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Projective elements in K-theory

and self maps of E C P'

By

Kaoru MORISUGI

1. Introduction and statements of results

In th is paper, we will work in the homotopy category of based spaces and
based m aps. G iven a  space X, we denote the  reduced K - theory by K (X ) and
the homology group of integral coefficients by H* (X) Let CP-  b e  the infinite
dimensional complex projective s p a c e . L e t n b e  th e  canonical line bundle
over CP-  a n d  i: CP- - >BU be the  classifying map of the virtual bundle n — 1.
Since BU has a  loop space structure w hich is derived from  the W hitney sum
of complex vector bundles, there exists a unique extension of i to the loop map
j: Q CP BU.

In this paper we investigate the following problems:
Given an element aE K (X) , when does there exist a  lif t  6 E  [X, 52ECP 0 ]

such that j * ( ) = a? If a has a lift, how we can construct the  lift â?
Define

PK (X) = {a E K  (X )I ] Cr' c  [X, Q ECP- ]  such that j *( Cr') = a).

If an element ac K (X ) belongs to PK (X) , we call that a is projective.
The significance of the above problem is as follows:
The Jam es sp litting  theorem  [2 ] im p lie s  tha t the re  ex is ts  a  loop map

0: BU- 4 Q- E - CP" such that the following diagram commutes:

ECP`"

 

°'''C'Pc"'

 

BU.

Therefore, given an  element a e  K  (X ), w e have the stable m ap, adj. (0 (a))
E - X- - +E - CP- . Using the information of K(X), we can calculate the induced
homomorphism [3], [4] of adj. (0(a)) *: H*(X) — >F1*(CP- ). If a has a lift
t h e n  t h i s  im p l i e s  t h a t  t h e  s t a b l e  m a p  adj. (0 (a)) a n d  its in d u c e d
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homomorphism com e from  the  unstable map adj. ( ô) : ECP". These
imply that the determination of PK (X ) gives complete information of the image
of the homomorphism:

[EX , ECP - ] — , Hom (H* (X) , H* (CP- ) ) .

However, since the above homomorphism factors through Horn (H* (X), H*(QECP"°)),
it is desiable to obtain the image of

[X, Q ECP- ] —*Ho m (H* (X) , H*(QECP - )) .

S o , if  possib le , w e  w a n t  t o  have  the  in form ation  o f not a d j . ( ) *  b u t
a*: H* (X) — >H* (QECP- ) . Thus we need the geometry of the lift Cr.

Now we shall state our main results.
Since CP" is an H-space, we have a map

CP- Q E  CP-  ,

which is the adjoint of the Hopf construction: We will show that

Theorem 1.1. The adjoint of the Hopf construction of CP-  h a s  an
extension

#: QECP"A QECP- --q2ECP- ,

such that the following diagram commutes:

QECP - A QECP - Q E C P "

I j A j (1.

BU A BU BU,

where 0 : BU A BU— >BU is the map which represents the external tensor product
K (X) OK (Y ) — qf (X AY ) .

As the properties of PK (X) , we have

Theorem 1.2. PK (X ) has the following properties.
(1) PK (X ) is an additive subgroup of K (X),
(2) if a EPK (X ) and 13e PK (Y ) , then crOIS e PK (X A Y),
(3) if  a E PK (X ), then ço k (a) e PK (X ) for all k  e Z, where (p i' i s  the

Adams operation,
(4) if X  is a finite complex, then for any aE K (X ), there exists a number N

such that NaE PK (X ),
(5) if X  is a f inite complex, then for large N, PK 

( E l s l x ) , K ( E N x ) ,

(6) if ae K  (X ) is a linear combination of line bundles of virtual dimension
0, then a E PK (X) .

As an application, we consider the group [CP- , QECP- ]•
R eca ll th a t K(C/37) Z  [ [x ]] , w here  x  = -  1 .  Since  CP-  i s  the

classifying space of com plex line  bundles, it is easily  seen that PK (CP- )  =
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K (CP- ) . However, we would like to find the canonical lift of xn EK (C7°).
Let Q E C P- a n d  CI: Q EC P- b e  the  inc lusions and

inductively define

A CP- 52ECP- A QECP - Q E C P - ,  ( 1 . 2 )

n+1: S2 n + 2 = S2 AS2 n QEcp 0 AQEcp 0 0 QEcP0 ° , (1.3)

where A is the reduced diagonal map.

Remark 1.3. The above definition of Cn  coincides with the one in [5].

Let CY ; be  th e  stunted projective space CP- /CPn- 1  a n d  p: CP- - )CPZ be
the projection.

Theorem 1.4. {fn} an d  {C } have the following properties.
(1) j ( f )  =x  in K (CP- ),

on
(2) f n :  CP- - > Q E C P ° f actors as CP-  — )CP7, —4S2ECP°0 ,  such  that the

restriction to the bottom sphere of the map gn coincides with the map Cn .
(3) j*(Cn) is the generator of r 2 n (BU) -="Z,
(4) Let C (fa, fm ) be the commutator in the group [CP- , QECP - ] of f n  and

f m . Then

i* C(fn,fm) = 9 *  < Ca, Cm>

where i: C P n + m — ) CP-  i s  the inclusion, q : C P " — ) S 2n+27n i s  the
projection and <C n , Cm > is  the Samelson product in  r* (QEcp - ).

L e t  h : r*(QECP") — ) H*(S2ECP- ) b e  t h e  Hurewicz homomorphism.
R ecall that H*(CP - ) '="" z / 3 2 ,  w here 13n C  H 2 n  (C V ') i s  the standard
generator. Therefore  H*(QECI3 - )  is the tensor algebra generated by {pi, 192,
••.}. Let x: QECP - - - *QECP -  be  the map of loop in v e r s e . Then

Theorem 1.5.

if  n=1,
h ( )  =f  131( 1  .  4 )

(n - 1 )! E7=a*(/3fl_ i) (iS t —  PiPt— i) if 2,

where the product in  the above equation is the one in the tensor algebra and 130
m ean s e  (  ECP- )

Corollary 1.6. If 3, th e n  th e  g ro u p  [E C P ,  E C P ]  is  no t
commutative.

L e t  f  E  [E C P * , E C P ]  b e  th e  a d jo in t  o f  fi. T h e n  abou t the
composition structures of 7, we get

Theorem 1.7. The composition
 7

7 ;  can be w ritten a s  a  linear
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—combination of f n's for n .

Throughout this paper, w e  u se  th e  s y m b o l ±  a s  th e  product i n  [EX,
ECP - ]  o r  [X, Q E C P1 , although these groups are not in general abelian.

The auther thanks H. Oshima for valuable discussions with him.

2. The extension of XA Y---*Z to QEXAQEY

Given a  map f: X  A Y— >QZ, there exist extensions of f  to  S2EX A QEY.
W e fix a  choice of extensions as follows: Take x E X .  Define f x : Y—>S2Z by

( y )  = - f ( x ,  y ) .  Extend I:, to  a  loop m ap f x: QEY—>QZ. Note that such  an
extension is  u n iq u e . Therefore we have a map g: XA S2EY—>QZ which is an
extension of f. Similarly, from g we have a map h: 52EXAQEY—>S2Z. Note
that h (cr i + a2, 13) = h (a i , )3 )  + h (a 2 , 1 3 ) , h (t (x) , 192) = h  ( t  (x )  , 130 h  ( t  (x )  ,

/32), and h (t (x) , (y ) )  =  f y) , where c: X  Q Z X  is  the  canonical inclusion.
From now on we denote h by L (f) .

O u r e x te n s io n  L (f) o f  f  c a n  b e  d e s c r ib e d  th ro u g h  t h e  following
commutative diagram:

where

d
X m  X  Y nx  mn

Xm A Yn (X A Y ) '

1 a/\a„ a mn

QEX  A QEY QE (XA Y) — >QZ
L(t)

d (xi, x2, • ", Xm, y i ,  Y2, • • • , Y n ) =  (x i, y i), (x i, y2 ), •  • • , (x i, Y n)

(x2, yi) , (x2, y2) , •• • , (x2, Y n)

(2.1)

(xm , (xm, Y2), • • •, (X m, Y n),

cm
e: X  A Y—>S2 E (X A Y ) is  the inclusion, am is  the composite: X'n .— (52EX ) m

—>S2EX, f  is the canonical extension of f  to  the loop map and other maps are
standard ones. It is  c lea r tha t L (f) = f °L (e).

P roof of Theorem  1 .1. Let pi :CP-
 X  CP - -> CP-  b e  the i-th  projection

(i = 1, 2 ) .  Since CP- - ='K (Z, 2), i t  h a s  the u n iq u e multiplication

tt: CP" X CP - - >CP- . Let H ( i ) :  CP -  A CP- - >S2ECP -  be  the adjoint of the Hopf
construction H a )  : C T ' A  CP'— > ECP". T h e n  t h e  following equation

characterizes H(1t) [1] .

H (g)°7r=  —  (°P2 —  (*P i+  t° (2.2)
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where TC: CP-  X CP C P A C P -  is  the canonical projection.
Put

# (H  (u))): QECP -  A QECP°° — >Q.ECP -

Lemma 2.1. The following diagram commutes:

CP- A CP-

H (p)
QECP -

i A i li

Proof.

BU A BU BU.

j°11(#) °Tc=j° ( — T°P2 —  (opi+ v g ) b y  (2.2)
= — i°P2 — i - pi+iott since j  is a  loop map

E
-  —0( 771: (0i  At';) - Piro) 10( 7770: 1 17) n 0 1 + 1 0 1 + 1 7  ® i - 1  01

Since 
Jr*

 is  mononorphic, we have the desired result.

N ow  consider th e  d iag ram  (1 .1 ). F o r  convenience, p u t X  = C P .'  and
consider the Jam es model X .  instead o f  Q E X . Let X n b e  the  n-th James
filtration of X . .  Consider the Milnor exact sequence:

[EX n AX., BU] — > [XnAX.,

Since [ EXnAX,n , B U] = 0, in  order to  show the commutativity of the diagram
(1.1), it  is  e n o u g h  to  show  th a t  the  restric tion  to  Xn A  X . o f  th e  diagram
(1.1) com m utes. To see this, consider the following diagram

xn A x '  (X A  n n i ' (

i"A r

BU" A BU" (BU A BU) "'n 
j A j

d
BUnm

(iA i r "

S Z IX

B UA B U  B U ,
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where a: Xn—>QEX is  the composite x -n
4  (Q Ex) +  means the  loop

su m . N o te  th a t  th e  im a g e  o f  a  i s  Xn . F rom  th e  bund le  theo ry  and  the
previous lemma, we see that the  above diagram commutes (up  to  homotopy).
This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2.

(1) is clear, since j: 52ECP - -0BU is a loop map.
(2) follows from Theorem 1.1.
(3) Recall that [CP- , CP- ] -="1-12 (CP"') '=" Z . T ake  any  in tege r k E Z and

consider the following commutative diagram:

CP-

1 Ii
BU BU.

Since (p lc i s  add itive , the  above  d iagram  can  be  ex tended  un iquely  to  the
following commutative diagram:

uzEk:
QEC13 - Q ECP -

I 11
BU BU.

T hus, (3) follows.
(4) Let p i, P2, ••• be  a ll p r im e s . P u t rk = (p 1 p 2 .-p k )  k .  L et Y = QECP -

or B U . F or any integer n E Z, consider the n-fold loop multiplication map n:
Y— *Y. Then clearly, the following diagram commutes:

52ECP - Q  Ear°

BU BU.

Consider the telescope of the following sequence:

Y1 rz Y3

th e n  th is  te le sc o p e  g iv e s  t h e  ra tional localization o f  Y  [9 ].  Recall that
(QECP - ) ILK (74 (QECP * ) Q, k ) and BUQ =- K ( r k (BU) Q, k), where
K  (r , k )  i s  the  E ilenberg  MacLane s p a c e .  N ote th a t j * :  (QECP - ) 0 Q—>
7r* (BU) Q  is  split-epi. Thus we get the splitting map between the product
o f the  E ilenbe rg  MacLane spaces a n d  s o  w e  g e t  th e  sp litting  m ap  of 1Q :
(QECP - ) Q- > BUQ. Since X  i s  a  finite complex, [X , Tel (Y )] =  lim ,[X , Y].
T h is  im plies tha t limr,j*: lim r k [X, QECP1 - - -  lim r k [X, B U ] is  o n to  as sets.
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Therefore, fo r any element a E K (X) [X , BU], there  ex ists an  element /3E
[X , QECP - ]  such  tha t (lim j*) ([P] )  =  [ a] ,  w here  [a ] means the equivalence
class of a in  the  d irec t lim it. T h is implies that a is equivalent to j* (13) in the
direct limit. N o w , th e  proof o f  (4 ) easily follows.

(5) F irs t , f ro m  T h e o re m  1 .1 ,  w e  h a v e  th e  follow ing commutative
diagram:

AQECP -  — >  C P -  AS2ECP -  — >  QEC/3°' A Q.ECP- Q E C P -

I 1 Aj A j j A j Ii
S2  ABU — >  B U  A B U  = > BU A BU BU.

Taking the adjoint we have

ECP - S P E C P -

(3.1)

BU Q2BU,

where p i s  th e  m ap w hich represents th e  Bott periodicity K (X ) 4 K (E 2X).

By iterating the above diagram we have the following commutative diagram:

Q2 N - 2 f Q 2N + l p o o E c

I sin
uaN-,9

Q2NBU.

Thus taking the adjoint we have the next commutative diagram:

E2NCpoo >

(3. 2)

 

BU.

Given any element a E K (X) "=" [X, BU] , by Segal-Beker theorem  [7 ], since X
is  compact, for large N there  ex ists a  map X Q 2 N2eCP0o such  tha t the
following diagram commutes:
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fl2N z 2Ncpo.

X   BU,

where IN  is  the canonical extension of i:CP - -)BU— Q2 N B U .  Note that S N °iN=)

Q2Np N i. Therefore, taking the adjoint we have the commutative diagram:

2N c pco

(3. 3)

  

2N x

 

BU,

 

By the diagram s (3 .2) a n d  (3.3), we have completed the proof o f (5).
(6) Suppose th a t  aa i ( a i  — 1 ) ,  w here  a i e  Z  a n d  a i 's  a r e  line

b u n d le s . L e t  g i :  X—) CP -  b e  th e  classify ing m ap o f  t h e  lin e  b u n d le  ai.
Consider the element 'di E  [X, QECP - ]  w hich is defined by Cr- =  E a, ( c  g i ) ,

where t: CP - -)Q E C P -  is  the  inc lusion . Then it is clear that j .  0 . =a.
This completes the proof of Theorem 1.2.
The following proposition gives examples of PK (X) .

Proposition 3.1. (1) for n . 1, K (CP") =PK  (CP") .
(2) Let H P" b e  the qua tern ion ic projective space, b e  the canonical

q u a te rn io n ic  line  bund le  ov er H P" and y  = — 2 , w here c '  i s  the
com p lex ifica tion . If 2, then y E PK (HP").

Proof. (1) is  c lea r  fro m  (6 ) in  Theorem 1 .2 . W e sha ll p rove  (2).
W e u se  (3 ) of Theorem 1.4 which is proved in  the  next s e c t io n . Recall that
H P ' S4 U  „e 8 , w here 1)4 : S' 7—S 4  i s  the  Hopf bund le . S ince  the restriction to
S4  o f  y  e  K(HP 2 ) i s  th e  generator o f  K (S 4 ) ,  a n d  s in c e  ir4(QECP0 ) Z
generated by C2 (See (1.3)), we see that

y GPK (HP 2 ) if and only if C2.14= O.

On the other hand, using the quasi-fibration [8]

ficio
CP-  —) ECP-  A CP- E C P - ,

we see that

C2°1)4=0 if and only if 1.1)5 =0,

where i: S 5—)ECP00 ACP-  is  the inclusion. A ssum e that 1.1)5=0. Then there
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e x is ts  a  m a p  g:x p 2—  ECP° A  CP°' s u c h  th a t  t h e  following diagram
commutes:

s5s 5

EHP2 ECP" A CP-

Consider the cohomology group of Z/2 coeffic ien t. Recall that

H* (CP- ; Z/2) = Z/2 [x] ,

H* (HP2; Z/2) = z/2 [u] / (us),

where x E H2 (GP', Z /2 )  and u E H4 (HP"; Z /2 )  are  the  genera to rs. F rom  the
above diagram we see that g * (xy) = u. Now consider the Steenrod operation.
Recall that S e (xy) = x 2y2 = Sg 2 (x2y )  and Sg4 (u) = u2 . By dimensional reason,
we get

0 - g * (x2 y ) ) = g*  (S q2 (x2 y ) g * (x2 y 2) g *  (S (14 (xy ) )

=Sg 4 (g * (xy)) = Sg4 (u) = u 2 *0.

This is  a  con trad ic tion . T h is implies that io vs k O.

Remark 3.2. It is known that 7r7 (t2 ECP* ) Z/2 [6] whose generator
is 726, where E  ( Q  ECP°1  "=" Z Z  is characterized  by  the Hurewicz
homomorphism: h = i3 113 2 13 215 1 in  H* (QECP - ) , A nd it ho lds that 2 =
<Ci, C2> (Cf. § 5). T h e  above proposition im plies that there is a relation
176= C2°1)4 in 7r7 (Q Ecr°) .

Remark 3.3. Consider the S 2 - bundle; S
2 — c p 2 n + 1

H P n . T h e re  is  a
s ta b le  m a p  t: E"HPn— + 

E . c p 2 n + i
 c a l l e d  t h e  t r a n s f e r  m a p .  T h e  above

proposition im plies that there exists no unstable m ap r: EHPn— > Ecp2n+i f o r

2  such that E 00 t  =  t .  Because, i f  E - r  =  t, th e n  it  fo llo w s  th a t  the
restriction to  the bottom sphere of the adjoint of r i s  ± C2. T his implies that
C2°1)4= O.

4 .  Proof of Theorem 1.4

F i r s t  w e  p r o v e  ( 1 ) .  B y  in d u c t io n  o n  n , th e  following commutative
diagram gives the proof of (1):

f ,
CP" A CP"  f l I C P A    nECPoeCP"

jA j

0  BUA BU BU



C P "   C P "  A CP"

S'2" A 52m

A 11 ECP"

SIECV°
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Next we prove (2) a n d  (3). Consider the following diagram:

CP"

C Pc°

CP"+

CP" A CP"

1A1,

CP" A CP;"

f !A in  SIECP° A SIW Pc°

Ag„

JAJ

s2n + 2  S2 A S 2 n  
,9 A ,1"

B U A B U  BU

The commutativity of th above diagram is clear from the inductive assumption.
This completes the proof o f  (2) and  (3).

Let C:QECP - A CP- be the commutator map with respect to
the loop su m . T h e  proof o f  (4) follows by chasing the following commutative
diagram:

<

This completes the proof of Theorem 1.4.

5. Proof of Theorem 1.5

Lemma 5.1. Let ,u:CP- X CP- - CP-  be the product of CP -  and H(p):
CP-  A CP"— *QECP -  be the adjoint of the Hopf construction H (a ): ECP -  A CP- - >

CPO . T h e n
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i
H (P) *(13m0 =  E

(

j

 ) x*(dsn_i)x* (Pm-) S i+ i( 5 . 1 )
0 5 1 5 M
0 5 / 5 n

where x: 52EX— >S2EX is  the loop inverse and the products in the right hand side
mean the one in the tensor algebra.

Proof. (2.2) implies that the following diagram commutes:
x P2xPix#

X X X X 3 X X 3 -  ( X X X ) 3  - 4 X3

j. t'
(Q x ) 3

   

X AX

  

where X = CP -  a n d  T is the map of changing the order o f  fa c to rs . Now recall
the following formula:

L a n )  =  E
05i5n

( i ± i  n t + i ,
/1* (j3 ® 3 )  = p

(5 .2)

Pk.(13,013, ) =
{

pi i f  k=1 and j=0,
13; if k=2 and i =0,
0  otherwise.

A ls o  r e c a ll  th a t  +  in d u c e s  ju s t  th e  m u ltip lic a tio n  in  th e  tensor algebra
*H— * (CP- ). N ow  t h e  p ro o f  o f  L em m a fo llow s easily  from  t h e  above

diagram a n d  (5.2).

N ow  w e shall prove Theorem  1.5 . Since X (P i) = using Lemma
5.1 it is easy to see

# *(1310Pn-i) = H(p) *(j31® i3n-i)

=Ex*(8n—i) (iPi - - 191$1_1)
i=1

= O n  ±decomposables.
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On the other hand, since, p i is primitive, using  (2 .1 ) we see

#*(Pi.® decomposables) =O.

Therefore, by induction,

h (Cn) = # * (310h (Cn-1))
= # * (plo ( (h - 1)!Pn_i+ decomposables)
= 1) ! # * (piopn_o

= (n — 1) !E x *  (pn_i)
i=1

This completes the proof of Theorem 1.5.

Corollary 5.2. In  H*(QECP - ) , for n  2 , the following elements are
spherical.

(n - i)! Eix*  ($n - i )  Pi

(n - 1 )! X*(Pn-i)P1Si-1
i=1

Proof.L e t  C;= CI. Define C,; E 7r2n (QECP - )  inductively by

C;1+1: S2"  2 = S2 n ;2. \ c>
; ECP-. (5.3)AS ECP -  A 5- 2

Then, by similar arguments,

h (C;i) =

we get

fI3 if n=1,

(n - 1)!E7=iiX* (Pn-i)Pi if n
(5 .4)

Therefore from Theorem 1.5, te  result follows.

Proof of Corollary 1 . 6 .  B y  (4) of Theorem 1.4,

i *C(fi,fz) = q * < CI, C2> in  [ C P ,  Ecp- ] .
On the other hand,

h (< C i , Cy > ) =
h (CO h (C2) h (C2) h (CO

(2 13 2 (2,82-pnai by Theorem 1.5

=2 (,31/32 —$2,31) # o.
This means that  f i  and 7 2 does not commutes in [E C P , ECP- ]

Since i* : [ECPn, ECP - ] [EcP 3 , E cP - ]  i s  homomorphism of groups
and since [ECPn, E C P ]  [ECPn, ECPn], the result follows.
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6 .  Composition of {fi}
In  th is  section, w e consider no t [CP- ,  QECP- ]  b u t  [ECP", ECP- ]  to

s tu d y  th e  c o m p o sitio n  s tru c tu re s . F o r  convenience, w e u s e  th e  following
notation: Let f , gE  [EX , ECP- ] . Define

V, g )  as the adjoint o f  #  ( f - A g -- ) A ,

w h e re  f  a n d  yr i s  th e  ad jo in t o f  f  a n d  g , re spec tive ly . T hen  from  the
construction of # , it ho lds (Cf. §2)

g + h ) =  11 V, g )+ h) for f = Ef , g, h  [Ex, C P ] .
(6.1)

(f+g, h) 
1
1 V , g)+ h) for any f , g, h E  [EX , ECP- ] .

Throughout th is section w e  w rite  the  ad jo in t of f i  b y  th e  same letter.
Under this convention, we restate Theorem 1.7.

Theorem 6.1. T he com position f ,  °  f ;  can  be  w ritten  a s  a  linear
combination fn 's for n i j .

The proof is divided into three parts.
(1) fn can be written as a  linear combination of E[i] 's for
(2) E [n] can be written as a  linear combination of ft's  fo r i
(3) the composite of linear combinations o f  E [i] 's can be also written

as ones of E[i] 's,
w here [k]: CP"'— 'CP-  is  the corresponding map to k E Z =- ./12 (CP").

(3) is  standard  [10]. Before giving the proof o f  (1) a n d  (2), we need

Lemma 6.2.

(E [m] , E [n] ) = — E [n] E [m] + E [in + n] (6.2)

Proof. The following diagram commutes from  (2.2) and the definition of
#.

A
CP -  > CPoe X CPQ°

   

— e "P i+  e

  

[ , , , ]  A [.1 C P' A CP CP"') A C r°
11( flECP")

  

A

  

ECP -  A 11 E C P'
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Thus, taking the adjoint we have the desired result.

We prove (1) a n d  (2) by induction. Suppose that

f n =  fEaiE [ki] I +  [n ] ,

where a,EZ and kiSn - 1. Then, by definition,

fn+i= ( [1], f n )

=  (E  [1 ] ,  lEatz[ki]i+E[n])

=ID, (E [1], E[kiD14- (E [1], [n] ) by (6.1)

= (_E  [ki] [1] +E [k,±1])1

—  [n] — [1] + E  [n  + 1] by lemma 6.2

= { E N E  [ii] +  [n+1].

This proves (1). The proof o f (2) follows easily.
This completes the proof of Theorem 6.1.

Example 6.3.
= [1]

f2  =  — 2E [1 ]+ E [2 ]

f3 = —  2 (—  2E [1] E [2] ) E [2] —  [1] + E [3]

E [2] = 2f1+f2

E [3] = 31.1+3f2+f3
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