J. Math. Kyoto Univ. JMKYAZ) 597
37-4 (1998) 597-613

Chern classes for parabolic bundles
By

Indranil Biswas

1. Introduction

This is a continuation of our earlier works, [Bi2], [Bi3], where we
studied various properties of parabolic bundles (both on curves and on higher
dimensional varieties). Parabolic bundles (introduced in [MS] for curves
and generalized to higher dimension in [MY]) are vector bundles (or more
generally torsion-free coherent sheaves) on open varieties together with a
weighted filtration at the boundary. Various results on vector bundles over
projective manifolds generalize to the parabolic context.

Here we give a candidate for what should be the Chern classes of a
parabolic bundle. Taking a hint from the definition of parabolic degree, which
should be the first parabolic Chern class, of a parabolic bundle, in Section 3
we define parabolic Chern classes. (Indeed, the definition of the parabolic
degree in higher dimensions, which is rather nontrivial (introduced in (MY]),
serves as a good hint.)

Given a representation in GL (r, C) of the fundamental group of a smooth
open variety, there is a natural extension of the corresponding flat bundle to
some suitable compactification (the divisor at infinity should be of normal
crossing) as a parabolic bundle. We give a justification for our definition of
parabolic Chern classes by pointing out that all the parabolic Chern classes of
such a parabolic bundle vanish.

S. Bloch and D. Gieseker showed that the Chern classes of an ample
vector bundle are numerically positive. This result was extended in [FL],
and all the numerically positive characteristic polynomials for ample vector
bundles were identified. In [Bi2] we defined parabolic ample bundles and
showed that they exhibit various properties analogous to an ample vector
bundle—for example, Hartshorne's characterization of ample vector bundles
on curves, Le Potier vanishing theorem.

In Section 4a we show that the parabolic Chern classes of a parabolic
ample bundle are numerically positive. The statement correpponding to the
theorem of [FL] is also valid. We prove that under certain conditions on the
filtration, a parabolic stable bundle with vanishing parabolic Chern classes
share the characteristics of a stable vector bundle with vanishing Chern
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598 Indranil Biswas

classes. The characteristics in question are the relations with the unitary
representations of the fundamental group, and the Hodge and the Lefschetz
decompositions of the cohomology groups.

2. Preliminaries

Let X be a connected smooth projective variety over C of complex
dimension d. Let D be an effective divisor on X.

Fix an ample line bundle L on X. For a coherent Ox module E, define the
degree

deg (E) := (1 (E) Ui (L)) N [X] €EZ

Definition 2.1. Let E be a torsion-free coherent Ox module. A
quasi-parabolic structure on E (with respect to D) is a filtration by Ox-
coherent subsheaves

E=F\(E) DF;(E) D..DOF,(E) DF141(E) =E(—D)

Where E(— D) is the image of EQ,0x(— D). The integer I is called the
length of the filtration. A parabolic structure is a quasi-parabolic structure, as
above, together with a system of weights {aj, ..., a;} such that

OSa1<a2...<a1_1<a,<l
where the weight a; corresponds to the sheaf F; (E).

We will denote a parabolic sheaf, as above, by (E, Fx, @x); and when
there is no scope of confusion, simply by Ex Define the following filtration,
{E.}, of coherent sheaves parametrized by R:

E.:=F;(E)(—[]D) (2.2)

where [t] is the integral part of t and a;_; <t— [t] <a;, with the convention
that ap=a;— 1 and a;+1=1. Any coherent subsheaf V of E has an induced
parabolic structure such that if {V.} is the corresponding filtration then V,=
E.NV for any t=0.

The parabolic degree of Ex, denoted by par_deg Ex, is defined as:

0
par_deg Ex 1=f_ldeg (Ep)dt (2.3)

The quotient par_deg Ex/rank E is usually denoted by par_gEx.

Definition 2.4. The parabolic sheaf Ex in (2.1) is called parabolic
semistable (resp. parabolic stable) if for any subsheaf V of E, with 0<rank V
<rank E, and E/F being torsion-free, the condition par_uVs <par_gEx
(resp. par_uVs<par_pEx) is satisfied.

All the above definitions can be found in [MY].
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Consider the decomposition
D= Zn;D,- (2 . 5)
i=1

where any D; is a reduced irreducible divisor and n;=1. Let
fi niDi— X

denote the inclusion of the subscheme #;.D;.
Take a torsion-free coherent sheaf E on X. For 1<i{<n, let

O=F;;+1CF;lCF;i—1C"'CFgCFiZﬁkE (2~6)

with [;21, be a filtration of coherent sheaves on n;D;. Given strings of real
numbers af, 1<j<1;+1, satisfying

l1=ajm >al>al_ 1> >ai>ai >0 2.7

we may construct a parabolic structure on E which we will describe now.

Define the coherent subsheaf, Fi, where 1 <i<n and 1<j<l;, of E using the
following short exact sequence:

0—Fi—E— (f¥E)/Fi—0 (2.8)

(the surjective homomorphism is given by the restriction map). For 1<i<n
and 0<¢t<1, let I} be the smallest number in the set of integers

{jell, . +1} | ai=t)

Define E; to be the following intersection of subsheaves of E :

E,:=NF,CE (2.9)
i=1

The filtration {E;} defines a parabolic structure on E. It is easy to see that
any parabolic structure on E, with D as the parabolic divisor, arises this way.

Let f : X—D — X denote the inclusion of the complement of D. For two
parabolic sheaves Ex and W« on X, with D as the parabolic divisor, and c €R,
define M. to be the subsheaf of the quasi-coherent sheaf fsf*(E & W)
generated by all Es@ W, with s +t>¢. The parabolic sheaf given by the
filtration {M¢}ceg is called the parabolic tensor product of Ex and W, and it is
denoted by Ex@ W« [Bi2]. The parabolic m-fold symmetric product, S” (Ex),
is the invariant subsheaf of the m-fold parabolic tensor product of Ex for the
natural action of the permutation group for the factors of the tensor product.
The underlying sheaf of the parabolic sheaf S™(Ex) will be denoted by
S™(Ex)o.

The parabolic sheaf Ex is called parabolic ample if for any coherent sheaf
F on X there is an integer m, such that for any m = m,, the tensor product
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FQS™(E4), is generated by its global sections ([Bi2], Definition 2.3).
We will now recall the definition of an orbifold bundle.
Let Y/C be a smooth projective variety, and let

o G— Aut(Y)
be a finite group acting faithfully on Y.

Definition 2.10. An orbifold sheaf on Y, with G as the orbifold group,
consists of the following data: a torsion-free coherent sheaf, V, on Y, and a lift
of the action of G on Y to V, i.e., G acts on the total space of stalks of V such
that for any g € G this action gives a coherent sheaf isomorphism between V

and o(g™!) *V. A coherent subsheaf, F, of V, with V/F being torsion-free,
will be called an orbifold subsheaf if the action of G on V preserves F.

Let L be an orbifold line bundle on Y which is also ample. So using L
we may define the degree of any coherent sheaf on Y.

An orbifold sheaf V on Y is called orbifold semistable (resp. orbifold
stable) if for any nonzero proper orbifold subsheaf, F, of V with V/F torsion
free, the following holds:

deg F/rank F<deg V/rank V (resp. deg F/rank F<deg V/rank V)
(2.11)

If V is an orbifold stable bundle with ¢; (V) =0=c,(V), then there is an
unitary flat connection on V which is invariant under the action of G;
moreover, such a connection is unique ([S1], page 878, Theorem 1,
Proposition 3.4). This connection is irreducible in the sense that there is no
proper nonzero orbifold subsheaf of V which is left invariant by the
connection.

We will now recall some results proved in [Bi2], [Bi3].

Assume that D is a divisor of normal crossing, i.e., all n;=1 and D; are
smooth divisors and they interect transversally.

Let (Ex, Fx, ax) be a parabolic bundle on X given by (2.9). Assume
that all Fi on D; are subbundles of ffE. Also, assume that all the weights a}
are rational numbers; so a! =mi/N, where N is a fixed integer and mi€ {0, 1,
2, ..., N—1}.

We will now recall the “Covering Lemma” of Y.Kawamata (Theorem 1.1.1
of [KMM], Theorem 17 of [K]).

With the above notation, there is a connected smooth projective variety Y
and a Galois covering morphism

p.Y—X
with Galois group G = Gal (Rat(Y) /Rat(X)) such that D : = (p*D) res is a

divisor of normal crossing on Y, and p*D; =E:N.(p*D)) rea, 1 <i<n, where k; are
positive integers.
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Let D; denote the reduced divisor (p*D;) rea. Let Q! denote the vector
bundle on D; defined by:

Qi := (FFE/F}) ®F*0x (D;) = (f*E/F}) ®N; (2.12)
where N; is the normal bundle to the divisor D;.

Let U! denote the kernel of the obvious projection of the pullback bundle,
p*(EQ Ox(D)), onto the restriction of the pullback sheaf, f*Qi (which is
supported on k:ND;), to ki (N—mi_;) D;.

There is a natural orbifold bundle structure on f*(EQ Ox (D)) for the
group of deck transformations. Since the divisor D; is invariant under the
action of G on Y, there is an orbifold structure on 0y(]’.5,~) for any j € Z.
Hence there is an induced orbifold structure on the sheaf U

Define V := N U to be the intersection of all U} inside f* (EQ0x (D) ).

From the assumption on Ex, namely that any F} is a subbundle of E;, it
follows that any U} and V are all locally free coherent sheaves on Y.

Note that since p is a covering morphism, the direct image pxV is locally
free on X. Moreover, the orbifold structure of V gives an injective
homomorphism of G into Aut (pxV), the group of global automorphisms of p«V.

The parabolic bundle Ex can be recovered from the orbifold bundle V in
the following way: define

£oi= (2 (V@O (S 1101 5)) ) (2.13)

to be the invariant part of the direct imagde. Then the filtration {E,} ;cg is
precisely the filtration associated to Ex as in (2.2) [Bi2], [Bi3].

Let B¢ : D;— Y denote the embedding in Y. The normal bundle on D;
(for the embedding BY) will be denoted by Nj,. Let K(Y) denote the
Grothendieck group of coherent sheaves on Y. (Since Y is smooth, K(Y)
coincides with the Grothendieck group of locally free sheaves.) In [Bi3]
((3.15) and Lemma (3.16)) we showed that the following equality of
elements of K (Y) holds:

n 1 kimf o
V=p*E+ 2 2 2 B4 ((Fi/Fjs1) ®NE) (2.14)
i=1j=1 k=1
If we use E=p*L in order to define the degree of a coherent sheaf on Y, then
(2.14) implies that

degV = # G.par_degEx (2.15)

where #G is the cardinality of the group G.
Using the obvious identification of coherent subsheaves of E and orbifold
subsheaves of V and (2.15) we get the following proposition:
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Proposition 2.16. The orbifold bundle V is orbifold semistable (resp.
orbifold stable) if and only if Ex is parabolic semistable (resp.  parabolic stable).

In ([Bi2], Lemma 4.6) we proved the following lemma:

Lemma 2.17. If Ex is parabolic ample then the vector bundle V is ample
(in the usual sense).

The symmetric tensor power S™(V), m=1, of an orbifold bundle has an
induced orbifold structure. The parabolic bundle corresponding to S*(V) (by

(2.13)) is the parabolic symmetric power S™(Ex). It is easy to see that for

a torsion-free coherent sheaf F on X, the equality, (VQp*F)¢=EQF, holds.
This immediately gives the following converse of Lemma 2.17:

Lemma 2.18. If the orbifold vector bundle V is ample then the
corresponding parabolic bundle Ex is parabolic ample.

3. Parabolic Chern character

We now want to define parabolic Chern classes. We do not assume D to
be a divisor of normal crossing.

For a coherent sheaf V on X, let Ch(V) € H®" (X, Q) be the Chern
character of V. If V is a vector bundle of rank 7, for a real number ¢, the ¢-th
power of the Chern character of V, namely Ch(V)*, makes sense as an element
of H®'®" (X, R). Indeed, setting A: = 2;51Ch/(V), where Ch/(V) is the
component of Ch (V) of degree 2j, the power series expansion

t

Ch(v)‘=(r+ZChf(v)) :(7+A)':J§<;>r“jAj

ji21
where (;) =¢(t—1)..@¢—j+1)/1.2.4, is actually a finite sum, since

H (X, R) =0 for j>24d.
Let Ex be a parabolic bundle given by (2.9). We define the parabolic
Chern Character of Ex, denoted by Ch(Ex), as follows:

Ch (Ew) :=Ch (E) [1Ch (Ox (ni. D)

I M

+3 S0 (7). (Ch (0x(1.D)) ™~ Ch (Ox (ni. D)) ™) EH" (X, R) (3.1)

where Fi are as in (2.8).

There are polynomials Py of k-variables and with rational coefficients
such that for a coherent sheaf F on X, the k-th Chern class, ¢k (F), is
Py (Ch°(F), .., Ch*(F)), where Ch’(F) is the component of Ch (F) of degree 2.

The k-th parabolic Chem class of Ex, denoted by cx (Ex), is defined to be

ck (Ex) *=Py(Ch°(Ex), Ch' (Ex), ..., Ch* (Ex)) EH™ (X, R) (3.2)



Parabolic bundles 603

where Ch/ (E4) is the component of Ch (Ex) of degree 2j.

Clearly we have that Ch°(Ex) = rank E, and par_deg Ex = (c; (Ex) U
a (L)Y N [x].

Let CH*(X) denote the Chow ring of cycles on X modulo rational
equivalence. There is a natural cycle class map

¢ CH*(X) @R — H®*" (X, R) (3.3)

Following (3.1) we may define Ch (Ex) € CH* (X) @ 2R such that ¢ (Ch (Ex))

Let D be a divisor of normal crossing. Take a vector bundle V on X
equipped with a logarithmic connection, V, on V which is singular along D.
(See [D], [Ka] for the definition of a logarithmic connection and its
properties.) Let

R(V,D;) €H’(D;, End (ffE))

denote the residue of V along Di. So locally around D the connectinn V,
with respect to some suitable trivialization of V, is of the form

n )
i+ 2R (V, D)%
i=1 Zi
where z; is a local defining equation for the divisor D;. Assume that the real
part of any eigenvalue, A, of any R(V, D;) satisfies the condition that

—1<Re(1) <0

For example, given a flat vector bundle on X — D, there is a natural
extension of the flat bundle as a logarithmic connection on X, known as the
Deligne extension, satisfying the above eigenvalue condition for the residue
[Ka]. The generalized eigenspace decomposition for R(V,D;) gives a
filtration as in (2.6), and the negative of the real part of the eigenvalues of
the residue gives a string of numbers as in (2.7). Thus we have a parabolic
structure on V. Let Vi denote the parabolic bundle obtained this way.

The Chern classes of V can be expressed in terms of the residues of V;
the precise expression can be found in Theorem 3 (page 16) of [Oh].

It is an elaborate but straight-forward calculation to check that the
parabolic Chern character

Ch(Vy) =rank V (3.4)

The following inductive step is necessary in the computation of (3.4): The
connection V using local coordinates induces a logarthmic connection on f§V,
which is singular along D; N (D — D;), and any F'; is invariant under this
connection. Thus F! has an induced logarithmic connection, and hence any
Fihas an induced logarithmic connection. So we may use the above
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mentioned result in [Oh] to calculate the Chern classes of F.

4. Parabolic ample bundle and parabolic Chern classes

4a. Positivity of parabolic Chern classes. In [BG] it was proved
that the (nontrivial) Chern classes of an ample vector bundle are all
numerically positive. In [FL], extending the above result of [BG], the class
of all numerically positive characteristic classes for ample vector bundles was
identified. We will show that (2.14), Lemma 2.17, and the definition (3.1)
combine together to give the generalizations of the above results to the
parabolic context. For that we need to restrict the class of parabolic bundles.

Assumption 4.1. Henceforth we will always impose the following two
conditions on the parabolic bundles that we will consider:
(1) the parabolic divisor is a divisor of normal crossing;

(2) all Fi (in (2.6)) are subbundles of ffE.

Let € denote the collection of all pairs of the form (X, Ex) where X is as
in Section 2 and Ex is a parabolic ample bundle of rank r on X satisfying the
conditions in 4.1. Take a weighted homogeneous polynomial of degree d in r
variables

PEQ[x1, x2..., /) (4.2)

with the weight of x; being i. Following [FL] we will call P as numerically
positive for parabolic ample bendles if for any (X, Ex) €8,

[ PC(ED). 2B, B ER @.3)

is actually a strictly positive number.
Let A denote the space of partitions of d by nonnegative integers bounded
by r.
For A€ A, let P, denote the corresponding Schur polynomial [FL]. So
P= ZC}P} (4 4)

2€A
where ¢, are rational numbers.

Theorem 4.5. Any parabolic Chern class is numerically positive for
parabolic ample bundles. Move generally, the chavacteristic polynomial P (in
(4.2)) is numerically positive for parabolic ample pundles if and only if all c; (in
(4.4)) are nonnegative and P is nonzero (i.e., not all c; are zevo).

Proof. Since the usual characteristic classes of a vector bundle are
special cases of the parabolic characteristic classes (take the zero divisor as
the parabolic divisor!) Theorem I (page 36) of [FL] (the result mentioned
above) would imply that if P is numerically positive for parabolic ample
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bundles then P is nonzero with all ¢; being nonnegative. To prove the
converse, take a nonzero polynomial P such that all ¢; (in (4.4)) are
nonnegative. Take any (X, Ex) €. We want to check that the real number
in (4.3) is strictly positive.

A parabolic bundle is parabolic ample if and only if the new parabolic
structures obtained from sufficiently small perturbations of the parabolic
weights (keeping the qtuasi-parabolic structure fixed) are all parabolic ample.
Similarly, a top cohomology class on a projective manifold is numerically
(strictly) positive if and only if the cohomology classes obtained from
sufficiently small perturbations of it are all numerically strictly positive
classes. From these observations we conclude that in order to prove that P is
numerically positive for parabolic ample bundles, it is enough to check the
positivity of (4.3) only for parabolic bundles with rational parabolic weights.
So we will assume that the parabolic weights of Ex are all rational numbers.

Comparing (2.14) and (3.1) it is a straight-forward calculation to check
that

p*Ch (Ex) =Ch (V) (4.6)

(We will omit the computation for the above equality.) Note that the equality
(4.6) is equivalent to the equality between Chern classes, namely p*c; (Ex) =
ci(V), for all i=0. From Lemma 2.17 we know that the vector bundle V on
Y is ample. Thus, from Theorem I of [FL] we conclude that

c I=fyP(cl(V), c2(V), ... e, (V)) >0

Now the equality (4.6) implies that the real number in (4.3) is strictly
positive (=c¢/ #G). This completes the proof of the theorem.

Remark 4.7. In [F], Fulton identified the set of all positive
characteristic classes for filtered ample vector bundles (filtered by
subbundles). Imitating the above argument it is easy to establish the
parabolic analogue of this result of Fulton.

4b. Examples of parabolic ample bundles. In [Bi2] we observed
that a parabolic line bundle Ly on X is parabolic ample if the first parabolic
Chern class ¢; (Lx) €EH%(X, R) is contained in the positive cone in NS (X) ®,R
(i.e., the cohomology class is represented by a positive (1, 1) -form). We will
show how using a certain result of E. Viehweg it is possible to construct
examples of parabolic ample bundles of higher ranks First we will describe
the result of Viehweg in question.

Let f © X— M be a smooth surjective morphism between connected
smooth projective varieties. The relative canonical bundle on X for the
projection f will be denoted by Kx,u. Let £ be an ample line bundle on X.
The Proposition 2.43 (page 75) of [V] (which is proved using some results
of T. Fujita and Y. Kawamata) implies that the direct image on M
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W :=fx (LROKx/m)

is nef. (From the Kodaira vanishing theorem all the higher direct images of
Y @ Kx/u vanish, and hence W is locally free on M; now observe Remark
2.12.2 in page 59 of [V].)

We now want to show that W is actually an ample vector bundle on M.
Take an ample line bundle £ on M and a positive integer # such that the line
bundle " @ f*€* on X is ample. Let h : M'— M be a finite surjective
morphism, where M’ is a connected smooth projective variety, such that there
is a line bundle { on M’ with {"=h*E. The existence of such a morphism h
is guaranteed by Lemma 2.1 of [BG].

Let X’ be a component of the fiber product X X yM’. The obvious

projection of X’ to M’ (resp. X) will be denoted by f_ (resp. h). Replacing f

and € by f and h*P @ f*C* respectively, in the above mentioned result of
Viehweg and using the projection formula we get that the vector bundle h*W

QC* on M is nef. (That h*PQf*C* is ample on X’ follows from the fact
that the pullback of a line bundle by a finite morphism is ample if and only if
the original line bundle is ample.) Tensor product of an ample line bundle and
a nef bundle is ample. Since 4 is a finite morphism and { is ample ({ is
ample since & is assumed to be ample), we conclude that the vector bundle W
is ample.

Let D’ be a divisor of normal crossing on M. Since f is smooth, the
pullback divisor D :=f*D" on X is also a of normal crossing divisor. Let L
be a parabolic ample line bundle on X with parabolic structure along the
divisor D and with rational parabolic weights. Consider the decomposition

n
D'=2D;
i=1
of D’ into its irreducible components. Let the parabolic weight of Ly along
f*D; be m'/N, where m' and N are nonnegative integers.
Let h : M'—M be a Kawamata cover (as in Section 2) with Galois group

G such that h*D;=k;N (h*D;) ea. Consider the fiber product
Y =X X M’

The obvious projection of Y onto X is clearly a Galois cover with the same Galois
group G. There is an orbifold line bundle £ on Y (constructed as in Section 2)
which corresponds to the parabolic line bundle Lx. Since Lx is assumed to be
parabolic ample, from Lemma 2.17 we get that the line bundle & is ample on Y.

The obvious projection of Y onto M” will be denoted byf Let Ky, denote
the relative canonical bundle on Y for the (smooth) projection f. Earlier we saw

that the amplitude of & implies that the direct image on M’, namely fx (Y®K y/u')
is ample. Clearly this direct image is an orbifold bundle for the Galois action of

G on M. We may apply the construction (2.14) to the orbifold bundle fx (£®
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Kym). Now Lemma 2.18 implies that the parabolic bundle on M obtained this
way (which has a parabolic structure along D’) is actually parabolic ample.
(This parabolic bundle can be directly constructed without using the covering &
(i.e., using just L and f), but we will need the covering h in order to be able to
conclude that the parabolic bundle is actually ample.)

4c. Unitary local systems. Let Ex be a parabolic stable bundle with
rational weights (Definition 2.4). Assume the following vanishing of parabolic
Chern classes:

c1(Ex) =0=c,(Ex)

Proposition 2.16 says that the corresponding orbifold bundle V is orbifold
stable. From the equality (4.6) we conclude that

a1 (V) =0=c,(V)

So there is a unique unitary flat connection on V, which is left invariant by the
action of the orbifold group G on V (i.e., the connection operator commutes with
the action of G), and it is irreducible for the action of G (i.e., there no proper
nonzero orbifold subsheaf of V which is left invariant by the connection) ([S1],
page 878, Theorem 1, Proposition 3.4). Let V denote this flat unitary
connection on V.

Since the restriction of V to Y—D is the pullback of the restriction of E to
X—D, the G invariance of the connection V implies that ¥V would induce an
unitary flat connection on the restriction of E to X—D. Let V denote this
connection on the restriction of £ to X—D. The G-irreducibility of V would
imply that V is actually an irreducible connection in the usual sense. Clearly,
this connection V does not in general extend across D; but it extends as a
logarithmic connection on E.

The holonomy of V around a component D; is a k;N-th root of the identity.
Indeed, the k;N-th multiple of the loop in X—D; around D; lifts as a loop in
Y—-D—a consequence of the fact that p*D;=k,ND~; — hence the k;N-th power of
the holonomy of V along the loop around D; must be the identity. Examining the
construction of V from Ey, it is easy to deduce that the eigenvalues of the above
holonomy are actually of the form exp (2my/—1m!/N) (recall that ai=mi/N).
More precisely, the residue of V (defined in Section 3) along the divisor D;
preserves the flag (2.6), and on the graded piece, Fi/F%,,, this residue acts as
multiplication by —af.

Conversely, let Ex be a parabolic bundle with rational parabolic weights and
let V' be an irreducible unitary flat connection on the restriction of E to X—D,
such that its residue along any D; has the above property - that it preserves the
flag (2.6) and it acts on F%/Fi,; as multiplication by —a¥ Consider the
induced connection on the restriction of V to Y—D. This connection extends
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across D~, and we get an unitary flat connection on V which is invariant under the
action of G on V and it is G-irreducible. So V is orbifold stable, and ¢; (V) =0,
for any i=1.

We put down the above observations in the form of the following:

Theorem 4.8. Let Ex be a parabolic stable bundle with vational parabolic
weights such that it satisfies the following two conditions: (1) Assumption 4.1 holds;
and (2)

Cl(E*)z():Cz(E*) (4.9)

Then E adwmits a unique irreducible flat unitary connection outside the parabolic
divisor such that the residue along any component of the parabolic divisor satisfies the
above condition. Conversely, let Ex be a parabolic bundle with rational parabolic
weights such that E admits an rreducible flat unitary connection outside the parabolic
divisor and the residue along any component of the parabolic divisor satisfies the above
condition. Then Ex must be a parabolic stable bundle satisfying (4.9).

In the rest of this section we will always assume that the parabolic weights
of Ex are rational numbers, and that Ex is parabolic stable satisfying (4.9).

Let 2% (log D) denote the sheaf of logarithmic forms on X [D, page 72,
Definition 3.1]. Recall that there a natural residue map

R Q% (logD) — isza. (4.10)
i=1

such that the kernel of ® is QF.
Let Ex be a parabolic bundle (as in (2.9)). For some i€{1, .., n}, the

number @/ may be zero. Let a{=0 for j=1, 2, .., m. Define
_ m __
E:=NFSE (4.11)

j=1

to be the vector bundle on X (the subsheaves Fi were defined in (2.8)). If all
the af are nonzero, then E=E.

For k>0, consider the vector bundle Q% (log D) ®E on X. Let Q%(log D)
(E) denote the subsheaf of it generated together by Q¥®E and Q% (log D) ®E.
Clearly Q% (log D) (E) is locally free on X, and it coincides with Q% (log D) QE if

all ai are nonzero.
In Lemma 4.11 and Corollary 4.14 of [Bi2] we proved that

(p+ (Q4®V))¢=Q% (log D) (E) (4.12)

(The orbifold bundle V corresponds to Ex.) Since p is a finite covering morphism,
for any coherent sheaf F on Y and any ¢=0, the following equality holds :

H'(Y, F) =H"(X, pxF)
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The group G has acts naturally on the bundle Q¥&V; so it has an induced action
on its cohomology H?(Y, Q¥QV).

Let p : G — Aut (p4 (Q%&V)) denote the natural homomorphism induced by
the action of G on Q%&@V. The inclusion of the sheaf of invariants, (px(Q%&

V)¢ in px(Q¥® V) has a natural splitting given by the kernel of the
endomorphism

> 5(g) EH'(X, End (px (Q4QV)))

geG

Now using (4.12) we get that

H(Y, Q5QV) S =H* (X, px (Q4RV) ¢) =H? (X, Q% (log D) (E)) (4.13)

Let & denote the sheaf on X given by the kernel of the logarithmic connection
V :E— EQQk(log D)

The restriction of § to X —D is the local system given by the (restriction of the)

connection V. Let ¥ denote the local system on Y given by the connection V.
So,

H(Y. V)¢ =H'(X,8) (4.14)

Since ¥ is an unitary local system, its cohomology, H* (Y, ¥), has Hodge
decomposition and Lefschetz decomposition. The following is the Hodge
decomposition:

H(Y, V)= 2 H (Y, Q4QV) (4.15)
j+k=q
Define @ :=c; (L) EH* (Y, Q). The cohomology class acts by multiplication on
the right hand side of (4.15). Let P/(¥) CH’(Y,¥) denote the primitive part,
i.e., it is the kernel of the operator given by multiplication by the (d —j+1)-th
power of @. The operator given by the multiplication by @’ will also be denoted
by @. The following is the Lefschetz decomposition :
[d/2] (d—j)

H*(Y.¥)=2 ZPW)d' (4.16)

j=0 =0

The pairing
0.6, [ <6, 6,>@

defines a nondegenerate bilinear form on P/(¥). So using the decomposition
(4.16) we get a nondegenerate bilinear form on H’ (Y, %), which is symmetric or
skew-symmetric depending on whether g is even or odd. Since the cohomology
class @ is an invariant for the action of G on H'(Y, Q}), the decompositions
(4.15) and (4.16) are both equivariant for the action G. Thus we have Hodge
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decomposition and the Lefschetz decomposition for the invariant part H* (Y, %) ¢,
along with a nondegenerate bilinear form on it.

Let ¥* denote the dual local system. Taking conjugations, in Q¥ and the
one from ¥ to ¥'* we get an C-antilinear isomorphism

7 L H(Y, QYQV)—H* (Y, QQV*) (4.17)

Let w:=c¢,(L) EH' (X, Q%) be the cohomology class on X. The above
observations combine together to imply that there is a Hodge decomposition and a
Lefschetz decomposition for §. In other words,

H (Y, 8)= X H (X, Q4(ogD) (E)) (4.18)
H(re=3 5 PEw (4.19)

where P/ (§) denotes the subspace of H' (X, §) which is the kernel of the operator

(d—j+1)

given by the multiplication by w (The class w acts by multiplication on

the right hand side of (4.18).)
Let E¥ denote the dual parabolic bundle for Ex. (The underlying sheaf for
E% (ie., E¥) is the subsheaf of E* which maps any E;, 0<t<1, into Ox(—D).

The filtration of E¥ is defined by the following rule : Ef maps Es into Ox (f(t, s).
D), where f(t, s) is the smallest integer than or equal to t+s.)

It is easy to check that the parabolic bundle E¥ corresponds to the orbifold
bundle V*. Replacing the parabolic bundle Ex by E¥ in the construction of E,
the vector bundle on X thus obtained will be denoted by E. Let Q¥ (log D) (E)
denote the vector bundle on X obtained by replacing Ex by E¥ in the construction
of Qk(log D) (E).

Taking G invariants of both sides of (4.17) we get the following
C-antilinear isomorphism induced by 7 -

71 H(X, Q% (log D) (E)) — H* (X, Q% (log D) (E)) (4.20)

As a consequence of (4.18), (4.19) and (4.20), we obtain the result of [T]
(see also Theorem 13.5, page 139 of [EV]) in the case of elliptic local systems
(i.e., the finite order of the holonomy around any boundary component).

5. Parabolic Higgs bundles

Let Endpar(E) S End (E) be the coherent subsheaf consisting of all
endomorphisms which preserve the flag (2.6) (for all ). Similarly, let Endpar

(f¥E) be the coherent subsheaf of End(f¥E) on D; which preserves the flag

(2.6). For a section 8 of Q% (log D) @End,ar (E), using the residue map in
(4.10) we have
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residue (D;, 8) €EH*(D;, Endypar (fFE)) (5.2)

Using the algebra structure of End,a (E) given by composition, and the exterior

algebra structure of Q% (log D), there is an algebra structure on Q% (log D) @
End,a (E); the multiplication operation of this algebra will be denoted by A.

Definition 5.3. A parabolic Higgs bundle is a pair of the form (Ex, 6),
where Ex is a parabolic bundle (as in (2.9)) and 6€H (X, Q% (log D) ®End,ar
(E)), satisfying the following two conditions :

(1) the endomorphism, residue (D;, 6), (defined in (5.2)) maps the

subbundle F! (in (2.6)) into Fiyi,

(2) the section of Q% (log D) ®End,ar (E), namely OA 6 is the zero section.

A paraboljc Higgs field on a parabolic bundle Ex is a section 6, as above, such
that (Ex, 6) is a parabolic Higgs bundle.

A parabolic Higgs bundle (Ex, 6) is defined to be stable if for any proper
nonzero subsheaf, FCE, with E/F torsion-free and 8 (F) SFQQ%, the following
inequality holds: par_gyFx<par_gEx.

The above condition 5.3 (1) can be rephrased as: the residue of 8 along D; is
nilpotent with respect to the flag in (2.6).

Remark 5.4. The definition of parabolic Higgs that we adapt above is
slightly diffierent from the one given in [Y]. The residue of a parabolic Higgs
field according to [Y] would preserve the flag in (2.6), as opposed to the
stronger condition here that the Higgs field is actually nilpotent with respect to
the flag.

Following [S1], we define an orbifold Higgs field on an orbifold bundle V on
Y (as in section 2) to be a section ¢ EH (Y, QY&@End (V) ), such that ¢ A =0,
and ¢ is an invariant for the action of the orbifold group G on Q¥&@End (V).
The pair (V, ¢) is called orbifold stable if for any proper nonzero orbifold

subsheaf, FC V, with V/F torsion-free and ¢(F) S F®Q¥, the following
inequality holds: u(F) <u(V).

Theorem 5.5. For Ex and V related as in Section 2, theve is a natural
one-to-one correspondence between parabolic Higgs field on Ex and orbifold Higgs
field on V, such that the parabolic stable Higgs bundles correspond to the orbifold
stable Higgs bundles.

Proof. This again is an easy computation. Let End (Ex) denote the
parabolic bundle given by the parabolic tensor product EXQ@FEs It is a

straight-forward computation to check that the underlying vector bundle for the
parabolic bundle End (Ex) is End,a (E).

We noted in (4.12) that (px(QY®V))¢=Qk(log D) (E). First check that
if in the construction of Q% (log D) (E) we replace Ex by End (E«), then we obtain
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precisely the subsheaf of Q% (log D) ®End (E) defined by the condition that the
residue along D; is nilpotent with respect to the flag in (2.6).

Now replacing Ex by End (Ex) in (4.12) and setting k=1, and then taking
the global sections of both sides of (4.12), we get an identification between the
parabolic Higgs fields on Ex and the orbifold Higgs fields on V. (We used the

facts that H°(Y, End (V) @ Q}) =H® (X, p« (End (V) ®Q%)), and that the
condition ¢A@P=0 translates into the condition that OAH=0.)

Since the G-invariant subsheaves of V are in one-to-one correspondence
with the subsheaves of E-that the parabolic stable Higgs bundles correspond to
the orbifold stable bundles, is immediate. This complete the proof of the
theorem.

Let Ex be a parabolic stable Higgs bundles satisfying (4.9). Now we may
apply the Theorem 1 and Proposition 3.4 of [S1] (page 878), and obtain a
G-irreducible flat Hermitian-Yang-Mills connection on V. This in turn will
induce a flat Hermitian-Yang-Mills connection on the restriction of E to X—D
with some precies boundary conditions at the infinity. Thus we obtain the
analogue of Theorem 4.8 for parabolic stable Higgs bundles.

In Section 2 of [S2] (page 23-26) Simpson proved several properties of the
(hyper) cohomologies of the various complexes associated to a Higgs bundle
equipped with a flat Hermitian-Yang-Mills connections. For example, the
Lefschetz decomposition (Lemma 2.6), the Kodaira-Serre duality (Lemma 2.5)
and the isomorphism between the (hyper)cohomologies of all the relevant
complexes (Lemma 2.2) are proved. We may apply these results to the vector
bundle V. Just as in Section 4c, taking G-invariants, we may derive the
parabolic analogues of all the above mentioned results in [S2]. We will omit
this routine work. We also observe that the parabolic analogues of the results
on the Hitchin system on the moduli of Higgs bundles proved in [Bil] are also
valid.
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