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Asymptotics of the Infimum of the Spectrum of |
Schrodinger Operators with Magnetic Fields™

By

Naomasa UEKI

1. Introduction

Let D be a domain in R? given a Riemannian metric and b be a 1-form on
D. Let L(b) be the self-adjoint operator corresponding to the closed
extension of the form

4 0) () =5 ia+ext () glt, i=y=T, 1.1)

for any ¢ €Cq (b): L (b) is the Schrodinger operator with a magnetic field db
and the Dirichlet boundary condition. For the notation, see Section 2 below.

In this paper we give some lower estimates of the asymptotics of the
infimum, inf spec L(Eb), of the spectrum of the operator L(£b) as the real
parameter £ tends to infinity. We intend particularly to its application to the
study of the asymptotics of the function

1(8) : =E[exp<-i§j;‘b (X (s, x))°dX(s,x)>‘X(t. x)=y], (1.2)

as £ tends to infinity, where X (s, x) is the absorbing barrier Brownian motion
on a domain D, x, y are fixed points in D, and E[- |] is the conditional
expectation. This is called the stochastic oscillatory integral in Malliavin
[11], Ikeda and Manabe [7] and so on. The connection between the operator
L(&b) and the function I(£) is given by the Feynman-Kac-Ito6 formula (see
(2.17) below). By this formula and our estimate of inf spec L(€b), we
obtain some upper estimate of the absolute value |I(€) | of I().
Accordingly, we obtain some results on the existence and the regularity of the
density of the conditional probability with respect to the Lebesgue measure

P<j:b (X (s, x))dX (s, x) Edﬁ‘X(t, x) =y>/d1- (1.3)
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Moreover we consider the same problem for the operator LY (b) with the
Neumann boundary condition: L¥ (b) is the self-adjoint operator corresponding

to the closed extension of the form ¢ (b) (¢) in (1.1) for any ¢ €Cy (D). For
the notation, see Section 4 below. For this operator, we should use the
reflecting barrier Brownian motion XV (s, x) instead of X (s, ) in (1.2) and
(1.3). For this case, we consider only a half space as the domain D.
However in both the Dirichlet and Neumann cases, our results are extended to
suitable Riemannian manifolds easily, since we can consider the asymptotics
locally by the IMS localization (see Lemma 2.1 below).

In particular, a lower bound of the spectrum for the uniform magnetic
field and the Neumann boundary condition is obtained (see Theorem 4.1
below). Accordingly, the transverse analyticity, which was proved for the
absorbing barrier Brownian motion in [22], is proved also for the reflecting
barrier Brownian motion: the density in (1.3) where X (s, x) is replaced by
XV (s, x) is real analytic in A when db is nondegenerate at everywhere (see
Corollary 2 of Theorem 4.2 below).

The idea of considering the asymptotics of the spectrum to investigate the
asymptotics of the function (&) in (1.2) is appeared in Malliavin [12], [13]:
he gives a lower bound of the asymptotics of the spectrum when the magnetic
field db is non degenerate and the configulation space D is replaced by a
manifold without boundary. For this case, we have more direct study of the
function (&) in (1.2) by Ikeda-Manabe [7] and of the density in (1.3) by
Malliavin [14] and Plat [18]. The bound of the spectrum by Malliavin is
sharpen and is extended to the operator with the Dirichlet boundary condition
by the author [22].

For the case that the magnetic field db degenerates finitely on submani-
folds, Montogomery [18] and Helffer-Mohamed [4] recently give the following
estimate of the spectrum: if

U:={x€D:db(x)=0}
is a compact submanifold of D and
Cud (z, U)* <[ db (x) | <Cud (x, U)*
on a neighborhood of U for some Cj, Cz, 0>0, then

CBEZ/(2+0) Slnf SpeC L (&b) 304&2/(2+D) (1 .4)

for any €21 and some Cs, C4>>0, where d (x, U) is the distance of x from U
and is a fibre norm on the cotangent bundle (see Remark 2.1 below).

In this paper, we extend the lower estimate in (1.4) to the case that the
magnetic field db may degenerate on some finite union of compact submanifolds
finitely (see Theorem 2.1 below). The main tool is borrowed from
Helffer-Mohamed [4]. From this result we will obtain exponential decay of
the function 7(€) in (1.2) and that the density in (1.3) belongs to some
Gevrey class (see Corollaries 1 and 2 of Theorem 2.1 below).
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On the other hand, we will consider also the case that the magnetic field
db degenerates infinitely. For this case, we will use the idea of applying the
Malliavin calculus to some problem with infinite degeneracy by Malliavin [10]
and Kusuoka and Stroock [8] (see also [23]). In this case we show

iy inf spec L (&b) — oo,
Eloo log &

from which we have
l1(e)|<Cié*

for any k€N, and the boundedness of all derivatives of the density in (1.3)
(see Theorem 3.1, Corollaries 1 and 2 of Theorem 3.1 below).

For the case of the operator LY (b) with the Neumann boundary condition
and the reflecting barrier Brownian motion, our basic method is to consider
the double of D to reduce to the case without boundary condition. However,
for the neccesary extension of LY (b) to the double, the corresponding magnetic
field db is not continuous. This is the difficulty and the particular point of
the Neumann condition. To overcome this difficulty, we use the IMS
localization (Lemma 2.1 below). For the operator LY (b), we discuss only the
case that the magnetic field db is nondegenerate. However our results are
extended suitably to the case that db may be degenerate.

The organization of this paper is as follows. In Sections 2 and 3, we
treat the operator with the Dirichlet boundary condition: in Section 2, we
consider finitely degenerate cases and in Section 3, we consider infinitely
degenerate cases. In Section 4, we treat the operator with the Neumann
boundary condition.

2. The Dirichlet condition (I) finitely degenerate cases

Let D be a domain in R? given a metric such that the metric tensors gj (), 7,
k=1, 2, --- d, are C, their derivatives are all bounded and

inf {Sen(0) 66 1 £ED, &= (&, &, &) R, ZeF=1]>0.
ik j
Let b be an R? valued C™ function on D, which is identified with the 1 form,

and C3 (D) be the set of all C-valued C* functions on the interior of D with
compact support. For any ¢ E€Cy (5), we set

q () (¢) =%|| (id +ext (b)) ¢l (2.1)

where || + || is the L? norm with respect to the above metric and ext is the
exterior multiplication, i.e., ext(b) p=bA¢. Let Dom(g(b)) be the completion

of C5(D) by the norm v/g(b) (+)+]-[F. We extend q(b) (+) naturally to
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Dom (g (b)) so that (g(b), Dom (4(b))) becomes a closed sesquilinear form.
Let L(b) be the associated self-adjoint operator: L(b) is the operator with
Dirichlet boundary condition. The 2 form db is regarded as the
corresponding magnetic field. We will study the asymptotics of inf spec L (£b)
as the real parameter & tends to infinity, where spec L (Eb) is the spectral set
of the self-adjoint operator L (&b).

In this section, we consider the case that the magnetic field db has some
finite degeneracy. We first introduce the conditions. For each x € D, let
lldb (@)l be the trace norm of db (x):

ldb (@), =trV/B(x)'B(x),

where B(x) is the matrix (db (¢;(x), ex(x))) 1 <jk <a and {e;(x)}¢=1is an
orthonormal basis of TzD. Let (G) be the following condition:

0idbji (x)
©) SUP Tgp (o) i +1 <

where 0;=0/0x’ and dbjx=db (0;, ).
Taking n €N arbitrarily, we assume the following:

o, for any 1<y, k, I<d,

(D, n) There are functions h,(s) : R— [0, ) and ¢, (x) : D—R, u=1,
2, -+, n, satisfying the following:

(i) hy is even, non-decreasing on [0, ) and h;'(0) = {0};

(ii) ¢y, is C®, the derivatives of ¢, are all bounded and

inlf) (u @)+ d @) [P) >0;

(i) for any xED,
labG@ > [ [ hu(u@);

(v) infrexl¢.(x)|>0 for any =1, 2, -, n and some compact set K in D.

For g= (0 (1), p(2), =+, o)) € [0, )" let (P, p) be the following
condition:

N So(a) < L2
N 1 — —< o0 = ‘oo

(P, p) lsllrr; 1, () , for any u=1, 2, «*-, n.
Let (I) be the following condition:

(I) For each a €N : = U%_1¢z'(0), the system of the forms {d¢, (@)} ses@
is linear independent, where A(a) ={x : ¢, (a) =0}.

Then the main theorem is the following:

Theorem 2.1. We assume (G), (D, n) and (P, p) for some p€ [0, o°)".
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Moreover we assume (I) or € (2Z+)". Then we have

. inf spec L (&b)
i_lt'r?_o 52/(|5|+2) >O' (2'2)

where |ﬁ| =2>"_0(u).

Remark 2.1. When #n=p=1 and d =2, Theorem 2.1 is a part of the
results of Montgomery [17]. When n=1 and 0, d are general, Theorem 2.1
is a part of the results of Helffer-Mohamed [4]. In the case of n =1, the
condition (I) holds automatically.

We give simple examples:

Example 2.1. On D={x€R?: |x|<1} with the Euclidean metric, we
define b by b= (x!)*® (x?)*®*! b, =0 and p= (0(1), 0(2)) € (Z,)%. Then
we have dbi; = — (0(2) +1) (&) *? (%) *®. This satisfies the conditions
(D, 2), (P, p) and (I) with ¢,=x* and h,=|s|°®. Thus we obtain the result
of Theorem 2.1.

Example 2.2. On the same domain as that of Example 2.1, we take b
so that dbyz= (x!)°? (¢ (x))*® for some o= (0 (1), 0(2)) € (2Z,)? where

¢, = (x?) 2+ This does not satisfy the condition (I), since d¢)y =d¢, at
x=0. However this satisfies the conditions (D, 2), (P, p) and g€ (2Z,)".
Thus we still obtain the result of Theorem 2.1,

For the proof, we prepare several lemmas. The following lemma is one
of the fundamental tools to consider the lower bound of the spectrum:

Lemma 2.1 (IMS localization). (i) Let {xmtm C C~(D) satisfying
Smx%=1. Then, for any 9ECs (D), we have

L) 0= Snl (6) xme— ZM—Z&”—Z (2.3)

(i) Let {xm}m CHY (D) satisfying 2mx% =1, and b be an R® valued

continuous function on D. Then, for any ¢ € CF (D), we have xmp € Dom (g (b))
and

90) (0) =24 0) (xne) — (= 1%l ) 2.4)

In (i), H}2(D)={¢ : D—C, ¢ I p» €EH"?(D’) for any relatively compact
D' CD}. For the definition of H**(D’), see [1]. We use (i) in this section
and use (i) in later sections.

Proof. In the proof, we may assume that the domain D is relatively
compact. For the proof of (i), see [21] for example. For that of (i), we use
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an approximation arguement: for each m, there is a sequence {x%},< C*(D)
such that X —Xm, dxm —dxm in L% Then for any ¢ €EC{ (D), we can show
that xm@ — xm¢ in L?* and {xne¢}. is a Cauchy sequence in Dom (g (b)).

Therefore we have xm¢ € Dom (q(b)) and x%@ — xm¢ in Dom (g(b)). For
each m and #n, we have

q(b) (xhe) = ||xm id+ext (b)) @l?+Re Goxrdxs (d+ext(d)) @ |l<pd)(,,,|l2
By taking the limit in # and then taking the sum in m, we obtain (2.4).
The following lemma is due to Helffer-Nourrigat [3], [5], [16]:

Lemma 2.2. Let b(x),7=1,2 -+, d,and V, 1=1, 2, -+, m, be real
polynomials on R? of degree <v. Let

)= = 2 [0%6% @)Y+ 3 395V, () [V, (2.5)

1<j<k<d gezt =1 gezs
lal<r—1 Bl<r

Then theve exists a constant C depending only on d, m and r such that
d m
[ (Slao+spok+Elviepar>c [Woksx  (2.6)
j=1 I=1

for any ¢ €CT (RY).
In [4], the following is deduced from Lemmas 2.1 and 2.2:

Lemma 2.3. Under the assumption (G), for any € € (0, 1), there exist
constants Ce, C: >0 such that

1(@) (9) 2. [ el ahlglavol —Cigell? 2.7)

for any ECT (D) and E>1.

Proof. Let x and x® be smooth functions on D such that (x*) 2+

(x®)?=1, supp x¥ is compact, supp x® CK® and dx® is bounded, where K
is the compact set in the condition (D, n) (iv). By Lemma 2.1, we have

2 1
q(€0) () = 2 g (60) (x* ) —llpax ™I,
v=1
Then Theorem 4.5 of [4] leads to the following:

q(&b) (x Vo) =C. fD Ell abllilx V pl?dvol—C.E%]x Vol (2.8)

Since infzexll db (x) 1 >0, Theorem 3.1 of [4] leads to the following:
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1(&) () >C [ gl avhlx® gla vol

for some C>0. By these, we obtain (2.7).
The following lemma is well known (see e.g., [6],[20]):

Lemma 2.4. (Diamagnetic estimate). For any R? valued continuous
Sfunction b and any real continuous function V on D which is bounded below, we
have

inf spec (L (b) +V) =inf spec (L (0) +V), (2.9)

where L (b) +V is the Friedrichs extension of the corresponding operator on C5 (D).

We now prove Theorem 2.1.

Proof of Theorem 2.1. We take 0 <e <2/ (2+|g]) and fix it. By
Lemmas 2.3 and 2.4, and the assumptions of this theorem, we have

inf spec L (€b) =C, inf spec (—A+Eﬁ g le®) —C6 (2.10)
u=1

for some constants C, and C;, where A is the Laplace-Beltrami operator with
Dirichlet boundary condition.

We first assume the condition (I). Then, for each a € N, there exists a
coordinate neighborhood (v(a), (y!, y2 ., y%)) of D around a such that
¢u(y) =y"*? for some 1<n(y, a) <d and any puE€A(a) and ¢, (y) #0 for any

yE€v(a) and any uE€A(a)¢. Let vo(a) be a neighborhood of a so that v, (a) C
v(a). Since N is compact, we can take a finite set N'¢C N so that

U vola) DN, (2.11)

aenN,

By using Lemma 2.1, we have
inf spec (—A+EIT | l*®)
u=1

> inf inf spec(—A+E]] |¢a|p(m)v(m
u=1

aenN,

Ainf spec (—A+ETT|lo®),—C; (2.12)
u=1

for some C3>0, where (—A+EI1%.1|¢,|°*) . is the Friedrichs extension of
the restriction of the corresponding operator to C5 (v (a)) and

v=< U uo(a)>

acwnN,

c

(2.13)

We easily see that
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inf spec (—A+ET|go®),>C.8 (2.14)
u=1

for some C,>0. For each a € Ny, by using the coordinate and the ellipticity
of the metric, we have

inf Spec (_A+E n |¢)u|o(u))v(a)
u=1

d
>Cs inf{fkd<zl|0,~go(y)|2+5 I1 ly”‘“’”’l”‘”’lgo(y)lz)dy
-

ueA(a)
P @ECT(RY), f|<p(y)|2dy=1] (2.15)

for some Cs>0. By making the change of variables (y— &Y%y where
olal =2 cawo (1)), we can rewrite the right hand side of (2.15) as

d
Cf”‘““"”inf[f (Z|aj¢ (y)‘2+ l‘[ |yn(u,a)|p<u)|¢(y)|2)dy
R \j=1 PEICH

L pECr (RY), f|<0(y)|2dy=1].

Since this is positive, we obtain (2.2).
We next assume 90 € (2Z4)" for any =1, 2, **-, n. For each a €N, let
(v(a),(y", y?% -+, y%)) be a coordinate neighborhood of D around a, such that

Z aa I‘[ (/)u(y)p(u)/z

la|=plal/2+1 reA(a)

<C 2

la|<plal/2

aa H (xbll (y) o(u)/2

uea)

#0

for any y €v(a) and some C,>0 depending only on a, and ¢, (y) #0 for any

yE€vla) and p € Aa)®. Let vo(a) be a neighborhood of a so that vy(a) C
v(a), NoCWN be a finite set satisfying (2.11) and v be the set as in (2.13).
Then we have (2.12) and (2.14). For each a €N, by using the ellipticity of
the metric, we have

inf spec <_ A+'S H |¢a|0(u)) v(a)
u=1

ZCsinf[j;d<j§|5j(p (y) |2+€ﬂel}(a)|¢u (y) Ip(ml(P (y) |2)dy

pECT(v(a)), flw(y)lzdy=l] (2.16)

By Theorem (1.1) of [16], this is dominated from below by

p[azl/z + Z l/zaa I_I ol /2 1/(k+1) |2
cint [ 21 ) 4
7 R k=0 lal=k 5 uEA(a)(/)u ooy
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Tpecy(ia)), f|§0(y)|2dy=1] —Cs

chgl/(p[al/2+l)_cm‘
By all these, we obtain (2.2).

We next apply Theorem 2.1 to the asymptotics of heat kernels as in
Malliavin [12], [13] and Ueki [22]. In the rest of this section, for simplicity,
we assume

(PG) sup 172 )]

0+] |)k<00 for some kEN.
r€D X

Let ¢ ™% (x, y), (t, x, y) €[0, ©©) XDXD be the integral kernel of the

semigroup e **® generated by the operator L (€b), which is called the heat

kernel: for any ¢ €L2(D),
(e—tL(eb)q)) (x) — <e—rL(eb) (x ) 90>v

where <-+,+> is the inner product in L? which is complex linear in the both
variables. The heat kernel has the following representation: let X (¢, x), t >0,
x €D, be the absorbing barrier Brownian motion on D starting at x: X (¢, x) is
a diffusion process generated by A/2, where A is the Laplace-Beltrami

operator with Dirichlet boundary condition. Let Job(X (s, x)) 2dX(s, z) be

M/Z(

the stochastic line integral (see e.g. [9] §VI-6) and e x, y) be the integral

ta/2

kernel of the semigroup e Then we have

—tL(§b) (

e x,y)

=E[exp<—iEj;tb (X (s, x))dX (s, x))‘X (t, x) =y]e"'/2 (x,y), (2.17)

where E[* |X(t, x) =y] is the conditional expectation with respect to the
Brownian motion X (+, x) conditioned by X (¢, x) =y.
From Theorem 2.1, we obtain the following:

Corollary 1. Under the assumption of Theorem 2.1 and (PG), it holds
that

lim sup
-t (t,2,9)€lty,0) XDXD

1 _
Wlogle e (1, y) |<0 (2.18)

for any t,>0.

Corollary 1 is an upper estimate of asymptotics of a stochastic oscillatory
integral for which the phase function is a stochastic line integral (see e.g.

[7] and [11]). Moreover, since ¢~"*“? (r, y) is the Fourier transform of the
distribution of fob(X(s, x)) °dX(s, z) under the conditional probability
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P(:|X(t,x) =y), we have the following:

Corollary 2. Under the assumption of Theorem 2.1 and (PG), for any

t>0, x, y €D, the distribution of [ob (X (s, x)) °dX (s, x) under the conditional
probability P(+|X (t, x) =y) has a smooth density function belonging to the Gevrey
class of order (|p|+2)/2: there is a function p(t, x, y; ), t>0, 2, yED, AER
such that

P[0 (s 2) eax (6. 2) EAIX(t, D=y)= [ plt.z,y; DA (2.19

for any Borel set A in R, p(t, x, y; A) is smooth in A, and
K

0 1 nt+1
‘5271) (t, x, y: A) l < mc‘k“)/ar( p ) (2.20)

for any A€ER, kEZ, and some C>0, where =2/ (|p|+2) and I'(*) is the
gamma function.

3. The Dirichlet condition (II) infinitely degenerate cases
In this section, we consider the case that the magnetic field db has some

infinite degeneracy: for 0>0, let (E, p) be the following condition:

1
. p c— eee
(E, p) lsllrrols log s =0 for any =1, 2, -+, n.

Let (H) be the following condition:

(H) A¢,=0 and dA(/),,=O on (/);1 (0) for any #=1, 2, =, n,

where A is the Laplace-Beltrami operator.
Then the main theorem is the following:

Theorem 3.1. We assume (D, n) and (E, o) for some p<2. Moreover
we assume (H) or 0<1. Then we have

lim inf spec L (éb) — (3.1)

g1 log &
We give simple examples:
Example 3.1. On D= {r €R2 |x|<1} with the Euclidean metric, we
define b by
2
b1=exp(—|xl|"’)j; exp (—t|=*) at,

b,=0 and p€ (0, 2). Then we have db,= —exp (—|x!|™* —|z?|7*). This
satisfies the conditions (D, 2), (H) and (E, o) for any p'€ (0, 2) with ¢,=x*
and h,=exp(—|s|™). Thus we obtain the result of Theorem 3.1.
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Example 3.2. On D={x€R? . |xr—e|<1} with the Euclidean metric,

we take b so that db;,=exp (— |¢1|™) for some p€ (0, 2), where ¢ =loglr|—1.
This db vanishes on the arc {lx|=e¢}. However, since A¢, =0, the condition
(H) is satisfied. Moreover the conditions (D, 1) and (E, o) for any o €
(0, 2) are satisfied. Thus we still obtain the result of Theorem 3.1.

For the proof, we prepare several lemmas. We first show the following:
Lemma 3.1. Under the assumption (D, n), there exist constants C, and
C; independent of & such that
n
16 (9)=C, [ eMlIglngloliz—clol  (3.2)
u=1

for any 9 E€C5 (D) and £=0.

Proof. For each a € D, there exist a neighborhood v(a) of a and an
orthonormal frame e, e, ***, ¢4 on v(a) such that

dbix) A =|8 )],

where

1 [d/2]

B (x) =3 Edb (e20-1(x), €20 (x)).

By Theorem 2.1 of [22], we have
q(&b) (@) = ((£EB—R) ¢, ¢)

for any ¢ €C5 (v(a)), where &R is some bounded function independent of &.

For each 6= (g (1), ¢(2), -, an)) €10, 1}* let {v(a, 0, ¢) : =1, 2, -,
n(a, 0)} be the arcwise connected components of the set {x € v(a) :
(—=1)°“¢, (x) >0 for ¢ =1, 2, -, n}. Then for each ¢ and ¢, there exists
ela, 0, ¢) €10, 1} such that v(a, 0, ¢) C{xr€v@) : (—1)¢@"B(r) >0}. We
now introduce a function 1 (x) on v(a) by

_[=pealflg,@)| itzevia, a0,
T](I) - u=1
0 otherwise.
Let {: be smooth functions on R satisfying (s (s) =/ (1 Es)/2 for s €
[—1/2,1/2], 0<¢: <l and 2+ %=1 Weset x:(x) : =l (nk)).

These belong to Hi2 (v(a)). Therefore by Lemma 2.1(ii), we have
q(&0) () =q (£0) (x+¢) +q(&0) (x-9)
—5 (laxP+ax-1D e, ¢)
2E((X3—x2) Bo, ©) — (Rig, @)
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for any ¢ €Cy (v (a)) and some bounded function ®;. It is easy to see that
(X%_X%)QBZC H1|¢ﬂ|h#°¢ﬂ
u=

for some C>0. By the IMS localization (Lemma 2.1), we obtain (3.2).

Lemma 3.2. Let L(E), £>0 be a family of self-adjoint operators on a
Hilbert space. Then the following (i) and (ii) are equivalent:

, . inf spec L (§) _
( 1 ) ilTI‘il’ log E (oo
(ii) lim ¥ e"2®)y=0 for any kEN and t>0,
EToo
—tL(&)

where e , t>0, is the semigroup generated by L(E) and ||+ |lo is the operator
norm on the Hilbert space.

We can prove this easily by using the relation
[ e=*®o=exp (—t inf spec L (£)). (3.3)
We omit the detail.

Lemma 3.3. Let V be a nonnegative continuous function on D. Then,
for any REN, there is a constant C,>0 such that

el 0]
<Cy sup E[(_/;‘V(X(s, x))ds>_2k : ‘r>t], (3.4)

€D

where T=inf {t>0: X (¢, x) €0D}.

Proof. For any ¢ €C% (D), we have

o340}l 0

:‘E[E'@xp(‘fj;ti/(X(s, x))ds)go(X(t, x)) . z‘>t”

sckE[(fO'v(X(s. 2as) et Ellp(x e x)l e>0ve

and

exof=(—5+ev)]],

t -2k . 1/2 a2z
< Cysup E[(j; V(X (s, r))ds) > PR

zeD

glr
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where | - ||(1, is the operator norm on the L' space. Since
" e'm"m <1,
we have (3.4)

Lemma 3.4. Under the assumption (H), there exist constants Cy and Cs
such that | ¢, (x)| <Cy implies |A¢Q, (x) | <Colg, (x) |

Proof. By virtue of the condition (D) (i), for each a € ¢;*(0), there
exists a coordinate neighborhood (v(a), (3!, y? -, y%)) of D around a such

that y' = ¢, (y) and (y? -+, y) is a coordinate of the submanifold ¢, (0).
By the Taylor theorem, we estimate as

\ |A¢)ﬂ (Ul- yz' ”" yd) _A(pﬂ (0' yzv .“v yd)|£ca|yl|2
for some constant C, depending on a. This implies

[AQ, ()| <Calgy (y) 2

on v(a). Since ¢z*(0) is compact, we can take constants C; and C; satisfying
the statement of this lemma.

The following is the key estimate to prove Theorem 3.1 (cf. Kusuoka-
Stroock [8] and Proposition 3.2 in [23]).

Proposition 3.1. Under the assumptions of Theorem 3.1, we have

xeD

sup E[(j: ﬁhu(¢u(X(s, x)))ds>_p : z‘>t] <oo (3.5)

for any p=1.

Proof. We give the proof only under the condition (H). The proof
under the condition p<1 can be given by referring the following proof and the
proof of Proposition 3.3 (ii) in [23]. Let (w'(t), w?(t), -+, w?(t)) be the

d-dimensional Brownian motion, o(x) = (67%(x)) 1<jx<a be the square root of
(g (x)) 1<jk<a which is the inverse of the metric tensor (gjx(x))1<jk<a, B(x)

= (B (x)) 15520 = ((1/29) 2%-10(gg’) /82"*) 15j<4 and g(x) = Vdet(gi (x)) .
Then we can regard the Brownian motion X (¢, x) as the solution of the
following stochastic differential equation:

X(0) =z,
aX (1) = éoﬂ CC() dut (8) +B7 (X (1) )at for T>t,
X(t) is killed at t=r,

where 7=inf{t>0: X(¢t) €0D}. In particular we have
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Du(XUNAT, 2, w)) —ulx)

. tAT
= Z f (67*0,¢p,) (X (s, x, w))dw (s) +f l(Agbﬂ) (X (s, x, w))ds
Jk=1 0 2
(3.6)
for any #=1, 2, ***, n. Asin [23], we estimate the probability

P(J: fl hy (P (X (s, x)))ds<%, z‘>t>
=p([ ]i[nu (GuX (5, 2)ds <%, 7, (z) S5, 7>1)

+P<_/: ll[hu(gb,,(X(s, x)))d8<%v 7 (x) >%‘ T>t>

u=1
= . 11+12,

where A€ (0, 1] is an additional variable and 7;(x) =inf{s=>0 : |¢,(X (s, x))|
> for any p=1,2, =+, n}.
By using the strong Markov property as in [23], we have

+ —1
Ilgsup{P<2 /\0.1/2 (x) < RHZ:th(%>>

2€D, |¢u(x)[>2 for any p=1, 2, -, "]

where 032 (x) =inf{s =0 : ¢, (X (s, 2)) | <A/2 for some pE€ {1, 2, ---, n}}. 1If
RI1%2_1h,(2/2) =>2/t, then we have

IISsupP< sup l, (X — ¢, x)|>—

zeD 0<S<1/AR T2 hu(A/2)}

for some vE{1, 2, -, n}>

<Tsupp(  swp | S04 Clu,xw))aw )| >4,

v=1z€D 0<S<1/{RI. hu(A/2)} Jk=1

T>

D)
RI12-1h,(A/2)

n A
+ZsupP< sup 2 1

v=1reD 0<S<1/{RM hu(A/2)}

'[:A(‘b—"()((u, x))du|>5

SRS S
RI12-1h, (2/2)
= . 111+112.
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By Theorem I1-7.2' of [9], for each v=1, 2, *-, n and each x €D, there exists
a 1-dimensional Brownian motion B (¢) such that

S 7070 O 2, 0) ! )

=B( fo S%H Ay (X (u, x, w)) ||2du>. (3.7)

Since ||d¢v|| is bounded, we have

IHSnP< sup |B (s)|>%>

0<S<C\/ARM 1 hu(2/2)}

SCzexp< —C3A’R ﬁ h"(%»

=1
from (8.29) in [8]. On the other hand, since A¢, is bounded, there is some

C+>0 such that I;,=0 if AR[I%_1h,(2/2) ZC,.
On the other hand, for each v=1, 2, -, n, we set

of,(x) : =inf{s=0: |¢u NI<a,
() - —mf{s>01 W |¢y X(s z))|> A},

o}, (x) : =inf{s>T1‘7}(:r) ’|¢V(X(s x))| <4},
2, (x) - —1nf{s>04 v(@) Dl (X (s, 2)) | >4},

Then we have

IzSP< i <T}f'y(x) /\%)-(01'7;/(1) /\%)‘>—2% for some VE ({1, 2, -+, n})

m=1

and, for each v=1, 2, **-, n,

S (@K (@A)~ 4 K (a2 @) As))|<20 (3.8)

m=1

sup
0<s<t/2

By using (3.6), we have either

sup |5 f T 0 0u) (X, 2, w))dw? () | <47
0<s<ts2lm=1 j,k=1 ", (x) As
or
o o, (x) As
sup zf %"—v(xu, 2. w))du|>22
o0<s<ts2lm=1v oflL(x) As

from (3.8). Accordingly, we estimate as
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Izsé:lp < > (n’t’u(x) /\%) —<m’f‘» () /\%)I >#,

m=1

(x) As

S5 [T 040 X,z w)aw )| <
m=1j,k=1 V() As

ST A (G, 2, w))

m=1" of',(x) As

2)

sup
0<s<t/2

+iP ( sup

v=1 0<s<t/2

t
22, > 2)

= . 121+122.

As in (3.7), there exists a 1-dimensional Brownian motion B(t) such that

0 d () As
£ 5T (00 Kz, w)aw! )
1j,k=1

m=1 j W(x) As

=5( 3 [ 0 (K, ) ).

V() As
By the condition (D, n) (ii), we have
inf{| d¢y (@) | : z€D, |, (X)|< A} =C—C'A*
for some C, C'>0. Therefore, from (8.27) in [8], we obtain

, tHC—CA®
In<C exp<—%>.
On the other hand, by Lemma 3.4, we see that

122:0 if 2<C<1/\%>

for some C>0.
As in [23], we now note the condition (E, p). For an arbitrary fixed
0<e<1/n, we take A.>0 such that A°log (1/h,(A)) <e/2 for any 0<A <A,

and any g =1, 2, -, n. If we set A = 2 (logR) ~'*, then we see that
ARI1%-1hy (A/2) > RY? and t(C—C'2%) /22> C"t (log R) ¥° for large enough R.
Thus there are Ci, Cs, ***, C6>0 such that

P(j;f ﬁ by (u (X (s, :c))ds<%, z‘>t>

<Ciexp (—CaRY?) +C3 exp (—Cyt (logR) ?*)

for any R=exp(Cst’) V (2/t) 2V Cs. Then as in (3.49) of [23], we obtain
(3.5) under the condition (E, o) for some p<2.

Proof of Theorem 3.1. By Lemma 3.1 and the diamagnetic estimate
(Lemma 2.4), we have
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inf spec L (€b) =C, inf spec(—A+E H |Gulnye du) —Cs

u=1

for some Ci, C2>0. Then, by Lemmas 3.2 and 3.3, it is enough to show that

reD

sup E[(]: ﬁ (| pulhus ) (X (s, x))ds)_p X z‘>t] < oo

for any p=1. This follows from Proposition 3.1.
From Theorem 3.1, we obtain the following as in Section 2:

Corollary 1. Under the assumption of Theorem 3.1 and (PG), it holds
that

sup|&[¥le =% (x, y) | < oo

£eR
x,yeD

for any REN and t>0.
Moreover Corollary 1 leads to the following:

Corollary 2. Under the assumption of Theorem 3.1 and (PG), for any
t>0, x, y €D, the distribution of Jéb(X (s, x)) °dX (s, x) under the conditional
probability P(+ |X (¢, x) =y) has a smooth density function whose derivatives are
all bounded: there is a function p(t, x, y; A), t>0, x, y €D, AER such that
(2.19) holds, p(t, x, y; A) is smooth in A, and 0*p(t, x, y; A) /0A* are all
bounded in A for any kEZ,.

4. The Neumann condition

In this section, we consider the Neumann boundary condition. We consider
only nondegenerate magnetic fields and we take only a half space as the
domain D : let D={r= (2!, x? -, x%) ER? | >0} given a metric as before,

and b be a real C* differential form as before. Let C¥ (D) be the set of all
C-valued functions on D which can be extended to C* functions with compact

supports on R? For any @€C; (D), we set ¢(b) (¢) as in (2.1) and

Dom (¢V (b)) as the completion of C7 (D) by the norm vq () (- )+] - [F. We
extend q(b) (+) naturally to Dom (¢" (b)) so that (g(b), Dom (¢" (b))) becomes a
closed sesquilinear form. Let L¥(b) be the associated self-adjoint operator:
LY (b) is the operator with the Neumann boundary condition. We will study
the asymptotics of inf spec LY (€b) as & tends to infinity, where spec LY (€b) is
the spectral set of the self adjoint operator LY (€b).

The main theorems are the following:

.

Theorem 4.1. We assume that the metric on D is standard and that the
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magnetic field is uniform: gj(x) = 0 and dbj(x), j, k=1, 2, =, d are
independent of x. Then there exists a universal positive constant H such that

inf spec LY (b) > H#| db|., (4.1)
where || db"oo 1S the maximum norm of db as

| dblle= max |dbjl.

1<j,k<d

Theorem 4.2, Under the condition (G), it holds that

H N
lim 01 Sp“&L (£0) > (g KN db () |, (4.2)
£1oo TED

where K is the constant in Theorem 4.1.

Remark 4.1. (i) In the circumstances of Theorem 4.1, by Weyl's
criterion (see e.g. [19]), we can show

ess spec LY (b) Dspec £ (b),

where ess spec LV (b) is the essential spectrum of the operator LV(b) and
£ (b) is the operator with the uniform magnetic field on R? If we consider
the Dirichlet condition instead of the Neumann condition, then, by the same
criterion, we can show

spec L (b) =ess spec L (b) =spec £ (b).

In particular we have
inf spec L (b) =%|| dbl;. (4.1)

(i) In Theorem 4.2, if we consider the Dirichlet condition instead of the
Neumann condition, then we have

. inf spec L (8b) _ . '
lim L spec LB _ ;e Ly 4y ) (4.2)
£1 oo E .reD4

(cf. Theorem 11.1 in [15], Theorem 4.1 in [22]).

For the proof, we first prepare a fundamental lemma. For any x = (2!,
2

x% -+, %) ER?, we write £= (z2, *++, x%). For any function ¢ on D, let @ and
@ be functions on R¢ defined by

@ (x) =sgn (@) @ (x|, 2),

P@) =¢(zY, 2).

We extend the metric to R? by
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—~

Mm@ gu@ - qu@
PREI R
00 @) gul) - Gul)
and extend the form b to R? by

b (x) = by (x) da'+bz (x) dx? 4+ + by (x) dx’.

In the following, for simplicity, we take b so that by=0 on {x!'=0}. This is
always possible by the gauge invariance. Then b is continuous on R?. For

any ¢ €Cy (RY), we define Q(b) (¢) as in (2.1) where D is replaced by R
Then we have the following:

Lemma 4.1.

inflg (b) (@) : pECy (D), lol=1}=inf{Q () (¢) : pECTRY), lpl=1}.
(4.3)

Proof. It is easy to see that

[, £ " @ (G0+1,) @) TG, be @) @) g @) dx

jk=1

= [, 20" @) (0,45,) ) (10,45, @) § @)1 )z
' (4.4)
for any 9 €CF (D), where D¥=(—c0, 0) XR*™' and §(x) = /et (g;c (@) -
From this, we have

1) (9) =5 Q) ().

Since @ can be approximated by elements of C§ (R?) in Dom (Q (b)), we have
inflg (o) (@) : peCs (D), lol=1} =inf{Q (5) (¢) : pCs (RY), |pl=1}.
On the other hand, from (4.4), we have
Q) (¢) =q(b) (¢lo) +q ) (¢ (—=z", 2)|»)
for any ¢ €C7(R?. From this, we have

inf{lQ () (¢) : pECTRY), lgl=1) Zinflg (b) (¢) : gECT D), |pl|=1}.

Proof of Theorem 4.1. We may assume that the dimension d is 2. In fact,
for the general dimensional case, we choose 1<5, k<4 so that

dbjxe=| db|.,
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and estimate as
q () (p) = (|| i0;+b; () @ (2) [P+ Gox+bi () @ () [P).

The right hand side is estimated by the result of the 2 dimensional case.
From Lemma 4.1, we have

inf spec LY (b) =inf{Q (b) (¢) : p€Cs (R?), |¢|=1}.

We can show that

Q) () 2= (g6, ), .5)
where db is identified with the component db;.. In fact, we have

Os%j;zd-rl{(ial“-l;l) + (iaz+i)z)}¢|2

=Q) (¢) 2 [ dzsan (&) @) g2

For an arbitrarily fixed 0<a<1, we set n(t) = (tAa) V (—a) for tER
and

It is easy to see that x+ € Hl2(R?). Then, by the IMS localization (Lemma
2.1), we have

o @) >((ly -z xd)y )

By an easy calculation, we have

1
S lagelt=—t
€ss Sup ae(+,—)| Xal 4(1—a2)

Moreover, by using also the diamagnetic estimate (Lemma 2.4), we have

I S
16(1—a?’

where the operator on the right hand side is the Friedrichs extension of the

inf spec LY (b) =inf spec(——+-|@|-|n (xt) |> -

corresponding operator on C7 (R?). However, by the min-max principle, we
easily see that

inf spec ———+J@L mf spec ——+| b|
4

where the operator on the right hand side is the operator on the interval

[al
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[0, @] with the Neumann boundary condition.
On the other hand, by using the min-max principle and changing the
variables, we easily see that

_ inf spec L (£b)
(b) = g

inf spec L¥ 4.7)

for any §>0. Therefore we have

N
+E|db|t 1

. 1. ( d’ )
N(p)y >t - T AR 2
inf spec L (b)—4gmf Spec | al 166(1—a?)’

dt?

By using the min-max principle and changing the variables, we have

1 <_d_2 )” _ lav® s
&mf spec dt2+|db|t 0al £V N ((Eldb]) ),

where

2
N (R) =inf spec(-éj?-i-t)

N

[0,R)

for R> 0. By the min-max principle, we see that N(R) is an increasing
function in R. Therefore for arbitrarily fixed R>0, we have

(5) 21 1

inf spec LY 4E173 —m

for any E=R%/|db|. 1f we regard the right hand side of this inequality as a
function of all £>0, then the maximum is

|db|N (R)¥2/1—a? _ - o

33/2

and this is attained at

[4(1—a32)N(R) ] mldlbl =

Therefore, if £&=>R%/|db|, then we have inf specL” (b)) = 4. This condition is
rewritten as

3

4 2N(R)R*(1—a?).

Now we take @ and R so that this holds as an equality. Then we have

_ldbIN (R)
A =1

Therefore we have
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inf spec LY (b) ZJd—blsupM, (4.8)
6 %0 R

which completes the proof.

The proof of Theorem 4.2 is reduced to that of the following modification
of Theorem 3.1 of [4]:

Lemma 4.2. Under the condition (G), there exist constants Ci, Cz such
that

C1
51/4

for any @ E€C (D) and large enough E>0.

(1+-8)a @) () 2¢ [ (#ab @ k=54 )lo ) Favol &) (4.9)

81/4

The proof is almost the same with that of Theorem 3.1 of [4] except for
using Theorem 4.1.

We next consider the asymptotics of the heat kernel as in Sections 2 and
3. We assume

(BO) g1 (@) =0y,
We first give the heat kernel ¢ ™ (x, y) : for any 9 €L?(D),
(e—ILN(fb)gD) (x) — <e—1LN<£b) (1., . ),¢>'

where <+, + > is the inner product in L? which is complex linear in the
both variables. Then we have the following representation:

Proposition 4.1. We assume the conditions (BO) and (PG). Let
XN (t, z), t>0, x ED, be the reflecting barrier Brownian motion on D, starting at
x . XV(t, x) is a diffusion process gemevated by AN/2, where AN is the
Laplace-Beltrami operator with the Newmann boundary condition. Let ¢’/ (x, y)

ta" /2

be the wntegral kernel of the semigroup e Then we have

e—tL”(b) (

X, y)

=E[exp<—ij;tb (XN (s, x)) °d X" (s, x))

XY (t, x) =y]e"'w/2 (x, y),
(4.10)
for (t, x,y) € (0, ©0) XD XD.
Proof. If 5,=0 on 0D, then the proof is the same with that for the case

b=0(cf. [2], [9]). For the general case, we choose fECy (D) so that df/dx*

=b; on 0D and set b:=b —df, which satisfies I°)1=O on 0D. Then, by the
gauge invariance, we can show (4.10) as follows:

E[exp<—ij:b (XN (s, x)) cd X" (s, x)) XN (¢, x) =y]e"‘w (x, y)
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e [exp( —i 5 00" (s, 2)) -ax¥ s, 2) ) X ¢, =y |

X 42 (, y) e~ ®

=eif(1)e—tL"'(b) (x,y)e

—if )

—tL¥(b) (

=e x,y).

From Theorem 4.2, we obtain the following as in [22]:

Corollary 1. Under the conditions (PG) and (BO), it holds that

lim sup ?llETlogle e (r )| < —infH| db (x) | (4.11)

§=£2 (try)eltoo) xDxD zeb
for any t¢>0.
Moreover Corollary 1 leads to the following:
Corollary 2. We assume the conditions (PG), (BO) and
infll ab () |- >0.

xeD
Then for any t>0, x, y €D, the distribution of [ob (XN (s, 2)) *dX" (s, x) under
the conditional probability P( + |XN(t, x) =y) has a real analytic density function:

there is a function p¥ (¢, x, y: A), t>0, x, y €D, AER such that p" (¢, x, y; A) is
real analytic in A and

(fb (XN (s, x))°dXN (s, x) EA

XNt x)= ) fp (t, x,y; A)dA
(4.12)

for any Borel set A in R. The radius of convergence of its Taylor series around
any point is greater than or equal to t infrepH || db(x ||°°

Remark 4.2. Corollary 2 is known as transverse analyticity. This is
proven in Malliavin [12], [13], [14] and Prat [18] for the case without
boundary and in Ueki [22] for the absorbing barrier Brownian motion.
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