Projective elements in K-theory and self maps of $\Sigma C P^{\infty}$

By

Kaoru Morisugi

1. Introduction and statements of results

In this paper, we will work in the homotopy category of based spaces and based maps. Given a space X, we denote the reduced K-theory by $K(X)$ and the homology group of integral coefficients by $H_{*}(X)$. Let $C P^{\infty}$ be the infinite dimensional complex projective space. Let η be the canonical line bundle over $C P^{\infty}$ and $i: C P^{\infty} \rightarrow B U$ be the classifying map of the virtual bundle $\eta-1$. Since $B U$ has a loop space structure which is derived from the Whitney sum of complex vector bundles, there exists a unique extension of i to the loop map $j: \Omega \Sigma C P^{\infty} \rightarrow B U$.

In this paper we investigate the following problems:
Given an element $\alpha \in K(X)$, when does there exist a lift $\widehat{\alpha} \in\left[X, \Omega \sum C P^{\infty}\right]$ such that $j_{*}(\widehat{\alpha})=\alpha$? If α has a lift, how we can construct the lift $\widehat{\alpha}$?

Define

$$
P K(X)=\left\{\alpha \in K(X) \mid \exists \widehat{\alpha} \in\left[X, \Omega \sum C P^{\infty}\right] \text { such that } j *(\widehat{\alpha})=\alpha\right\} .
$$

If an element $\alpha \in K(X)$ belongs to $P K(X)$, we call that α is projective.
The significance of the above problem is as follows:
The James splitting theorem [2] implies that there exists a loop map $\theta: B U \rightarrow \Omega^{\infty} \sum^{\infty} C P^{\infty}$ such that the following diagram commutes:

Therefore, given an element $\alpha \in K(X)$, we have the stable map, $\operatorname{adj} .(\theta(\alpha))$: $\sum^{\infty} X \rightarrow \sum^{\infty} C P^{\infty}$. Using the information of $K(X)$, we can calculate the induced homomorphism [3], [4] of $a d j .(\theta(\alpha))_{*}: H_{*}(X) \rightarrow H_{*}\left(C P^{\infty}\right)$. If α has a lift $\widehat{\alpha}$, then this implies that the stable map $a d j .(\theta(\alpha))$ and its induced

[^0]homomorphism come from the unstable map adj. $(\widehat{\alpha}): \sum X \rightarrow \sum C P^{\infty}$. These imply that the determination of $P K(X)$ gives complete information of the image of the homomorphism:
$$
\left[\Sigma X, \sum C P^{\infty}\right] \rightarrow \operatorname{Hom}\left(H_{*}(X), H_{*}\left(C P^{\infty}\right)\right) .
$$

However, since the above homomorphism factors through $\operatorname{Hom}\left(H_{*}(X), H_{*}\left(\Omega \Sigma C P^{\infty}\right)\right)$, it is desiable to obtain the image of

$$
\left[X, \Omega \sum C P^{\infty}\right] \rightarrow \operatorname{Hom}\left(H_{*}(X), H_{*}\left(\Omega \sum C P^{\infty}\right)\right) .
$$

So, if possible, we want to have the information of not $\operatorname{adj} .(\widehat{\alpha}) *$ but $\widehat{\alpha} *: H_{*}(X) \rightarrow H_{*}\left(\Omega \Sigma C P^{\infty}\right)$. Thus we need the geometry of the lift $\widehat{\alpha}$.

Now we shall state our main results.
Since $C P^{\infty}$ is an $\mathrm{H}^{-s p a c e, ~ w e ~ h a v e ~ a ~ m a p ~}$

$$
C P^{\infty} \wedge C P^{\infty} \rightarrow \Omega \sum C P^{\infty}
$$

which is the adjoint of the Hopf construction: We will show that
Theorem 1.1. The adjoint of the Hopf construction of $C P^{\infty}$ has an extension

$$
\#: \Omega \sum C P^{\infty} \wedge \Omega \Sigma C P^{\infty} \rightarrow \Omega \Sigma C P^{\infty}
$$

such that the following diagram commutes:

where $\otimes: B U \wedge B U \rightarrow B U$ is the map which represents the external tensor product $K(X) \otimes K(Y) \rightarrow K(X \wedge Y)$.

As the properties of $P K(X)$, we have
Theorem 1.2. $\quad P K(X)$ has the following properties.
(1) $P K(X)$ is an additive subgroup of $K(X)$,
(2) if $\alpha \in P K(X)$ and $\beta \in P K(Y)$, then $\alpha \otimes \beta \in P K(X \wedge Y)$,
(3) if $\alpha \in P K(X)$, then $\varphi^{k}(\alpha) \in P K(X)$ for all $k \in Z$, where φ^{k} is the Adams operation,
(4) if X is a finite complex, then for any $\alpha \in K(X)$, there exists a number N such that $N \alpha \in P K(X)$,
(5) if X is a finite complex, then for large $N, P K\left(\Sigma^{N} X\right)=K\left(\Sigma^{N} X\right)$,
(6) if $\alpha \in K(X)$ is a linear combination of line bundles of virtual dimension 0 , then $\alpha \in P K(X)$.

As an application, we consider the group $\left[C P^{\infty}, \Omega \Sigma C P^{\infty}\right]$.
Recall that $K\left(C P_{+}^{\infty}\right) \cong \mathbf{Z}[[x]]$, where $x=\eta-1$. Since $C P^{\infty}$ is the classifying space of complex line bundles, it is easily seen that $P K\left(C P^{\infty}\right)=$
$K\left(C P^{\infty}\right)$. However, we would like to find the canonical lift of $x^{n} \in K\left(C P^{\infty}\right)$.
Let $f_{1}: C P^{\infty} \rightarrow \Omega \Sigma C P^{\infty}$ and $\zeta_{1}: S^{2} \rightarrow \Omega \Sigma C P^{\infty}$ be the inclusions and inductively define

$$
\begin{gather*}
f_{n+1}: C P^{\infty} \xrightarrow{\bar{\Delta}} C P^{\infty} \wedge C P^{\infty} \xrightarrow{f_{1} \wedge f_{n}} \Omega \Sigma C P^{\infty} \wedge \Omega \Sigma C P^{\infty} \xrightarrow{\#} \Omega \Sigma C P^{\infty}, \tag{1.2}\\
\zeta_{n+1}: S^{2 n+2}=S^{2} \wedge S^{2 n} \xrightarrow{\zeta_{1} \wedge \zeta_{n}} \Omega \Sigma C P^{\infty} \wedge \Omega \Sigma C P^{\infty} \xrightarrow{\#} \Omega \Sigma P^{\infty}, \tag{1.3}
\end{gather*}
$$

where $\bar{\Delta}$ is the reduced diagonal map.
Remark 1.3. The above definition of ζ_{n} coincides with the one in [5].
Let $C P_{n}^{\infty}$ be the stunted projective space $C P^{\infty} / C P^{n-1}$ and $p: C P^{\infty} \rightarrow C P_{n}^{\infty}$ be the projection.

Theorem 1.4. $\left\{f_{n}\right\}$ and $\left\{\zeta_{n}\right\}$ have the following properties.
(1) $j_{*}\left(f_{n}\right)=x^{n}$ in $K\left(C P^{\infty}\right)$,
(2) $f_{n}: C P^{\infty} \rightarrow \Omega \sum C P^{\infty}$ factors as $C P^{\infty} \xrightarrow{p} C P_{n}^{\infty} \xrightarrow{g_{n}} \Omega \sum C P^{\infty}$, such that the restriction to the bottom sphere of the map g_{n} coincides with the map ζ_{n}.
(3) $j_{*}\left(\zeta_{n}\right)$ is the generator of $\pi_{2 n}(B U) \cong \mathbf{Z}$,
(4) Let $C\left(f_{n}, f_{m}\right)$ be the commutator in the group $\left[C P^{\infty}, \Omega \Sigma C P^{\infty}\right]$ of f_{n} and f_{m}. Then

$$
i^{*} C\left(f_{n}, f_{m}\right)=q^{*}<\zeta_{n}, \zeta_{m}>
$$

where $i: C P^{n+m} \rightarrow C P^{\infty}$ is the inclusion, $q: C P^{n+m} \rightarrow S^{2 n+2 m}$ is the projection and $<\zeta_{n}, \zeta_{m}>$ is the Samelson product in $\pi_{*}\left(\Omega \Sigma C P^{\infty}\right)$.

Let $h: \pi_{*}\left(\Omega \Sigma C P^{\infty}\right) \rightarrow H_{*}\left(\Omega \Sigma C P^{\infty}\right)$ be the Hurewicz homomorphism. Recall that $\widetilde{H}_{*}\left(C P^{\infty}\right) \cong \mathbf{Z}\left\{\beta_{1}, \beta_{2}, \cdots\right\}$, where $\beta_{n} \in H_{2 n}\left(C P^{\infty}\right)$ is the standard generator. Therefore $H_{*}\left(\Omega \Sigma C P^{\infty}\right)$ is the tensor algebra generated by $\left\{\beta_{1}, \beta_{2}\right.$, $\cdots\}$. Let $\chi: \Omega \Sigma C P^{\infty} \rightarrow \Omega \Sigma C P^{\infty}$ be the map of loop inverse. Then

Theorem 1.5.

$$
h\left(\zeta_{n}\right)= \begin{cases}\beta_{1} & \text { if } n=1, \tag{1.4}\\ (n-1)!\sum_{i=1}^{n} \chi_{*}\left(\beta_{n-i}\right)\left(i \beta_{i}-\beta_{1} \beta_{i-1}\right) & \text { if } n \geq 2,\end{cases}
$$

where the product in the above equation is the one in the tensor algebra and β_{0} means $1 \in H_{0}\left(\Omega \sum C P^{\infty}\right)$.

Corollary 1.6. If $n \geq 3$, then the group $\left[\Sigma C P^{n}, \sum C P^{n}\right]$ is not commutative.

Let $\tilde{f}_{i} \in\left[\Sigma C P^{\infty}, \sum C P^{\infty}\right]$ be the adjoint of f_{i}. Then about the composition structures of f_{i} we get

Theorem 1.7. The composition $\tilde{f}_{i} \circ \tilde{f}_{j}$ can be written as a linear
combination of $\widetilde{f} n$'s for $n \leq i j$.
Throughout this paper, we use the symbol + as the product in [$\sum X$, $\Sigma C P^{\infty}$] or $\left[X, \Omega \Sigma C P^{\infty}\right]$, although these groups are not in general abelian.

The auther thanks H. Oshima for valuable discussions with him.

2. The extension of $X \wedge Y \rightarrow Z$ to $\Omega \Sigma X \wedge \Omega \Sigma Y$

Given a map $f: X \wedge Y \rightarrow \Omega Z$, there exist extensions of f to $\Omega \Sigma X \wedge \Omega \sum Y$. We fix a choice of extensions as follows: Take $x \in X$. Define $f_{x}: Y \rightarrow \Omega Z$ by $f_{x}(y)=f(x, y)$. Extend f_{x} to a loop map $\bar{f}_{x}: \Omega \sum Y \rightarrow \Omega Z$. Note that such an extension is unique. Therefore we have a map $g: X \wedge \Omega \Sigma Y \rightarrow \Omega Z$ which is an extension of f. Similarly, from g we have a map $h: \Omega \sum X \wedge \Omega \sum Y \rightarrow \Omega Z$. Note that $h\left(\alpha_{1}+\alpha_{2}, \beta\right)=h\left(\alpha_{1}, \beta\right)+h\left(\alpha_{2}, \beta\right), h\left(c(x), \beta_{1}+\beta_{2}\right)=h\left(c(x), \beta_{1}\right)+h(c(x)$, β_{2}), and $h(c(x), c(y))=f(x, y)$, where $c: X \rightarrow \Omega \sum X$ is the canonical inclusion. From now on we denote h by $L(f)$.

Our extension $L(f)$ of f can be described through the following commutative diagram:

where

$$
\begin{aligned}
d\left(x_{1}, x_{2}, \cdots, x_{m}, y_{1}, y_{2}, \cdots, y_{n}\right)= & \left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right), \cdots,\left(x_{1}, y_{n}\right), \\
& \left(x_{2}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{2}, y_{n}\right), \\
& \cdots \\
& \left(x_{m}, y_{1}\right),\left(x_{m}, y_{2}\right), \cdots,\left(x_{m}, y_{n}\right),
\end{aligned}
$$

$\iota: X \wedge Y \rightarrow \Omega \Sigma(X \wedge Y)$ is the inclusion, α_{m} is the composite: $X^{m} \xrightarrow{\prime m}\left(\Omega \sum X\right)^{m}$ $\stackrel{+}{\rightarrow} \Omega \sum X, \bar{f}$ is the canonical extension of f to the loop map and other maps are standard ones. It is clear that $L(f)=\bar{f} \circ L(\iota)$.

Proof of Theorem 1.1. Let $p_{i}: C P^{\infty} \times C P^{\infty} \rightarrow C P^{\infty}$ be the i-th projection ($i=1, \quad 2$). Since $C P^{\infty} \cong K(\mathbf{Z}, 2)$, it has the unique multiplication $\mu: C P^{\infty} \times C P^{\infty} \rightarrow C P^{\infty}$. Let $\widetilde{H(\mu)}: C P^{\infty} \wedge C P^{\infty} \rightarrow \Omega \Sigma C P^{\infty}$ be the adjoint of the Hopf construction $H(\mu): \Sigma C P^{\infty} \wedge C P^{\infty} \rightarrow \Sigma C P^{\infty}$. Then the following equation characterizes $\widetilde{H(\mu)}$ [1].

$$
\begin{equation*}
\widetilde{H(\mu)} \circ \pi=-\iota^{\circ} p_{2}-\iota^{\circ} p_{1}+\iota^{\circ} \mu . \tag{2.2}
\end{equation*}
$$

where π : $C P^{\infty} \times C P^{\infty} \rightarrow C P^{\infty} \wedge C P^{\infty}$ is the canonical projection.
Put

$$
\#=L(\widetilde{H(\mu)})): \Omega \Sigma C P^{\infty} \wedge \Omega \Sigma C P^{\infty} \rightarrow \Omega \sum C P^{\infty}
$$

Lemma 2.1. The following diagram commutes:

Proof.

$$
\begin{aligned}
j \circ \widetilde{H(\mu)} \circ \pi & =j \circ\left(-\tau^{\circ} p_{2}-\iota^{\circ} p_{1}+\iota^{\circ} \mu\right) \quad \text { by (2.2) } \\
& =-i \circ p_{2}-i^{\circ} p_{1}+i \circ \mu \quad \text { since } j \text { is a loop map } \\
& =-1 \otimes \eta+1 \otimes 1-\eta \otimes 1+1 \otimes 1+\eta \otimes \eta-1 \otimes 1 \\
& =(\eta-1) \otimes(\eta-1) \\
& =\otimes \circ(i \wedge i) \circ \pi .
\end{aligned}
$$

Since π^{*} is mononorphic, we have the desired result.
Now consider the diagram (1.1). For convenience, put $X=C P^{\infty}$ and consider the James model X_{∞} instead of $\Omega \sum X$. Let X_{n} be the n-th James filtration of X_{∞}. Consider the Milnor exact sequence:

$$
0 \rightarrow \lim _{\leftarrow}^{1}\left[\sum X_{n} \wedge X_{m}, B U\right] \rightarrow\left[X_{\infty} \wedge X_{\infty}, B U\right] \rightarrow \underset{\sim}{\lim }\left[X_{n} \wedge X_{m}, B U\right] \rightarrow 0
$$

Since $\left[\Sigma X_{n} \wedge X_{m}, B U\right]=0$, in order to show the commutativity of the diagram (1.1), it is enough to show that the restriction to $X_{n} \wedge X_{m}$ of the diagram (1.1) commutes. To see this, consider the following diagram

where $\alpha: X^{n} \rightarrow \Omega \sum X$ is the composite $X^{n} \xrightarrow{n}\left(\Omega \sum X\right)^{n} \xrightarrow{+} \Omega \sum X,+$ means the loop sum. Note that the image of α is X_{n}. From the bundle theory and the previous lemma, we see that the above diagram commutes (up to homotopy). This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2.

(1) is clear, since $j: \Omega \sum C P^{\infty} \rightarrow B U$ is a loop map.
(2) follows from Theorem 1.1.
(3) Recall that $\left[C P^{\infty}, C P^{\infty}\right] \cong H^{2}\left(C P^{\infty}\right) \cong \mathbf{Z}$. Take any integer $k \in \mathbf{Z}$ and consider the following commutative diagram:

Since φ^{k} is additive, the above diagram can be extended uniquely to the following commutative diagram:

Thus, (3) follows.
(4) Let p_{1}, p_{2}, \cdots be all primes. Put $r_{k}=\left(p_{1} p_{2} \cdots p_{k}\right)^{k}$. Let $Y=\Omega \Sigma C P^{\infty}$ or $B U$. For any integer $n \in \mathbf{Z}$, consider the n-fold loop multiplication map n : $Y \rightarrow Y$. Then clearly, the following diagram commutes:

Consider the telescope of the following sequence:

$$
Y \xrightarrow{r_{1}} Y \xrightarrow{r_{2}} Y \xrightarrow{r_{3}} \cdots,
$$

then this telescope gives the rational localization of Y [9]. Recall that $\left(\Omega \Sigma C P^{\infty}\right)_{\mathbf{Q}} \cong \Pi_{k} K\left(\pi_{k}\left(\Omega \Sigma C P^{\infty}\right) \otimes \mathbf{Q}, k\right)$ and $B U_{\mathbf{Q}} \cong K\left(\pi_{k}(B U) \otimes \mathbf{Q}, k\right)$, where $K(\pi, k)$ is the Eilenberg MacLane space. Note that $j_{*}:\left(\Omega \Sigma C P^{\infty}\right) \otimes \mathbf{Q} \rightarrow$ $\pi_{*}(B U) \otimes \mathbf{Q}$ is split-epi. Thus we get the splitting map between the product of the Eilenberg MacLane spaces and so we get the splitting map of $j_{\mathbf{Q}}$: $\left(\Omega \Sigma C P^{\infty}\right)_{\mathbf{Q}} \rightarrow B U_{\mathbf{Q}}$. Since X is a finite complex, $[X, \operatorname{Tel}(Y)]=\lim _{r_{k}}[X, Y]$. This implies that $\lim _{r_{k}} j *: \lim _{r_{k}}\left[X, \Omega \Sigma C P^{\infty}\right] \rightarrow \lim _{r_{k}}[X, B U]$ is onto as sets.

Therefore, for any element $\alpha \in K(X)=[X, B U]$, there exists an element $\beta \in$ $\left[X, \Omega \sum C P^{\infty}\right]$ such that $\left(\lim j_{*}\right)([\beta])=[\alpha]$, where $[\alpha]$ means the equivalence class of α in the direct limit. This implies that α is equivalent to $j_{*}(\beta)$ in the direct limit. Now, the proof of (4) easily follows.
(5) First, from Theorem 1.1, we have the following commutative diagram:

Taking the adjoint we have

where β is the map which represents the Bott periodicity $K(X) \stackrel{\beta}{\cong} K\left(\sum^{2} X\right)$. By iterating the above diagram we have the following commutative diagram:

Thus taking the adjoint we have the next commutative diagram:

Given any element $\alpha \in K(X) \cong[X, B U]$, by Segal-Beker theorem [7], since X is compact, for large N there exists a map $\widehat{\alpha}: X \rightarrow \Omega^{2 N} \sum^{2 N} C P^{\infty}$ such that the following diagram commutes:

where j_{N} is the canonical extension of $i: C P^{\infty} \rightarrow B U \xrightarrow{\cong} \Omega^{2 N} B U$. Note that $\beta^{N_{\circ}} j_{N}=$ $\Omega^{2 N} \beta^{N}{ }_{i}$. Therefore, taking the adjoint we have the commutative diagram:

By the diagrams (3.2) and (3.3), we have completed the proof of (5).
(6) Suppose that $\alpha=\sum_{i} a_{i}\left(\alpha_{i}-1\right)$, where $a_{i} \in \mathbf{Z}$ and α_{i} 's are line bundles. Let $g_{i}: X \rightarrow C P^{\infty}$ be the classifying map of the line bundle α_{i}. Consider the element $\widehat{\alpha} \in\left[X, \Omega \sum C P^{\infty}\right]$ which is defined by $\widehat{\alpha}=\sum_{i} a_{i}\left(\iota^{\circ} g_{i}\right)$, where $c: C P^{\infty} \rightarrow \Omega \Sigma C P^{\infty}$ is the inclusion. Then it is clear that $j \circ \widehat{\alpha}=\alpha$.

This completes the proof of Theorem 1.2.
The following proposition gives examples of $P K(X)$.
Proposition 3.1. (1) for $n \geq 1, K\left(C P^{n}\right)=P K\left(C P^{n}\right)$.
(2) Let $H P^{n}$ be the quaternionic projective space, ξ be the canonical quaternionic line bundle over $H P^{n}$ and $y=c^{\prime}(\xi)-2$, where c^{\prime} is the complexification. If $n \geq 2$, then $y \notin P K\left(H P^{n}\right)$.

Proof. (1) is clear from (6) in Theorem 1.2. We shall prove (2). We use (3) of Theorem 1.4 which is proved in the next section. Recall that $H P^{2}=S^{4} \cup_{\nu_{4}} e^{8}$, where $\nu_{4}: S^{7} \rightarrow S^{4}$ is the Hopf bundle. Since the restriction to S^{4} of $y \in K\left(H P^{2}\right)$ is the generator of $K\left(S^{4}\right)$, and since $\pi_{4}\left(\Omega \Sigma C P^{\infty}\right) \cong \mathbf{Z}$ generated by $\zeta_{2}($ See (1.3)) , we see that

$$
y \in P K\left(H P^{2}\right) \quad \text { if and only if } \quad \zeta_{2}{ }^{\circ} \nu_{4}=0 \text {. }
$$

On the other hand, using the quasi-fibration [8]

$$
C P^{\infty} \rightarrow \Sigma C P^{\infty} \wedge C P^{\infty} \xrightarrow{H(\mu)} \Sigma C P^{\infty},
$$

we see that

$$
\zeta_{2}{ }^{\circ} \nu_{4}=0 \quad \text { if and only if } \quad i^{\circ} \nu_{5}=0
$$

where $i: S^{5} \rightarrow \sum C P^{\infty} \wedge C P^{\infty}$ is the inclusion. Assume that $i^{\circ} \nu_{5}=0$. Then there
exists a map $g: \sum H P^{2} \rightarrow \sum C P^{\infty} \wedge C P^{\infty}$ such that the following diagram commutes:

Consider the cohomology group of $\mathbf{Z} / 2$ coefficient. Recall that

$$
\begin{gathered}
H^{*}\left(C P^{\infty} ; \mathbf{Z} / 2\right)=\mathbf{Z} / 2[x], \\
H^{*}\left(H P^{2} ; \mathbf{Z} / 2\right)=\mathbf{Z} / 2[u] /\left(u^{3}\right),
\end{gathered}
$$

where $x \in H^{2}\left(C P^{\infty}, \mathbf{Z} / 2\right)$ and $u \in H^{4}\left(H P^{\infty} ; \mathbf{Z} / 2\right)$ are the generators. From the above diagram we see that $g^{*}(x y)=u$. Now consider the Steenrod operation. Recall that $S q^{4}(x y)=x^{2} y^{2}=S q^{2}\left(x^{2} y\right)$ and $S q^{4}(u)=u^{2}$. By dimensional reason, we get

$$
\begin{aligned}
0=S q^{2}\left(g^{*}\left(x^{2} y\right)\right) & =g^{*}\left(S q^{2}\left(x^{2} y\right)\right)=g^{*}\left(x^{2} y^{2}\right)=g^{*}\left(S q^{4}(x y)\right) \\
& =S q^{4}\left(g^{*}(x y)\right)=S q^{4}(u)=u^{2} \neq 0 .
\end{aligned}
$$

This is a contradiction. This implies that $i^{\circ} \nu_{5} \neq 0$.
Remark 3.2. It is known that $\pi_{7}\left(\Omega \Sigma C P^{\infty}\right) \cong \mathbf{Z} / 2$ [6] whose generator is $\xi \circ \eta_{6}$, where $\xi \in \pi_{6}\left(\Omega \Sigma C P^{\infty}\right) \cong \mathbf{Z} \oplus \mathbf{Z}$ is characterized by the Hurewicz homomorphism: $h(\xi)=\beta_{1} \beta_{2}-\beta_{2} \beta_{1}$ in $H^{*}\left(\Omega \Sigma C P^{\infty}\right)$. And it holds that $2 \xi=$ $<\zeta_{1}, \zeta_{2}>$ (Cf. §5). The above proposition implies that there is a relation ξ° $\eta_{6}=\zeta_{2}{ }^{\circ} \nu_{4}$ in $\pi_{7}\left(\Omega \sum C P^{\infty}\right)$.

Remark 3.3. Consider the S^{2}-bundle; $S^{2} \rightarrow C P^{2 n+1} \rightarrow H P^{n}$. There is a stable map $t: \sum^{\infty} H P^{n} \rightarrow \sum^{\infty} C P^{2 n+1}$ called the transfer map. The above proposition implies that there exists no unstable map $\tau: \sum H P^{n} \rightarrow \sum C P^{2 n+1}$ for $n \geq 2$ such that $\sum^{\infty} \tau=t$. Because, if $\sum^{\infty} \tau=\mathrm{t}$, then it follows that the restriction to the bottom sphere of the adjoint of τ is $\pm \zeta_{2}$. This implies that $\zeta_{2}{ }^{\circ} \nu_{4}=0$.

4. Proof of Theorem 1.4

First we prove (1). By induction on n, the following commutative diagram gives the proof of (1):

Next we prove (2) and (3). Consider the following diagram:

The commutativity of th above diagram is clear from the inductive assumption. This completes the proof of (2) and (3).

Let $C: \Omega \Sigma C P^{\infty} \wedge \Omega \Sigma C P^{\infty} \rightarrow \Omega \Sigma C P^{\infty}$ be the commutator map with respect to the loop sum. The proof of (4) follows by chasing the following commutative diagram:

This completes the proof of Theorem 1.4.

5. Proof of Theorem 1.5

Lemma 5.1. Let $\mu: C P^{\infty} \times C P^{\infty} \rightarrow C P^{\infty}$ be the product of $C P^{\infty}$ and $\widetilde{H(\mu)}$: $C P^{\infty} \wedge C P^{\infty} \rightarrow \Omega \Sigma C P^{\infty}$ be the adjoint of the Hopf construction $H(\mu): \Sigma C P^{\infty} \wedge C P^{\infty} \rightarrow$ $\Sigma C P^{\infty}$. Then

$$
\begin{equation*}
\widetilde{H(\mu)}_{*}\left(\beta_{m} \otimes \beta_{n}\right)=\sum_{\substack{0 \leq i \leq m \\ 0 \leq j \leq n}}\binom{i+j}{i} \chi_{*}\left(\beta_{n-j}\right) \chi_{*}\left(\beta_{m-i}\right) \beta_{i+j} \tag{5.1}
\end{equation*}
$$

where $\chi: \Omega \sum X \rightarrow \Omega \sum X$ is the loop inverse and the products in the right hand side mean the one in the tensor algebra.

Proof. (2.2) implies that the following diagram commutes:

where $X=C P^{\infty}$ and T is the map of changing the order of factors. Now recall the following formula:

$$
\begin{align*}
\Delta_{*}\left(\beta_{n}\right) & =\sum_{0 \leq i \leq n} \beta_{n-i} \otimes \beta_{i} \tag{5.2}\\
\mu_{*}\left(\beta_{i} \otimes \beta_{j}\right) & =\binom{i+j}{i} \beta_{i+j}, \\
p_{k_{*}}\left(\beta_{i} \otimes \beta_{j}\right) & = \begin{cases}\beta_{i} & \text { if } k=1 \text { and } j=0, \\
\beta_{j} & \text { if } k=2 \text { and } i=0, \\
0 & \text { otherwise. }\end{cases}
\end{align*}
$$

Also recall that + induces just the multiplication in the tensor algebra $\otimes{ }^{*} \widetilde{H}_{*}\left(C P^{\infty}\right)$. Now the proof of Lemma follows easily from the above diagram and (5.2).

Now we shall prove Theorem 1.5. Since $\chi_{*}\left(\beta_{1}\right)=-\beta_{1}$, using Lemma 5.1 it is easy to see

$$
\begin{aligned}
\# *\left(\beta_{1} \otimes \beta_{n-1}\right) & =\widetilde{H(\mu)} *\left(\beta_{1} \otimes \beta_{n-1}\right) \\
& =\sum_{i=1}^{n} \chi_{*}\left(\beta_{n-i}\right)\left(i \beta_{i}-\beta_{1} \beta_{i-1}\right) \\
& =n \beta_{n}+\text { decomposables. }
\end{aligned}
$$

On the other hand, since, β_{1} is primitive, using (2.1) we see

$$
\# *\left(\beta_{1} \otimes \text { decomposables }\right)=0
$$

Therefore, by induction,

$$
\begin{aligned}
h\left(\zeta_{n}\right) & =\# *\left(\beta_{1} \otimes h\left(\zeta_{n-1}\right)\right) \\
& =\# *\left(\beta_{1} \otimes\left((n-1)!\beta_{n-1}+\text { decomposables }\right)\right. \\
& =(n-1)!\# *\left(\beta_{1} \otimes \beta_{n-1}\right) \\
& =(n-1)!\sum_{i=1}^{n} \chi_{*}\left(\beta_{n-i}\right)\left(i \beta_{i}-\beta_{1} \beta_{i-1}\right) .
\end{aligned}
$$

This completes the proof of Theorem 1.5.
Corollary 5.2. In $H_{*}\left(\Omega \Sigma C P^{\infty}\right)$, for $n \geq 2$, the following elements are spherical.

$$
\begin{gathered}
(n-1)!\sum_{i=1}^{n} i \chi_{*}\left(\beta_{n-i}\right) \beta_{i} \\
(n-1)!\sum_{i=1}^{n} \chi_{*}\left(\beta_{n-i}\right) \beta_{1} \beta_{i-1}
\end{gathered}
$$

Proof. Let $\zeta_{1}^{\prime}=\zeta_{1}$. Define $\zeta_{n}^{\prime} \in \pi_{2 n}\left(\Omega \Sigma C P^{\infty}\right)$ inductively by

$$
\begin{equation*}
\zeta_{n+1}^{\prime}: S^{2 n+2}=S^{2 n} \wedge S^{2} \xrightarrow{\zeta_{n}^{\prime} \wedge \zeta_{i}^{\prime}} \Omega \Sigma C P^{\infty} \wedge \Omega \Sigma C P^{\infty} \xrightarrow{\#} \Omega \Sigma C P^{\infty} . \tag{5.3}
\end{equation*}
$$

Then, by similar arguments, we get

$$
h\left(\zeta_{n}^{\prime}\right)= \begin{cases}\beta_{1} & \text { if } n=1 \tag{5.4}\\ (n-1)!\sum_{i=1}^{n} i \chi_{*}\left(\beta_{n-i}\right) \beta_{i} & \text { if } n \geq 2\end{cases}
$$

Therefore from Theorem 1.5, te result follows.
Proof of Corollary 1.6. By (4) of Theorem 1.4,

$$
i^{*} C\left(f_{1}, f_{2}\right)=q^{*}<\zeta_{1}, \zeta_{2}>\quad \text { in }\left[C P^{3}, \Omega \Sigma C P^{\infty}\right]
$$

On the other hand,

$$
\begin{aligned}
h\left(<\zeta_{1}, \zeta_{2}>\right) & =h\left(\zeta_{1}\right) h\left(\zeta_{2}\right)-h\left(\zeta_{2}\right) h\left(\zeta_{1}\right) \\
& =\beta_{1}\left(2 \beta_{2}-\beta_{1}^{2}\right)-\left(2 \beta_{2}-\beta_{1}^{2}\right) \beta_{1} \quad \text { by Theorem } 1.5 \\
& =2\left(\beta_{1} \beta_{2}-\beta_{2} \beta_{1}\right) \neq 0 .
\end{aligned}
$$

This means that \tilde{f}_{1} and \bar{f}_{2} does not commutes in $\left[\Sigma C P^{3}, \Sigma C P^{\infty}\right]$.
Since $i^{*}:\left[\Sigma C P^{n}, \Sigma C P^{\infty}\right] \rightarrow\left[\Sigma C P^{3}, \Sigma C P^{\infty}\right]$ is homomorphism of groups and since $\left[\Sigma C P^{n}, \Sigma C P^{\infty}\right] \cong\left[\Sigma C P^{n}, \sum C P^{n}\right]$, the result follows.

6. Composition of $\left\{f_{i}\right\}$

In this section, we consider not $\left[C P^{\infty}, \Omega \sum C P^{\infty}\right]$ but $\left[\Sigma C P^{\infty}, \Sigma C P^{\infty}\right]$ to study the composition structures. For convenience, we use the following notation: Let $f, g \in\left[\Sigma X, \Sigma C P^{\infty}\right]$. Define

$$
(f, g) \text { as the adjoint of } \# \circ(\widetilde{f} \wedge g) \circ \bar{\Delta}
$$

where \tilde{f} and g^{-}is the adjoint of f and g, respectively. Then from the construction of \#, it holds (Cf. §2)

$$
\begin{array}{ll}
(f, g+h)=(f, g)+h(f, h) & \text { for } f=\sum f^{\prime}, g, h \in\left[\sum X, \sum C P^{\infty}\right] . \tag{6.1}\\
(f+g, h)= \\
(f, g)+h(f, h) & \text { for any } f, g, h \in\left[\sum X, \sum C P^{\infty}\right] .
\end{array}
$$

Throughout this section we write the adjoint of f_{i} by the same letter. Under this convention, we restate Theorem 1.7.

Theorem 6.1. The composition $f_{i} \circ f_{j}$ can be written as a linear combination f_{n} 's for $n \leq i j$.

The proof is divided into three parts.
(1) f_{n} can be written as a linear combination of $\sum[i]$'s for $i \leq n$,
(2) $\sum[n]$ can be written as a linear combination of f_{i} 's for $i \leq n$,
(3) the composite of linear combinations of $\Sigma[i]$'s can be also written as ones of $\sum[i]$'s,
where $[k]: C P^{\infty} \rightarrow C P^{\infty}$ is the corresponding map to $k \in \mathbf{Z} \cong H^{2}\left(C P^{\infty}\right)$.
(3) is standard [10]. Before giving the proof of (1) and (2), we need

Lemma 6.2.

$$
\begin{equation*}
\left(\sum[m], \sum[n]\right)=-\sum[n]-\sum[m]+\sum[m+n] \text {, } \tag{6.2}
\end{equation*}
$$

Proof. The following diagram commutes from (2.2) and the definition of \#.

Thus, taking the adjoint we have the desired result.
We prove (1) and (2) by induction. Suppose that

$$
f_{n}=\left\{\sum a_{i} \sum\left[k_{i}\right]\right\}+\sum[n],
$$

where $a_{i} \in \mathbf{Z}$ and $k_{i} \leq n-1$. Then, by definition,

$$
\begin{aligned}
& f_{n+1}=\boldsymbol{q}^{\boldsymbol{q}} \sum\left([1], f_{n}\right) \\
& =h^{q}\left(\sum[1],\left\{\sum a_{i} \sum\left[k_{i}\right]\right\}+\sum[n]\right)
\end{aligned}
$$

$$
\begin{align*}
& =\left\{\sum a_{i}\left(-\Sigma\left[k_{i}\right]-\sum[1]+\sum\left[k_{i}+1\right]\right)\right\} \tag{6.1}\\
& -\sum[n]-\sum[1]+\sum[n+1] \quad \text { by lemma } 6.2 \\
& =\left\{\sum b_{j} \sum\left[l_{j}\right]\right\}+\sum[n+1] .
\end{align*}
$$

This proves (1). The proof of (2) follows easily.
This completes the proof of Theorem 6.1.

Example 6.3.

$$
\begin{aligned}
f_{1} & =\sum[1] \\
f_{2} & =-2 \sum[1]+\sum[2] \\
f_{3} & =-2\left(-2 \sum[1]+\sum[2]\right)-\sum[2]-\sum[1]+\sum[3] \\
\Sigma[2] & =2 f_{1}+f_{2} \\
\Sigma[3] & =3 f_{1}+3 f_{2}+f_{3}
\end{aligned}
$$

Department of Mathematics

Wakayama University
E-mail address: kaoru-m@math.edu.wakayama-u.ac.jp

References

[1] P. J. Hilton, Homotopy theory and duality, notes on mathematics and its application, Gordon and Breach, New York, 1965.
[2] I. M. James, The topology of stiefel manifolds, Lecture Notes Series 24, London Math. Soc., 1976.
[3] C. A. McGibbon, Self maps of projective spaces, Tran. Amer. Math. Soc., 271 (1982), 326-346.
[4] K. Morisugi, Stable maps to projective spaces, Publ. Res. Inst. Math. Sci., 24 (1988), 301-309.
[5] K. Morisugi, Periodic behaviors of $\sum C P^{\infty}$ and its applications, Contemporary Math., 146 (1993), 369-382.
[6] J. Mukai, The S^{1}-transfer map and homotopy groups of suspended complex projective spaces,

Math. J. Okayama Univ., 24 (1982), 170-200.
[7] G. Segal, On the stable homotopy of complex projective space, Quart. J. Math., 24 (1973), 1-5.
[8] J. D. Stasheff, H-spaces from a homotopy point of view, Lecture Notes in Math., 161, Springer-Verlag, 1970.
[9] D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math., 100 (1974), 1-79.
[10] G. W. Whitehead, Elements of Homotopy Theory, GTM 61, Springer, 1978.

[^0]: Communicated by Prof. A. Kono, March 21, 1997

