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A control problem in biconvective flow
By

Anca CAPATINA and Ruxandra STAVRE

1. Introduction

An important biological problem is biconvective flow, “biconvection”
being a convection caused by the concentration of upward swimming micro-
organisms in culture fluid. A model for this problem was introduced in [4]
and [5] independently. They discuss biological and physical aspects related
to this problem. This model, consisting of the equations for the motion of the
culture fluid assumed to be viscous and incompressible and for the
concentration of microorganisms, was studied from a mathematical point of
vue in[3]. The authors prove the existence of a solution and the positivity of
the concentration for the stationary problem and they also study the
nonstationary case.

The purpose of this paper is to introduce and study a control problem
related to biconvective flow. Our aim is to characterize the mean values a of
the concentrations which lead us to a given field of concentration c.

We begin by establishing an existence and uniqueness result for the
stationary biconvective flow (Section 2). Our mathematical approach is
different from that of [3] and allows us to obtain the existence of a solution
for a less restrictive assumption.

In Section 3 we introduce a control problem associated to the stationary
biconvective flow. The existence of an optimal control is proved. When the
relation mean value & - concentration ¢ is multi-valued, the derivation of the
necessary conditions of optimality is perfomed by introducing an approximate
family of control problems. In the uniqueness case, these conditions are
obtained directly, as in [1].

2. Model of biconvective flow. Existence and uniqueness results

The stationary flow of a culture viscous, incompressible fluid is
considered. We suppose that the flow region is a bounded domain QCR?3
with Lipschitz boundary, 0Q.

We seek for a vector function u# representing the velocity of the culture
fluid and two scalar functions ¢ and p representing the concentration of
microorganisms and the pressure of the culture fluid, respectively, which are
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defined in Q and satisfy the following system of equations and boundary
conditions:

(2.1) —vAut+(u- V)utVp=—gQ+y)is+f in Q,
(2.2) divu=0 in Q,
(2.3) —9Actu- Vet UZ=0 inQ,
X3
(2.4) u=0 on 0Q,
(2.5) 0%—Ucn3=0 on 09,

where f is a given external force, g the acceleration of gravity , v> 0 the
kinematic viscosity of the culture fluid, 6> 0 the diffusion rate of micro-
organisms, U> 0 the mean speed of upward swimming of microorganisms,

7=-‘;&— 1>0, po, om being the density of an individual organism and of the

culture fluid, respectively, i3 the unit vector in the vertical direction, n the
outward unit normal to dQ and n3=n - is.
We introduce the new function:

(2.6) q=p+gxs.

Therefore, the problem (2.1)-(2.5) is equivalent to:
2.7 —vAut+(u: V)utVqg=—kcis+f inQ,
(2.8) div u=0 in Q,

(2.9) —gactu- VetUu =0 i@
X3

(2.10) u=0 on 09,

(2.11) 0%—&%3:0 on 09,

where K=g7.

It can be easily proved that a variational formulation of (2.7)-(2.11) is
the following:

(u, c) EYo X H'(Q),
(2.12) vao(u, z) +bo(u, u, z) = —/cj; ciy * zdx+<Ff 2 VZzZEY,,
Oa (c, r) +b(u, c, r)—ULc—é%dx=O VYrEH(Q),
where:

ao(u, z)=j;l7u~ V zdx,
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(2.13) bo (u, w.z)=f (- V)w - zdx,
Q
ale,r) =j;l7c « Vrdx,
b(u, c. r)=fg(w Vo) rdx,

the symbol <+,*> denotes the duality pairing between (H'(Q))3
(H5(Q))? and Y, is the separable Hilbert space (see[6]):
Yo={ve (H}(Q))3/div v=0},

embedded with the scalar product: (v, w) vo=ao(v, w). The known function F

has been taken in (H™'(Q))?3.

We remark that (uo, 0) is a solution of (2.12), where uo satisfies the
Navier-Stokes problem for incompressible fluid. Since this solution does not
describe the biconvective flow, we shall study the following problem:

(Ua, ca) EYoX H'(Q),

(2.14) vao (Ua, 2) +bo(Ua, Uq, 2) = —/cf Cals * 2dx+<F 2 VzZEY,,

0 (o, 7) +b (U, ca, 1) — Uf . ax " —0  VyeH'(Q).

j; cadx=q,

where & is a positive constant.

In the sequel we shall prove (with some assumptions about 8, U, v and
a) the existence and uniqueness of the solution of (2.14). For this purpose,
we define:

(2.15) Ca=Ca— TS%T
and we obtain the following equivalent problem to(2.14):

(ua' E'a) € Yoxﬁl.
(2.16) vao (Ug, 2) +bo(Uq, Uq, 2) = —/cj; Caly * zdx+<Ff 2 VZEY,,

Ca, 7) +b ua, Ca, 7) Uf Caax dx _I—[f —aax’_;dx VTEHI,

where H' is the following Hilbert space:
ﬁl={r€Hl(Q)/j; rdx=0},

embedded with the scalar product (c, 7). = alc,7). We shall use the
following estimates:
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lolle@y<Clvly, VVEY,,

(2.17) lelow<clclz  VceH,
b (w, w, 2) [<Cilulyllwlylzlye  Yu w zEY,
b, e, n|<Cillulvllclzlrle  Yu€y, Ve ref,

where C, C) are positive constants depending only on Q.
In the following we shall suppose (see [3]):

0
(2.18) U< C
Proposition 2.1. If (ua, ¢a) is a solution of (2.16), then we have the

Sollowing estimates:

~ Ua
2.19 i S—F—= ",

1 kC*Ua
(2.20) it o, (1l +—f L),

Proof. For obtaining (2.19) and (2.20) we take r =4 and z= uq in
(2.16) and we use (2.17), (2.18) and the equalities:

bo(u, w, w) =0 Yu weY,,
b(u c.c)=0 Yucy, VcEH.

In the sequel we shall establish the main result of this Section:

Theorem 2.2. For every a=>0, the problem (2.16) has at least one solution
(Ua, Ca).  Moreover, for

(2.21) V2> Coll £l o,

there exists a’>0 such that for every a€ [0, a’], (2.16) has a unique solution.

Proof. For obtaining the existence we define the mapping
G: YoX H'm (Yo X HY),

LGu, c), (z.r)>=A(vao(u, z) +bo(u, u, 2) +/cj;ci3 c2dx—<f D)+

or .,  Ua ([ Oor
(2.22) +6alc,v)+b(u,c, 7 —Uj‘gc-égdx 01, 0x3dx

V(u,c), (z,7) EYoXH,

where €+ ,+> denotes the duality pairing between (YoX H')” and Yo X H" and
4v(6—UC)

It can be easily proved that, if
k2C* y P

A is a positive fixed constant, A<
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(2.18) holds, there exists >0 such that V (&, ¢) € Yo X H* with || (u, ¢)
r we have:

(2.23) <G (u,c), (u,c)»20.

Yox At —

Moreover G is a continuous mapping with respect to the weak topologies
of YoX H' and (Yo X H')".

Therefore, from the Gossez' theorem (see [2]) it follows the existence of
an element (Uq, ¢a) €B,(0) C Yo X H' such that G (ua, ¢4) =0, and, hence, the
first assertion of the Theorem holds.

For proving the uniqueness, we assume that (2.16) has two solutions

(ul, cd) and (ul, ¢Z). By subtracting the corresponding equations for z=
ul—u% and r=é2—¢Z and by using (2.17)-(2.20) we get:

/[_]_C#"ul —u2|,
Q (0—‘Uc)2 a all Yoy

ek — w2y, <C () uk— ulv,

| éat—c2lm<

where:

(2.24) (@) =S flum@nta

VZ

kC*C\U (l n 1 )
JQl (6—uc)v\v  6—UC/

It follows that, if (2.21) holds, then we obtain C (a) <1 for all a€ [0, a’]
where:

’ (V2_01" f"(H-l(Q)ﬁ)«/ Ql (ﬁ_Uc)z
2.25 <
(2.25) “ kC*C\U(§—UCH+v)

and the proof of the Theorem is achieved.
We remark that we have obtained the uniqueness of the solution of the

coupled system (2.16) for the same condition (2.21) as in the case of Navier-
Stokes problem (see [6]).

3. A control problem

In this Section, we suppose that (2.18) is satisfied.
We consider the functional J: K X H*(Q) —R,

(3.1) J(a, ¢) =%j; (c—ca) 2dx+%a2,

where K C [0, + ) is a closed, non empty interval, N is a nonnegative
constant and ¢, €L?(Q) is a given function.
We formulate the optimal control problem as follows:
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3.2) min{J(a, ¢)/ (e, ¢c) ET},
where T is the nonempty, weakly closed set:
(3.3) T={(a,c) EKXH'(Q)/IUEY, such that (u, ¢) satisfies (2.14)}
We remark that the minimum problem (3.2) may be also written:
min{min{J(a, ¢)/cETa}/a EK},
where Toa={cEH"'(Q)/ I uE Y, such that (u, ¢) satisfies (2.14)}.
The physical relevant term in (3.1) is %L (¢ —ca4) %dx which provides an

estimate of the difference between the component ¢ of an element (u, ¢)
satisfying (2.14) and a given configuration cs of concentration.

In the sequel, we suppose that K is bounded or N>0.

The first result to prove is the existence of a solution of (3.2).

Proposition 3.1. The optimal control problem (3.2) has at least one
solution.

Proof. 1t can be easily proved that any minimizing sequence { (@, cn)}2C
T of J is bounded in K X H' (Q). Moreover, J is weakly continuous on
KXH"(Q) and T is weakly closed. Hence the assertion of Proposition holds.

We remark that, in general, if (@, ¢) € T, the correspondence a ¢ is
multi-valued. Hence the derivation of the necessary conditions of optimality
is not obvious.

In order to obtain these conditions we approximate J (in the sense that
we make precise in Proposition 3.3) by a family of functionals {Je} eso,
jg: YOXKHR,

(3.4) Je(w, @) =J(a, c(w, a)) +2LE|| u(w, a) —wl,

where (u(w, a), c(w, a)) is the unique solution of:

(u, c) EY X H'(Q),

3.5) vao(u, z) +bo(w, u, 2) =—/cj; cls * zdx+<f 2 VZEY,,

Oa (c, r) +b(w, c, r)—Ufgchisdx=0 YreEH (Q),

f cdx=a.
Q

We remark that the correspodence (w, a) » (u(w, a), c(w, a)) is
uni-valued. This allows us to obtain the necessary conditions of optimality
for the following control problem:
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(3.6) min{ J. (w, a)/ (w, @) EY, X K}.

Then, by passing to the limit, we derive the desired conditions for a solution
of the control problem (3.2).
We begin by proving the existence of an optimal control for (3.6).

Proposition 3.2. There exists at least one solution of (3.6).

Proof. The proof relies on two properties: the boundedness of any

minimizing sequence {(w? a?)}, of J. on Y¢XK and the lower weak
semicontinuity of Je.

The next result establishes the relation between the problems (3.2) and
(3.6).

Proposition 3.3. For any >0, let (we, &) be a minimum point of Je.
Then there exists (a*, ¢*, u*) EK X H' (Q) X Y, such that on a subsequence we
have, when p —:

a,—a*,

ce,—c®  weakly in HY(Q),
u.,—u*  weakly in Y,
we,—u*  weakly in Y,

(3.7)

where (Ue,, ce,) = (U (We,, Ac,), ¢ (We,, Ac,)). Moreover, (u*, c*) is a solution of
(2.14), corresponding to a=a* and:

(3.8) lim Je (we, ae) =J (a*, ¢*) =minlJ(a, ¢)/ (e, c) ET).

e—0

Proof. We first prove that {a}¢>o is bounded. Indeed, this is obvious if
K is bounded. If K is not bounded, then we have:

%ag S.] (aey Ce) S.[e (ws. ae) S]s (uo. a’o) :j(a'o, 50) )

where (ao, co) is an optimal control for (3.2) and (ue, co) verifies (2.14) for
a =y, hence uo= uluy, ). For u. and ce—]%[ we obtain from (3.5) the

same estimates (2.19), (2.20), with a=a.. Therefore, the sequence
{(ue, ce) Yeso is bounded in Yo X H'(Q).
On the other hand, we have:

I e — we 13, < 2¢Jc (we, ae) <2¢] (ato, co).

For the previous observations we deduce that, there exists
(u*, c*) EYo X H' (Q), a®EK such that (3.7) holds.
By passing to the limit when p—20 in (3.5) corresponding to (w, a) =
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(we,, a,), we obtain that (u* ¢*) satisfies (2.14) for @ = a* and hence
(a* c*) ET.

Finally, (3.8) is a consequence of the facts that {Je(we, @c)}eso is
bounded and has only one limit point.

For obtaining the necessary conditions of optimality for (3.6) we proceed
as follows: for any t>0, A€ (0, 1), wo, WE Y, and ay, ® EK, we denote by:

uw=u(wottw, ao),
(3.9) crw=c (wo+tw, ),
and
(3 10) Uz =u (wo, o+ (C(_Cfo)),

Cla=—¢C (WO. aot A (a_ao) ) .

Lemma 3.4. Let (U, ciw) and (Uaa, Cia) be defined by (3.9) and (3.10)
Then, when t\0 and A\0, we obtain:

(3.11) (utwt_uo, C""t_cO)—' (U, cw), weakly in Yo X H,

(3.12) (ula; uo, Cia;co)—' (Uq, ca), weakly in Yo X H(Q),

where wo=u(wo, o), co=c (Wo, ), (Wu, cw) is the unique solution of:
vao (U, 2) +bo(Wwo, Uw, 2) =
(3.13) —/cj; cwls * 2zdx—bo(w, U, 2) VZEY,,

Oa (o, 7) +b (wo, cw, ¥) —Uj; curc%ra—dx= —b(w, co, 7) VrEH,

and (Ua, ca) is the unique solution of (3.5) corresponding to F=0, w= wo and
a=a— .

Proof. 1t can be easily proved that the sequences from (3.11) and
(3.12) are bounded in Yo X H! and Y, X H' (Q), respectively. By passing to

Uiy Uo Ctw Co
I ’ t

the limit on subsequences in the problems satisfied by( ) and

—u — . : .
(ulal g CM/{ CO) we obtain that their weak limits (#w, cw) and (Ua, ca) are

solutions for (3.13) and, respectively, for (3.5) with =0, w= w, and a=
a — a. The uniqueness of the solution of (3.13) is a consequence of
Lax-Milgram’s theorem, hence the proof is achieved.

It can be proved that J. is differentiable and a direct computation gives:

(3.14) g{; (wo, ao) * w=j; cw(co—cd)dx+%ao(uw—w, uo—wo),
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(3.15) 2w, a0) (=) = [ caleo—ca)dr+-rao (e, ta—10) +Neto (= ex).
Q2 3

We are now in a position to derive the necessary conditions of optimality
for a solution of (3.6).

Theorem 3.5. Let (we, ac) be an optimal control for (3.6). Then, there

exists the unique elements (Ue, cc) € Yo X H' (Q) and (pe, qe) € Yo X H which
satisfy:

vao (Ue, z) +bo(we, ue, 2) = —/cj; cels * zdx+<f 2 YzEY,,
_ o _ 1
(3.16) Oa (ce, v) +b (we, ce, 7) Uj;) csarsdx—O YyreH (Q),

f Ccedx =,
2

vao (Pe, 2) —bo(We, Pe, 2) T bo (2, Ue, Pe) =b (2, ge, cc)  VZEY,,
(3.17)  6a(ge, v) —b(we, ge, r)—ULr%Zidx=—KL7i3'pedx+j;r(cs—cd)dx
Vreﬁl.
0ge _ —) >
(3.18) (Uj; Qe e+ (|QIN+1) e fg cads) (a—a) >0 vV aEK.

Proof. 1t is obvious that (3.16) has a unique solution. We denote by
(De, ge) € Yo X H' the unique solution (by Lax-Milgram's theorem) of:

vao (pe, z) —bo(we, pe, 2) =%ao(ue—we, 2) VzZEY,,
(3.19) Ba (ge, v) — b (we, ge, 7) —Uf r—ggidx=
Q2 X3

—Kj; riz * pedx-l—j;r(ce—cd)dx vreH.
From (3.13), (3.14) and (3.19) we obtain:
(320) _g%(we' a’e) * wzb(W, qe, Ca) _bo(ul Ue, Pe) _%ao(ue_ws, w).
and from (3.5) for f=0, w=w, and a=a—a,, (3.15) and (3.19) we obtain:
9 e (y—y ) = 0ge _ a—a;
(3.20) Ze (o) - (@—a)=(Uf Seaxt (QN+ D a— [ car) et

From (3.19), (3.20), (3.21) and the fact that (we, @) is a minimum point
for Je on Yo X K, we deduce (3.17) and (3.18).

The main result of this Section is a consequence of the above Theorem.
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Corollary 3.6. There exists an optimal control (a*, ¢*) for (3.2) and
there exists the elements u*EY,, (p*, ¢*) €Yo X H' and A€ {0, 1} such that:

vao (u*, z) +bo (u*, u*, z) = _"_]:, c*iy * zdx+<F 2 VZE Y,

(3.22) Ba (c*. 1) +b (u*, . 1) —U fg c*%;dx=0 Ve Q)

f c*dx=a¥,
2

vao (p*, 2) —bo(u™*, p*, 2) +bo (2, u*, p*) =b(z, q* c*) VzEY,,
a *
Oa (g*, r) —b (u*, ¢* 7) —Uf r—aq—dxz
Q2 X3

3.23) _"fg ris * p*dx+2f9 r(c*—cadx  VrEH,

0¢* _ _
(3.24) (Ufg axsdx+}((|Q|N+1)a* fgc,,dx))(a a*) >0 Y a€EK,
(3.25) A+ g* l7>0.

Proof. It is obvious that (3.22) follows by passing to the limit in (3.16)
on the subsequence obtained in Proposition 3.3.
If {pe}eso is bounded in (L?(Q))3 then, from (3.17) and the boundedness

of {ce}eso in H' (Q) we deduce that {ge}eso is bounded in H'. Moreover, from
(3.17), and the inequality (see [6]):

"Pe "%um))a < 2"Pe ”}23(9))3" DPe ||?{121(g,)a,

the boundedness of {pe}eso in Y, follows.

Therefore, there exists (p* ¢*) a weak limit point of {(pe, ge)} e>0 in
YoX H.

By using Proposition 3.3 and by passing to the limit on a subsequence in
(3.17)-(3.18) we obtain (3.23)-(3.25) with A=1.

If {pe}eso is not bounded in (L?(Q))?® we define the following sequences:

— € = €
{Ps}e>0 { |a€ |(L2(0))3}s>0 and {Qe} >0 [m] £>0

Dividing (3.17) - (3.18) by [|pellzz@n: we obtain, as in the previous case,
the boundedness of the sequences {(P., Qc)}eso in Yo X H!'. Hence we get
(3.23)-(3.24) for A=0 and (p*, ¢*) a weak limit point of {(P%, Qc)}eso.

Finally, (3.25) is a consequence of the fact that, if | ¢*[l# =0 then, from
(3.23) it follows that p*=0 which is in contradiction with "p*"(LZ(g))a:l.

In the sequel we discuss the control problem (3.2) when (2.21) is
satisfied; hence, for any a € K = [0, a’], with &’ as in (2.25), the problem
(2.14) has a unique solution, (ua, cqa). Since the correspondence aF cq is
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uni-valued, we can write the functional J: K— R as follows:

(3.26) J (@) =% fg (ca—ca) de+%a2,

and the control problem (3.2) becomes:
(3.27) min{ /(@) /aE€EK]}.

In this case, the necessary conditions of optimality, obtained directly (as
in [1]) from the differentiability of / on K, are:

Proposition 3.7. Let a* €K be an optimal control of (3.27). Then, there

exists the unique elements (u*, c*) € Yo X H'(Q) and (p*, ¢*) € Yo X H' which
satisfy (3.22)-(3.25) for A=1.

Acknowledgment. We are grateful to Dr. H. Ene and Dr. D. Polievski
for the helpful discussions during the preparation of the paper.

INSTITUTE OF MATHEMATICS
ROMANIAN ACADEMY, BUCAREST, ROMANIA

References
[1] A. Capatina and R. Stavre, A boundary control problem in fluid mechanics, Preprint IMAR, 4
(1994).
[2] J. P. Gossez, Remarques sur les opérateurs monotones, Bull. Cl. Sci. Acad. Roy. Belgique, 9
(1966) .

[3] Y. Kan-on, K. Namkawa and Y. Teramoto, On the equations of biconvective flow, ]. Math. Kyoto
Univ., 32 (1994), 135-153.

[4] M. Levandovsky, W. S. Childress, S. H. Hunter and E. A. Spiegel, A mathematical model of
pattern formation by swimming microorganisms, J. Protozoology, 22 (1975), 296-306.

[5] Y. Moribe, On the biconvection of Tetrahymena pyriformis, Master's thesis (in Japanese), Osaka
University, 1973.

[6] R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1977.



