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Projective elements in K-theory
and self maps of >.CP~

By

Kaoru MORISUGI

1. Introduction and statements of results

In this paper, we will work in the homotopy category of based spaces and
based maps. Given a space X, we denote the reduced K-theory by K (X) and
the homology group of integral coefficients by Hx(X). Let CP* be the infinite
dimensional complex projective space. Let 1 be the canonical line bundle
over CP” and i: CP*—BU be the classifying map of the virtual bundle n — 1.
Since BU has a loop space structure which is derived from the Whitney sum
of complex vector bundles, there exists a unique extension of ¢ to the loop map
j: Q2CP™—BU.

In this paper we investigate the following problems:

Given an element a €K (X), when does there exist a lift & € [X, Q2.CP*]
such that jx (&) =a? If a has a lift, how we can construct the lift &@?

Define

PK (X)={acK(X)|3 @€ [X, Q2 CP~] such that jx (&) =a}.

If an element €K (X) belongs to PK (X), we call that « is projective.
The significance of the above problem is as follows:
The James splitting theorem [2] implies that there exists a loop map

6: BU—Q>2.°CP> such that the following diagram commutes:

Qscpe —— Q=seCcPe

BU.

Therefore, given an element a € K(X), we have the stable map, adj.(6(a)) :
2°X—>°CP>. Using the information of K (X), we can calculate the induced
homomorphism [3], [4] of adj. (6(@)) «: Hx (X)—Hx(CP*). If  has a lift &,
then this implies that the stable map adj.(6(a)) and its induced
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homomorphism come from the unstable map adj.(&) : 2X— 2CP*. These
imply that the determination of PK (X) gives complete information of the image
of the homomorphism:

[ X, >cP~]—Hom (H«(X), Hx(CP)).

However, since the above homomorphism factors through Hom (H«(X), H«(Q2CP?)),
it is desiable to obtain the image of

[x, Q2CP"]—Hom (H« (X), H«(Q2ZCP~)).

So, if possible, we want to have the information of not adj.(@&)s but
A Hx«(X)—H«(Q2CP”). Thus we need the geometry of the lift &.

Now we shall state our main results.

Since CP” is an H-space, we have a map

CP”ACP™—Q2.CP>,
which is the adjoint of the Hopf construction: We will show that

Theorem 1.1. The adjoint of the Hopf construction of CP” has an
extension

#:Q2CP°NQZCP™—Q2.CP~,
such that the following diagram commutes:

QSCPPAQECPT —— QXcP”
1;‘/\;‘ li (1.1)

BUABU 2. By
where @Q: BUABU—BU is the map which represents the external tensor product
K(X)®K (Y)—=K(XAY).

As the properties of PK (X), we have

Theorem 1.2. PK (X) has the following properties.

(1) PK(X) is an additive subgroup of K (X),

(2) if a€PK(X) and BEPK(Y), then a®BEPK (XNY),

(3) if a € PK(X), then ¢*(a) € PK(X) for all k € Z, where ¢* is the
Adams operation,

(4) if X is a finite complex, then for any ® €K (X), there exists a number N
such that Na € PK (X),

(5) if X is a finite complex, then for large N, PK (2¥X) =K (2VX),

(6) if a€EK(X) is a linear combination of line bundles of virtual dimension
0, then a €EPK (X).

As an application, we consider the group [CP*, Q2 CP~].

Recall that K(CP?) = Z [[x]], where x = n — 1. Since CP” is the
classifying space of complex line bundles, it is easily seen that PK (CP*) =
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K (CP*). However, we would like to find the canonical lift of " €K (CP*).
Let fir CP™— Q2CP” and (;: S*— Q2.CP” be the inclusions and
inductively define

Farr: CPP—0P* ACPP225Q T cP AQ T CPP—-Q X CP*, (1.2)

A

Curi: S =S ASB0 S P AQTCP QT CP”,  (1.3)
where A is the reduced diagonal map.

Remark 1.3. The above definition of {, coincides with the one in [5].

Let CP; be the stunted projective space CP*/CP"™! and p: CP*— CPj be
the projection.

Theorem 1.4. {fa} and {Cs} have the following properties.
(1) jx(fa) =2"in K(CP),

(2)  fu: CP™— Q2CP> factors as CP” —p>CP‘,’,° zQZCP‘”, such that the
restriction to the bottom sphere of the map g, coincides with the map C,.

(3) 7% (Ly) is the generator of mam (BU) =Z,

(4) Let C(fy, fm) be the commutator in the group [CP=, Q2 CP>] of fn and
fm. Then

i*C (fn,fm) :q*<Cn. Cm>

where it CP"™™— CP” is the inclusion, q: CP"*"— S¥*™™ s the
projection and <Cn, {m> is the Samelson product in mx (Q2CP”).

Let h: 7« (Q2CP”)— Hx(Q2CP”) be the Hurewicz homomorphism.
Recall that H«(CP”) = Z {Bi1, B2 '}, where B € Hz,(CP*) is the standard
generator. Therefore Hx (Q2.CP™) is the tensor algebra generated by {81, B2,
+}. Let x: QX CP*— Q2 CP™ be the map of loop inverse. Then

Theorem 1.5.
B if n=1,
=11 2Z%1x % (Bazi) GBi—BrBiz1) if n=2,

where the product in the above equation is the one in the tensor algebra and ,Bo.

means 1€ Hy (Q2CP™).

Corollary 1.6. If n> 3, then the group [2CP", 2CP"] is not
commutative.

h(Cn)=[ (1.4)

Let fi: € [ZCP™, ZCP~] be the adjoint of fi Then about the
composition structures of f; we get

Theorem 1.7. The composition }7; ° f,- can be written as a linear
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combination of fn’s for n<4j.

Throughout this paper, we use the symbol + as the product in [2X,
2CP] or [X, QZCP], although these groups are not in general abelian.
The auther thanks H. Oshima for valuable discussions with him.

2. The extension of XAY—Z to Q2 XAQDY

Given a map f: X A Y™ QZ, there exist extensions of f to QX AQ2Y.
We fix a choice of extensions as follows: Take x € X. Define fi: Y— QZ by
f:(y) =f(x, ). Extend fr to a loop map f Q2ZY—QZ Note that such an
extension is unique. Therefore we have a map ¢: X AQ2Y—QZ which is an
extension of f. Similarly, from g we have a map h: Q2ZXA Q2 Y—QZ. Note
that h(antaz, B) =h(ay, B) th(az B), h(c(x), BitB) =h(c(x), Bu) +h(cx),
B2), and h(c(x), ¢(y)) =f(x, y), where ¢ X—Q2X is the canonical inclusion.
From now on we denote h by L (f).

Our extension L(f) of f can be described through the following
commutative diagram:

d
meyn RN (XXY)m”

l l

X"AY" — (XAY)™ (2.1)

l amNay l An

QIXNQZY — QX (XAY)—QZ

LO 7
where

d (x1, %2, %, Zmy Y1, Y2, 0, 9n) = (21, 1), (x1, y2), ==, (%1, yn)
(xz.yl). (xz, yz), Y (xz, yn),

.o

<xm. yl) ) (xm, yz) y 7% (xmy J’n) ,
6 XAY—=QZ(XAY) is the inclusion, @n is the composite: X”— (Q2X) ™

+ —
—Q>X, f is the canonical extension of f to the loop map and other maps are
standard ones. It is clear that L (f) = f L (¢).

Proof of Theorem 1.1, Let p;:CP* X CP”— CP” be the i-th projection
(1=1, 2). Since CP*=K(Z,2), it has the unique multiplication

—

(t: CP* X CP™—CP”. Let H(y): CP* ACP*—Q2.CP™ be the adjoint of the Hopf
construction H(y) : 2CP> A CP*— 2.CP*. Then the following equation

—~

characterizes H(¢) [1].

——

H(p) em=—cpp—copiteop (2.2)
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where m: CP*” X CP”—CP” ACP” is the canonical projection.

Put
t=L(H@)): QECP*AQZCP—QICP™
Lemma 2.1. The following diagram commutes:
crace 22, Q> cpe
ini l l,‘
BUANBU ? BU.
Proof.

joH () cm=je (—tepp—eopyteop) by (2.2)
=—icpy—i°pticpu since j is a loop map
=—197+1®1—7®1+1®1+n®p—1®1
=(n—-1)®(n-1)
=Q®-°(i{Ai)e°m.

Since 7* is mononorphic, we have the desired result.

155

Now consider the diagram (1.1). For convenience, put X = CP* and
consider the James model X. instead of Q2X. Let X, be the n-th James

filtration of X.. Consider the Milnor exact sequence:

0—1lim! [ 22X, A X, BUl—= [XwAXw, BUl—1im [X,AX,,, BU]—0.

—

Since [2X»/AXm, BU] =0, in order to show the commutativity of the diagram
(1.1), it is enough to show that the restriction to X» A X of the diagram

(1.1) commutes. To see this, consider the following diagram

X1 A X" d ( XA X) nm &) ( Q EX) nm
+
e i)™ s
A" QSXAQSX :
BU"/\BU™ 4 (BU/\ BU) nm ® BUM
JNj +
+A+

BUNABU ®

BU,
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where @ X"~ QXX is the composite X" (QXX)">Q3 X, + means the loop
sum. Note that the image of a is X,. From the bundle theory and the
previous lemma, we see that the above diagram commutes (up to homotopy).
This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2.

(1) s clear, since j: Q2 CP*—BU is a loop map.

(2) follows from Theorem 1.1.

(3) Recall that [CP”, CP"] =H?(CP~) =Z. Take any integer k€ Z and
consider the following commutative diagram:

cpr %, cp

L !

k

BU %, BU.

Since ¢@* is additive, the above diagram can be extended uniquely to the
following commutative diagram:

Q2 [kl

Q3cpe - Q2cpe

! b

BU 5 BU.

Thus, (3) follows.

(4) Let py, p2, =+ be all primes. Put ;= (pip2--pr) ¥. Let Y=Q2CP~
or BU. For any integer n €Z, consider the n-fold loop multiplication map #:
Y—Y. Then clearly, the following diagram commutes:

Q>cpr = Q3cpP

L L

BU X5  BU.

Consider the telescope of the following sequence:

[} r2 73
Y- Y- Y-
then this telescope gives the rational localization of ¥ [9]. Recall that
(Q2CP*) o =ILK (1, (Q2CP*) ®Q, k) and BUg= K (,(BU) ®Q, k), where
K(m, k) is the Eilenberg MacLane space. Note that jx: (Q2CP*) ® Q—
7% (BU) ®Q is split-epi. Thus we get the splitting map between the product
of the Eilenberg MacLane spaces and so we get the splitting map of jq:
(QXCP®) ¢—BUq. Since X is a finite complex, [X, Tel (Y)] =lim,,[X, Y].
This implies that lim,js lim,,[X, Q2CP~]— lim,,[X, BU] is onto as sets.
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Therefore, for any element @ € K (X) = [X, BUJ, there exists an element BE
(X, Q2CP~] such that (limjx) ([8]) = [al], where [@] means the equivalence
class of a in the direct limit. This implies that a is equivalent to j%(8) in the
direct limit. Now, the proof of (4) easily follows.

(5) First, from Theorem 1.1, we have the following commutative
diagram:

SEAQICP? —— CP°AQICP” — QX CP°AQXCcP — QXcP~

s [ | |

SEABU — BUABU —/— BUABU — BU.
Taking the adjoint we have
Qxcrr L esyepe
fl lﬁzf (3.1)

BU Q2BU,

o[

where B is the map which represents the Bott periodicity K (X) —i—*K(ZzX).

By iterating the above diagram we have the following commutative diagram:

Q-7

crr — Q3cpr L, B> cp LA . QN+ op=

N B

BU — BU % oy 2 .. 24 QB

Thus taking the adjoint we have the next commutative diagram:

S2NCp>e QZCP>
2 A (3.2)
BU.

Given any element ¢ € K (X) = [X, BU], by Segal-Beker theorem [7], since X

is compact, for large N there exists a map @: X— Q*>*CP> such that the
following diagram commutes:
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0O 2N Z ZNCPoo

a

X

BU,

where jy is the canonical extension of ::CP*—BU—Q®BU. Note that BNejy=
Q2¥BNi Therefore, taking the adjoint we have the commutative diagram:

S NCp

adj. a

‘“ (3.3)

N
e

R ¢ BU,

By the diagrams (3.2) and (3.3), we have completed the proof of (5).
(6) Suppose that @ = X2a;(a; — 1), where a; € Z and a;'s are line
i

bundles. Let gi: X— CP” be the classifying map of the line bundle a;.
Consider the element & € [X, Q2CP~] which is defined by & = 2a;(c°gi),

where ¢: CP*—Q 2> CP” is the inclusion. Then it is clear that j°e @ =a.
This completes the proof of Theorem 1.2.
The following proposition gives examples of PK (X).

Proposition 3.1. (1) forn=>1, K(CP*) =PK (CP").
(2) Let HP" be the quaternionic projective space, £ be the canonical

quaternionic line bundle over HP" and y = ¢’ (§) — 2, where ¢ is the
complexification. If n>2, then y & PK (HP").

Proof. (1) is clear from (6) in Theorem 1.2. We shall prove (2).
We use (3) of Theorem 1.4 which is proved in the next section. Recall that
HP*=5*U,,¢® where v, S™—S* is the Hopf bundle. Since the restriction to
S* of y € K(HP?) is the generator of K(S*), and since m,(Q2CP*) = Z
generated by {;(See (1.3)), we see that

yEPK (HP?) if and only if Coevs=0.
On the other hand, using the quasi-fibration [8]

CP"— SCP*ACP™ — P,
we see that
Caovs=0 if and only if i°vs=0,
where i: S*> 2 CP” ACP” is the inclusion. Assume that i°vs=0. Then there
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exists a map ¢ XHP*— 2CP” A CP” such that the following diagram
commutes:

'l |

2ZHP* ——  2ZCP*ACP”
Consider the cohomology group of Z/2 coefficient. Recall that
H*(CP~; Z/2) =7/2[x],
H*(HP% Z/2) =Z/2[u]/ (W*),

where x €EH*(CP*, Z/2) and u € H*(HP>; Z/2) are the generators. From the
above diagram we see that ¢*(xy) =u. Now consider the Steenrod operation.

Recall that Sg*(xy) =x%%=Sq*(x%) and Sq*(x) =u®. By dimensional reason,
we get

0=S¢*(g* (%)) =g* (S (%)) = g* (") =g*(S¢* (xy))
=5q* (g* (xy)) =Sq* (u) =u’*0.
This is a contradiction. This implies that i°v530.
Remark 3.2. It is known that m; (Q2CP*) =Z/2[6] whose generator

is £° 16 where £ € me(Q2CP”) = Z ® Z is characterized by the Hurewicz

homomorphism: h (§) = 818, — B8, in H¥*(QXZCP~). And it holds that 26 =
<, ;> (Cf. §5). The above proposition implies that there is a relation &°
Ne={z°vs in m;(Q2CP™).

Remark 3.3. Consider the S%-bundle; S?— CP**'—>HP". There is a
stable map t 2"HP"™— 2CP*' called the transfer map. The above
proposition implies that there exists no unstable map 7. 2HP"— 2CP**! for
n=> 2 such that 27 = t. Because, if 2*r = t, then it follows that the

restriction to the bottom sphere of the adjoint of 7 is £, This implies that
C2°V4:O.

4. Proof of Theorem 1.4

First we prove (1). By induction on #, the following commutative
diagram gives the proof of (1):

A fiN,

CP* CP®N\CP® —————— Q3CP*N\Q3CP*®

QsCP*

iNi J

BUABU BU
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Next we prove (2) and (3). Consider the following diagram:

CP
cpP> cPeACP> —I ., ascPeAQscPe —F . ascpe
IAp Hing,
CPE ) —=2 s CP*ACP® i j
Sont2 —— @2 A2 BUABU BU

The commutativity of th above diagram is clear from the inductive assumption.
This completes the proof of (2) and (3).

Let C:Q2CP*AQ3CP™—Q3.CP™ be the commutator map with respect to

the loop sum. The proof of (4) follows by chasing the following commutative
diagram:

CP® —> CP*ACP* S QSCP*A QSCP>
i p pA\p
cprm CPCer — s CPEACPS c
Eu\ En
q
S2n+2m SZn/\SZm o Q ZCPOO

This completes the proof of Theorem 1.4.

5. Proof of Theorem 1.5

—~——

Lemma 5.1. Let (1:CP” X CP™— CP™ be the product of CP* and H(y):

CP” ACP™—Q2.CP™ be the adjoint of the Hopf construction H (n): 22CP* ANCP*—
2.CP>. Then
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760+ 6:®80= Y (") xe 6 BudBey 5D

0<i<m
0<j<n

where x: QEX—Q2X is the loop inverse and the products in the right hand side
mean the one in the tensor algebra.

Proof. (2.2) implies that the following diagram commutes:
A*X A? p2xpixy

XXX - X3><X3—L’(X><X)3 N X3

l”
(QXX)?
i 1x><x><1
(QXZXx)?

_ K

H(n)

XAX — Q2X,

where X=CP* and T is the map of changing the order of factors. Now recall
the following formula:

Mg = ), B i@, (5.2)

0<i<n
s
un8:08) = (") s,
i
B; if k=1 and j=0,
P (B®B;) = 1 B; if k=2 and i=0,
0 otherwise.

Also recall that -+ induces just the multiplication in the tensor algebra

Y *ﬁ*(CP“) Now the proof of Lemma follows easily from the above
diagram and (5.2).

Now we shall prove Theorem 1.5. Since x%(B81) = — B1, using Lemma
5.1 it is easy to see

# * (}91®Bn-1) =I'}-C;) * (.81®Bn—l)
=)t (Bu-d (iBi—BBic)

i=1

=nfntdecomposables.
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On the other hand, since, 8 is primitive, using (2.1) we see
# % (B1Q decomposables) =0.
Therefore, by induction,

h(Co) = # % (B1®h (La-1))
= # % (81 ((n—1) |Bu—1+decomposables)
=m—1!# +(Bi&®Ba-1)

= (= 1D)1) s (Bres) 1Bi—BiBics).

This completes the proof of Theorem 1.5.

Corollary 5.2. In Hx(Q2CP>), for n> 2, the following elements are
spherical.

n

n—1) !Zix* (Bu-1) Bi

i=1

(=1)1) o (Ba) BiBics

Proof. Let {{=C:. Define {, €m0 (QXCP”) inductively by

Grai: S =5 A ST S0 T CPR AQECP QT CPe. (5.3)
Then, by similar arguments, we get
h(c,;)={ﬁl . ?fn:l' (5.4)
(n—1) 1227 rix % (Buoi) Bi if n=2
Therefore from Theorem 1.5, te result follows.
Proof of Corollary 1.6. By (4) of Theorem 1.4,
*Clf f2) =¢*<C, &> in [CP, QZCP™].
On the other hand,
W (<G, §>) =h (L) (L) —h (L) (L)
=B:(28,—Bf) — (28:—BH)B1 by Theorem 1.5
=2(B1B2—BaB1) *0.

This means that f, and f 2 does not commutes in [ ZCP 3.CP~].
Since i*: [2CP", 2CP~]— [2CP? 2CP>] is homomorphism of groups
and since [2CP", 2CP*] = [2CP* 2CP"], the result follows.
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6. Composition of {f;}

In this section, we consider not [CP*, QX CP~] but [2CP>, XCP”] to
study the composition structures. For convenience, we use the following
notation: Let f, g€ [2X, 2CP~]. Define

h (f, ¢) as the adjoint of #°(f Ag)-A,

where f and g  is the adjoint of f and g, respectively. Then from the
construction of #, it holds (Cf. §2)

B gt =b ¢+ ¢h  forr=3r g ne[Zx, Zaz‘”]. |
6.1

Etam=bG g+ b n  foranyf g he[Sx, cpol.

Throughout this section we write the adjoint of f; by the same letter.
Under this convention, we restate Theorem 1.7.

Theorem 6.1. The composition fi ° f; can be written as a linear
combination fn's for n<1ij.

The proof is divided into three parts.
(1)  fa can be written as a linear combination of 2 [i]’s for i <,
(2)  2[n] can be written as a linear combination of f's for i <,
(3) the composite of linear combinations of 2. [i]’s can be also written
as ones of 2 [i]’s,
where [k]: CP*—CP” is the corresponding map to kEZ=H?(CP®).
(3) is standard [10]. Before giving the proof of (1) and (2), we need

Lemma 6.2.
b (S0m], S]) =— S 0] — Siml + Zm+nl, 6.2)

Proof. The following diagram commutes from (2.2) and the definition of

#.
cp> 2 cpexcpe — cpexcpe
—copy=copytopn
3 b b
cpeAcp= M, cpeoAcpr M, ascpe
A«
#

Q3CP*NQSCP*
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Thus, taking the adjoint we have the desired result.

We prove (1) and (2) by induction. Suppose that

=Y+ =0,

where a;€Z and k;<n—1. Then, by definition,

farr=§ (01, fu)
=f = Yaskl)+=mD)
Ve bSO SeD}+ HEDLERD) by 6.

=Va (- - S+ k+10)
— 2] =211 +2[n+1] by lemma 6.2
=(Yozu1)+Sm+.

This proves (1). The proof of (2) follows easily.

[1]

(2]
(3]
[4]
[5]

(6]

This completes the proof of Theorem 6.1.
Example 6.3.

= 2Z0]

o= —22[1]1+X[2]

fo = —2(—2Z]1+2[2]) —Z[2] - Z[1]+2(3]
2[2] = 2itfe
2[3] = 3+3t/;

DEPARTMENT OF MATHEMATICS
WAKAYAMA UNIVERSITY
E-mail address: kaoru-m@math.edu.wakayama-u.ac.jp

References

P. ]. Hilton, Homotopy theory and duality, notes on mathematics and its application, Gordon and
Breach, New York, 1965.

I. M. James, The topology of stiefel manifolds, Lecture Notes Series 24, London Math. Soc., 1976.
C. A. McGibbon, Self maps of projective spaces, Tran. Amer. Math. Soc., 271 (1982), 326-346.

K. Morisugi, Stable maps to projective spaces, Publ. Res. Inst. Math. Sci., 24 (1988), 301-309.

K. Morisugi, Periodic behaviors of 2CP” and its applications, Contemporary Math., 146 (1993),
369-382.

J. Mukai, The S'-transfer map and homotopy groups of suspended complex projective spaces,



Projective elements in K-theory 165

Math. J. Okayama Univ., 24 (1982), 170-200.

[7] G. Segal, On the stable homotopy of complex projective space, Quart. J. Math., 24 (1973), 1-5.

[8] J. D. Stasheff, H-spaces from a homotopy point of view, Lecture Notes in Math., 161,
Springer-Verlag, 1970.

[9] D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math., 100 (1974),
1-79.

[10] G. W. Whitehead, Elements of Homotopy Theory, GTM 61, Springer, 1978.



