magnetic
field d b  i s  n o n  degenerate a n d  th e  configulation space D  is  re p la c e d  b y  a
manifold w ithou t boundary . F o r th is case, w e have m ore direct study of the
function /( ) i n  (1 .2 ) by  Ikeda - Manabe [7] and of the  density i n  (1 .3 ) by
M alliavin [14] a n d  P la t  [ 1 8 ] .  T h e  bound o f  th e  spectrum  by  Malliavin is
sharpen and is extended to the operator with the Dirichlet boundary condition
by the au tho r [22].

F or the  case  th a t th e  magnetic field d b  degenerates finitely on  submani-
folds, Montogomery [18] and Helffer - Mohamed [4] recently give the following
estimate of the spectrum: if

u: ={ x E D  : db (x) =0}

is a compact submanifold of D and

Cid (x, U) P
- 11 db (x)II -<C2d (x,

on a neighborhood of U for some C1, C2, p>  0, then

c 3 r(2+p) <inf spec L (b) <c4v/(2+p) (1.4)

for any 1 and some C3, C4> 0, where d  (x , U ) is  the distance of x  from U
and 11 • 11 is a fibre norm on the cotangent bundle (see Remark 2.1 below).

In  th is  paper, we extend the  lower estimate in  (1 .4 ) to  the case tha t the
magnetic field db  may degenerate on some finite union of compact submanifolds
finitely ( s e e  T h e o r e m  2 . 1  b e lo w ) . T h e  m a in  to o l is  b o r ro w e d  f ro m
Helffer - Mohamed [4] . From  this result w e w ill obtain exponential decay of
th e  function I ( ) i n  (1 .2 )  a n d  th a t  th e  density  i n  (1 .3 )  belongs to some
Gevrey class (see Corollaries 1 and 2 of Theorem 2.1 below).



A symptotics of spectrum 617

On the o ther hand, we will consider also the case tha t the  magnetic field
db degenerates infinitely. F o r th is  case, w e w ill use  the  idea of applying the
Malliavin calculus to some problem with infinite degeneracy by Malliavin [10]
and Kusuoka and Stroock [8] (see also [ 2 3 ] ) .  In this case we show

lim inf spec L  (b) co
Etc° log

from which we have

I/ ( ) I - CkV

for any k EN, and the boundedness of all derivatives of the  density in  (1.3)
(see Theorem 3.1, Corollaries 1 and 2 of Theorem 3.1  below).

For the case of the operator LN  (b) with the Neumann boundary condition
and  the  reflecting barrier B row nian motion, o u r  basic  m ethod is to consider
the double of D to  reduce to  the case without boundary c o n d itio n . However,
for the neccesary extension of LN  (b) to the double, the corresponding magnetic
field db  is  n o t co n tin u o u s. T h is  is  th e  difficulty and  the  particular point of
th e  N e u m a n n  c o n d itio n . T o  o v e rc o m e  th is  d if f ic u lty , w e  u s e  t h e  IMS
localization (Lemma 2 .1  b e lo w ) . For the operator LN (b), we discuss only the
case th a t  th e  magnetic field d b  i s  nondegenerate. H ow ever our resu lts are
extended suitably to the case that db may be degenerate.

T he organization o f  th is  p a p e r  is  a s  fo llo w s . In  Sections 2  a n d  3 , we
tre a t  th e  opera to r w ith  the  D irich le t boundary condition: in  Section 2 , we
consider finitely degenerate c a se s  a n d  in  S e c tio n  3 , we consider infinitely
degenerate c a se s . In  S e c tio n  4 , w e  tr e a t  th e  o p e ra to r  w ith  the Neumann
boundary condition.

2 .  The Dirichlet condition (I) finitely degenerate cases

Let D be a  domain in  R d  g iven a  metric such that the metric tensors ga(x ) , j ,
k = 1,2, •••, d, are their derivatives are all bounded and

inf tEgik (x) X  E D ,  = ••• ( 1 )  E R d , EV=1} >O.

Let b be  an R d valued f u n c t i o n  on D , which is identified with the  1 form,
and C7 (b) be the  se t o f a ll C - valued Cc° functions on  the  interior of D with
com pact support. For any go e  ( b ) ,  we set

q (b) ((p) ext ( b ) ) I12,( 2 . 1 )(P

where II 11 i s  the  L.2 n o rm  w ith  respect to  th e  above m etric a n d  ext i s  the
exterior multiplication, i.e., ext (b) ço = b A (p. Let Dom (q (b)) be the completion
of Cc;  ( b )  b y  the  norm  .1q (b) ( • ) +1I • 112 . W e extend q (b) ( • ) naturally to
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Dom (q (b)) s o  th a t  (q (b) , Dom (q  (b ))) becomes a  closed sesquilinear form.
Let L (b ) b e  th e  associated self-adjoint operator: L (b) i s  th e  operator with
D ir ic h le t  b o u n d a ry  c o n d it io n . T h e  2  f o r m  d b  is r e g a r d e d  a s  t h e
corresponding magnetic field. W e will study the asymptotics of inf spec L (V))
as the re a l p a ra m e te r  tends to infinity, where spec L (a .) is  the spectral set
of the self-adjoint operator L (b ).

In th is  section, we consider the case tha t the  magnetic field db has some
fin ite  degeneracy . W e first in troduce th e  c o n d itio n s . F o r  each x E  D , let

(x) Iii b e  the trace norm of db (x):

11 db (x)11i=trVB ( r)  113 (X )

w here B ( x )  i s  th e  m a tr ix  (db (e (x), e k(x))) ,k  S d  a n d  le; (x)}1-.=1 i s  an
orthonormal basis of Tx  D. L et (G ) be the following condition:

la id b ik  (x)1 
11 d b (x)111 +1 <

where 0= 0/0x and dbik=db(0J, ak).
Taking n G N arbitrarily, w e assume the following:

(D, n) There a re  functions h 0 (s ) : R—> [0, 09) and 0, (x )  : D-41, /1=1,
2, •••, n, satisfying the following:

(i) h, is even, non-decreasing o n  [0, c c )  and h,- 1 (0) = (0);
(ii) 0 0  is  C- , the derivatives of (,b, are all bounded and

inf (0,4(x)2+11 d (x)112 ) >0;
seD

(m) for any x ED,

11 db (x) hu(Sbu 4));
u=i

(iv) infzerK100 (X )  1>0  for any p= 1, 2, •••, n and some compact set K in D.

F o r  g= (p (1) , p (2) , , p (n)) E  [0 ,  C °) n  , l e t  (P , g) be  th e  following
condition:

(G) for any 1

(P, t-o- ) s
p(p)

lim
h  

( s )  <  0  ,
sio g

for any ,t2=1 , 2, •••, n.

L et (I) be the following condition:

(I )  For each aE N  : =  U 1 0 '  (0), the system of the forms tdo# (a)) pema)
is linear independent, where A (a) = {  : (a) =0) .

Then the main theorem is the following:

Theorem 2.1. We assume (G) , (D, n) and (P, A) for some AE [0 , ° C ))n .
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Moreover we assume (I )  or gE  (2Z+) n . Then we have

inf spec L (b ) li m >0,2/(1,51+2)

where Ig1=E ',1 p (p) .
Remark 2.1. When n = g=  1 and d= 2, Theorem 2 .1  is  a part of the

results of Montgomery [ 1 7 ] .  When n = 1 and g , d a re  general, Theorem 2.1
is  a  p a r t  o f  th e  resu lts  o f  H elffer-M oham ed [4 ]. In  the  case  o f n =  1, the
condition (I ) holds automatically.

We give simple examples:

Example 2.1. On D =  e  R 2 :  Ix' <1} with the Euclidean metric, we
define b by  b1= (x 1) p (1 )  (x 2) p(2)+1, by =  O and g=  (p (1) , p (2 ) E  (Z+) 2 . Then

w e  have db12 = (p (2) + 1) ( 1 1 )  P  ( 1 ) ( x 2 ) P  ( 2 ) . T h is  satisfies the conditions
(D, 2 ) ,  (P, g) a n d  (I )  w ith (1)#= X f i and  h g = l s i " ) •  T h u s  w e  o b ta in  the result
of Theorem 2.1.

Example 2.2. On the same domain as tha t of Example 2 .1 , we take b
so  that db12= (x 1 )  P  (1 .)

 ( ç 2  ( x ) )  ( 2 ) f o r  some g =  (p (1) , p (2)) E (2Z+) 2 , where

= (-T 2 ) 2 + x 1. T h is  does not satisfy  the condition (I) , since dçbi = d0 2 a t
x =  0 .  However this satisfies the conditions (D, 2) , (P, g) and  g E (2Z + ) n.
Thus we still obtain the result of Theorem 2 .1 .

F or the  proof, w e prepare several lem m as. T he  following lemma is one
of the fundamental tools to consider the lower bound of the spectrum:

Lemma 2.1 (IM S localization). (i) Let {xm}m C C°.* (D) satisfying
E m xL=-- 1. Then, for any (pE Cci (D) , we have

d X mil' L (b) p= EXmL (b) Xm(P —  E go•

(ii) Let (x m ) m  C  H  (D) satisfying E naL = 1, and b  be an R d valued
continuous function on D .  Then, for any ço E Cij° (b), we have x m (p E Dom (q (b))
and

Istx„Z„
(b ) ((P) = Eq (b ) (x .(p ) — z(E ço, ço) (2.4)

In (ii), H  (D) = {ço : D— >C, go r D' el-P- 2 (D ') for any relatively compact
C D). F o r  t h e  definition of H" (D') , s e e  [1]. W e use  ( i )  in  th is  section

and use (ii) in later sections.

Proof. In  th e  proof, w e m ay assum e th a t  th e  domain D  is relatively
com pac t. F o r the  proof of ( i) , se e  [2 1 ] for e x a m p le . F o r tha t of (ii), w e use

(2.2)

(2 . 3)
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an approximation arguement: fo r each in , there  is a  sequence { X } , c  C- (D)
such that en —>Xm, dX; in — c/X7n in L2 . Then for any q) E c̀,7 ( b ) ,  we can show
th a t  xl(P--+ x m ço  in  1,2 a n d  {en(p}n i s  a  C auchy  sequence in D om  (q (b)).
Therefore w e have x m cp E  Dom (q (b)) and  xi,zn y o - - x m cp  in Dom (q (b)) . For
each m and n, we have

q (b) (X l(P) =411X1 (id +ext (0)4°112 4 - Re (iÇo)6inden, (id +ext (b)) (P) W e d ' .

By taking the limit in n and then taking the sum in m, w e obtain (2.4).

The following lemma is due to Helffer-Nourrigat [3], [5], [16]:

Lemma 2.2. L et bY (x), j = 1, 2, •••, d, and V I , 1= 1, 2, •••, m, be real
polynomials on R d  of degree Let

c x ) . ziaadok(x)1"(I")+i z1a5v1 (x)1
1 / (1 $ 1 + 1 )

• (2 . 5)
1 5 i< k S d  a E r, 1= 1 $ E zd.

lal s r - 1

Then there exists a constant C depending only on d, m and r such that

(il (i5i+N)(p12+ I V t(P12 )dx - C f IK ,o1 2dx (2.6)
1=1

for any (p E CP° (R d ) .

In  [4], the following is deduced from Lemmas 2.1 and 2.2:

Lemma 2.3. Under the assumption (G), for any E e (0 , 1), there exist
constants CE , C > 0 such that

q ( b) ((p) CE f I  db11114012dv o l —  C'EVIkoll2( 2 . 7 )
D

for any go Cô° (b ) and

Proof. Let x ( 1 ) a n d  X ( 2 ) be sm ooth functions on 5 su c h  th a t (x(1)) 2+

(X ( 2 ) ) 2 1 ,  supp x ( 1 ) i s  compact, supp x ( 2 ) clfc  and dx ( 2 ) is bounded, where K
is the compact set in the condition (D, n) (iv). By Lemma 2.1, we have

q ( b) (cc){ q  ( 1 ) )  ( x (v) q)) — —21 II(Pd xml121
v=

Then Theorem 4.5 o f  [4] leads to the following:

q ( b) (x (1 ) 40) f  II dblii1X(1 ) Sal2dvol —  CEVIIX (1 ) cc112

D
(2.8)

Since infx,EKII db >0, Theorem 3.1 o f [4] leads to the following:
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q (1)) ( x 2 ) f dbliiiX ( 2 ) çoi 2 d vol
D

for some C > 0 . By these, we obtain (2.7).

The following lemma is well known (see e.g., [6], [20] ):

Lemma 2.4. (Diamagnetic estimate). For any R d  valued continuous
function b  and any real continuous function V on D which is bounded below, we
have

inf spec (L (b) + V) inf spec (L (0) +V ), (2.9)

where L (b) ± V is the Friedrichs extension of the corresponding operator on Q° (D).

We now prove Theorem 2.1.

Proof of  Theorem 2.1. W e take  0 <E <2/ (2 + V I )  a n d  fix  it. By
Lemmas 2.3 and 2.4, and the assumptions of this theorem, we have

inf spec L  (b) inf spec (— A + (2.10)
/4=1

for some constants C1 a n d  C2, where A is  the  Laplace-Beltrami operator with
Dirichlet boundary condition.

W e first assum e the condition (I) . Then, for each a E there  exists a
coordinate neighborhood (1 .)(a ), (y l, y 2 yd\ \) )  o f D  around a  such that
0, (y) = y " " ) fo r  some 1 (ti, a) d  and any ft E A (a) and (p, (y) *0 for any

y E  2)(a) and any ,uE A (a ) c .  Let vo (a) be a  neighborhood of a so that vo (a) c
v (a) . Since ./V is compact, we can take a finite set N o c,N so that

U vo (a) DN. (2.11)
asN o

By using Lemma 2.1, we have

inf spec (—  + I(PgI'9(11))
/1 = 1

inf inf spec ( — + f l  Içb,I " ) a)
aeNoa = 1

A inf spec ( —  + kbol" ) ),, — C3 (2.12)
/1=1

for some C 3 >  0, w here  (— A+ I1 7, 1 =110, ),(a) is the  Friedrichs extension of
the restriction of the corresponding operator to C '  (i.  (a )) and

v=- U v o (a) Y. (2.13)
ae.A1

We easily see that
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inf spec ( — .6,+ 1 1  l (PgI P ( P ) ) (2.14)
0=1

for some C 4 >  O. F o r each a E No, by using the  coordinate and the ellipticity
of the metric, we have

inf spec (—  +  f I  10„IP̀") ) ,(a)
P =1

inf If (y) 12 + H lyn("m 1P(") 1(p (y)12)dy
1j = 1 geA(a)

: E  Q °  (R d ) , f 14) (y) I2dy =11 (2.15)

fo r some C 5 >  0. By making the change of variables (y  r / ( 2 + P  [ a ] ) y where
P [a] =E#.A(a)p (u)), we can rewrite the right hand side o f  (2.15) as

C5
2 ( 2 +0[aninf 1 a (y) 12+ 11 ly n(a,a)IP(a)kp  (y) 12)dy

j-1 g€A(a)

: Co° (Rd ) , f k o  (y) I2dy =11.

Since this is positive, w e obtain (2.2).
W e next assume i5e (2Z + ) n for any re= 1, 2, •••, n. F or each a E AI, let

(v (a) , (y l , •—, yd ) )  be a  coordinate neighborhood of D around a , such that

aa fl (At (y ) p(u)/2

la1=P[a]/2+1 geA(a)
< C a  E  a a  II  Oa (y)

lal a(a1/2 g€A(a)

(11) /2 *0

  

for any y E /) (a) and some Ca >0  depending only on a , and 0„ (y) ± 0 fo r  any

y E  v (a) and tt E A (a) c . L et v 0 (a) be  a  neighborhood o f  a  so  th a t vo (a) OE
v (a) , 0 OEN  be a  finite se t satisfying (2.11) and v be th e  se t  a s  in  (2.13).
Then we have  (2.12) a n d  (2 .14 ). For each a E.No, by using the ellipticity of
the metric, we have

inf spec ( — A+ I110#1"6 ) (a)
g=i

_ C6in f[f (ilax(y)12+ 1-1 10, (y) IP(m) ko (y )1 2 )d Y
R° j =i aEA(a)

yoECô° ) ( a) )  f ko (Y) 12 dy =1}

By Theorem (1.1) o f  [16], this is dominated from below by

(2.16)

C7 inf
p [a]/2

E  (1 +  E
k=0 lal=k

 

1/25a op(g)/2

#€A(a)

)1/(k+1) 2
dy
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E (1)(a) ) f  Igo (Y)I 2dy =11 — Cs

c 9 vicp[ai/2+1.)

By all these, we obtain (2.2).

W e next apply  T heorem  2 .1  to  th e  asymptotics o f  hea t ke rne ls  as in
M alliavin [12], [13] and U e k i [2 2 ] . In the rest of th is section, for simplicity,
we assume

(PG )

I V 2 b (x )  
< 0 0s

x
uj4 (1 + 1x1) for some k EN .

L et e-tL(eb) (x, rO) ( t ,  X ,  y) E ,L 0 0 )  xD  xD  b e  th e  in tegra l kerne l of the
semigroup e

-

t L ( C b )  
generated by th e  operator L (b ) ,  w h ic h  is  c a lle d  th e  heat

kernel: for any cp EL ' (D) ,

(e - tL(0) (p ) (x ) < e - web) (x ,  . )  (p >.

w here G •,• > is  the  inner product in L2 w hich is com plex linear in  the  both
v a ria b le s . T h e  heat kernel has the following representation: let X (t, x) , t> 0,
x ED , be the absorbing barrier Brownian motion on D  starting at .x: X (t, x )  is
a  d if fu s io n  p ro c e ss  g e n e ra te d  b y  A/2, w h e re  A  i s  t h e  Laplace-Beltrami
operator w ith Dirichlet boundary c o n d itio n . L e t .1. 1) (X x )) d X x )  be
the stochastic line integral (see e.g. [9 ] §V I-6) and 

e t d / 2  

(x, y ) be the  integral
kernel of the semigroup e" / 2  . Then we have

e
-aceb) (x ,  y)

= E [exp( - 1: 1 0
t 1) (X x)) ° d X (s, x))

 

X (t, x) = de u "  ( X , y) , (2.17)

 

w here E[• (t, x ) =  y ]  i s  th e  conditional expectation w ith respect to  the
Brownian motion X ( ,, x) conditioned by X (t, x) = y.

From Theorem 2.1 , we obtain the following:

Corollary 1. Under the assumption of Theorem 2 .1  and (PG) , it holds
that

li m 1 
sup

(t,x,0€ ft,„03)xDxD tI
12/(IR+2) lOgle—ajeb) ( x ,  y) <0 (2.18)

for any t o > O.

Corollary 1 is an  upper estimate of asymptotics of a  stochastic oscillatory
integral f o r  w hich th e  p h ase  func tion  is  a  stochastic line integral (see e.g.
[7 ] a n d  [111). Moreover, since e -

t L ( e b )  ( x ,  

y )  is  the Fourier transform of the
d is tr ib u tio n  o f  f o' b (s, x)) ° dX x )  u n d e r  th e  conditional probability
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P (•IX (t, x) = y) , we have the following:

Corollary 2. Under the assumption of  Theorem 2 .1  an d  (PG), f or any
t> 0, x, y E D, the distribution of  f 0 t b (X (s, x)) dX(s, x) under the conditional
probability P(•IX (t, x ) =y ) has a smooth density function belonging to the Gevrey
class of order (VI+ 2) /2: there is a function p (t, x, y; 2 ), t> 0, x, y ED, A E R
such that

P ( fo b(X (s ,x ))°dX (s ,x ) EA X(t, = y ) = f  p  (t, x , y ; 2 )ca  (2.19)
A

for any Borel set A  in R, p (t, x, y ; 2) is smooth in  2, and

1 r ( n + 1 )p ( t  x  y . /1) (2.20)
7raCk ± " l a  \  a  I

f or any  2  R, k E Z+ and some C> 0, where a = 2/ (1(31+2) and F ( •  ) i s  the
gamma function.

3. The Dirichlet condition (II) infinitely degenerate cases

I n  th is  section, w e consider th e  c a se  th a t  th e  magnetic field db has some
infinite degeneracy: for p>0, le t  (E, p) be the following condition:

1 lim sPlog
h , ( s )

 = 0  for any tt =1, 2, •••, n.
s io

L et (H ) be the following condition:

(H) 6 4 ,= 0  and d 0, 0 on 0,T1- (0) for any p=1, 2, •••, n,

where A is the Laplace - Beltrami operator.
Then the main theorem is the following:

Theorem 3.1. W e assum e (D, n) an d  (E, p) f or some p < 2 .  Moreover
we assum e (H) or p G 1 . Then we have

l i r a  in f spec L (b )c o .
E 1 0 0

log

We give simple examples:

Example 3.1. On D = {x Ix < 1} w ith the  Euclidean metric, we
define b by

bi =exp f  e x p  ( —  - P ) dt,

b2 = 0  and p E (0, 2) . Then w e have db12=  exP  H P 4 ' 2  - P )  This
satisfies the conditions (D, 2 ) , (H ) and  (E, p') for any (YE (0, 2 ) with Op

=
X l l

and h„=exp ( — Isl - P ). Thus we obtain the result of Theorem 3.1 .

(E, p)

(3.1)
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Example 3.2. On D = {x E R 2 :  Ix—el <1 }  w ith the Euclidean metric,
we take b so that dbi2=exP ( - 1011- P )  for some p e  (0, 2), where Oi =loglx 1-1.
This db vanishes o n  th e  a rc  {Ix' = el . However, since 6a/h= 0, the condition
(H )  is  sa tisfied . M oreover the  conditions (D , 1 )  a n d  (E , p ') fo r  any  to' E
(0, 2) are satisfied. T h u s w e  s till o b ta in  the result of Theorem 3.1.

For the proof, we prepare several lem m as. W e first show the following:

Lemma 3.1. Under th e  assumption (D, n) , there exist constants C i and
C2 independent o f  such that

g ( b) (9) c 1f io„ih0.o.)1912dx—c2119112 (3.2)

fo r  any 9 EC ( ) a n d 0.

Proof.F o r  each a  E D , the re  ex ist a  neighborhood 1.) (a)  of a  and  an
orthonormal frame el, e2, •••, e d on v (a) such that

db (x)Ili 
 = 0  ( x )  I,4

where
1 [d/21

33 ( X )  =  E db (e2a-i(x) , eza (x)) •
L ' (1=1

By Theorem 2.1  o f [22], we have

q (b )  (9 ) ( (± — Ø11) 9, (p)

for any çoEGS° (1) (a)) , where 9? is some bounded function independent of
For each a= (a(1), u(2), •••, a (n)) C {0, i} n , le t {v (a, a, c) : t= i, 2, •-•,

n (a, a ) )  b e  t h e  arcw ise  connected com ponents o f  t h e  s e t  t x  E  (a)
(— 1) a  ('') ( x )  > 0 f o r  i = 1, 2, •••, Then for each a and  c, there exists
(a, a, t) E {0, 1} such that 1) (a, a , () C C  (a) : ( — 1) 6 ( a 'a 't ) gg (r) >01. We

now introduce a function n (x )  on 1.) (a) by

(x)
14=-4

if x E  (a, a, t) ,

otherwise.

L et C±  be  sm ooth  functions on  R  satisfying C± (s) = .,/(1±s)/2 fo r s E
[ — 1/2, 1/2] , 0 C ± 1  a n d  CF, 1 .  W e  s e t  x±  (x) :  =  C ±  (72 ( x ) ) .

These belong to Hk2, ()) (a)) . Therefore by Lemma 2. 1(u), we have

q (V)) ((p) =q (V)) (x +9) +q (V)) (x-9 )

— ((i d x +1 2 +id x -12 ) 9, (p)

((x 2+— g 3 9 (P) — (R19, (P)
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for any go E GP°  ( 1 ) ( a ) )  and some bounded function R I . It is easy to  see that

(X 2+ — X2—)33 C fl 1(Ptilhti'gb0
a=1

for some C > 0 . By the IMS localization (Lemma 2.1), we obtain (3.2).

Lemma 3.2. Let L 0 be a fam ily  of self-adjoint operators on a
Hilbert space. T hen the following (i) and (ii) are equivalent:

lim inf spec L  ()  
0o .lo g

co

(ii) hill

where e ' L ( ) , t> 0, is  the semigroup generated by L  ( )  and II • II, is  the operator
norm on the Hilbert space.

We can prove this easily by using the relation

II e -tL (U 110=  exp H t  inf spec L ( ) ) . (3.3)

We omit the detail.

Lemma 3.3. Let V  be a nonnegative continuous function on D .  Then,
for any k E N, there is a constant C k >  0 such that

exp 0

C k  sup ERf V (X (s, x))ds) : r> ti, (3.4)
-2k

xeD 0

where r= inf {t >0: X (t, x) E .

Proof For any ço E CP." (B) , we have

[exp{ — t- ( — ±V)} (d (x )

E [Vexp( —  f ol l/(X (s, x)) ds)ço (X (t, x)) : z- >ti

Ck E R E V (X (s, x))ds)-
2 k  r >  1 1 2 E  

[I (p x )) 12
> d 1/2

and

exp { — ( — + 1/)1

)--2k 1/2
R IIV (X (s, x

I t

) ) d s r>ti e t 1 1 / 2 111 / 2E a) •
xeD 0

t L ( e ) llo=0 for any h E N and t >0,

0
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where II • I1(1) is the operator norm on the L1 space . S ince

11è4 "11(1) 1 ,

we have (3.4)

Lemma 3.4. Under the assumption (H) , there exist constants Ci  and C2

such that lçbu (x)I Ci implies I (1)/, (x) I C21(1)0 (x) 12 .

Proof. B y virtue of the condition (D,n)(ii), fo r each a E 0; 1 0 ,  there
exists a  coordinate neighborhood (v (a), ( y ' ,  y 2,y d \ ) )  of D  around a  such
tha t y 1 = (P„ (y) a n d  (y 2 , •••, y d ) is a  coordinate o f the  submanifold 0 1 (0).
By the Taylor theorem, we estimate as

(y  y  2,y  d ) (0, y yd) I < c a ly ll2

for some constant Ca depending o n  a . T h is  implies

(y ) IC ai(P u  (y) 12

on v (a). S in c e  0,71 (0) is compact, we can take constants C1 and C2 satisfying
the statement of this lemma.

T he  following is th e  key estim ate to prove Theorem  3.1  (cf. Kusuoka-
Stroock [8] and Proposition 3.2 in  [23]).

Proposition 3.1. Under the assumptions of Theorem 3.1, we have

sup E R I
xeD 0

—P
(s, x))) ds) : z- > ti< 0 0 (3.5)

for any p

0-1

Proof. W e g ive  th e  p roof on ly  under the condition (H) . T h e  proof
under the condition p < 1 can be given by referring the following proof and the
proof o f  Proposition 3.3 (ii) i n  [23 ] . Let (w 1 (t), 71)2 ( 0 ,  ••• , (0 )  b e  the
d-dimensional Brownian motion, 0(x) =  (a)  k (x)) sa be the square root of

(gi k  (T ))1S .i,kSd  which is the inverse of the m etric  tensor (g ik  (x))1<i,k<d, 13 ( x )

=  (IV (T ) )  1 S j  S d  =  (1/ 2g) E ,d„ ia (gg ik ) / axk) 1Sj Sd and g (x) = ',Met (gi k  (x)) .
T h e n  w e  c a n  re g a rd  th e  Brow nian motion X (t , x )  as  th e  so lu tio n  o f  th e
following stochastic differential equation:

{

X (0) =x,

dX' (t)= aik (x (t))dwk (t) +i3 (x (t)) dt for T> t,

where r= inf > 0: X (t) E aD). In particular we have

k=1

X  (t) is killed at t=z -,



>—4'

f osAp(Xos, x )) du > —4 '

628 Naomasa Ueki

0„ (X (t A  x, w )) — ç(x)(x)
d AT

= E ( ma a k o , ) (s, x , w ))dw ' (s) Ar (6■0„) (S, x, w))ds
.1,k=i 0

(3.6)

for any p= 1, 2, •--, n. A s in  [23], we estimate the probability

p(f t i ln h „  (og (x (s , x )))d s< ,+ „  r> t)0 u=1.

= P ( f k(0,4(x(s, x)))ds< T1?-, ,->t)
g=1

p ( f  tI I / L ( 0 0 ( X  (s, x))) ds '  T,R(x) > ' r> t )
R 2

#=1

= : /1+12,

where Â E  ( 0 ,  1 ]  is an  additional variable and r  ( r )  =  inf (s 0 10/4(X (s, X)) I
for any /1=1, 2, •••, n).
By using the strong Markov property a s  in  [23], we have

i l < su p tP G A 0 -2 / 2 (x ) 
< Riti=111/g (-}) )

:  x E D , I (x)I>A  fo r  any 11=1, 2, •••,

where O/2 (x) = inf (.3 Ot, (X (s, x)) I <2/2 for some tie (1, 2, •• • , n)). If
R it - ih t , (2/2) 2 / t ,  then we have

I i sup P ( sup I Op (X (s, x)) (x ) I >
xED 0<s<1/{ n1,hgum

for some (1, 2, •••, n))

d  i s
i sup P sup (04kak0g) (X (u, x, w))dwl (u)
)=1 xeD 0<s<1/ IRIC-A, Gil 2) .1,k=1

r>
(A/2))

i sup P sup
v=ixED 0<s<1/4/211 h#(2/2)}

1 z- >
R it7=1h0 (2/2)

=  111+ 1
12.

1
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B y Theorem  II-7.2 ' o f  [9 ], for each v=1, 2, •••, n and each xED, there exists
a 1-dimensional Brownian motion B (t) such that

f s (0-ik a ko,) (u , x , w ))clu ri(u )
o

=  B  (fos d  (X  (u , x , w ))11 2du). (3.7)

Since is bounded, we have

\
/ sup1.1 nP( 1B (

3 )1 > —

4
)

0<s<c,/ixn:„ht,(2/2))

C2exp( — C322R
11

h t 1 (

n 2))

=1

from  (8 .29 ) in  [8] O n the other hand, since 64„ is bounded, there is some
C 4 >0 such that 1 12= 0 if 2.1? (A / 2 ) C4.

On the other hand, for each v=1, 2, •-•, n, we set

= inf {s 0 : 101, (X (s, I < 2}
inf (x) 10(X (s, x)) I >21,

(x ) : (x) kbp (s, )I <2},
11 ,  (x ) : = inf {s (x) 102.,(X(s, x) )1 > 21,

Then we have

  

(  co

\ m=1

 

(r,rp(x) A  — (o-r , ( x )  A >
2 n  

for some vE {1, 2, •••, n})

   

and, for each v=1, 2, •••, n,

s u p  Ê  ((,Gp (x) As)) ( a r ,  (x) A s )))
O s S t / 2  m=1

By using (3 .6 ), we have either

d rr„ ( , ) As

sup (aikak(/),) (X(u, x, w))duri (U )
0 5 s 5 t  /2  m =1 idc=1  a r■ ,(x ) A s

or

s u p  E f ' A s   Aoi)(x(u, x, w) )d u  2 220 5 s 5 t / 2 . m = 1  cF.r.. co As

from  ( 3 .8 ) .  Accordingly, we estimate as

(3.8)



630 Naomasa Ueki

i P  E
,=1 (m=1

(r (x) A — (0.2n,t v (x) A > -

2

t

n '

  

sup
O s t/ 2

d ,—, (x)A5
E  E ( j . ikak0,) (u, x, w)) dw' r > - )

m=ll,k=1 cd%(x) As

rT 7 ',(r ) A s  A 1,

EP (  sup ( X  ( u ,  x ,  w)) du
osst/2 m=1on,(,) As 2

=  : 121+122.

A s in  (3 .7 ), there exists a  1- dimensional Brownian motion B (t) such that
00 d r (s) As

(ea k 0 u ) (X (1 4 ,  .T ,W ))d tv i  (u)
ni=1 ar,(x)

B (
\m-riar„wAs d Sbv (u, x, w))112du).

By the condition (D, n) (ii), we have

inf {II dOp(x)11 : x e D , 102,(X)1 2)

for some C, C '> 0 . Therefore, from (8 .27) in  [8 ], we obtain

121. C"exp
t  ( C - 2 2 C / 1 2 )   ) .

On the other hand, by Lemma 3.4 , we see that

122-=0 if 2< C (1A + )

for some C>0.
A s  in  [23 ], we now note  the condition (E , p ) .  F o r  a n  arbitrary fixed

0 <s <1/n, we take 2,>  0 such that .1Plog (1/h„ (A)) <6/2 fo r  any 0 <A < 2,
a n d  any  g  =  1 , 2 , ••• , n. I f  w e set A  =  2  ( lo g R ) -" , then w e see that
22Riti=1h,(2/2) >R 1 ' 2 a n d  t(C — C'2 2 ) /2 2 > C"t (log R) 2 / P  fo r  la rg e  enough R.
Thus there are CI, C2, •••, C6>0 such that

P ( f 'h „ ( 0 1 , ( X ( s ,  x ) ) d s < -1–

'
 r > t )R

It = 1

Ciexp ( — C2R1 / 2 ) C 3 exp ( — C4t (logR) 2 / P)

fo r any exp (C5tP) V (2/t) 2 V  C. T h e n  a s  in  (3 .4 9 ) o f  [23 ], we obtain
(3 .5 ) under the condition (E, p) for some p< 2.

Proof o f  Theorem 3 .1 . By Lemma 3 .1  a n d  th e  diamagnetic estimate
(Lemma 2 .4 ), we have

2->1 )2
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inf spec L  (b) inf spec ( — A+ 41 10,41h0 4) —c2
0=1

for some C1, C2>0. Then, by Lemmas 3.2 and 3.3, it is enough to show that

-P
sup E R f

t 
n (141h,i00,4) (x ( s , x ) ) d s )  : <co

xED
g=1

for any p_>_1. This follows from Proposition 3.1 ,

From Theorem 3.1, we obtain the following as in Section 2:

Corollary 1. Under the assumption of  Theorem 3. 1 an d  (PG), it holds
that

suPld k le
- t L ( e b )

(
x ,  y) 1<0 0

EER
x,yED

for any k N and t> O.

Moreover Corollary 1 leads to the following:

Corollary 2. Under the assumption of  Theorem 3 .1  and (PG), f or any
t> 0, x, y ED , the distribution of  fo

t b (X (s, x)) ° dX (s, x) under the conditional
probability P( • IX (t, x) =y) has a smooth density function whose derivatives are
all bounded: there is a function p ( t ,  x, y ; A ), t> 0, x, y  E D, A  E  R such that
(2 .19) holds, p ( t ,  x ,  y ;  A) is smooth i n  A, an d  akp(t, x, y ; A) /a/1k a re  all
bounded in Afor any kEZ ± .

4. The Neumann condition

In  th is  section, w e consider the Neumann boundary c o n d itio n . We consider
on ly  nondegenerate m agnetic f ie ld s  and  w e  ta k e  o n ly  a  h a lf  sp ace  as the
domain D  : let D= {x = (x 1 , 1 2 , ••-, xd ) Eltd : >0} given a  metric as before,
and b  be  a  rea l C-  differential form  a s  b e fo re . Let C;' (5) be  the  se t o f all
C - valued functions on D  which can be extended to C-  functions w ith compact
su p p o r ts  o n  R d .  F o r  a n y  ço (b), w e  s e t  q (b) (go) a s  i n  (2 .1 )  and
Dom (qN  (b ) )  as the completion of C7 (D  ) by the norm .1 q (b) ( • ) ± II • 112 . We
extend q (b) ( • ) naturally to Dom (qN  (b ))  so  tha t (q (b) , Dom (qN  (b ) ) )  becomes a
closed sesquilinear fo rm . L e t L N  (b )  be  th e  associated self-adjoint operator:
LN (b ) is  the operator w ith the Neumann boundary c o n d itio n . W e will study
the asymptotics of inf spec L N  ( b) a s  t e n d s  to infinity, where spec  L N  ( b) i s
the spectral set of the self adjoint operator LN  ( ' b).

The main theorems are the following:

Theorem 4.1. We assum e that the metric on D is standard and that the



632 Naomasa Ueki

magnetic f ie ld  is  uniform : gik(x) 5,k an d  db k (x) , j ,  k  =  1 , 2, ••• , d are
independent of x. Then there exists a universal positive constant .Y{ such that

inf spec LN  (b) tr Il db11-, (4. 1)

where II db .. is the maximum norm of db as

II d1)11-=  m ax id b jk l.
1S j,k5d

Theorem 4.2. Under the condition (G) , it holds that

inf db (x) (4.2)
x e l l

where .Y{ is the constant in Theorem 4 .1 .

Remark 4.1. ) In  th e  circumstances o f  Theorem  4 .1 ,  b y  W eyl's
criterion (see e.g. [19] ), we can show

ess spec LN (b) D spec 51)  (6),

w here  e s s  spec LN (b ) i s  th e  essential spectrum  o f  th e  operator LN (b ) and
(b ) is  the  operator w ith th e  uniform magnetic field on R d . If  we consider

the D irichlet condition instead of the Neumann condition, then , by  th e  same
criterion, we can show

spec L (b)=ess spec L (b) =spec .V (b).

In particular we have

inf spec L (b) dblI1. (4.1)'

(ii) In  Theorem 4 .2 , if  we consider the Dirichlet condition instead of the
Neumann condition, then we have

li m inf spec L (V))  — inf db (x)
e

(4 . 2)
0 0 xED 

(cf. Theorem 11.1  in  [15] , Theorem 4 .1  in [221).

F o r  th e  proof, w e first prepare a  fundam ental lem m a. F o r  any x =
x 2 x.") E Rd, we write .f=  (x 2 , •••, x d ). For any function cp on D, le t Cp' and
eP" be functions on R d , defined by

-0 (x ) = sgn (x 1 ) ( x 1

, . f )
(x ) =  (Ix 1 1, .

We extend the metric to Rd by

n. i f spec LN  (V)) •
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( .4jk  ( X ) )  15j,k 5d

1 7 ( x )  g 2 ( x )  • • •  g d ( x ) \

g 2 1  (x) g 2 2  (x ) •  •  •  g2d (X )

     

(x )  id ; (x) • • • (x)/
and extend the form b to R d by

(x ) = (x) dx 1 +6-2 (x) dx2± -6-d (x ) dx d

In  the following, fo r simplicity, we take b so that 61= 0 o n  {T' = 0}. T his  is
always possible by the  gauge in v a ria n c e . Then h is continuous on R d . For
any 0 E  Cô(Rd), we define Q  ( 0 )  a s  in  (2.1) where D  is replaced by R d .
Then we have the following:

Lemma 4.1.

inf fq (b) (0) : ço E  C  (D) , Iko11 = 1} = inf{ Q (6) (0) 0EC■37 (R d ) , 11011=1 1.
(4.3)

Proof.It is  easy  to  see  tha t

I g i k  (X ) ±  j ( X ) )  ( X ) )  1 (1ak + b  k  ( X ) )  ça ( X ) )  g  (X ) dX
D j,k=1

= k  ( X )  { ( i a j + i )  j ( X ) ) ( 5 ( X ) )  { ( i a k ± k ( X ) ) (15- (X )} -4 ( X ) d X
D* j,k=1

(4.4)

for any yo Q ." (D) , where D*  = (— co , 0) X l t d - 1  a n d  (x) = Vdet (g / k (x)) -
From this, we have

q (b) (0) = Q ( )  (Clo)

Since CP. can be approximated by elements of Cô (R d ) in Dom (Q (6)), we have

inflq (6) (co) ço E CIT (5 ) , 114011=11( Q  (b) (0)ç 1 , E Cc7 (R d ) , 1).
On the other hand, from (4.4), we have

(b) (0) =q (b) (OID) +q (b) ( —  ,

for any OE a  (R d ). From this, we have

inf {Q(6) (0) : 0eCô (Rd ), 11011=11 inf(q(b) (q)) : E (D) N11= 1.1 .

Proof of  Theorem 4.1. We may assume that the dimension d  is  2. In fact,
for the general dimensional case, we choose 1j, k so that

dbik
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and estimate as

q (b) ( (P) (Il b (x)) (x)112 +11(iak+bk (x)) (,0 (x)112 ) .

The right hand side is estimated by the result of the 2 dimensional case.
From Lemma 4.1, we have

inf spec LN  (b) = inf {Q (b) (0) cti (R 2 ) , 110 = 1 1.

We can show that

Q (b) (0 ) > id2b1  ( (s g n  x i) 0, 0) , (4 . 5)

where db is identified with the component dbiz. In fact, we have

o l--fidxit(iai+bi)±(ia2+i)2)}(P12

= (b) (0) sgn (xl ) (db)I01 2 .

F or an  arbitrarily fixed 0 <a<1, we se t 77 (t) = A a) V (—a) for t e  R
and

x (x) 1 ± (x9 
2

It is  easy  to  see  tha t x± E  Hi  (R 2 ). T h e n ,  by  the  IMS localization (Lemma
2.1), we have

Q ( )  
(0 )  > ((ld2b11,7 (x9 1 E _, Idx ) 020-12

, E ,

By an easy calculation, we have

ess s u p  E  IciXal2= 
4  ( 1  

1
-

-
 a

2
)ael-F,—F

Moreover, by using also the diamagnetic estimate (Lemma 2.4), we have

A 1 inf spec L N  (b)s p e c ( Idbl- - ± (x') )4 4 16 (1 — a2 )
where the  operator on  the  righ t hand  side  is the  Friedrichs extension of the
corresponding operator o n  Cô° (R2 ). However, by the  min-max principle, we
easily see that

A idbiinf spec( ) 1
4  ±  4  )7 (x1) 4  inf s p e c (  d 2  ±Idbit N

dt 2 ) ( 0 , c e r

w here th e  operator o n  th e  r ig h t h a n d  s id e  is  th e  opera tor o n  th e  interval
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[0, a ] with the Neumann boundary condition.
O n  th e  o th e r  hand , b y  u s in g  th e  m in-m ax principle a n d  changing the

variables, we easily see that

i n f  s p e c  L N  ( 6 )  =  
inf spec LN  (V)) (4.7)

for any Therefore we have

\ N 1 1inf spec LN (b) s p e c (  
cd12t2

ddb It) 10,aja 2 )  •

By using the min-max principle and changing the variables, we have

—.
s p e c (  Idb1213 

N  ((lcibl)" 3 ) ,d 2  ± I d b i t r  =
d t2[ 0 , a ]

where

N (R) = inf spec( 2— d

d t2[ O R ]

fo r  R > O. B y  th e  m in -m ax  p rinc ip le , w e  see  tha t N (R ) i s  a n  increasing
function in R .  Therefore for arbitrarily fixed R > 0, we have

i n f  s p e c  L N  (b )  
kW/3

N  (R )
1 

4 e s1 6  (1 — a 2 )

fo r any . R3/1c/b1. If  w e regard  the right hand side of this inequality as a
function of all then the maximum is

Id bIN (R) 3 / 2 ,11— a2  = : 4
3 3/2

and this is attained at

{ 3  3 / 2  1

4 (1 — a2 ) N (R) Idbl

Therefore, if 0
. /?3/Idbl, then w e have inf specLN (b) sg. This condition is

rewritten as

3
—

4
(R) R2 (1 — a 2 ) .

Now we take a and R  so that this holds as an equality . T hen  w e have

4 =  
IdbiN(R) 

6R

Therefore we have
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inf spec LN  (b) N (R)
D

dbl s u

6 R  ' (4 .8)

which completes the proof.

The proof of Theorem 4 .2  is reduced to that of the following modification
of Theorem 3.1 o f [4]:

Lemma 4.2. Under the condition (G ), there exist constants Ci, C2 such
that

C l 1± 
V / 4

)q  (b ) (go) f D (Y1 db (x)11- 
C21 1 4 ) I ( i0 (X)1 2d17 01 ( X )  (4.9)

for any yo E  C17 (D) and large enough 0.

The proof is almost the  sam e with that of Theorem 3.1 o f  [4 ] except for
using Theorem 4.1.

W e next consider the  asymptotics of the heat kernel as in Sections 2 and
3. We assume

(BO) g ii(x )= - 51;•

We first give the heat kernel e- t L y  ( b ) (x, y ) : for any yoEL 2 (D),
(e -tL-cv,) (p) (x ) =  < e - tL" (V)) ( x , )  ,(30 >

w here  <  •  , •  >  is  th e  inner product in  L2 w hich is com plex linear in the
both v a r ia b le s . Then we have the following representation:

Proposition 4.1. W e assume the conditions (B O) and  (PG ) . Let
XN  (t, x) , t> 0, x E  D, be the reflecting barrier Brownian motion on D, starting at
x  :  X N  ( t ,  x )  i s  a diffusion process generated by  AN /2, where A N  i s  the
Laplace-Beltrami operator with the Neumann boundary condition. Let e ' v  /2 (x, y)
be the integral kernel of the semi group e t ° ' 7 2 . Then we have

e- t L v ( b )  (x, y)

= E [exp( _ i f  b (XN  (s, x)) ° d XN  (s, x)) X N  (t, x) = y] ef L I v I 2  (x, y) ,

(4.10)

fo r  (t, x, y ) e  (0 , 0 0 )  x f5 x 5 .

Proof. If 61 =0  on aD, then the proof is the sam e with that for the case
b = 0 (cf. [ 2 ] ,  [ 9 ] ) .  For the general case, we choose f Ci7 (15) so  that af/ax
= b1 o n  al.-) and  se t cb : =  b — df, which satisfies b1= 0 o n  a D . Then, by  the
gauge invariance, we can show  (4.10) as follows:

XN  (t, x) = de t g  (x  ,  y)E[exp( — i f  b (XN  (s, x)) ° dXN  (s, x))
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= e i f  ( x ) E[exp( —  i f  (X N  (s, x) ) ..t/XN  (s , x )  X N  (t, x ) = ]

eLe/2 (x, y)e - i f (Y)

= e i f ( x ) e - 0 ( g )  r  ,  y )e
- t f ( y )

, e —tL y (b) (x ,  y )

From Theorem 4.2, we obtain the following a s  in  [22]:

Corollary 1. Under the conditions (PG) an d  (B O), it holds that

1 
lims u p loge-t'(b) (x, — inf db (x)11.. ( 4 . 1 1 )

tI I(t,x,y)eito,..)xDxD xeD

for any t o > O.

Moreover Corollary 1 leads to the following:

Corollary 2. We assume the conditions (PG), (B O) and

inf II db (x)11-> 0.
xeD

Then for any  t > 0, x, y  E D , the distribution of b (XN  (s, x)) OdXN (s, x) under
the conditional probability P( • 1XN  (t, x ) =y ) has a real analytic density function:
there is a function pN (t, x, y ; A) , t >0, x, y ED, A E R  such that pN (t, x, y ; A ) is
real analytic in A  and

P ( fo b (XN  (s, x)) .clXN  (s, x) EA XN (t, x) = y) = f  p N  ( t , x , y; 2) d
A

(4.12)

for any  B orel set A  in  R .  The radius of convergence of i t s  Taylor series around
any point is greater than or equal to t infrEDX1Idb(1 )

Remark 4.2. Corollary 2 is known as transverse a n a ly tic ity . This is
proven i n  M alliav in  [12], [13], [14] a n d  P r a t  [18] fo r  th e  c a se  without
boundary and in Ueki [22] for the absorbing barrier Brownian motion.
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