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An Appell-Humbert theorem for hyperelliptic surfaces
By

Marian APRODU

0. Introduction

Let S—B be a hyperelliptic surface over a smooth elliptic curve B defined over
the field of complex numbers. The aim of this paper is to give a description of
the Picard group of S in terms of hermitian forms and multiplicators, similar
to Appell-Humbert for complex tori. The main tool used here is the
cohomology of the groups and the ideas are similar to those used in [3], [9].

In the first section we recall some fundamental facts on hyperelliptic
surfaces, such as the classification theorem and their fundamental groups.

In section 2, we get a description of the group of line bundles whose first
Chern classes are torsion elements in the Néron-Severi group, which is
usually denoted by Pic®(S) and in the third section, which plays an important
role for our purpose, we obtain a description of Num(S) in terms of hermitian
forms.

The fourth section is devoted to the Appell-Humbert theorem and the
final section presents some direct applications of it such as computing Tors
H2(S, Z), finding a basis in Num (S) (see, also [10]) and computing the space
of global sections for the line bundles over S numerically equivalent to a
multiple of the fiber of S—B.

1. Preliminaries and notations

There are many approaches concerning the theory of hyperelliptic surfaces
([1], 2], [6], [10], [12], [15]). Firstly, we recall the definition used by
Suwa (cf. [12]).

Definition 1.1. A hyperelliptic surface is an elliptic bundle S over an
elliptic curve B with b, (S) =2.

Theorem 1.2 (cf. [12]). Any hyperelliptic surface can be expressed as a
quotient of an abelian variety A by the group generated by an automorphism gs of
A. The period matrix of A and the automorphism gs are given as follows:
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10 a0
10 a0
(a1) (0 10 B) (@2) <o 1 % /3)
gs(u, z) = (u-l—% —z)
10 a O
10 a0
(v1) (o 10 p> (v2) (o 1 l—g"l p>

2mi
3

gsu, 2) = <u+%, pz), where p=e

10 a O
10 a0
(c1) <010¢> (c2) <011'2H i>

gs(u, z) = (u +%, iz)

10 a O
(@) (010p>

gs(u, z) = (u +é, —pz)‘

We say that S is of the first type if S is of type (a1), (b1), (c1) or (d1)
and S is of the second type otherwise.
For the sake of simplicity, we shall use the following notations:

1/2 (a2)

arbitrary (al), (a2)
(1—p)/3 (b2)
h= 0 (b1), 02), (1) d= (1+i) /2 (c2)
! 1), (c2) 0 for the other cases
-1 @), @2 1/2 (al), (a2)
|0 (1), (b2) _|1/3 (D), (b2)
e, 2 Tl @), (2
‘—o (d1) 1/6 (d1)
1=1/c.

So, S is the quotient of C? by a group G of holomorphic automorphisms of

C? generated by g, i =1, 5, where g,(u, 2) = (u+1, 2), g2(u, 2) = (u, z+1),
gs(u, 2) = (u+a, z+d), 9s(u, 2) = (u, z+B) and g5 (u, 2) = (u+c, &).
For the next elementary result, see [14]:
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Lemma 1.3. The relations between generators are:
g1, 92, 93 and g4 commute to each other, §s' =g and

9:95=7s9>" 9:95=9s9z"
(al) 9395=9s93 (a2) 995=9s9:97"
ggs=9sd4 " 9495=9s93"
995=9s95'9:" 9:95=9592'95"
(01)  g95=gsds (62)  gygs=g995"
949s5=9592 9495=9592
99s=9sds" g95=059%"
(€l)  g95=9sgs €2)  ggs=gg49:*
949s=—9sg2 J495=3sd2
9o95=9s59294
d1) 9s95=9s93
9d5=9s97"

From the lemma above, one may see that any element § € G has a unique
expression as a product § =g29¥g%g%. The action of a such g on C? is given by

g (u, z) = (utisatise, E%2+1,+1,6+1sd).

Another way of representing the hyperelliptic surface S is as follows. Let
I'=72+1B8 A=Za+Zc, A\==Za+7Z and

2Za+7Z (@2), (c2)
A,=13Za+Z (b2)
Za+7Z=A, otherwise

Let A=C/A; and E=C/TI. Then S can be expressed as S= (4 XE) /9
where 9 is a finite translations group of 4, acting on E not by translations
only, given by the Bagnera-deFranchis table (see for example [1], [2], [10]).

Moreover, A4 =B, E/4=P! and S has two fibrations: first of them is
S— B from the definition 1.1, with fiber E, and the other one is S—P! with
generic fiber A. Since A is the lattice of B, the short exact sequence of
homotopy groups of the first fibration leads us to the following extension:

4

0—— ——G——A—0

where j (1) =9%94 and 7 (9) =la+isc.

Choosing as a cross-section of m the map s: A— G, s(1) = g§g¥ for
A=alstcls €A, we see that if S is of the first type, then s is a morphism of
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groups.
Next, we identify an element 7€ I with j(7) €G and A€ A with s (1) €G.
In other words, we make no distinctions between 7 =1, + [,8 and g%94 or

between A =Il3a+Isc and 9595 So A" is the same as s(A)s(A") and by A+ A’
we mean s(A+ A’). This convention simplifies our formulae and produces no
ambiguity.

The natural action of an element A€ A on I'is given by AyA '=&"y. If we
write AA’=h (2, 2’) (A+2A), then h (4, A') = (E"—1) 1.

Next, let us point out the following useful lemma
Lemma 1.4. Let v€EHom (G, C*). Then
@) vlg)==%1, v@)=%1 @2) v(gz) =1, vlgd) ==1;

(1) v(g2) =v(g4), v(g2)*=1; (b2) w(g2) =1, v(gs) =1,
(€l) v(g2) =v(gy), v(g)=%1; (2) v(gs) =1, v(g) =1;
d1) wvlg) =1, v(gs) =1

2. The group Pic*(S)

The vanishing of the cohomology groups H'(C? Z), H'(C? C), H' (C? O),
H (C? 0%), H' (C? C*) for all i=1 yields to the natural isomorphisms (see
(9]):
H'(S,Z)=H' (G, Z), H'(S,C) =H' (G, C), H'(S, C*) =H' (G, C*), H' (S, 05) =
H (G, H), H (S, 0f) =H (G, H*), where H*=H*(C?, 0§&).

The exponential sequence

exp

0—Z—0—0¢ 0

gives rise to the cohomology sequence

c1
.—H (S, 05— Pic (S)—H?(S, Z)—0.
Recall that the universal coefficients theorem leads us to
Lemma 2.1. Tors H*(S, Z) =Ker (i: H*(S, Z)—H?(S, C)).

For any L € Pic(S), ¢1(L) denotes the Chern class of L and Pic’(S) =
Ker (c1). The subgroup Pic?(S) € Pic(S) (see [3]) is defined as Ker (ic1)
(where i: H2(S, Z)—H?(S, C) is the canonical homomorphism) and this is the
group of the elements L € Pic(S) such that ¢;(L) is a torsion element in
H?(S, Z) (as we saw in Lemma 2.1.). Then Pic?(S) = {(H'(S, C*)) where {
is the natural morphism H'(S, C*)—H (S, OF) (see [3]).

Let us compute next Ker({), by using the isomorphisms from the
beginning of this section. So, vE€Ker ({) if and only if there is h €H* such that
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(1) h(g(u, 2)=v@)h(u, z), for all g EG, (u, z) EC

By taking the logarithmic derivatives w; = h;,/h and w: = hy/h (in order to
eliminate v from (1)), these functions verify the following relations:

(2) wiu, 2) =w;u+1, 2),

wi(u, z2) =w;(u, z+1),

wi(u, 2) =w;(u, z+p),

wil, z) =wiuta, z+d),i=1, 2
(3) w1 (u, 2) =w, (u+c, &)
(4) w2 (u, 2) =Ew, (u+e, &z)

for all (u, z) €C

From (2), if we take K € C? a compact set with K+ (I' X A) =C? and
apply the maximum principle, we deduce that w; are contants.

From (4) it follows that w,=0, so & does not depend on z. This means

that there is a holomorphic function & on C such that h (, z2) =h (u), for all u,

zE€C. Moreover, since h'/I is constant, we get h (u, z) =e?™@+0 with (a, b) €

— J2miaa 2rmiac
’ ,

C? Then, by denoting v; =v(g;), we have v, =1, v,=1, vs=¢
where a €C.
Then we proved the following:

Vs —¢

Lemma 2.2. Ker({) ={vEHom (G, C*): v(g) =e?** g=7A€G, a €C}.

Next, we try to describe Pic?(S) ZHom (G, C*) /Ker ({).

Let vEHom (G, C*). If S is of the first type, s is a morphism, so v (A14") =
v(A+21).

Otherwise, we know that A1’ =h (4, ") (A+2A") where h(4, ') = (§*—1)
Id €T But, if S is of type (a2), then h(A, ') depends only on ¢, and, by
taking into account Lemma 1.4., it follows that v (h (2, A’)) =1. If S is of type
(b2) or (c2), then again from Lemma 1.4. we have v(h (A, X)) =1.

In any case we obtained v (A2°) =v (A+2').

Now, we write v (1) =e?™?_Since (1) +7(A’) —r(A+ 1) EZ, for all A, A’
€A, ¢: =Im r must be Z-linear. Then ¢ has a unique R-linear extension
@: C—R. We define & C—C, k() = ¢ (iz) +i¢(z) which is C-linear and
'r‘.=i(3—k is real-valued.

The function # being C-linear, there exists ¢« €C such that k(u) =au, for
all u € C and we take vo € Ker ({), vo(9) =e*'** Then ag: = v/ve has the
property that ag (1) €U (1), for any A€ A and it is uniquely determined by
this property in the class of v in Hom (G, C*) /Ker ({).

Then we have

Pic’(S) = {ac¢EHom (G, C*), ag(A) €U(1), for all AEA}.

Moreover, ag (7) €U(1), for all ag€Hom (G, C*), so we got
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Proposition 2.3. There is a canonical isomorphism

¥ Hom (G, U(1))—Pic?(S).

3. The group Num(S)

In this section we shall give a description of Num(S) in terms of hermitian
forms related to A; and I It is well-known (see, for example [10]) that
Num(S) = H?(S, Z) /Tors H? (S, Z) and, as we saw in section 2, the
cohomology of S is computed by cohomology of groups.

The inclusion j: ™G induces a morphism of restriction resr: H*(G, Z)—
H: (T, Z).

The map s|m: A— G is a group homomorphism, so it induces another
morphism of restriction resa: H2(G, Z)—H?* (A1, Z).

According to [9], Chapter I, Appendix, we have classical isomorphisms

(5) H*(I', Z) = {Hr: C*—C hermitian, Im Hr(I'X ) CZ},
(6) H*(A, Z) = {H,: C*—C hermitian, Im Hy (A, X A,) CZ}.

Let us explain the morphisms resr and resy, (cf. [9], Chapter I) passing
through the above isomorphisms.

Starting with F € H*(G, Z), we construct ArF: 'X I'>C, ArF(y, 7) =
F(¥, v) —F(y, 1), bilinear and antisymmetric which can be extended to
Er: C—C, R-bilinear and antisymmetric verifying Er(ix, iy) =E (x, y) for
any x, y €C. Then Hr: C*—C defined by Hr(x, y):=Er(ix, y) +iEr(x, y) is a
hermitian form on C? with Im Hr=Er and Hr will be resy F modulo canonical
isomorphism (5).

By applying the same argument for A,, resr and res,, will induce a
morphism

X: HZ(G, Z)_’Nl
where

Ny:={(Hpr, H4), Hr, H; hermitian forms on C?
with Im Hp([‘Xl") CZ, Im HA (Alx/h) CZ}

We denote by

{(Hr, Hy) €Ny, Hr (1, 1) ImBE2Z}, type (a2)

NS = {(Hr, Hy) ENy, Hr (1, 1) Imp €3Z}, type (b2)

" | {(Hr, Hy) €Ny, Hr (1, 1) €2Z, 2Im Ha(AX A) CZ}, type(c2)
{(Hr, Hy) ENy, Im Hy (AX A) CZ}, otherwise.

Now, we can state the main theorem of this section:

Theorem 3.1. X induces an isomorphism X Num(S)—:—-n/\/ S.
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Proof. Because N has no torsion it follows that Tors H?(G, Z) CKer (x).
So it remains to prove that Ker (x) CTors H?(G, Z) and x (H*(G, Z)) =NS.

Let F be a normalized cocycle in H?(G, Z). Then F is the Chern class of a
line bundle. If we represent this line bundle as a cocycle f{eg}, € H* (G, H*)
then, by standard diagram chasing, we get

(7)
F(g,9)=fe(@ (u, 2)) —feqr (u, 2) +fo (u, z2) EZ, for all u, zEC, g, 9’ EG,

where f;: C*—C is a holomorphic function with 2*/*=¢, for any g €G (see, for
example [3], [9]).

Now, we divide the proof into two cases corresponding to the two
different kinds of hyperelliptic surfaces.

Case 1. S is of the first type.

Let us notice that, in this case, s is a morphism and, by denoting res, the
corresponding map from H?(G, Z) to H?(A, Z) we have the following
commutative diagram, coming from the inclusion A; CA.

H*(A,Z) —H(A, Z)
resy '\ /" resu,
H2(G, Z)

Then it is obvious that x (H%(G, Z)) CNS.
Step 1. Our next goal is to find f; and thus to get a nice form of (7).

Since the restricition of F to I and A are 2-cocycles, it follows (see [9],
Chapter I) that

(8) fr(u, 2) =2%-Hr (z, 7) +Br(u, 1), for all yET,
9) falu, 2) =%HA (u, 2) +B4(z, A), for all AEA,

where Br(., 7), Ba(., A) are holomorphic functions on C.
Next, we write = for congruence modulo Z. From (7) it follows that, for
any § =7AE€G, we have

(10) fr(Au, 2)) —fe (u, 2) +f1(u, 2) =0,

SO

(1) fele 2) =goHr (8%, 7) +oHa (u, ) +Brlut 2, 1) +Ba . 2),

The relation (7) can be read as
Sag’ (u, z) Efg(g/(“. z)) +fe (u, 2), 9,9 €G.

By replacing f, from (7) in the above formula, we have

(12) Bru+A+A", y+E&57) +B4(z, A+ 1) =
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S Hr (7, 1) +5cHa (X, D) +Br bk A+ X, 7)
+Bru+A, v)+B4(E%2+7, A) +Balz, A).

Let us denote by &r(., 7) and €4(., 7) the derivatives of Br(., 7) and
Ba(., A) respectively. Then, from (12) we obtain:

(13) erlutA+2A, r+&5) =er(ut+A+A", 1) teru+a, v)
(14) ealz, AT A) =% (E%2+7, 2) tealz, A)

and from these relations we can describe 8r and B4.
Firstly, we determine Sr.
In (13), we choose A=A"=0 and we get

(15) er(u, y+7)=eru, 7) ter(u, ) forall v, Y €T,
which means that & (, . ): I'=C is a morphism of groups.
In (13) we choose A’=0 and it follows

(16) erutA, y+E57 ) =er(u+A, v) +er(u, v).
From (15) and (16) we deduce that

(17) er(ut+2a, E57) =er(u, 7).

We choose A€A, in (17), so er(u+A4, ¥)=er(u, ), for all A€EA,;, Y ET,
u € C. By standard arguments, we can prove that er(., 1) is a constant
function, so we write - (7) instead of &r(u, 7). On the other side, if we apply
(15) and (17) again, er must be identically equal to zero and Br does not
depend on u. Then we write 8r(7) instead of Br(u, 7).

Next, we determine 8,. We choose A=1"=0 and ¥ =0 in (14) so &4 (g, 0)
=0, for all z&C. We apply these relations to (14) for =0 and we obtain

ez, A) =es(z+7, A), for all A€EA, Y ET.

- For the same reason as above, €4 does not depend on # and hence we
write &4 (A) instead of e4(z, A). With this notation, we turn back to (14)
which becomes

(18) es(A+2) =%, (2) +ea Q).

— &ls
An easy computation in (18) will show that &4 (4) =11—_§E—e,1 (c) and Ba(z, A)

— =L 0a W,

Then we get
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(19 fele 2) =5Hr (§%, 1) +oHau, D) +Br(7)

— &ls
+ 11 _SS €A (C)Z+BA (7’) + const(g), for all g €G,

where const (9) €Z, for all g €G, and (7) becomes
Is
(20) F(g,9) =2%.HA (A, A) +§2—iHr(T'y 7) +B4(2) +B4(A) —Ba(A+2")

+8r(7) +Br(y) —Br(r+E5Y) +11;_$€l_55A 7
+const (9) +const (9°) —const (g99’), for all g, 9’ EG

Since const (9) +const (¢°) — const (99") is a coboundary in C?(G, Z), we
can ignore this term, without changing the cohomology class of F in H*(G, Z).

Let 7(9):=a () +Br(n) +12gea @) 7, 70(7) =7 (7) =Br(n) +72gea )
7 and 74 (A1) :=7(2) =B4(A).
With this notations, (20) gives rise to the final formula for F

(21) F(g,9) =%HA (A, ) +2%5Hr(r’, 7)+r(g) +r(g’) —r(gg’) EL.

and thus, if we replace Br by 7r, we may always suppose that €, (¢) =0.

From (21), one may see that if Hr = 0 and Hr = 0, then F(g, g’)
=r(g) +7(g") —r(gg’), which means that the cohomology class of F in H2(G, C)
equals to zero. Then, by means of Lemma 2.1, F represents a torsion class in
H2(G, Z). Thus we proved that Ker (x) CTors H?(G, Z).

Step 2. It remains to prove that NSCyx (H?(G, Z)).

We check that for given (Hr, Hy) € NS, there exist rr:I~C and 7,:A—C

such that, by defining 7 (9) =7 (y) +74(4), for any g =74 then

(22) SHX D +5H . D) +r0) +16) —r o) €.

Let us set
br(y) =irr (1) —%Hr(r, 7), for all yET,

ba () =irs (R) —%HA (A, A), for all A€A.

One may see that (22) is equivalent to the following three relations:
(23) br (&) —br(y) EiZ,
20 br () +br () —br(7+7) +5iEr (7, ) €I, for all 7, y €T

(25) ba(A) +bs () —bs (A42) +%iEA (A, ) €iZ, for all A, ¥ EA.
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Then, the problem of finding rr and 74 such that (22) is true reduces to
searching for br and by which satisfy (23), (24) and (25).

By using (24), a straighforward computation shows that (23) is
equivalent to

(26) S of type (al) 2br(1), 2br(B) €iZ,
S of type (b1) br(1) —br(p) €iZ, 3br(1) —ier(l, 1) €iZ,
S of type (c1) 2br(1) €Z, br(1) —br (i) EIZ,
S of type (d1) br(1) +br(0) €IZ, br(1) +%Hp(l, 1) €iZ.

If we fix by (c), ba (), br(1) and br(8) €C such that (26) is verified and
we set:

br(7):=l2br (1) +14br (B) +%ilzl4Er(1, B), for all y=1+1,5,

ba(A):=lsbr(a) +1sba(c) +%¢zglsEA (c, @), for all A=Isa~+Is,

then it is obvious that by and b, are the functions we were looking for.

Case 2. S is of the second type.
The proof is similar to the proof of Case 1., but it needs more
computations.
As in the previous case, we try to find a decent form of f,.
Since the restriction of F to I" and A; are cocycles, then we must have, as in
the first case

(27) fr(u, 2) =—217Hr(z, 7) +Bru, 7), for all y€T,
(28) fule, 2) =9cHa (e, 22) +Ba(z. A0, for all €A,

where Br(., 7), Ba(., A1) are holomorphic functions on C. Let us denote by
er(., 7)., e4(., A1) the derivatives of Br(., 7) and B4(., A1) respectively.
Step 1. We show that er(.,.) and &4 (., .) are constants in their first
variable and group homomorphism to C in their second variable.
For ¢ =yAE€G with A €A, then ¢ is also equal to A7 and we apply (7)
two times

felu, 2) =f,(A(u, 2)) +f(u, 2) =f2(r (u, 2)) +£, (u, 2)
to get the following:

(29) 5Hr (1o, 7) +Br(ut A, 1) +Ba (e, 1) =Brlue, 1) +Ba (47, ), A€ A

By taking the derivatives with respect to u and z respectively in (29) it
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follows that er(u+2A, 7) =er(u, 7) and €4 (z+7, ) =¢ea (2, 2), for all YET, A€
A1, u, z€C and thus &r and €4 are constant in their first variable.

Then we write - (7) instead of er(u, 7) and €4 (1) instead of 4 (z, A) and
by denoting Br(y) =Br (0, 7) and B4 (4) =B4(0, 2), we deduce that

(30) Br(u, v)=er(P)u+pr(y)
(31) .BA (Z' 2) =é&a (/DZ'{'.BA (A).

Next, we turn back to (7) and we choose g, ' EG, § =714, 9'=7'A" with A,
A€ A, Then we obtain

(32)  SHrlod, ) Fer(rH7) Wk A+ A) +es (A4

+Br (1 7) +Ba A+ ) =5Hr (7, 1) +oHa (X, )

+er(y) W+ A+2) +er(y) (u+/l ) +ea(A) (z+7+1'5d)
tes () z+Br(r) +Br(Y) +B4(2) +B4 ()

Now, we take the derivatives with respect to u and z respectively in (32)
and it follows that er€Hom (I', C) and e4€Hom (A;, C).
If we apply (30) and (31) in (29) we obtain the following relation:

(33) Z%.Hr(lyi, 7) —ea(A) r+er(y) A=0, for all A€A,, yET.

Step 2. We prove that B4 can be extended to 84: C X A—C, also holomorphic
in the first variable such that

Flw, 2) =2iiHA (w, 2) +B4 (2, 2), for all 1€A.

In fact, by taking into account (7) and (28), it is sufficient to prove this
only for A=c.

Let 771‘3{; m= ELz and v; —a—L- for all A€EA.

By using induction on m, one may apply (7) several times to prove that

m—1

(34) fre= Y felute, §¥2), for all mEN,
k=0
which implies
m—1
(35) Nme= Z Ne (14 +kC, &kz) ,
k=0
m—1
(36) Ume= Zﬂc (u+ke, E*2), for all mEN.

k=0
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In particular, for mc=n €N, we get

(37) Y e utke, £52) =-Ha (1, m),
(38) Y e e, £52) =0.

k=0

Our next goal is to prove that 3. is a constant and then, from (37), we

deduce that this constant must be equal to Z%.Hp (1, ¢) and this step will be
finished.

We apply (7) for Isa, Isc and then, for A=1Isa+1s, we have
(39) falu, 2) =fra wtise, £%2) +fise (u, 2)
=fic i, 2+1d) tfra(u, 2).
But lza € A; and, by meaning of (28) and (39) the following two formulae

hold:
(40) Nise (0, 2) =N 1ec w13, z2+1sd),
(41) Lise (u, 2) = pise (w13, z2+1sd), for all Is, IsEZ.

We apply again (7) for lsc and mc, where we choose m such that me=n€
ZCA,. A similar argument as in (39) leads us to

(42)

Nise (0, 2) =Nisc (utn, 2),
(43)

tise (u, 2) = pise (w+n, 2), for all Is, n EZ.
Applying (7) for 7, 2 and g =74, we obtain

() fylu,2) =oHr E% 1, 1) +er () (b D) +Br(p) +2 . 2).

Again in (7), we take § =174, ¢'=172" with I5=0 (and this implies that
h(A, ’)=0) and (s+1s)cEZCA, and use (44) and (28):

(45) o (e+lad, T+ERY) +oHalu, A+ X) Fer(rHEY) (et A+A)

+Br(r+E57) +Ba (o, A+ X) = (2 +E", 7, 1) +9:Hr (€%, 7)

+er(y) wtA+2) +ter(y) u+2) +Br(y) +Br(Y) +fir (u, 2)
+iw+A', E%z+7).

Then,

(46) r (r+E"7) +oHa (L A+2) =1 (7)

+er(Y) Fnalut A, E%2+7) tnp(u, 2)
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and
(47) i+, E%2+7) = —py (u, 2).

In particular, for all u, zEC, ¥ €T, Is, I5€ Z such that (Is+15)c EZ we
have

(48) Hisc (“, Z) = T Uisc (“+l!">c’ EISZ+T,) .
From this relation, one may immediatelly obtain that
(49) tisc u, 2) =pee (u+n, z+7), for all yET, nEL.

We apply (43) and (49) for l5=1 to deduce that g (u, z) does not depend
on z and we write g (u) =, (u, z) . Now, we take into account (41) and (43)
which show us that g, (u+A) =g (u), for any A € A;. But this means nothing
else than g, is a constant. From (38), this constant must be zero, so 7.
depends - only on z, say 7.(z) =7n.(u, z). In fact, it is easy to see that 1;
depends only on z, for any A€A.

Then v; will depend only on z for any A€ A and, from (46), we have

(50) v (E%+7) ==, (2), for all zEC, Y ET,

as soon as 15=0 and (s+1s)cEZ.
In particular, for all zEC, Y €T, Is, I5EZ such that (Is+15)c EZ we have

Vige (z) = T Visc (&lgz_'_ 7',) .

As we have already seen for g, we see that v, must be a constant and, by
means of (40), n. must be a constant too.
Step 3. Next, we try to find B84 and thus to get the finest form of F.

If we apply (46) for Is=—I5=1 and [3=0, then we get er (y+&7) =¢r(y)
+er(7), for all 7, ¥ €T Since er is a morphism, it must be identically zero.

So, we find the following relation for f,:

(51) fo(u, 2) EZ%.Hr(S“z-Hgd, 7) +2%.HA (u, 2) +Br(y) +Ba(z, 2).

— 0B

Let &4 (2, A) = 5 (2, ). We turn again to (7) to replace f; obtained in
(51) and then, by taking the derivatives with respect to z, we get

Is+1%
(52) SoHr (1, (R X)) Healo, AHX) =%, (€47 +1d, 2) +ea e, 2).

By using the same computations as before, one may see that &4 does not
depend on z, so we write €4 (1) =&4 (2, A) and

(53) a () =t (1 1) +3=5, ),
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Is

(54) Ba (e ) =5tr o, 1) + 5 e (4 Ba D),

where 84(4):=84(0, 1).
In particular, for A € A,, we have g4 () =%Hr(l, lsd) and, by applying

(33), we get the following extra-condition for Hp:

(55) %Hr (Id, 7) —%Hr(r, Id) EZ, for all yET, I;€Z,

which is equivalent to

(56) (@2) Hr(1,1)ImBE2Z,
(b2) Hr(1,1)Imp€3Z,
(c2) Hr(1,1)€2Z.

Next, we turn back to (7).
Firstly, let us notice that (51) is read here

67) el 2) = ot (E%+ 1, ) +Br(r) +aHa b, )+ 5 Hr e, 1)

+L1__—§é—58,1 (c)z+pB: () +const(g),

where const (§) €Z. As in the proof of Case I, we may suppose that const (9)
=0, without changing the cohomology class of F in H*(G, Z).

Let us set 7(9):=Ba (7) +Br(r) +1—gea(c) (1) and 7a (D:=r(2) =

B4 (A) +1i—55,1 (c) lsd, rr(7) :=7r(y) = Br(y) + l—i—&m (c) v. Then, we may

suppose that &4 () =0 and we find the following final formula for F:

Is
(58)  Flo.9) =gHa (X, D)5 Hr (7 +id, 7) +-Hr (ad, 7

+2iiHr(z;d, 7) _ZiiHr((la'Hé)d. r+E57+n(A, X))
+57Hr (7 Flsd, 1sd) +7(9) +7(9") —7(99) EL.

From (58), one may see that if Hy = 0 and Hr = 0, then F has the
cohomology class in H?(G, C) equal to zero, so the cohomology class of F in
H?(G, Z) is a torsion element. This fact shows that Ker (x) CTors H?(G, Z).
Step 4. We show next NS=x (H*(G, Z)).

"D Let (Hp, Hy) = x (F) where FEH?*(G, Z). We have already seen in
Step 3 that (56) must be true. It remains to prove that 2Im Hy (AXA) CZXZ
if S is of type (c2). In fact, we have some more relations which lead us to the
conclusion and which are also useful for the Appell-Humbert Theorem.
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Let br(y) =irr(y) —%Hp(r. 7) and b4 (2) =ira (2) —%HA (4, 2). As in the
case when S is of the first type, we have the following relations:
(59) S of type (a2) 2br(1), 2br(B) €iZ,
S of type (b2) br(1) —br(p) €iZ, 3br (1 )—LHF (1,1) €iZ,
S of type (¢2) 2br(1) €Z, br(1) —brl) EiZ.

We start from the relation F(A', ) —F (4, ') €Z, for all A, A’ € A, we
replace F from the formula (58) for y=7 =0, I's=I13=0 and we use (55) to
get

(60) iE4 (sc, lsat) +br (b (lsc, l3a) ) + Hr(l 1)1 S’S—E’S)aZ

for all Is, I5EZ.
This condition is equivalent to

(61) S of type (a2) br(1) +iE4(c, a) EIZ,
Sof type (42)  br(1) +iEae, @) —41r(1, 1) €12,

S of type (¢2) —br(1) +iEs(c, ) _ZHr(l' 1) €iZ

and, because of (56) and (59), if S is of type (c2) then 2E,(c, a) €Z.
Moreover, from (55), (58) and (60), we have the following relation for
bAZ

(62) ba(A) +ba(A) —bs(A+ 1) +~zE,, (lse, 1) FiE4 (se, l3)
+%Hp (1sd, lid) €iZ, for all A, X' EA.

"C”. To prove this inclusion, we have to prove that if (Hp, Hy) € NS,
then there exist r and 74 such that

(63) L D+ (41, 1) 4 (d, )
214 2; AT\ 1) s, T

- Hr (i, 7) —5Hr (b 5)d, T+E57 +h (A, 7))

Is
S H (7 i, 1) s ) 14 () =1 (A4 2)
+rr(y) trr(y) —rr (y+E57Y+0 (A, X)) €L

We start with br (1) and br(B) such that (59) and (61) are satisfied. We
set, as in the first case,

(64) br (1) =t2br (1) +1abr (B) +%ilzl4Er(1, B
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and this by will satisfy the following relation:

(65) br (1) Fbr (1) =br (1) +5iEr (7,7) i,
(66) br(&r) —br(y) EiZ.

We define
(67) e (r) = —ibr(p) —5Hr (7, 7).

Next, we start with 74 (@) and r4(c) in C and we take

68) 74(2) =(13—Zill’1HA (@, @) +i’—f’%)’5HA (c. c) +%Hp d, d)

+2iiHA (st 15qt) +1gra (@ +1g7 (¢)

A straightforward computation, by using the relations (55), (60), (64),
(65), (66), (67) and (68) leads us to the conclusion.

We denote by ¥": /S—=Num (S) the isomorphism obtained in Theorem
3.1

4. Appell-Humbert theorem

Keeping the notations in the previous sections, we define a(y): =" and
s (2) 1 = ¢#@W_ Recall that, since by (§7) — br(y) €4iZ, br must be purely
imaginary.

If S is of the first type, then ar and a, satisfy the following relations:

(69) oy (A+2) =a, (A) ay () mE 4
(70) ar (T+ ')”) =ar (T) ar (T’) g™Er )
(71) ar(&y) =ar(y),

where (Hp, Hy) €ENS.
If S is of the second type, then ar and a, satisfy the following relations:

(72) a ( A+ 2/) =a, ( /1) ay ( ]/) o ™iE (1 Jaa) +iEs (se i) +mHr (12d 1id)
(73) ar(r+7) =ar(p) ar (1) e "
(74) ar(&y) =ar(y)
and

e—ZmE,1(r,a) S of type (az)
(75) ar(1) = e—2mE,.Q-.a)+n"—g3-Hr(l,l) S of type (b2)

o~ 2mEx (c.) =g Hr (LD S of type (c2)

where (Hr, Hy) €ENS.
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Let ;= {Group of data (Hr, Ha, @r, @)} with natural group operation
and P =%,/ ~ where (Hr, Ha, ar, as) ~— (Hr, Ha, ar, ) if and only if Hr=
Hr, Hy=H}, ar=aj and there exists a €C such that as (1) = aj (1) ™, for
any A € A. For simplicity, we shall denote by (Hr, Hy, ar, a) instead of
(Hr, m, a,) and ap—aj for the equivalence.

Remark 4.1. By using a classical argument that have been already used
in section 2 (cf.[9], Chapter I), one may see that if S is of the second type and
Hr=0 or if S is of the first type, then exists a unique aj such that a, ~aj
and a4 (A1) €U(1), for all AEA.

This argument allows us many times to suppose that the multiplicators
appearing in theorems of Appell-Humbert kind are U(1)-valued (see (9] for
tori and [3] for primary Kodaira surfaces).

Lemma 4.2. We have an exact short sequence

O——Hom (G, U(1))——P——s N S—0
where 1 is the canonical projection and p(ag) = (0, 0, aglr, acla).

Proof. The morphism 7 is surjective from the proof of the Theorem 3.1.
By the above remark, g is injective. Since nyg = 0 it remains to check that
Ker () Cu(Hom (G, U(1)).

Indeed, let (0, 0, @, as) EP. Since the corresponding hermitian forms are
equal to zero, it follows that ar€Hom (I, U (1)) and a4 € Hom (A, C*). From
Remark 4.1, @, has a representative that is U (1) -valued, say .

Then we define ag (9):=ar(A) a4 (1) €U(1), for any § =yA €G, which is
an element of Hom (G, U(1)) and satisfies ¢ (as) = (0, 0, ar, &:)

Theorem 4.3. There is the following isomorphism of exact sequences:
0 — Hom(G,U(1) — &» — NS — 0
Sl - 03y (L
0o — Pic?(S) — Pic(S) — Num(S) — 0
where W is the isomorphism from section 2, ¥ is the isomorphism from section 3

and W maps an element (Hp, Hy, ar, &}) E P to the cocycle {eg) ¢ € H (G, HY)
given by

eq (. z) =ar (T) au (x)eltHA(u.l)+7tHr(€"z+r,r+lyi)—%Hr(r.r)+%HA (a2
Proof. All we have to check is that ¥ is well-defined, so let us suppose

s
that (Hr, Hyx, ar, as) maps by ¥ to {e} o € H' (G, H*) and we change the

. ’ ” o __ aA (2) ’2_' ” . .
representative of ay by a. If ez = o () =9 (), then is is easy to see that

{e’}¢ is a coboundary in C* (G, H*).
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Indeed, there exists @ €C such that a’; (1) =¢?** and we chose h (u, z) =
e®™ Then, ¢, =h (g (u, 2) )h ™ (u, 2), for u, zEC, g EG.

Definition 4.4. For any (Hy, Hy ar ;) €%, the line bundle over S
associated to the cocycle {eg},= ¥ (Hr, Hu, ar, @) EH (G, H*) will be denoted
by L (Hr, Ha, ar, as).

Remark 4.5. L (Hr, H4, ar, &:) is the quotient of C%X C given by the
equivalence relation ((u, 2), w) ~ (9 (u, 2), e, (u, 2)w), for any g €G.

5. Applications

The first application of Appell-Humbert theorem is a description of
Tors H?(G, Z) and its generators in terms of the groups cohomology (see, also
[10], [12] for a precised characterisation).

By taking into account that torsion cocycles F are given by the vanishing
of their corresponding hermitian forms Hr and H,, one may obtain very easy
the following table (see, also [5] for a similar result on primary Kodaira
surfaces):

Type | Tors H*(G, Z) |Action of generators of Tors H2(G, Z) on (g, 9’)
(al) Z,XZ, A= (=1)")13/2 and (1— (—1)5)13/2

(a2) Z, (1—=(=1)"1/2

(b1) Z; (Re ((1=p"*) 1) +4/3Im((1—p") 7)) /3
(b2) 0 0

(c1) Z, (Re((1=i") 7)) +Im ((1—13%) 7)) /2

(c2) 0 0

(d1) 0 0

Next, we may apply Appell-Humbert theorem to compute a basis in Num
(S) (see, also [10], Therrem 1.4.).
Let us denote by ¢ the cardinal of 9.

de
If we fix isomorphisms H*(I", Z) = H*(E, Z) =7 and H?(A;, Z) =H* (4, Z)

deg
=7, then the inclusions NSCN ,CN,=Z®Z become:

Type N, NS q basis in /'S
€1 €2
(al) 707 7.6 27 2 (1,0 [0 2
(a2) | Z®2Z [ 2Z02Z | 4 | (2.0) | (0, 2)
(b1) 707 7037 3 [ (1,0 | (0,3
(b2) | Z®3Z [ 3Z®3Z | 9 | (3.0) | (0,3
(c1) 707 Z.®47 4 1,0 (04
(c2) | Z®2Z | 2Z®4Z | 8 | (2.0) | (0, 4)
(dl) 707 7.9 6Z 6 | (1,0) [(0,6)
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It is easy to determine the numerical classes of Os(E) and Os(4) in NS,
Indeed, according to [10], since the intersection number E.4 is equal to g, then
via isomorphism N:=Z®Z, we have ¢; (E) = (0, ¢) and ¢;(4) = (g, 0).

Then, by using the previous table, we get the following (compare also
with [10], Theorem 1.4):

Type Basis of Num (S)
(al) 1/24 E
(a2) 1/24  1/2E
(b1) 1/34 E
(b2) 1/34 1/3E
(e1) 1/4A E
(c2) 1/4A 1/2E
(d1) 1/64 E

The next application of Appell-Humbert theorem is computing the space
of global sections of some line bundles over S.

As we saw, any element L € Pic(S) can be written as L =L (Hr, Hy, ar, Zl’;),
where (Hr, Hy, ar, 6(:) SES

From [10], Theorem 1.4., the numerical type of L is of form ¢; (L) =ad+
bE, where a, bEQ, or ¢, (L) =ae1 + bie; with ay, by €Z. According to [10],
Lemma 1.3., if H*(L) #0, then a, =0, which is equivalent to the inequalities
Hr(1,1)>0, Hy(1, 1) 20. If a, >0, then L is ample (cf. [10], Lemma 1.3)
and h°(L) =abg=a1b;>0, so it remains to study the cases a=0, 5>0 and a>
0, b=0.

Here we shall compute H°(L) for a=0, b>0. Before stating our result, let
us introduce the following notion:

Definition 5.1. Let (Hp, H, ar, &}) € #®. Any holomorphic function
6. C*—C such that

(76) 0 (u, 2)) =ez(u, 2) 6(u, 2), for all gEG, u, zEC
is called a O-function for the data (Hr, Ha, ar, a:)

It is easy to see that there is a natural one-to one correspondence
N N
between G-functions for (Hr, Ha, ar, ats) and sections of L (Hr, Ha, atr, aty).

Proposition 5.2. If ¢; (L) =bE, b>0 then h°(L) # 0 if and only if ar is
tdentically equal to 1.

In this case, b E Z and there is a natural isomorphism H°(L) = H°(L (Hr, ay)),
where L (Hy, atp) is the bundle over C/A associated to the hermitian form Hy and
the multiplicator a,.

Proof. The equality a=0 is equivalent to Hr=0 and then ar: I=U(1) is
a morphism of groups with ar(&y) =ar(y), for any yE I On the other hand,



120 Marian Aprodu

from Remark 4.1, we may suppose that a4 is U (1) -valued. Moreover, since
Hr=0 then

eq (u, z) =ar (T) au (l)enm () +5HA (A.2)
for both types of hyperelliptic surfaces.
Claim 1. If ar is identically equal to 1 then E4(AXA) CZ and
ar(A+2) =as () as (3) emEAD),

Proof of Claim 1. For the case when S is of the first type, this is nothing else
than the definition. If S is of the second type, then Hr =0 implies that 1=
ar (1) =e 2@ 56 E, (¢, ) €Z ie. EA(AX A) €EZ. Because E5(c, a) EZ, we
apply (72) to get aq (A+A") =y (A) ap (A7) e™E A,

Claim 2. The condition bEZ is equivalent E4 (A X A) CZ.

Now, we turn back to the proof of Proposition 5.2.

N
"= If h°(L) >0, then there exists a f-function for (0, Hs, ar, a4), say 0,
non-identically zero. Then, for all u, zEC, yETI, A€EA, 0 must satisfy

(77) O+, E%2+1+1xd) =ar () ay (7) e eV +5HAD G (3 )
If we take A=0in (77), it follows that
(78) 0, z+7)=ar(y)0(u, z), for all u, zEC, yET.

Since ar is U(1)-valued, then we can apply maximum principle in (78)
to conclude that 6 does not depend on z ie. 6 (u, z) = 8(u), z € C. The
condition (78) implies also that ar must be identically equal to 1. Moreover,
(77) becomes

(79) 0(u+/2) =ay, (/{)em(u‘u +%”“‘“)0(u).

From (79) and Claim 1. we deduce that € is in fact a -function for the
data (H4, a4) with respect to the lattice /A
"¢&”. We apply again Claim 1. and then we can choose 6 € H°(Hy, aa). It is
easy to see that if we define 6(u, z) =6 (u), then 6 is also a f-function for the
data (0, Hy, 1, CYA).

For the final part of proposition, we apply Claim 2. and [9], Chapter I.
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