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An Appell-Humbert theorem for hyperelliptic surfaces
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Marian APRODU

O. Introduction

Let S— '.13 be a hyperelliptic surface over a smooth elliptic curve B  defined over
the field of complex numbers. The aim of this paper is to give a description of
the Picard group of S  in  term s of hermitian forms and multiplicators, similar
to  A ppe ll-H um bert f o r  c o m p le x  to r i. T h e  m a in  t o o l  u s e d  h e r e  i s  the
cohomology of the groups and the ideas are similar to those used in  [3 ], [9 ].

In  th e  f ir s t  section w e recall som e fundam enta l fac ts on hyperelliptic
surfaces, such as the classification theorem and their fundamental groups.

In section 2, we get a description of the group of line bundles whose first
C hern  c la s se s  a re  to rs io n  elem ents in  t h e  N éron-Severi g roup , w hich is
usually denoted by Picr(S) and in the th ird  section, which plays an important
role for our purpose, we obtain a description of Num (S ) in term s of hermitian
forms.

T h e  fourth  section is  devo ted  to  the A ppell-H um bert theorem  and the
final section presents som e direct applications of it  su c h  a s  computing Tors
H2 (S, Z ), finding a  basis in Num (S) (see, a lso  [10]) and computing the space
of g loba l sec tions fo r the  line  bund les over S  num erically  equivalent to  a
multiple of the fiber of S—

, B.

1. Preliminaries and notations

T here  a re  many approaches concerning th e  theory  of hyperelliptic surfaces
(  [1 ] , [2 ] , [6 ] , [1 0 ] , [1 2 ] , [1 5 ] ) . F irstly , w e  reca ll th e  definition used by
Suwa (cf. [12]).

Definition 1.1. A  hyperelliptic surface i s  a n  e llip tic  bundle  S  o v e r an
elliptic curve B  with 61 (S ) =2.

Theorem 1.2 ( c f .  [ 1 2 ] ) .  A ny hyperelliptic surface can be expressed as a
quotient of an abelian variety A  by the group generated by an automorphism g 5 of
A. The period matrix of A and the automorphism g 5 are given as follows:
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arbitrary

P=IP
(a l),  (a2)

(b l), (b2), (d l)
(cl), (c2)

— p
1=1/c.

1 / 2  (a l),  (a2)

1/3 (b l), (b2)
c=

1/4 (c l), (c2 )
1/ 6  (d l)

— I ( a i ) ,  (a2)

(61) , (b2)

(ci), (c2)
(dl)

5 (14, z) — (14 —z)

, 1 2 r i
95 (u, z) = (141-  p z ) ,  where p=e

(c1)
 ( 1  0  a  0 \

(c2)
\  0  1  0

95(u, z) =  + 1 ,  iz )

(dl)
f iI  0  a  0 \
\0 1  0  p )

95(u, z) — (u + k- , p z ) .

We say that S is of the first type if S is of type (a l ) ,  (61 ), (c l) o r  (dl)
and S is of the second type otherwise.

For the sake of simplicity, we shall use the

d=

following notations:

1/2 (a2)

(i — P)/3 (b2)
(1 + i)/ 2  (c2 )
0 for the other cases

So, S is the quotient of C2 by a group G of holomorphic automorphisms of

C2 generated by g  i =1, 5, where 91(u, z) = (u +1, z), 92(n, z) = (u, z +1),
93(u, z) = (u + a, z+d), 94(u, z) =- (u,  z+/3) and  95(u, z ) =  (u+c,

For the next elementary result, see [14]:
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Lemma 1 .3 .  The relations between generators are:
g l , g2 , g 3 and g 4  commute to each other, g5

1 =g 1 and
g2g5=g5g2-1 g2.g5=g5W

(al) g3g5=_-g5g3 (a2) g 3 g 5 = g5 g3 g i l

g  g  5 = g 5g 4-1 g4g5=g5gZ1

(b 1 )

(dl)

g2g5=g5gilgV

g 3g 5 =g 5g 3

g 4g 5 =g 5g 2

g 2g 5 = g 5gZ1

g s g s = g 5g 3

g4g 5 =g 5g 2

g 2g5 = g 5g 2g4

g3g5 =g 5g 3

9495=9592 1

(b2)

(c2)

g 2g 5 = g 5g
2 1yz1

g 3g 5 = g 5g 3g i l

94g5= g5g2

g 2g 5 =g 5g ,
1

g 3g 5 , g 5g3G1

g4g5= g5g2

From the  lemma above, one may see that any element g  e G has a unique
expression as a product g = gZ2g144g133g . The action of a such g  on 0  is given by

g  (u, z) = (u ± 13 c e ± 15c , 1 5.z- kl 2
.- i- l413- Fl 3d).

Another way of representing the hyperelliptic surface S is  as follows. Let
r=Z+Z13, A= Za+Zc, A i = Za+Z and

2Zcr+ Z (a 2) , (C2)

A2
=  3Za+ Z (b2){

Za+Z =A i  o therw ise

Let A = C/A2 and E =  C/F. Then S can be expressed a s  S = (d X E) /
where W i s  a  finite translations group o f A , acting on E  n o t b y  translations
only, given by the Bagnera - deFranchis tab le  (see for example [1], [2], [10]).

Moreover, Air§ '-- B, E/W -=' P 1 a n d  S has tw o  fibrations: first o f  them is
S—>B from th e  definition 1.1, with fiber E, and  the  o ther one is  S— >P 1 w ith
generic  fiber d. Since A  i s  th e  la ttice  o f  B, th e  sh o r t  e x a c t  sequence of
homotopy groups of the first fibration leads us to the following extension:

lr
O >1'— > G - 4 A - - -40

where j (r) =A 2g 4 and  z (g )= 1 3 a+1 5c.
Choosing a s  a  cross-section o f  77 th e  m ap  s: A- --+ G, s (A) =  O A ' for

= al 3 + c15 E A, w e see that if S is  of the first type, then s is  a  morphism of
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groups.
Next, we identify an element rE r  w ith  (r) EG and A E A  with s (A) E G

In  o ther w ords, w e m ake no distinctions between r = 1 2 ±  14,3 and 09`1
4 o r

b e tw e e n  =13a+1 5c  and O A '. So 22' is  the  same as s (2)s (2') and by  2 +2 '
we mean s (2 ± A'). This convention sim plifies our form ulae and  produces no
ambiguity.

The natural action of an element AEA on F is given by 272 - 1 = vr. If we
write 22' = h (2, A') (2+ 2') , then h(2, 2') = — 1)

Next, let us point out the following useful lemma

Lemma 1.4. Let VE Hom (G, C* ) . Then
(al) v (g2 ) = ± 1, v (g4 ) = ± 1; (a2) v (92 ) =1, v (g4 ) = ±1;

(bl) v (92) =v (94) , v (g2 ) 3 = 1; (b2) v (g2 ) =1, v (g4 ) =1;
(cl) v (g2 ) (g 4 ) , v (g2 ) = ±1; (c2) v (g2 ) =1, v (g4 ) =1;
(dl) v (g 2 ) =1, v (g4 ) =1

2. The group Picr(S)

T he  vanishing o f  th e  cohomology groups Hi (C2 ,  Z), (C2 ,  C), 11̀  (C2 , ecz) ,
Hi (C2 , 0 4ct) , Hi (C2 , C * )  fo r all j 1 yie lds to  the  natural isomorphisms (see
[9]):
iff (S, Z) 7= Hi (G, Z), (S, C) -='H' (G, C), H̀  (S, (G, C*) , (S, Vs )

(G, H), Hi (S, 01) _11 1 (G, H*) , where H*=H °  (C2 , e t )  .
The exponential sequence

exp

0 Z— 'e s — '1 9 :— '0

gives rise to the cohomology sequence

ci
e s )— >Pic (5) — >H2 ,  Z) —>0.

Recall that the universal coefficients theorem leads us to

Lem ma 2.1. Tors H2 (S, Z) -=- Ker (i: H2 (5, Z) - --112 (S, C)) .

F o r  any L E Pic (s), c  (L )  denotes the  Chern class of L  and  Pic
°
 (S) =

Ker (c i ) .  T h e  subgroup Picr(S) c Pic ( 5 )  ( s e e  [3 ] )  is  de fined  a s  Ker (ici)
(where i: H2 (S, Z) --■112 (5 , C) is  the canonical homomorphism) and th is is the
group o f  th e  elements L E Pic (S ) su c h  th a t c  (L )  i s  a  to rs io n  element in
H2 (5, Z) (as w e saw  in  Lemma 2.1.). Then Picr(S) = C(H 1 (S, C * ) )  w here C
is the natural morphism , C * ) —>Hi (5, en (see [3]).

L e t  u s  com pu te  nex t Ker (C), b y  u s in g  t h e  isom orphism s from  the
beginning of this section. So, v Ker (C) if and only if there is h EH* such that
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(1) h(g (u , z ))=v (g )h (u , z ), for all g E G, (u, z) E C 2 .

B y taking th e  logarithm ic derivatives w1 = ktu1h a n d  w2 =  h,z7h (in  order to
eliminate y from  (1)), these functions verify the following relations:

(2) wi (u, z) = wi (u +1, z),
wi (u, z)= w i (u, z+1),
wi (u, z)= w i (u, z+ la) ,
w1 (u, z) = ( u  +a, z+ d ), i=  1, 2

(3) (u, z) = (u +c,
(4) (u, z) = (i)2 (u -Fc,

for a ll  (u, z) EC 2.
F ro m  (2), if  w e take  K OE C2 a  com pac t se t w ith K+ (E X A) = C 2 and

apply the maximum principle, we deduce that wi are contants.
F ro m  (4) it follow s that w2= 0, so  h does not depend on z . T his means

that there is a  holomorphic function iron C  such that h (u, z) =17 (u) , for all u,
z E C. Moreover, since ii7h7 is  constant, we get h (u, z) =e 2 " + b )  w ith  (a, b) C

e 2 ria ct ,e 2 r i a c ,C 2 .  Then, by denoting yi =  (g i ) ,  w e have y2= 1, y 4 -= 1, y3 , v5 —

where a E C.
Then we proved the following:

Lemma 2 .2 .  K er (C ) =  E Hom (G, C* ): (g) g — G, a e

Next, we try to describe Picr(S) (G, C * )/Ker (C).
Let y E Hom (G, C * ) . If S  is of the first type, s  is  a  morphism, so y (.12') =-

y (.1+2 ').
O therw ise, w e know  that /V= h (2, A') (2+ .1') where h(2, =  ( V - 1 )

lc1 E  T. B ut, if S  i s  o f  ty p e  (a2) , then  h (A, /V) depends only on 92 a n d , by
taking into account Lemma 1.4., it follows that y (h (2, )  = 1 .  I f  S  is of type
(62) o r  (c2), then again from Lemma 1.4. we have y(h (2, X )) =1.

In any case we obtained y (AA') =y (2+2').
Now, we write y (A) =e 2 ' i . Since r(A) +r (A') — r (2 - 1- 2') EZ, for all 2, 2'

E A , yo: = Im r m ust b e  Z-linear. T hen  ço h a s  a  un ique  R - linear extension
C—R. W e define  k: C—*C, k ( u )  =  ( i z )  + i ( z )  w hich  is  C - linear and

7=iço- -k  is real - valued.
The function k  being C - linear, there exists a e  C  such that k (u) = au, for

a ll u  e  C  a n d  w e  take  vo E Ker (c), vo (9) = e 2 7 ria À .  T hen  a c : = v/v o h a s  the
property that ac (2) E  U (1) , fo r any A  EA  and it is uniquely determined by
this property in the class of y in Horn (G, C*)/K er (0.

Then we have

Pic'(S) {aGEHom (G, C* ) , ac (2) e U(1), for allA EA }.

Moreover, a 0  (y) U (1) , for all a G EHom (G , C*), so we got
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Proposition 2 . 3 .  There is a canonical isomorphism

Hom (G, U(1)) >Picr(S).

3. The group Num (S)

In  th is  section w e shall g ive a description of Num (5 )  in  term s o f hermitian
form s related to A i  a n d  F . It is  w e ll-know n  (see , fo r  exam ple [10]) that
Num (S)-"=" 112 (s, Z )  / T o r s  H2 ( S ,  Z )  a n d ,  a s  w e  s a w  in  se c tio n  2 ,  the
cohomology of S  is computed by cohomology of groups.

The inclusion j: r-G  induces a  morphism of restriction res r : 112(G, Z) — +
H2 (r , z) .

T h e  m ap siAl: A 1—  G  i s  a  group homomorphism, so it induces another
morphism of restriction resm : H2 (G, Z) — >H2 (A1 , Z).

According to [9], Chapter I, Appendix, we have classical isomorphisms

(5) H2(F, Z )  {Hr: C2— >C hermitian, Im 1-11-(rx r) CZ} ,
(6) H2 (A, Z) {HA: C2 — )C hermitian, Tm HA (A 1 X  A 1) C  Z}.

Let us explain the  morphisms resr and resA i ( c f .  [0], Chapter I) passing
through the above isomorphisms.

Starting w ith F E  H2 (G, Z), we construct A r F: rx A F ( ',  r') =
F(y, — F(r, r'), bilinear a n d  antisymmetric w hich can be extended to
Er : C2 — > C, R-bilinear and antisymmetric verifying E (ix , iy )  = E  (x , y )  for
any x, y C. Then Hr: C 2 — 'C  defined by Hr (x, y ): =E r (ix , y) ± iE r(x , y )  is  a
hermitian form on C2 with  Tm H1-=E1 and Hr  w ill be  resr F  modulo canonical
isomorphism (5).

B y applying th e  sam e argum ent for A i, r e s r  a n d  resA, w ill induce  a
morphism

X: H2 (G, Z) — >N i

where

(Hr, HA), Hr, HA hermitian forms on C2

with Im Hr  (FX F) Z , Im  HA (A iX  AO CZ} .

We denote by

(Hr, HA) E N I ,  H1(1, 1) Im iSE 2Z), type (a2)

(Hr, HA) E,N  H r (1, 1) Imp E 3Z) , type (62)
=

{ (Hr, HA) E sVi, Hr (1, 1) E  2Z, 21m HA (A X A) CZ} , t y p e  (c2)
{(Hr , HA) E . / V I ,  IM HA (A X A ) CZ}, otherwise.

Now, we can state the main theorem of th is section:

Theorem 3 .1 .  x  induces an isomorphism x : Num (S) - ->N S .
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Proof. Because has no torsion it follows that Tors 112 (G, Z) Ker (X).
So it remains to prove that Ker (x) c Tors 112 (G, Z ) and x (I/2 (G, Z)) =.A/S.

Let F  be a normalized cocycle in 11' (G, Z) . Then F  is the Chern class of a
line bundle. If  w e represent th is line  bundle  a s  a  cocycle teg l g (G, H* )
then, by standard diagram chasing, we get

(7)
F (g , g ') = fg (g' (u, z)) — f g g ,  (u, z) H-f g , (u, z ) EZ , for all u, zE C, g, g'EG,

where f g : C 2 — 'C  i s  a  holomorphic function with e ' i fg=e g  fo r  any g G G (see, for
example [3], [9]).

N ow , w e  d iv id e  t h e  p ro o f  in to  tw o  c a se s  corresponding  to  t h e  two
different kinds of hyperelliptic surfaces.

C ase  1 . S  is of the first type.
Let us notice that, in  th is  case, s  is  a  morphism and, by denoting resA  the

corresponding  m ap  from  1-12 (G , Z )  t o  112 (A ,  Z )  w e  h a v e  th e  following
commutative diagram, coming from the inclusion A i cA.

1P (A, Z) (A i, Z)
resA resni

112 (G, Z)

Then it is obvious that x (112 (G, Z)) S.
Step 1. Our next goal is to find f g  and thus to get a nice form o f  (7).

Since the restricition of F  to  F and A  are  2-cocycles, it fo llow s (see [9],
Chapter I) that

(8) f r(u , z ) 11r (z, + r  (U, r), for a ll rE r

(9) IA (u, z) A) +13A (z, A) , for all 2E A,

where Sr ( . , 13A( . , A ) are holomorphic functions on C.
N e x t, w e  w rite  for congruence modulo Z . F ro m  (7 ) it follow s that, for

any g=yA EG, we have

(10) fr (2 (u, z)) —f g (u, z) ±f,i (u, z) —=0,

SO

(11) f g (u, — = -
2
1
i Hr r z ,  +1-HA  (u, 2 )  ±  (u + 2 , r ) +13A (z, 2),

The relation (7) can be read as

f „ , (u, z) f g (g'(u, z))-Ffg
, (u, z), g, g'E G.

By replacing f ,  from  (7) in the above formula, we have

(12) Pr(u+ 2 + 2" r+ 'r') +/9A (z, 2+21.
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1 1
r (V71 , r) , 2) +19r (u -  - /1+ 2' ,

+/3. (u+A', r') +/3A  (Vz+ r' , 2) +  ( z ,  A' ) .

Let us denote by Er  ( ,  r) and EA  ( ,  r )  the derivatives of 13r(. , r) and
B A  . , .1) respectively. Then, from  (12) we obtain:

(13) Er(u+2+2', r+Vr') =Er(u+ 2+ , +Er(u+ , r')
(14) EA (Z, 2 +  = (V z  +  2) +A  (z, X)

and from these relations we can describe Pr and RA.
Firstly, we determine if
In  (13), w e choose  = X = 0 and we get

(15) Er (U, r+ r') = Er ( S , r) +Er(u, r') for all r , rf E r,
which means that Er (u , .): r---c is a morphism of groups.

In  (13) we choose 2' = 0 and it follows

(16) Er (u+2, r+Vrf) = Er(u + 2, r) ± Er (u, f).

From  (15) and (16) we deduce that

(17) Er (u+ 2, VT') = Er (U, 7i )

We choose 2 EA1 in  (17), so E r (u + 2, r') = Er (vt, r') , for all AEA 1, r' Er,
u e  C . B y  standard arguments, w e can  p ro v e  th a t Er ( . ,  f )  i s  a constant
function, so we write Er (r) instead of Er (u, . On the other side, if we apply
(15) a n d  (17) again, e r must be identically  equal to  zero and iSr does not
depend on u. Then we write S r (r) instead of /3- (u,

Next, we determine S A . We choose .1 =  =0 and r' = 0 in  (14) so EA (2, 0)
=0, for all z EC. W e apply these relations to  (14) for X =0 and we obtain

EA (Z, A) = EA (Z + , A), for all A E A, YE T

For the  sam e reason a s  above, EA  does not depend on u  and hence we
w rite  EA (/1) instead of EA (z , A ). W ith  th is  notation, w e  tu rn  b a c k  to  (14)
which becomes

(18) EA (2+2') = +EA (2').

1—V5  

An easy computation in  (18) will show tha t En (A)E A and Ai (z, .1)

1— V 
= EA (C) 2+ S A (A).

Then we get
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(19) f  g  4 , , Z )  4 , y r  ( V z ,  + IR A  (u, ± Pr (r)
1_
s i t  (e) z+ (r) + const (9), for all g1—

where const (g) EZ, for all g EG, and  (7) becomes

(20) F(g , 9 ')  =*i f  (A', 2) H (A ) F (A') +A ')

H- Pr(T )+Pr(f ) — Pr(r+V 5 71 ) ± 1
1— EA (c)

const (g) +const (g') — const (gg'), for all g, g 'E G

Since const (g) + const (9') —  const (99') is  a  coboundary in  C2 (G, Z), we
can ignore this term, without changing the cohomology class of F in 1/2 (G, Z) .

11  Let r(9):=13 A (2 ) +13 r. (r) EA (c) r, rr (7') : = r (r) = Pr (r) ± 1 _ en (c)
r and rA (2):=r (2) PA GO .

W ith this notations, (20) gives rise to the final formula for F

(21) F (g, g') = 1 -HA (A', 2) 2
1
i
5 r ( ) ; ±r (9) +r (g') — r (gg') EZ.

and thus, if we replace Pr by rr, we may always suppose that EA (C ) = 0.
F ro m  (21), o n e  m a y  s e e  th a t  if H 1  = 0  a n d  Hr  =  0 , th e n  F(9, 9 ')

=r (g) +r (g') — r(gg'), which means that the cohomology class of F  in H2 (G, C)
equals to zero. Then, by means of Lemma 2.1., F  represents a torsion class in
H2 (G, Z) . Thus we proved that Ker (x ) cTors I/ 2 (G, Z).
Step 2. It remains to prove that .A /Scx  (I/2 (G, Z)).

W e check tha t for g iven  (Hr , HA ) E  AIS, there  ex ist r1:11
— *C and rA:A— >C

such that, by defining r (g) (y) rA  (A) , for any g = 7-.1 then

15
(22) H(A , 2) ± '2 i  r  ( r

,

 , +r (9) 4 - r (g') — r (gg') E Z,

Let us set

b1 (y) =irr (T) — 111r (r, y) , for all TEP,

bn (2) = irn (2) A (2 , A ), fo r  all AEA.

One m ay see that (22) is equivalent to the following three relations:

(23) b r( r )  — br (y) eiZ,

(24) br (r) +b r( f )  — br(r+r") - 4iE 1(r, r") EiZ, for all T, y E r

(25) bA (A) + b A  (2') — bit (2 +2') + iE4 (2, 2') EiZ, for all 2, 2' E A.
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Then, the problem of finding rr and 7'4 su ch  th a t (22) is true reduces to
searching for br and b4 which satisfy (23), (24) a n d  (25).

B y  u s in g  (2 4 ) , a  straighforward com putation sh o w s  t h a t  ( 2 3 )  is
equivalent to

(26) S  of type (al) 2b r (1) , 2b1(13) EiZ ,

S  of type (IA) 61(1) —b1(p) EiZ, 3b 1 (1) Hr (1, 1) EiZ,

S  of type (cl) 2b1  (i) EiZ, b r  (1) —br(i) EiZ ,
i4  S  of type (dl) 6 1 (1 )  +b 1  (p) EiZ, b 1 ( i )  +  4  11 r (1, 1) EiZ.

If we fix bi t (c), bit (a) , b  (1 ) and b  (0) E C  such  tha t (26) is verified and
we set:

br (r): =-12br (1) +14b1 (P) -4i1214E r (1, P), for all r=12+14,

bit (A) : =13b1 (a) +1 564(c) -4 -i1315E4(c, a) , for all .1=13a+15c,

then it is obvious that b1  and  bi t  are the functions we were looking for.

Case 2. S  is of the second type.
T h e  p r o o f  i s  s im i la r  to  t h e  p ro o f  o f  Case 1., b u t  i t  n e e d s  more

computations.
As in the previous case, we try to find a decent form of f g .

Since the restriction of F to F and A i  a re  cocycles, then we must have, as in
the first case

(27) f 7 (u, z) = I  r (z, + Pr (u, r), for all rE  r,

(28) hi(u, ' Al) +/34(z, / 1 1 ) ,  for all 21Ell1,

where Pr ( ,  r), PA (  •  21) a re  holomorphic functions on  C . L et us denote by
E r(  • E A (  , /11) the derivatives of Pr ( . , r) and /34 ( 21) respectively.

Step 1. W e show th a t E r(  , . ) and EA (  ,  .  )  are constants in  their first
variable and group homomorphism to C in their second variable.

For g = 7.2 E G with A E A1, then g is also equal to  Ay and w e app ly  (7)
two times

f g  (u, z) (u, z)) z) —=f,1 (r  (u, z)) +f (u, z)

to get the following:

(29) -2Li H1(13d, +S r (u 2, r) + 1 3 / 1 ( Z ,  A) =-I3r(u, r) +13A (z+ r , A),

By taking the derivatives with respect to  u  and z  respectively in  (29) it
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follows that Er(u + 2, r) =Er(u, r) and EA (Z± r, 5A (Z, A), for all rET, 2E
Ai , u, zE C  and thus Er and EA  are constant in their first variable.

Then we write E r (r) instead of Er(u, r) and EA (A) instead of EA (Z, A) and
by denoting Pr (r) = Pr (0, r) and RAW = 13/1 (0 , 4 , we deduce that

(30) 13r (u, = sr (r)u+/3r(r)
(31) 13A (2., =  GO Z+ SA GO •

Next, we turn back to (7 ) and we choose g, g' e G, g=7-A, g'= with 2,
/VEAL  Then we obtain

(32) T y r (13 d, r') + er(r+  r') (u +2+,1') +SA  (2+ 2')z

+Pr (r+ 71 ) +$A (2+ /V) -=- k : 1-1r(r', 7- )  + +7:11A GY

± Er (7') (14+ 2+ 2 ' ) + sr(f) (4+ 2') + SA  (A) (z + f+ 1 f 3d)
+EA  (21z+131- (r) + igr (f) +PA GO 

+J3
 (21

Now, we take the derivatives with respect to u and z  respectively in  (32)
and it follows that ErEHom(F, C ) and EA E Hom(Ai, C).

If w e apply (30) a n d  (31) in  (29) we obtain the following relation:

(33) --:Hr (13d, r) EA (2) r+ E r (r) for all EA, ref'.21

Step 2. W e prove that 13A can be extended to /SA: C  X  A— >C, also holomorphic
in the first variable such that

z) = * 1 -1A(u, +  A  , A) , for all AEA.

In fact, by taking into account (7 ) a n d  (28), it is sufficient to prove this
only for 2=c.

a f , a 2f a 2 f-2
Let )72— au" ,  x i =  avit ;  and 1)2= ' for all AEA.auaz
By using induction on m, one m ay apply (7) several times to prove that

(34)

which implies

(35)

(36)

. - 1

f  m c = Efc (u± k c, kz), for all m EN ,
k=0

n.c= E Tic (u ± k c , z) ,
k=0
m-1

tame= E ,c (u+k c, kz), for all m E N.
k=0
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In particular, for m c = n  N, we get

m-1

(37) E 72c (,, ±kc, kz) = 2i—
1

HA (1 n ) ,
k = 0

m-1

(38) (14± k C , V.Z) = 0.

k=o

O ur next goal is  to  p rove  tha t 77c i s  a  constant and then , from  (37), we
1 deduce that this constant m ust be  equa l to  2 i  Hr (1, c )  and th is step  w ill be

finished.
W e apply (7) for 13a, 15c and then, for 2=13a+15c, we have

(39) h (u, z )=..fi3a (u +1 5c , "z) di 15c (u, z)
.= .1.15c(u +13 a, z 13d) ±fi,a (u, z) .

But /3aG11 1 and , by meaning o f  (28) a n d  (39) the following two formulae
hold:

(40) 1715c (u, =  7715c (u+13a, z+13d),

(41) tei5c(u, fikc(u-1-13a, z+13d), for all 1 3, 15 G Z.

W e apply again (7) for /5c and mc, where we choose m such that mc=n G
Z C A I . A similar argum ent as in (39) leads us to

(42) n i .( u , =  1 5 C  +n, z),
(43) lit5c (u, z ) = 1

,
05c +n, z ), for all 1 5, n  Z.

Applying (7) for r, A and g = y2 , we obtain

(44) f g (u, z )=- 2
1
i li r (V z +1 3d, 7) +E r (r) (u+ 2) + r (y) +f,z(u, z).

Again in  (7), w e take g = yA, g' = 7-'2 ' w ith 1'3 = 0  (and this im plies that
h (2, À') =o) and  (/5±1;)c E Z c l i i  and use (44) and  (28):

1 1(45) .fir(z+13d, r+ + 1 1 / 1 '( u  2+ 2') + 6 1 ( r + ( u +  2 +  2 ' )

+Sr (r+ Vr') +13A ( z ,  2 +2 ')  - 1-1r(z +V , r', + 2
1
i Hr(Vz, r')

± 6r(r) (4 -1- 2 -1- 2') +Er(f ) (u+2')+13r(r) +13r (71 ) +/-2, (u,
t r.  ( u  +  ,  Vz+

Then,

(46) Er (r+Vr') ++,i llA  (1, 2+2') = er(r)

A- sr( f )+n l(u +.1 ', V z +f )+7 7 2
, (u, z)
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and

(47) (14 ±  2 ',  V .z +f )= - 11,v(ti, z).

In particular, for all u, z E C, E F, 1 5 , 1'5 E  Z  su ch  th a t (15 -1- 1;) e E  Z  we
have

(48) teitc(u, Z) isc (u±r5c, "z-E

From this relation, one may immediatelly obtain that

(49) (u ±n, z+r), for all rEr, n E Z.

W e apply (43) and (49) for 15 =1 to deduce that ttc (u, z )  does not depend
on z  and we write p c  (u) =,tte (u, z) . Now, w e take into account (41) and (43)
which show us that /lc (u +2) =Itc (u), for any AeA 1. B ut this means nothing
e lse  th an  ttc i s  a constant. F ro m  (38), th is  constant m ust b e  zero, s o  )7c

depends only on z , s a y  r),(z ) = n c (u , z ). In  fac t, i t  is  e a s y  to  s e e  th a t  r),z
depends only on z, for any AEA.

Then will depend only on z  for any AEA and, from (46), we have

(50) 1),z(V8z-l-T') = — 1),r(z), for all z e C ,  ET,

as soon as 1 0 and (15 +1)c e Z.
In particular, for all z EC, Y ET, 1 5, 1;EZ such  that (15 +/)c E Z we have

vise (z) =  visc ( z+ y').
As we have already seen for t i c ,  we see that vc must be a constant and, by

means of (40), )7, must be a constant too.
S t e p  3. Next, we try to find 134  and thus to get the finest form of F.

If w e apply (46) for 15-= — / 1 and /3=0, then we get Er (r+  1 / ) -= 5r (r)
+Er (f ) , for all r, r' Er. Since Er is a morphism, it must be identically zero.

So, we find the following relation for f g :

(51) fg(u, z )= Hr ( '5z+1 3d, r)  + H4 (u, /1) +$ r (r) +pn (z, A).

Let EA (z, A ) = S (2 .
'
 A ). W e  tu rn  ag a in  to  (7) to  replace f g  obtained inOz 

(51) and then, by taking the derivatives with respect to z, we get

± n(52) 1
2
5

1: Hi- , (1, h (A, X)) + 64(Z, 2+21 =V54 (V z - 1- 7/ y i )  + s 4  (z, 2').

By using the same computations as before, one m ay see that £4 does not
depend on z, so we write 54(2) = En (z, 2) and

(53) eA (2) = ki Hr  (1, 13d )  54 (C) ,
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(54) (z, 2) = (z, /3d) ± V s EA (c)z±i3ii (2) ,

where /3A (.1) := SA (0, A ).

In particular, for  A E AL  w e  have EA (A) = ÷1, Hr(1, 13d) and, by applying

(33), we get the following extra-condition for Hr:

1 1(55) Hr (13d, r) 21, '(r 13d) EZ, for a l l  T e r ,  /3 EZ,

which is equivalent to

(56) (a2) H 1 ( 1 ,  1) ImiSE 2Z,
(b2) H 1 (1, 1) Imp e 3Z,
(c2) H 1 ( 1 ,  1) E 2Z.

Next, we turn back to (7).
Firstly, let us notice th a t  (51) is read here

(57) fg (u, z) =1Hr (Vz +13d, 7") ± S r (T) HA (u, 2) r (z, 13d)

1— V5  

± EA (C) z+ 132 (2) +const (9),1—

where const (g) E Z . A s in  the proof of Case 1, we may suppose that const (g)
=0, without changing the cohomology class of F in H2 (G, Z).

Let us set r(g):=3n(r) + $r (y) + 1 1 eA (c) (r+i,d) and r A (2) := r (2) =

)3 /1(2) ± (C) 13d, rr (r)  : = r(y) — 3r (r)  ±  1 1 n(C)) r. Then, we may

suppose that e A (C) = 0 and we find the following final formula for F:

(58) F (g , g') , A) d- ÇHr (7/ +1d, r) + H1  (13d, r)

r') - -E:Hr((i3+6)d, r+ + h (2, 2'))

Hr  (r'd- r3d, 13d) -Fr (g) (g ') —r ( g g ')  EZ.2i

F ro m  (58 ), o n e  m a y  se e  th a t if H A  = 0  a n d  Hr  =  0 , th en  F  h a s  the
cohomology class in  H2 (G, C )  equal to zero, so  the cohomology class of F  in
112 (G, Z ) is a torsion element. This fact shows that Ker (z) C  Tors W (G, Z).
Step 4. We show next N S=x (W (G, Z)).

" D ". L e t (Hr , HA )  = x  (F) where F 1 1 2 (G, Z ). W e have already seen in
Step 3 th a t  (56) must be true. It remains to prove that 21m HA (A X A) C Z  X  Z
if S  is o f type  (c2). In fact, we have some more relations which lead us to  the
conclusion and which are also useful for the Appell-Humbert Theorem.
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Let b r ( r )  =irr(r) —1- Hr (7-, 7.) and bA (2) = irA (2) — +H  4(A,(2, 2) . As in the

case when S is of the first type, we have the following relations:

(59) S  of type (a2) 2b r (1) , 2b1 (j3) EiZ,

S of type (b2) br(1) — b1(p) EiZ, 3b 1 (1)4 Hr (1, 1) EiZ,

S of type (c2) 261(1) CiZ, b 1 (1) — br(i) G iZ .

W e start from  the relation F(2', À) — F (À, 2 ')  E Z, fo r  a ll 2 , 2 ' E A, we
replace F  from the form ula (58 ) for r= r'= o, 1 5 =13 = 0 and w e u se  (55) to
get

(60) iE A (15c , l a) b  (h  (15 c , r3a)) -F+Hr  (1, 1) (V5-

for all 15, C3 E Z.
This condition is equivalent to

(61) S of type (a2) b r (1) -HEA(c, a) EiZ,

S of type (b2) b 1 (1) +1,EA(c, a )  123  H r  ( 1 ' 1 )  E i Z '

S of type (c2)b 1 (1) ±tiEA (c, a) — 1Hr (1, 1) e iZ

and, because o f  (56) a n d  (59), if S is of type (c2) then 2EA (c, a) E Z.
M oreover, from (5 5 ) , (5 8 )  a n d  (60 ), w e have the  following relation for

bA:

(62) bA (A) bA (2') bA (2 (15c, 13a ) - HEA  (/5c, l a)

1
- I- -

2
Hr (13d, ld) EiZ, for all À, À'EA.

T o  p rove  th is  inclusion, w e have to  p rove  tha t i f  (Hr, HA) E A/5,
then there exist r r  and rA such that

(63)
1 1 
.H,1 (A', 2) ± 2 i Hr -1- 6d,

_4_ 
2 i ii

u

 r 
(
\t3a,

1 1+ H1  (1;d, T y r ( (13+6) d , T+ V?" - Fh (A, 2'))

i

•

Hr (7- +1 3d, 1 3d) + r, 1 (A) -HA (À') — rA (2 +2')2
-Frr  (r) - F r r ( f )  — rr (r+ VT' h (2, X )) E Z.

W e start w ith b  (1 )  and br (p ) such  tha t (59 ) a n d  (61 ) are  satisfied. We
set, as in the first case,

(64) b1(y) =1 2 1)1(1) +14b1(p) +41:1214E, (1, 19)



116 Marian Aprodu

and th is br will satisfy the following relation:

(65) br (r) ±br(f ) — br (r+ r') - 4 iE r( r  ,r') Eiz,
(66) b r( r)  — b1 (y) iZ.

We define

(67) rr , (r) = —ibr (r) (r, r).

Next, we start with rn (a) and rn (c ) in C and we take

(68) 74(A) = 
 ( 1 3 - 1 )

a )  +  
(15 -4i1) 15

114 (C, C)
(13 - 4 i 1 ) 1 ,

H1 (d, d)

1+ -

2 i
I/4(15C

'  

13a) +1 31'4 (a)- - - F 1 srA (c)

A  straightforward computation, by  using  the  re la tions (55), (60), (64),
(65), (66), (67) and  (68) leads us to the conclusion.

W e denote  by  r: NS=>Num ( S )  th e  isomorphism obtained in  Theorem
3.1.

4. A p p ell - Humbert theorem

Keeping the notations in  the  previous sections, we define a 1 (r):
, e2 7 ,b r( , )  and

a i l (A ) : = e 2 ' . R eca ll th a t, s in ce  b r( r)  b r ( r )  e  iZ , b r m ust be purely
imaginary.

If S  is of the first type, then a1  and  an  sa tisfy  the following relations:

(69) an (2+ /1') = an  (2) an (X) en'E )

(70) ar (y+ r') = a r (r ) a r (y)emEr(rY)
(71) ar ( r) = ar (r) ,
w here (Hr, HA) EdVS.

If S  is of the second type, then a1  and a 4  sa tisfy  the following relations:

(72) an (2+ 2') =a 4  (2) an (A')
(73) ar (r+ r') = ar (r) ar (f )en'Er'"' )

(74) ar (r) = ar (r)
and

e
— 276E,, (c.ce)

S  of type (a2)

(75) ar (1 ) =  e -27-6E, (,,a) S  of type (b2)
2riE, ka) —  7411,- (1.1)

S  of type (c2)

where (Hr, 114) E N S.

e iriE., (rsc ,13a) riE  (1,f - ,6a) 7r1-1,(13d4d)
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Let Yi = (Group o f  d a ta  (Hr, HA, al", an)} with natural group operation
and Y =  Y 1 /  w here  (Hr, HA , ar, an) — (Hi-, H.1, dr, dn) if and only if Hr -=
Tfr , HA

=
1
-
1A
' ,  a r= a -  and there exists a e C  such that an (A) =- an' (2) e r i " ,  for

any A c  A . F o r  sim plic ity , w e shall denote  by  (Hr, HA, ar,  an) instead of

(H r, HA, a r , an) and a n — d f o r  th e  equivalence.

Remark 4 .1 .  By using a  classical argument that have been already used
in section 2 (cf. [9] , Chàpter I), one may see that if S  is of the second type and
H r= 0 o r  if  S  is  o f the  first type, then exists a  unique ceA such  that an — dn

and an'  (2) e U(1), for all AEA.

This argum ent allow s u s  m any tim es to  suppose th a t th e  multiplicators
appearing in  theorems of Appell-Humbert kind a re  U(1) -va lued  (see  [9] for
tori a n d  [3] for primary Kodaira surfaces).

Lemma 4.2. We have an exact short sequence

0 Hom (G, (1) ) - - 4 1- 01S - 0

where 7) is the canonical projection and ft(ac) = (0, 0, acir, aciA) •

Proof. T he morphism n is  surjective from the  proof of the Theorem 3.1.
B y th e  above rem ark, g  i s  injective. Since 7a = 0 it  re m a in s  to  check that
Ker (n) cp (Horn (G, U (1)) .

Indeed, le t  (0, 0, a r , an ) E P . Since the corresponding hermitian forms are
equal to zero, it follows that a r  E Horn (T, U (1 )) and an c Horn (A, e1/4). From
Remark 4.1., an h a s  a  representative that is U (1) -valued, say cen.

Then we define a c  (g):= ar (A) a'n (A) E U (1) , for any g =TA E G, which is
an element of Hom (G , U (1)) and satisfies 1.1(aG) = (0, 0, ar, an).

Theorem 4.3. There is the following isomorphism of exact sequences:

0  — 4  Horn (G, U(1)) 0

5 - gr 1. r

OP i c r ( S ) — > Pic (S) Num (S) 0

where is the isomorphism from section 2 , r  is the isomorphism from section 3
and P  maps an  element (Hr, HA, ar, an) E  Y  to the cocycle (c g )  g  111 (G,
given by

eg (u, z) — a 1  (r) an (2) eril'(`")+7,1fr(vz+r,r+t,d)-IPOrr)+111,(u)

Proof. A ll w e have to  check is that is well-defined, so let us suppose
th a t  (Hr, HA, a r,  a n )  m ap s b y  trr t o  {e g} g E  111 (G, H* ) a n d  w e  change the

an (A) not
representative of an b y  dn . If e'g = a ,n (À ) = a n (A) , then is is easy to  see that

{e''g } g  is  a coboundary in CI  (G, H*).
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Indeed, there exists a c C such that a",, (A) =e 2 Iri 2 '  and we chose h (u, z) =
. Then, e" g  = h (g (u, z))h - '(u, z ), for u, z E C, g E G.

Definition 4.4. F o r  a n y  (H r, H A , ar, an) E th e  line bundle over S
associated to the cocycle feg l g = T.  (1-11 , HA, ar, aA) EH' (G, H *) will be denoted
by L (H r, H4 , ar• aA) •

Remark 4.5. L  (Hr, H A , ar, an) is  the quotient of C2 X  C given by the
equivalence relation ((u, z), w) (g (u, z), e (u , z) w) , for any g c G.

5. Applications

T h e  f i r s t  a p p lic a t io n  o f  Appell-Humbert t h e o r e m  is  a  d e sc r ip tio n  o f
Tors H2 (G, Z ) and its generators in terms of the groups cohomology (see, also
[10], [12] for a precised characterisation).

By taking into account that torsion cocycles F  are given by the vanishing
of their corresponding hermitian forms Hr  a n d  HA , one may obtain very easy
th e  following ta b le  (se e , a lso  [5 ]  f o r  a  s im ila r resu lt o n  prim ary Kodaira
surfaces):

Type Tors 112 (G, Z) Action of generators of Tors H2 (G, Z) o n  (g, g')
(a l) Z2 X Z2 (1— ( - 1) 15) C2/2 a n d  (1 —  ( - 1) 191'4/2
(a2) Z2 (1— ( - 1) 15)1/2
(b1) Z3 (Re ( ( 1 - 10 1 5 ) r') + 41m ( (1 — p") r'))/3
(b2) o o
(C1) Z2 (Re ( ( 1 — i " ) r') +1m ( (1 — i") r'))/2
(c2) o o
(d l) o o
Next, we may apply Appell - Humbert theorem to compute a  basis in  Num

(S) (see, also [10], Therrem 1.4.).
Let us denote by q the cardinal of

deg
If we fix isomorphisms H2 ( I; Z) --="H2 (E, Z) "=. Z and H2 (112, Z) Z)

deg
Z, then the inclusions .A/S c./V i  c A/2 = Z  Z become:

Type Ali AIS q basis •n AIS
ei e2

(al) Z e z z e. 2Z 2 (1, 0) (0, 2)
(a2) Z G 2Z 2Z G 2Z 4 2, 0 0, 2
bl ZEDZ Ze3Z 3 1 0 0 3
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It is easy to determ ine the  numerical classes of Os  (E) and Os (d ) in  NS.
Indeed, according to [10], since the intersection number ELI is equal to q, then
via isomorphism N2 '=" Z ED Z, we have ci (E) (0, q) and ci(d) = (q, 0) .

Then, by  u sing  th e  previous table, w e  ge t th e  follow ing (compare also
w ith  [10], Theorem 1.4):

Type Basis of Num (s)
(al) 1/2d E
(a2) 1/2A 1/2E
(bl) 1/3A E
(b2) 1/3A 1/3E
(cl) 1/4d E
(c2) 1/4d 1/2E
(d1) 1/6A

The next application of Appell
-
Humbert theorem is computing the  space

of global sections of some line bundles over S.
As we saw, any element L E Pic ( s )  can be written as L = L (Hr, HA, an

w here (Hr, HA, ar, aA) E .

From  [10], Theorem 1.4., the numerical type of L  is of form ci (L) = a d +
bE, where a , b E  Q, o r  c1 (L) = a 1e1 + b1e2 w ith al, b1 E Z. A ccording to  [10],
Lemma 1.3., if H

°
 (L ) *0, then a , b 0, which is equivalent to the  inequalities

H1 (1, 1) HA(1, 1) 0. l i a, b > 0, then L  is  am ple (cf. [10], Lemma 1.3)
and h

°
 (L) =abq =a i bi >0 , so it rem ains to study the cases a=0 , b > 0  an d  a>

0, b=0.
Here we shall compute H

°
 (L ) for a =0, b> 0. Before stating our result, let

us introduce the following notion:

Definition 5 .1 .  L e t  (Hr, HA, ar, a n )  E  . A ny  holomorphic function
0: C2

— >C such that

(76) 0(9 (u, z ))=e,(u, z ) 0 (u, z ), for all g EG, u, z EC

is called a  0-function for the  data  (Hr, HA, ar, an) •

I t  i s  e a s y  to  s e e  th a t  t h e r e  i s  a  natural one - t o  o n e  correspondence
between 0-functions fo r  (Hr, HA, ar, a i l )  and sections of L (Hr, HA, ar, aA) •

Proposition 5 .2 .  If  cl (L ) =bE, b> 0 then h° (L) * 0  if and only if a r  is
identically equal to 1.

In this case, b E Z and there is a natural isomorphism 11
0
 (L) (Hr, an)),

where L (HA, aA ) is  the bundle over C/A associated to the hermitian form HA and
the multiplicator an.

Proof. The equality a 0 is equivalent to H1 0 an d  then ar: (1 ) is
a  morphism of groups with  a 1  ( y) = a r  (r ) , for any y E T  O n  the  other hand,
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from Remark 4.1., we may suppose that a,' is  U (1) -valued. Moreover, since
H 1 =0  then

eg (u, z ) = a1 (r) a4 (À)eire4 (,1)+121:11,(2) )

for both types of hyperelliptic surfaces.

Claim 1 .  If a r  is identically equal to 1 then EA (A x A) cz and

a n  (2+2') = (2 )  c  (2 ')e ' ' .

Proof of Claim 1 .  For the case when S  is of the first type, this is nothing else
than the definition. If S  is  of the second type, then H r = 0 im plies that 1 =
a1(1)

 = e -2 7 ,,E ,(,,a )
 so  EA (C, a) e  Z  i.e. EA (Ax A) E Z. Because EA(C, a) E Z , we

apply (72) to get an (2 + 2') = an (2) a A (A')

Claim 2 .  The condition b E  Z is equivalent EA (A X A) C Z.

Now, we turn back to the proof of Proposition 5.2.
If h ° (L) >0 , then there  exists a  0-function for (0 , HA, a r ,  an), say  0,

non-identically zero. Then, for all u, z E C , T e r , A E A ,  6  must satisfy

(77) 8 (u+ 2, "z -1- 7-4- 13d)=a 1 (r) an(y )ei +12111^(" ) (9  (u , .

If we take 2 = 0 in (77), it follows that

(78) 0 (u, z+r) = a r  (r) (u, ,  for all u, ze C, TET.

Since a r  is U(1) -valued, then we can apply maximum principle in (78)
to conclude that 8 does not depend on z  i.e . 8  ( u ,  z )  =  8 ( u ) ,  z  C  C. The
condition (78) implies also that a r  must be identically equal to 1. Moreover,
(77) becomes

(79)8  (u+ 2) = a 4  (2) eltil^ (")) 
+ H ( " )

 8(u).

From  (79) and Claim 1 . we deduce that 8 is in fact a  0- function for the
data (114, a i l )  with respect to the lattice it

We apply again Claim 1 . and then w e can choose E H° (HA, an). It is
easy to see that if we define 8 (u, =  8 (u ),  then 0 is also a  0-function for the
data (0, H 4,1 , an).

For the final part of proposition, we apply Claim 2 . and [9], Chapter I.
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