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Radiation condition for Dirac operators

By

Chris PLADDY, Yoshimi SArrb and Tomio UMEDA

1. Introduction

In  the  p ap e rs  [6 ] a n d  [7], results from  the  theory o f pseudodifferential
operators and  spec tra l analysis o f  SchrOdinger operators were com bined to
discuss the asymptotic properties of the Dirac operator

H= —i 'i a •
a
 a + S ± Q (x ). (1.1)•J=1 x

Here —1, x = (x 1, 12 , 1 3 )  E  R 3 and  a i, S are the Dirac matrices, i.e., 4 x 4
Hermitian matrices satisfying the anticommutation relation

cria k - F akai= 2 ,5»,/ , (j, k=  1, 2, 3 ,4 ) (1.2)

w ith the convention a 4 =13, d j k  being Kronecker's delta  and I  being the  4 X 4
id e n tity  m a tr ix . T h e  po ten tia l Q (x )  =  (q p , (x ) )  i s  a  4  X  4  Hermitian
m atrix-valued function. In this paper we assume that Q (x ) is short-range in
the sense that each element qi k satisfies

sup [ (1 ± ixl) i+ E lq/k (x) I] < co( x E R , j , k= 1, 2, 3, 4) , (1.3)
xER

where e  is a positive constant. The free D irac operator H o is defined by

Ho —  i  cri
a

 + S . (1.4)
i=1 ax;

T h e  a im  o f  t h is  p a p e r  i s  t o  sh o w  h o w  th e  D ira c  ope ra to r and the
Schr6dinger operator are  related to each other and how some properties of the
Dirac operator and the solutions of the D irac equation can be obtained from
th e  corresponding properties o f  th e  Schredinger o p e ra to r . S in c e  w e  have
from the anticommutation relation (1.2)

(110) 2 = ( — A+1)/, (1.5)

we can anticipate a close relationship betw een these tw o operators. W e also
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w a n t  t o  s h o w  th a t  s o m e  r e s u lts  f ro m  t h e  th e o ry  o f  pseudodifferential
opera to rs, w hich  w ere  used  i n  [6 ]  a n d  [7 ], a r e  u se fu l in  discussing our
problems.

Let Ro (z) =  (Ho — z) - 1  b e  the  resolvent of the free D irac operator H o, and
let To ( 2 )  be the resolvent of the Laplacian T o =  —A. Balslev - Helffer [2] gave
the formula for the extended resolvents Rô (2) ([2] , Lemma 3.1):

{ (Ho +2)11±  (22 - 1) (2>1) ,
Ro (A) =lim R 0 (2 ± i0  = (1.6)

(Ho+ .1) roT (2 2 -1 )  (2  < — 1 ) ,

where F o± (A) are the extended resolvents of To (for the exact definition of the
extended resolvent, see §  2 ) .  The formula w as used to  establish the limiting
absorption principle for the D irac operator w ith a  short-range potential ([2],
Theorem 3.9).

In this work, we are going to exchange the order of H0 + 2  and ro± (22-1)
in  th e  fo rm u la  ( 1 .6 )  to  o b ta in  m ore  detailed  sim ilarities betw een Dirac
o p e ra to rs  a n d  SchrOdinger o p e ra to r s  (P ropositions 2 . 1  a n d  2 . 2 ) .  Our
strategy is to combine a representation formula for the resolvent R 0 (z), which
w as originated in  Y am ada [13] a n d  used  i n  [6 ]  a n d  [7] with some known
re s u lts  o n  Schriklinger o p e ra to rs  to  s tu d y  so m e  n e w  p ro p e r t ie s  o f  th e
extended resolvent R ô  (A) of the Dirac operator H with a  short-range potential
Q .  Let

R± (4f (x ) (vP (x), (x ), (x ), (x ) ) , (1.7)

where  t
A  i s  the transposed m atrix (or vector) of A, and

f  L2 (IV , (1 +1x12) 5 d X ) (1.8)

w ith  a  f ix e d  constant o  s a t i s f y i n g  0 > 1 / 2 .  I n  o r d e r  to  s im p lif y  the
description, here  w e assume t h a t  >  1 .  After giving a  proof o f the  limiting
absorption principle for the  D irac opera tor (1 .1), w e a re  going to prove the
following:

(1) Each element 0  (x), j=1, 2, 3, 4, satisfies the radiation condition

f EL2 (R3 , (1 H- lx12 ) dx),
(1.9)

A T 1.±-./) v1 E L2 (113 ,  (1 + 1x12) 5 - 1  d i ) ,

where / =1, 2, 3, ar = a/axi, X`r=xt/Ixl, and 1 /2 < 6 .1 .
(2) y =  R ±  (A) f  is characterized a s  a  u n iq u e  so lu tio n  o f  th e  equation

(H - 2) y=- f with the radiation condition (1.9)
(3) Each element y.P (x), j=1, 2, 3, 4 satisfies the asymptotic behavior

(r.) —c (A, r in L2 (.52) (1.10)

a s  r =  Ix I o c  ,  where S2 is  th e  u n it  sphere in  R 3 ,  a n d  c (A, E L2 (S2 ) is
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determined by A and f.
W e now introduce the notation w hich w ill be used in  th is  p a p e r . L e t n

be a positive in te g e r . For x =  1 2 ,•••, In ) E R R , 1x1 denotes the Euclidean
norm of x and

(x) =,/i+lx12 . ( 1 .1 1 )

F o r  s E R  an d  a  p o sitiv e  integer k, w e define th e  weighted H ilbert spaces
L2,5 (Rn ) and 1-1: (R n ) by

L2 ,5 (Rn ) { f : <x> s f E L2 (Rn ) }, (1.12)

and

(Rn ) =  f : <x> s af fE L2 (R n ) , lal (1 .13)

where a= (a1, a 2 ,  • • • ,  an) is a  multi-index, lal=a1 - 1- a2+ ••• +an , and

Of =
aial

(

 j= 1, 2, •••, n ) .a (1.14)
fn axT • • ax",n

The inner products and norms in L 2 ,5  (W ) a n d  H i
s  ̀(Rn )  are given by

(f, g) s = f <x> 2 sf (x) g (x) dx,
R"

ilf Ils= [ ( f , f ) s ]  1 1 2

and

1( f, k ,s = f <x> 2 5 E  o f f  •  a  g} dxI' 1.15k

If  ilk,s
=

 [ (  f , k,s] 1 1 2 ,

respec tive ly . For n=-3 we set

11.2,5 (R3 ) = L2,5,

His' (R 3 ) = H .

Then the s p a c e s  2,s and X I are defined by

..L 2,s [L 2 ,5 ] 4 ,

XI=  [Hid 4 ,

(1.15)

(1.16)

(1.17)

(1.18)

i.e., ie2,s and IC's' are direct sums of the Hilbert spaces L2,5 and In , respectively.
The inner products and norms in I' 2,s a n d  Al are  also denoted by  ( , 5,11 Ils
a n d  (  )k ,s, Ilr e s p e c t iv e ly .  W h e n  s = 0 ,  w e  s im p ly  w r i te

{ =
yek =

(1.19)
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Let S (W )  be the set of all rapidly decreasing functions on Rn. We set

S = S (R 3) ,
(1.20)

43= [s] 4 .
For f (fi, f2, 13, f4) c  the Fourier transform g f  ( )  =7(0 is defined

by

g f  —7( ) = t G-i() ,72(0 ,73(0 J4 ( ) )

=1.i.m . f  e- '5 5 (x )d x  ( j = 1 , 2,3,4).
123

(1.21)

The inverse Fourier transform will be denoted by
For a pair of H ilbert spaces X and Y, B (X , Y ) denotes the Banach space

of all bounded linear operators from X to  Y, equipped with the operator norm

IT il(X,r) -=  su p  V Tx V x Ilx,( 1 . 2 2 )
xelCV0)

where li Ilx and il Ily  are the norms in X and Y . W e  set B (X) -= B (X, X).
L e t  u s  s k e tc h  th e  c o n te n t s  o f  th e  p a p e r .  I n  § 2, s ta r t in g  w ith  a

representation formula of the resolvent R 0 (z) of the free D irac operator H o, we
shall estab lish  th e  above  resu lts fo r  th e  free  D irac  o p e ra to r . T h e  general
Dirac operator with a short-range potential Q will be discussed in § 3.

The present work was done while the  last au thor (T.U.) was visiting the
Department o f Mathematics of the University of A labam a a t  Birmingham for
the 1992-93 academic y e a r . H e  would like to express his sincere gratitude to
the members of the department for the ir w arm  hospita lity . He also would like
to thank Himeji Institute of Technology for allowing him to take a  year's leave
of absence.

2. The free Dirac operator Ho

Let H be the differential expression given by (1.1) w hich satisfies (1.2)
a n d  (1 .3 ). It is know n (e.g., K ato [5], Chapter V , § 5) tha t H restricted on
[Co° (R 3 )] 4 is essentia lly  selfadjoint in  Y 2. The selfadjoint realization, which
has the  domain Ye', will be denoted again by H w hich is the  D irac  operator
w ith  a  short-range potential Q .  Similarly, th e  selfadjoint realization of the
expression (1.4) will be denoted again by H o w hich is the free Dirac operator.
T h e  o p e ra to r  H o  h a s  t h e  sam e  dom ain  I C  a s  H .  T h u s , a s  selfadjoint
operators, Hv and Hoy  a re  well-defined only for y E A '. W h e n  H and Ho a re
applied to a  locally Yt91 function  y, they should be interpreted a s  differential
operators rather than selfadjoint o p e ra to rs . The resolvents of H and Ho w ill
be denoted by R (z) and R 0 (z), respectively, i.e.,

IR (z) = (H —  z) - 1  ( z e  P  (H ) ) ,

R o (z )=  (Ho—  z) - 1  ( z  E  P (Ho)),
(2.1)



1 ) < < 3 1 1 3 22— 1I ),
(2 . 9)

3 (a62_1)
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w here P (H) a n d  P (Ho) are the resolvent sets of H and H o, respectively. Let

E 0 () = ± c r id - 1-3 ( = 3)) (2.2)

w here  a ,, P  a r e  a s  i n  (1 .2 ).  T h e  4 X  4 matrix Co ( )  i s  the "Fourier
transform" of the operator H o in  the sense that

,Y ( H o f )  ( )  = E o  g f (fEle1). (2.3)

It follows from the anticommutation relation (1.2) that

(E0 ()) 2 = (
2

+1)/ (2.4)

(cf. (1.5)).
Sim ilarly, consider th e  Schrôdinger opera to r T  = —  A ±  V (x ) w ith  a

short-range  po ten tia l V (x ) ,  a n d  th e  f re e  Schredinger opera to r To =
H ere  — A i s  th e  Laplacian on W 1 ,  a n d  V (x )  i s  a  real-valued, measurable
function on R" such that

sup [ (1 -1-1x1) 1 +6 1V ( x )  < (2. 5)
S E '

w h e re  E> 0. T h e  re s tr ic t io n s  o f  T  a n d  T o  o n  Co°(R") a r e  essentially
selfadjoint, and the selfadjoint realizations in L2 (RN )  will be denoted again by
T and To, re spec tive ly . The resolvents of T and To will be denoted by

1(z) = (T — z) ( ze P (T)) ,

ro(z) = (T o — z ) -1  ( z  P (To)) ,
(2.6)

w here P (T) a n d  P (TO are the resolvent sets of T and To, respectively.
I n  th is  section, w e  s h a ll  s ta r t  w ith  a  representation form ula for the

resolvent R0 (z) o f the  free  D irac  opera to r H o . Let 1 < a  Gb < co . W e define
K =-Ka ,b by

VK = 12= 2±ii7 EC : a  1/11 I 771 2
a 2 - 1   

J • (2.7)

Then it is easy to see that

zEK 0 <  3(a2
4

 1 )  < R e  (z2 — 1) 1;.2  — 1. (2.8)

L et a , b, K b e  a s  a b o v e . T h e n  le t  TK b e  a  real-valued function in  Co*(R)
satisfying
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I n  o rd e r  to  ex p re ss  Ro (z) i n  te rm s o f  t h e  resolvent To ( z )  o f  th e  f re e
Schrifidinger operator, we introduce simple pseudodifferential operators: For
each zEK, we define

{A z,„ f = zi + & M g' .g — ' [rK (0 ( f  E d ) ,

Hz,Kf=g -

1[(1 —  ric(0)Eo (0  lg  f  ( f s . 3 )  .
V — (22 — 1)

We note that

{

-
I V —  (z2 — 1 ) I 4I2

, 4

d 2i f  zEK and 3 2- 1
2 •

(2.10)

(2.11)
126 (a 2 —  1) if z EK and supp [1 — rid ,

Proposition 2.1. Let K be as abov e. T hen for zEK with Tm z  0

Ro (z)f= To (z2 1 )  A zir f+ B zx f ( f  E d ) . (2.12)

H ere, f or a vector valued - function g (x) = (g (x) , g2 (x) , g 3  (x) , g4 (x )) o n  R 3,
To (z) g (x) should be interpreted as

r o (z)g(x) = t (ro (z) g (x) , ro(z)g2(x), ro(z) g3 (x) , (z) ( x ) )  . ( 2 . 1 3 )

Proof. It follows from (2 .3 )  that

Ro (z) f = (2 7r ) - 3
..f i v (fo () — z) - 17( ) d (2.14)

Then, using (2 .4 ), we see that

Ro (z )f=  ( 2  )  - 3 f  e 1
I
 ( 1

1: (
)
.: 2

1 -z
 1
)
 ) 17( )R' 

I:0(0 +z= + rK Eo (01 + (1—  ric (0) E 0

Since we have

(2.16)

(2.15)

and

F0 (z2 - 1)g= (2 71" ) .-(0 p
112( z 2  — 1) (2.17)

(2 .12) follows from (2.15).

On the operators A z,K and Bz,K we have

Proposition 2.2. Let K=Ka,b be as in  (2.7) and let A z,K and Bz,K as in
(2.10). Let s . O .  Then

(i) For each zEK, A z,K can be uniquely extended to a bounded linear operator
on 122,s.
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(ii) For each z K , .13 2.,K can be uniquely extended to a  bounded linear
operator on .T2,s to C. Moreover, there exists a constant C=C s K >0 such that

for all z i, z 2 Elf .

II (B , . —Bz,,K)f II,,s . c12,1-2•2111f Ils (

J E  43) (2.18)

,  —
Proof. Since each component o f ric()L  0  ( )  belongs to  SU  conclusion

(j)  follows directly from [7, Lemma 5.7 ]. (For the definition of ST0 , s e e  [7,
section 5]).

N oting (2 .11 ), w e  se e  th a t fo r  a n y  m ulti-index a th e re  corresponds a
constant CaK>0 such that

/ a \af  i — y ( ) fo(01I<Ccrx<>- 1 - 1 a 1

t1d2— (Z2-1)
I

(2.19)

    

for all z EK, w here <> = - I-  Id ' • T hen  by  [7, Lemma 5 .8 ], we can deduce
that .13,,K can be extended to a  bounded operator from T2,, to  N I. M oreover,
using the identity

(z1 Z 2 )  (Z 1  +Z2)

(242 - 1) (z22-1) Q1 2 —  (zi 2 -1 )) (z22-1))'
(2.2o)

we have for any a

E  ()1( a )af  1 — T K ( )   E 1 ( )
0 \Il l2_ (zi 2 —1) ° (z22_ 1)

CaK IZ1
—

 2.21 
<> i - l a l

(Z1, Z2EK). (2.21)

Hence, appealing to [7, Lemma 5 .8 ], w e get (2.18)

In the rest of the paper the extensions of A 2 ,  and B  zx  of which existence
has been guaranteed by Proposition 2.2, will be denoted again by A z,K and Bz.K

r e s p e c t iv e ly . T h e n  i t  is  c le a r  th a t  A z x  i s  a  B (Y 2 , ) - valued continuous
function on K and B z,K is a B (Y2,s, OD - valued continuous function on K.

Now we are in  a  position to summarize the  known results on the limiting
ab so rp tio n  p r in c ip le  f o r  t h e  Schr6dinger o p e r a to r  w ith  a  short-range
p o ten tia l. F o r 0<a<b< co and 0 <c < co , L ± =L ±  (a, b, c) are  defined by

L ± ={ z =K - Fir (2.22)

Theorem  2 .3  (Agmon [1], Ikebe - Saitb [3], Jag e r [4], Saiba [8] - [12]).
Let 2 a n d  1/2 <5 L et T  -= T o +  V  be the Schrddinqer operator which
satisfies (2.5). Let r( z )  be the resolvent of T.

(i) (Existence of the boundary value of  F ( z ) ) .  L et IC>  0. Then there exist
the limits



574 Chris Pladdy, Y oshimi Saito - and Tomio Umeda

F±  (K ) =lim  (K ± ir) in  B H2-6). (2.23)
r io

(ii) (Continuity of T ( z ) ) .  Set

r(K )= (K)( , c b ] C L + ) , (2.24)

[or
r(K )= r- (K) ( K E  [a, b] CL - ) . (2.25)

T hen r(z ) is a B (L2,4, 112-6) - valued, continuous function on I,  [or L - ].
(iii) (Radiation condition and uniqueness). For K >0 and f  E L 2 ,5, set

lu(K +ir, = u (• , K +ir,  =r( K +ir) f  (r±  0) ,

vt±  (c f )=14, ±  (- , K, =  r± (K) f .

L et L ±  = L ±  (a, b, c) be as  in  (2.22). Then there exists a positive constant C =
C (a, b, c) such that

1
11(19, — ii,/K - Hir.fr) u(K - 1- ir, ( r* 0 ) ,

{

(— A+ V (x ) — K )4 t= f,

14E L2,—.5 (R n ) n H2 (W) loc,( 2 . 2 8 )

(afT i,,/WZ)u E L2,6-1 (W )  (i = 1, 2, —, n).

(iv) (Compactness). (a) L e t  L±  = L ±  (a, b , c )  b e  a s  above. T hen  there
exists a positive constant C=C (a, b, c) such that

ill u (K+ ir, f)11--4,E, c (1+ r) - ( 6 - "li f Ila (T*0) ,
(2.29)

II g ,Er = [L , <X> — 2 6 Ig (X)I 2dX1 1 / 2 . (2 . 30)

(b) r (K + ir)  (K > 0, 1- * 0) and r± (K) (,c> 0) are com pact operators from
L2,5 (Rn ) into L2,-5 (R n ).

(v) (A symptotic behavior o f  u ± (ic, f)). S uppose , in  addition , th at  the
potential V  satisfies

V (x ) = 0 (1x1- 2 ) (Ix1— ) c*) (2.31)

(2.26)

(2 . 27)
u ±  (K, f)11.3-1 Clif

for any feL2,a(R n )  and any K - FirEL ±  UL - . Here the branch o f  K- Fir is taken
so that Irn,hc - Fir

Conversely, u ±  (K , f ), K > 0 , is characterized as a unique solution of  the
equation

11141  (K, PII-3,E, C (1+ r) - ( 5 - 1 1 2 ) 11f Il a

for any fEL2,6(R n )  and any K-i- iz- EL + UL - , where E r = tx  E lx1 >r), and
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Let u ± f )  be given by ( 2 .2 6 ) .  Then f or x > 0  and J E  L2,1 ( W )  ,  there exists the
limit

c e•
i crroi-i)2u± f )  in L  (s ' ),3 2 )

where Sn - ' is the unit sphere in  Rn, and it ±  (r •  , ic, f) should be interpreted as the
trace of u ± f )  on the sphere S r  with center at the origin and radius r.

T h e s e  r e s u l t s  o n  t h e  Schrbdinger o p e r a to r  a r e  com bined w ith
Propositions 2.1 and  2.2 to investigate th e  resolvent R o(z ) of the free D irac
opera to r H o. F i r s t  w e  a r e  g o in g  to  g iv e  a n o th e r  p ro o f  o f  t h e  limiting
absorption principle.

Theorem 2.4 (Limiting absorption principle fo r Ho ) . L et Ho  b e  the
free Dirac operator satisfying the anticam .mutation relation (1 .2 ). L et 5  be such
that 1/2<51.

(i) Then, for 2E  (— c°, — 1) U (1, co ), there exists the limits

4  (2) =iim Ro (2 ±- in) (2.33)
n 10

in  B (Y2,a, YeLa) , and

R ± 0  ( 2 )

To± (/12 -1 ) ,4 2 ,K -FBA,K  ( 2 > 1 ) ,
(2.34)

17 (22 1)A 2,K +.13,3,K < 1 ),

where K = K a ,b is taken as in  (2.7) such that 1 < a 1 2 1 .b  < 0 0 .
(ii) T he operator R 0 (z )  is  a  B (Y205, Yela) - va lu ed , continuous function an

J±  = = 2  + 121> 1, n  o l  and J -  =  2 +  in:121> 1, 77 ic1}. Here the
boundary v alue of  Ro ( z )  on the  boundary (—  00 , — 1) U (1, 0 0 )  is defined by
either R 0 (2 )  or R (T (2) according to (2.34).

Proof Noting that, for z=2 - 1- in, Im(z 2 - 1) =2217, we have  (i) a n d  (ii)
directly from Propositions 2.1, 2.2 a n d  (i), (ii) of Theorem 2.3.

T h e  follow ing theorem  gives a  characterization of R  ( 2 )  th rough the
Dirac equation with the radiation condition.

Theorem 2.5 (Radiation condition for Ho ). Let Ho  and ô be as above.
Let 2E  (— —1) U (1, c o ) and f E Y 2 ,4. Set

iv (2 +in, f )  =R, GI + in )f= t (v i , v 2 , v 3 , v 4 ) (77*0),

v± (Â, f )  =Rô (2)f = t (1 4 , v t v i, v ) .
(2.35)

(i) L et K = K a ,b  be as  in  (2.7). Then there exists a positive constant C =
C (K ) such that, for f 2,5 and z= 2-F i17eK ,



{  ( - A -  (22 -1 ))v ,=0 ,

V j n Hfoc,

22 - v iE L 2 , (1 =1 , 2, 3),

(2.40)
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11(51-iVz2-1z)vi(z, f)114-i cIlf Da (z = 2-1-in, )7 ±0) ,

II(a, - - -Pi,/ 22 1 ,)v (A, f)110_i_cliflba
(j=1, 2, 3, 4, 1=1, 2, 3, 1<a<2_b<00),

or
(2 .  36)

II (al ±i,/ 22 (A, f)116_i cilf
(j=1, 2, 3, 4,1 = 1 , 2, 3, - c o <  - b - a< - 1).

(ii) Conversely, v ± (A, f )  is determined as a unique solution of the equation

(H0 - 2)1)=f,

v E T 2 ,- 4  n Ye?bc,

(al-T i,/ 22 -1z) vi EL,5_1
(2>i, J=1, 2, 3 ,4  and  1=1, 2, 3), (2.37)

Or

(5 ,± i / A2 v,
(2 < -1, J =1, 2, 3, 4 and 1=1, 2, 3).

Proof. ( i )  directly follows from (i) of Theorem 2.4 and the first half of
(iii) of Theorem 2.3 by noting that 13z,K0 f E Ye' b y  (ii) of Proposition 2.2. Let
u s  p ro v e  ( i i ) .  W e m ay consider only the case of v+  (2, f )  w ith  A > 1, since
other cases can be treated in  a  qu ite  sim ilar m anner. T hus w e have only to
prove that if v satisfies

(2.38)

( a i- a  22 - 1Z)viEL2,6-1 , ( j=  1, 2, 3, 4, 1=1, 2, 3),

then v is identically ze ro . In  fac t, from the first relation of (2.38)
it follows that

( -A +1 -22 )v=0 ,

a n d  (1 . 5)

(2.39)

i.e., (each component o f )  - Av is locally L 2 , and hence we have v E n c .  T h u s
we see that each component v;  of v satisfies



cl (2,f)
lim 1) (r • , 2, f) (2< —1) .
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w hich is com bined w ith th e  uniqueness result o f  th e  Schriidinger operator
( ( i i i )  o f  Theorem  2 .3 ) to  g iv e  th a t  e a c h  y i is  id en tica lly  ze ro , i.e., y  is
identically zero.

Theorem 2.6 (A sym ptotic behavior o f  v±  (A, f ) )  • Let H o, ô  and
v ±  (2 , f )  be as above, where A E  ( —  0 0 ,  — 1 )  U (1, co ) and f  Y2,1. Then there
exist the limits

lirn irr . 2 , f) (2 >1) ,

 prove the above theorem we need the following lemma.

(2.41)

Lemma 2.7. Let g 1 1 ( R )  with s > 1 / 2 .  Then we have

r— ,f r ig (x) I2d s = 0 (r -
( 2 s - 1 ) ) ( co) (2.42)

where Sr  is  the sphere with center at the origin and radius r, dS  = rn - l dw , and

do) is the area element on 5 n - 1 .

Proof. Let us first assume that gEC ô(Itn ). Then, since

1g (7(0) 12r-ag (to_ )) 
J r at d t

<f i2  ( 1 +  t) 2Sd t f ' ' ' (1+ t) - 2 S d t

 

= (2s-1) - 1  (1+ r ) -(2.3-1) ag (tw) 
r I at

  

2
(1 +0 2S dt, (2.43)

it follows that

 

Ig (rw) 12in- 1 _ (2s —1) -1 (1+ r ) -(2s-u r n - i f
t

t a ) )  ( 1 +  t) 2Sdt

  

( 2 s - 1 )  -
1 (1+ r ) --(2s-of  (  

v 4
(.0 )12 (1+0 2s tn-ldt»  

(2.44)

Integrating the both sides o f  (2.44) over S2 , we obtain

iSr Ig(x)I 2d S  (2s-1) - 1  (1 - kr) g Ii,s (r>0). (2.45)

L et us next assume tha t g H  (R n ) . Then, since the  trace  is continuous on
1-I (Rn) and C ( R )  i s  dense  in  11(R '), w e see  th a t th e  inequality  (2.45)
holds for general g, which completes the proof.

Proof of Theorem 2 .6 . Suppose that 2 > 1. Let K = Ka,b a s  in  (2.7) such

2
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Set

ig (1) , t (g 1 (1) , g2 (1) , g3 (1) , g4 (1)) = A 2 , K  f ,

g (2) = t (g  1(2) ,  g 2 (2), g 3  (2) , g 4  (2)) = B,I,K f .
(2.46)

Then it follows from (2 .3 4 ) that

R  (2) f r o± (22_ 1) g g (2). (2.47)

A pplying ( i)  of Proposition 2 .2  with s 1 to  g (1) , we see that
hence it follows from (v ) of Theorem 2 .3  that there exists

g
(i) E  wz2.1, and

cl (2, jf) rFo± (22 - 1) e ) (r•) (2.48)
r-os

in L2 (S2)  for j =1 ,2 ,3 ,4 . On the other hand, from  ( i i)  of Proposition 2 .2  we
have g ( 2 ) A l  and hence we can apply Lemma 2 .7  to see

liMe ± i V " r  rgi(2 ) (r•) =0 (in L2 (.52 ) ), (2.49)

which is com bined with (2 .4 8 )  to  g ive  (2 .4 1 )  fo r A> 1. The case that
—1 can be treated in quite a  similar way.

F inally  w e shall p rove th e  compactness o f  th e  resolvent R0 (z) a n d  th e
extended resolvent Rô (A) .

Theorem 2 . 8  (Compactness of R 0 (z) a n d  Rô (2)). Let Ho and 5 be as
above, and let K=K a ,b be as in (2.7).

(i) Then there exists a positive constant C=C (K) such that, for f  .E2,j and
z=2±inEK,

f11v (z, f)11-a,E, C (1+ r) - ( 5 - 1 1 2 ) 11f 116 (z= ï 2 *0) ,

II V±  (A, (1+r) - ( 5 - 1 1 2 11 f Vs,

where v(z, f) and v±  (2, f) are as in (2.35), and E r  and 11 11- ,Er are as in (iv) of
Theorem 2.3 with n=3.

(ii) Ro(2+ i l l )  (121> 1, n 0 )  and Rô (2) (121> 1) are compact operators
f ro m  2,6 into

Proof. W e shall show  ( i)  for z=/1 - - H,77cK =K a ,b w ith n *O . The case
t h a t  z= 2 E  [a, b] c a n  b e  t r e a t e d  i n  t h e  s a m e  w a y .  It fo llo w s  f ro m
Propositions 2 .1  and 2 .2  that

R o (z )f= r o  (Z 2  1 )  A zx f+Bzx f =fi +f2. (2.51)

N ote th a t it  fo llo w s fro m  Proposition 2 .2  th a t  A r ,K a n d  B z  JC  a re  B(Y2,0)
-valued, continuous function on K .  Therefore, it is easy to see that

IIf (1+7) - ( 0 - 1 1 2 11 f i(  j  = 1 ,  2), (2.52)

(2.50)
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w here  w e  h av e  a ls o  u s e d  ( a )  o f  Theorem  2.3, ( iv )  to evaluate  f i. T h i s
completes the proof o f  (i).

L et us tu rn  to  the  proof o f  ( i i ) .  W e give the  proof only for Ro(z) with

z =2 -1- 07, i 00. T h e  proof for Rô (2 ) can be done in  exactly the same way.
Let { f m }  b e  a  bounded sequence in <E 2 ,6 . Then for any r>0, we have

fxlSr la151
E a"Ro (z )f . (x ) I2dx (1+1'2 ) / Ro (z)fm

W ith  th is  in e q u a l i ty ,  w e  s e e  th a t  {Ro(z)fm} , to g e th e r  w ith  th e ir  f ir s t
derivatives, is P z -bounded on  any compact set in R3 . W e now appeal to the
Rellich selection theorem  to deduce that there exists a  subsequence f f ne l of
{fm} such that {R0(z)fm , }  is locally P z-convergent. Combining this fact with
(2.50), we see that {Ro(Z)fm'}  converges in P2,-6. T his  completes the proof
o f (ii).

3. The Dirac operator H with a short-range potetial

Let H be given at the beginning of § 2, i.e., H is the selfadjoint realization
of the Dirac operator w ith a  short-range p o te n tia l. W e have H= Ho + Q. On
the potential Q we assume the following:

Assumption 3.1. T he potential Q (x) = (gik (x)) is  a  4 x 4 Hermitian
matrix-valued function satisfying (1 .3 ). Further, each component qik i s  a  Ci

function on R3 except at a  finite number of singularities, and there exists Ro >
0 such that

su p  ( i  IONA (x) I) < co , k 1, 2, 3, 4) . (3.1)
lx1>Ro 1=1

Then we have

Proposition 3.2 (Y am ada [13], Proposition 2.5) . L e t I-1 satisfy
Assumption 3.1 and (1.2). Then there are no eigenvalues of H o n  H o c ,  — 1) U
(1, oe).

We set

F (z )=-Q1?0(z) (z=2 -1-07,121>1, 7)*0),

( F ±  (2) =Q1a (2 ) (2 E  (—co, —1) U (1, 00)),
(3 . 2)

where R0 (z) a n d  R ô (2) a re  th e  resolvent and  the  extended resolvents of the
free  D irac operator H o, re sp ec tiv e ly . I t fo llo w s fro m  (iii) o f  Theorem 2.8
that F (z) and F ±  GO are compact operators on Y2,6, where ô satisfies

1/2<5.min{1, 1 + 6 } (3.3)2 '

W e start w ith  the  proof of the  invertibility of the o p e ra to r s  +F ( z )  and 1+
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(2), where / is the identity operator in .T2,5.

Proposition 3.3. Let H satisfy  A ssumption 3.1 and (1.2), and let d  be
as in (3.3). Let F(z ) and F±  (2) be as above.

(i) Then F (z ) and F±  (2 ) do not have the eigenva lue — 1, and hence we
have

(1+F (z )) - 1 , (r +F±  (A)) - 1  B  (.'2,o).( 3 . 4 )

(ii) The operator (I + F (4) - 1  is  a B  2,6) - valued, continuous function on
J±  ={ z = 121> l, 0} and J-  = { z= 2+in: 121>i, n Here the
boundary value of  (I+F (z)) - 1  on the boundary (— 0 0  , — 1) U (1, 0 0 )  is defined
by  either (I+ F+  (2)) - 1  o r (I (2))-1 according as A  is supposed to belong to
the boundary of J+  or J-

Proof. Since the proof o f  (i) for F (z) is trivial, we shall give the proof
for F+  (2 0 )  with 20 > 1 .  Suppose that g0 E,T2,5, 0 such that

(/+F+ (2 0) )g o =0. (3.5)

Set v0=n(20g0 so that we have from  (3.5)

{

V o  E  2 2 , - 6  n 01-0c,
(H0 - FQ - 20)y0=0.

Then w e can follow  the  argum ents in  the  proof o f Theorem 4.1 in  Yamada
[13] to prove that vo E.T 2,±0, which contradicts Proposition 3 .2 . In fact, we
have only  to  set An = 2 ±i/n, gn= g0, and un =Ro (An) go in the argum ents in
Y am ada [13], p.570-p.573. T h is  completes th e  proof o f  ( i ) .  N ow  w e are
go ing  to  p rove  th e  continuity o f  (I + F ( 4 )  - 1  o n  t  a n d , fo r  th e  sak e  of
simplicity of the  nota tion , se t F (A) = F ±  (A). S in c e  it  fo llo w s  f ro m  ( i i )  of
Theorem 2.4 tha t F (z )  i s  a  B (Y 2,5 ) - valued, continuous function on t ,  the
continuity follows from the relation

F (4) - 4 —(I+ F (zo)) —1 = — (1+F (z)) —1 (F (z) — F (zo)) (I+ F (zo))
(3.7)

Or

(I + F (z)) -
1 [I +  ( z )  — F (z0)) ± F  ( z o ) ) -

1] = ± F (z o ))  -
1 (3 .8 )

for z, z o E J t  In  fact, if lz — zol is sufficiently sm all, then so is F (z) — F (zo) ,
a n d  hence th e  in v e r s e  [/ (F (z) — F (zo)) F (zo)) -

1] -
1 e x i s t s  a n d  is

bounded in  a  neighborhood of zo. T his guarantees the local boundedness of
(1 + F (z)) -

1 o n  r. O nce  the  loca l boundedness is  e stab lished , then  the
continuity  fo llow s d irec tly  from  (3 .7 ) a n d  th e  continuity  o f  F (z ) , which
completes the proof o f  (ii).

(3 . 6)



c l  ( 2 ,  f )

l i m  e ±i rrv t ( r „ f ) < _ 1 )
r - 4 0 .

lim e' i rrvP (r-, 2, .r)(A >1 ) ,
(3.14)
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The main result of this paper follows from the above proposition.

Theorem 3 . 4  (Limiting absorption principle fo r H) . Let the Dirac
operator H satisfy A ssumption 3.1 and (1.2), and let 5 be as in (3.3). Let R (z) be
the resolvent of H .  Let F (z) and F ô  (2) be as in (3.2).

(i) (Cf. Balslev - H e lffe r  [2 ]  .)  L e t z  = A  + in w ith 12 I> 1 and  n  ±  0.
Then we have

R (z) = Ro (z) (1+ F (z)) - 1 , (3.9)

where R 0 (z) be the resolvent of the free Dirac operator Ho. Further, there exist the
limits

Rô (2) =lim R (2± in) in B ( 2,5, A9 1-3) (3.10)
nlo

for 121>l, where the extended resolvents R (2) of H are given by

R ô  (2) =Rô (2) (I+ F± (2)) (3.11)

w ith the extended resolvents Rô (2) of the free Dirac operator Ho . The operator
R  (z ) i s  a  B (Y 2,a, 0 1-5) - valued continuous function on r and J ,

 w here the
boundary value of R (z) on the boundary (— co, — 1) U (1, c c )  is defined by either
R+  (A ) or R -  (2) according as A  belongs to the boundary of J+  or sr .

(ii) (a) L et 2E (— c° — 1) U (1, c o ) and f e Y2,5 . Set

iv  (2± in, f )=R (2 - k in )f = t (vi, v2, v3, v4)

v ô  (2, f) = R ô  (2) f = t (v t v t v t v i) .

Let K = K a ,b  be as in (2.7). Then there exists a positive constant C=C(K) such
that the radiation condition estimates (2.39) hold for f ES.P2,5 and z = 2+in K.

(b) Conversely, v ô  (2, f) is determined as a unique solution of the equation

(H— 2) y =f,,

V E I' 2 ,-5  n gioc,

(ai -T 1/./) v, EL2,6-1
(2 >1, j=1, 2, 3, 4 and 1=1, 2, 3),

(3.13)

Or

       

(al ±i,12 2 - 1 1)v J EL2,5_1
(2< — 1, .J=1, 2, 3, 4 and 1=1, 2, 3).

(iii) Let v ô  (2, f ) be as abovve, where A E  ( — 1) U (1, co )  and
Then there exist the limits

(72* 0) ,
(3.12)
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(iv) Let K=Ka,b be as in  (2.7), and let K±  be as in  (2.54). Let v(z, f) and
v±  (A, f )  be as  above. Then (i) and  (ii) of  Theorem 2.8 with Ho replaced by H
holds. Thus R(2+07) (121>1, ± 0 ) and R±  (2) (121> 1) are compact operators
from Y2,5 into Se2,—.5.

Proof. Let z=.1 - Fi17 w ith 121>1 and 77± 0 .  Then, since we have

R (z) — R 0  (z) = R (z) QR 0 (z) = — R (z) F (z) , (3.15)

(3 .9 ) follows from ( i)  of Proposition 3 . 3 .  Using the continuity of F  (z ) ( (ii)
o f P ro p o sitio n  3 .3 ) ,  w e  e a s i ly  s e e  th a t  (3 .1 0 )  a n d  (3 .1 1 )  h o ld . T h e
continuity of R (z) on j -±  follows from the continuity of F (z) and R 0 (z) ( ( i i )  of
Theorem 2 .4 ) , which completes the proof o f  (i). ( i i )  -  ( a ) ,  ( i i i ) ,  (iv ) can be
easily proved from (3 .9 ), (3 .11 ), Proposition 3 .3  and Theorems 2 .4 ,2 .5 ,2 .6
and 2.8.

L et us p rove  (ii) - (b). W e shall prove the case tha t vo= t (voi, v02, vos,
y0 4)  satisfies

2 2 -1 z )v o ,E L 2 ,6 -1

>1, = 1, 2 ,3 ,4  and 1= 1 ,2 ,3 )

with A > 1 . The other cases can be treated  sim ilarly . Then, since

(Ho — 2) vo
 — Qvo = — (Ho — 2) RC' (2) Qv°, (3.17)

we have  (1/0- 2) (vo - E/a (2)Qyo) =0, i.e., w=vo - PRit (2)QY0 is  a solution of the
homogeneous equation (Ho — .1) y =  0 .  N oting that w  satisfies the radiation
condition, too, we see from (ii) of Theorem 2 .5  that w=0, i.e.,

(/- FRii(2)Q)vo=0. (3.18)

Let fc.,T 2 ,5 . Then we have from  (3.18)

0=  ((i+R it (2)Q)v o ,  f)
= lim ( (I±Ro (.1 +i/m) My°, f)

co

=lim  (vo, (i+QR0 (2 — i/m) )f )
M —r co

= (vo, GOV),
w here (  ,  )  is the inner product of ..T2, i.e.,

(f, q) =i f f l (x)g,(x)dx (3.20)
1=1 R'

(3.19)

with f  (x ) =  (  (x ), f2 (x ), fa (x ) ,  f4 (x ) )  a n d  g (x) =  (g i (x ) ,  g2 (x ) ,  g3 (x ),
g4 (x )).

(3.16)
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It follows from (j )  of Proposition 3 .3  th a t  (/ - i- F -  (A )) is on to  S e 2,6, and
hence (3.19) implies that vo -= 0 . This completes the proof.

Remark 3.5. It follows from (3.11) a n d  (2.37) that, for fE2?2,5,

R ±  (2)f 
= 111±  (A' — 1) A 2,K  (I +F (2)) -  - B  2,K  (I + F± (A)) (2>1) ,

132,K (I+ F ±  (A)) -
1 f  b e lo n g s  to  la  the  "m ain" part o f R ±  (.1) f  is  the solution y

of the equation

(— A — (22 — 1) v =A2.1( (/±F ±  (Â) (3.22)

with an appropriate radiation condition.
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