A generalization of the parallelogram - equality in normed spaces

By

Pavle M. Miličić

Let $(X, \|\cdot\|)$ be a real normed space. Then on X^2 there always exist the functionals:

$$\tau_{\pm}(x, y) := \lim_{t \to \pm 0} t^{-1}(||x + ty|| - ||x||) \qquad (x, y \in X).$$
(1)

$$g(x, y) := \frac{\|x\|}{2} (\tau_{-}(x, y) + \tau_{+}(x, y)) \qquad (x, y \in X)^{1}.$$
(2)

The functional g is a natural generalization of the inner product (\cdot, \cdot) , which follows from its properties:

$$g(x, x) = ||x||^2$$
 $(x \in X),$ (3)

$$g(\alpha x, \beta y) = \alpha \beta g(x, y) \qquad (x, y \in X; \alpha, \beta \in R), \tag{4}$$

$$g(x, x+y) = \|x\|^2 + g(x, y) \qquad (x, y \in X),$$
(5)

$$|g(x, y)| \le ||x|| ||y||$$
 (x, $y \in X$), (6)

 $(X, \|\cdot\|)$ is an inner product space if and only if g(x, y) is an inner product of vectors x and y, for all $x, y \in X$. (7)

By use of the functional g, we may define many geometrical points in normed spaces (angle between two vectors, the projection of the vector x on the vector y, many types of orthogonalities, orthonormal system, and so on) (cf.[2] to [5]).

In an inner product space X the equality

$$\|x+y\|^{4} - \|x-y\|^{4} = 8\left(\|x\|^{2} + \|y\|^{2}\right)(x, y) \qquad (x, y \in X)$$
(8)

holds, which is equivalent to the parallelogram equality

$$\|x+y\|^2 + \|x-y\|^2 = 2\left(\|x\|^2 + \|y\|^2\right) \qquad (x, y \in X).$$
(9)

In normed spaces, the equality

$$\|x+y\|^{4} - \|x-y\|^{4} = 8\left(\|x\|^{2}g(x,y) + \|y\|^{2}g(y,x)\right), \qquad (x, y \in X)$$
(10)

is a generalization of the equality (8).

Communicated by Prof. K. Ueno, November 12, 1996 Revised September 10, 1997

¹⁾ The notation g is according to the name Gâteaux.

We may put the question: Is there a normed space, which is not an inner product space, satisfying the equality (10)? The answer is yes.

Lemma 1. There exists nontrivial normed space in which the equality (10) holds.

Proof. Let us prove that the equality (10) holds true in l^4 and does not hold in l^1 .

According to the definition of the functional g in the space $l^{p}(p \ge 1)$ we get

$$g(x, y) = \|x\|^{2-p} \sum_{k} |x_{k}|^{p-1} (\operatorname{sgn} x_{k}) y_{k} \qquad (x = (x_{1}, x_{2}, \dots) \in l^{p} \setminus \{0\}).$$
(11)

Hence, with p=4, we have

$$||x||^2 g(x, y) = \sum_k x_k^3 y_k \qquad (x, y \in l^4).$$

From this, we get (10). But, from (11) with p=1, we have

$$g(x, y) = ||x|| \sum_{k} (\operatorname{sgn} x_{k}) y_{k}$$
 $(x, y \in l^{1}).$

Taking $x = (1,1,2,0,0,\dots) \in l^1$ and $y = (1,-1,1,0,0,\dots) \in l^1$ we readily see that the equality (10) does not hold.

Definition 1. A normed space with the equality (10) is called a quasi-inner product space (q.i.p.space).

We also use the following familiar definitions:

Definition 2. (cf. [1,p.20]) A mapping $x \mapsto f_x$ of $X \setminus \{0\}$ to $X^* \setminus \{0\}^{1}$ is a support mapping whenever

(i)
$$x \in S(X)$$
 implies $||f_x|| = 1 = f_x(x)^{2}$,
(ii) $\lambda \ge 0$ implies $f_{\lambda x} = \lambda f_x$.

Definition 3. A normed space *X* is smooth if

$$\tau_{-}(x, y) = \tau_{+}(x, y)$$
 $(x, y \in X).$

Definition 4. A normed space X is uniformly smooth whenever given $\varepsilon > 0$ there exists $\delta > 0$ such that

$$||x+y|| + ||x-y|| < 2 + \varepsilon ||y||$$

if $x \in S(X)$ and $||y|| < \delta$.

Definition 5. A normed space X is very smooth if it is smooth and its support mapping $x \mapsto f_x$ is norm to weak continuous from S(X) to $S(X^*)$

¹⁾ X^* is the topological dual of X.

²⁾ $S(X) = \{x \in X | ||x|| = 1\}.$

(cf.[1, p.31]).

Definition 6. A normed space X is strictly convex if whenever

||x+y|| = ||x|| + ||y||

where $x \neq 0$, $y \neq 0$, then $y = \lambda x$ for some $\lambda > 0$.

Definition 7. A normed space X is uniformly convex whenever given $\varepsilon > 0$ there exists $\delta > 0$ such that if $x, y \in S(X)$ and

$$||x-y|| \ge \varepsilon$$
 then $\left||\frac{x+y}{2}|| \le 1-\delta$.

The following facts are concerning the geometry of the unit sphere S(X) in q.i.p. spaces.

Theorem 1. A q.i.p. space X is smooth.

Proof. Let $t \in R$ and $x, y \in X$. From (10) it will then follows:

$$\|(x+ty)+y\|^{4}-\|(x+ty)-y\|^{4}=8\Big(\|x+ty\|^{2}g(x+ty,y)+\|y\|^{2}g(y,x+ty)\Big).$$
(12)

Since, in view of (5)

$$g(y, x+ty) = g(y, x) + t \|y\|^{2}, \text{ from (12) we have:}$$
$$\|x+y\|^{4} - \|x-y\|^{4} = 8 \Big(\|x\|^{2} \lim_{t \to 0} g(x+ty, y) + \|y\|^{2} g(y, x) \Big).$$
(13)

Making use of (10) once more, from (13) we get:

$$\lim_{t \to 0} g(x + ty, y) = g(x, y).$$
(14)

On the other hand, applying (10) for vectors $x + \frac{t}{2}y$ and $\frac{t}{2}y$, we get:

$$\|x+ty\|^{4} - \|x\|^{4} = 8\left(\frac{t}{2}\|x+\frac{t}{2}y\|^{2}g\left(x+\frac{t}{2}y,y\right) + \left(\frac{t}{2}\right)^{3}\|y\|^{2}g\left(y,x+\frac{t}{2}y\right)\right)$$

Hence,

$$\frac{\|x+ty\|-\|x\|}{t} = \frac{4\left\|x+\frac{t}{2}y\right\|^2 g\left(x+\frac{t}{2}y,y\right)+t^2 \|y\|^2 g\left(y,x\right)+\frac{t^3}{2} \|y\|^4}{\left(\|x+ty\|^2+\|x\|^2\right)\left(\|x+ty\|+\|x\|\right)}, \qquad (t\neq 0).$$

Therefore, in view of (14),

$$\tau_{\pm}(x, y) = \frac{g(x, y)}{\|x\|}, \ (x \neq 0), \text{ that is } \tau_{-}(x, y) = \tau_{+}(x, y).$$

Corollary 1. If X is q.i.p. space, then the mapping $x \mapsto g(x, \cdot)$ is a

support mapping.

Proof. Since $\tau_{-}(x, y) = \tau_{+}(x, y)$, g is linear in the second variable and this gives:

$$g(x, \cdot) \in I_x \left(I_x := \left\{ f \in X^* \middle| f(x) = \|f\| \|x\|, \|f\|, = \|x\| \right\} \right).$$

This implies that the mapping $x \mapsto g(x, \cdot)$ of $X \setminus \{0\}$ to $X^* \setminus \{0\}$ has the properties:

(i)
$$x \in S(X)$$
 implies $||g(x, \cdot)|| = 1 = g(x, x)$,
(ii) $\lambda \in R$ implies $g(\lambda x, \cdot) = \lambda g(x, \cdot)$.

Theorem 2. A q.i.p. space X is uniformly smooth.

Proof. It has been proved, (cf. [1, p.36]), that a normed space X is uniformly smooth if and only if there exists a support mapping $x \mapsto f_x$ which is norm-norm uniformly continuous from S(X) to $S(X^*)$.

So, it suffices to show that the support mapping $x \mapsto g(x, \cdot)$ is norm-norm uniformly continuous from S(X) to $S(X^*)$. For this purpose, let x, $y, t \in S(X)$.

Then we have from (10):

$$g(x, t) + g(t, x) = \frac{1}{8} \Big(\|x + t\|^4 - \|x - t\|^4 \Big),$$

$$g(y, t) + g(t, y) = \frac{1}{8} \Big(\|y + t\|^4 - \|y - t\|^4 \Big),$$

and hence,

$$g(x, t) - g(y, t) = \frac{1}{8} \left[\left(\|x + t\|^4 - \|y + t\|^4 \right) + \left(\|y - t\|^4 - \|x - t\|^4 \right) \right] - g(t, x - y).$$
(15)

This implies

$$|g(x, t) - g(y, t)| \le \frac{1}{8} [32||x - y|| + 32||x - y||] + ||x - y|| = 9||x - y||,$$

and so

$$\|g(x, \cdot) - g(y, \cdot)\| \le 9\|x - y\|$$

From this, we conclude that the mapping $x \mapsto g(x, \cdot)$ is norm-norm uniformly continuous from S(X) to $S(X^*)$.

Corollary 2 If X is a q.i.p. space, then the norm of X is uniformly Fréchet differentiable.

Proof. See Theorem 1, p.36 [1].

Corollary 3. If X is a q.i.p. space, then X^* is uniformly convex.

Proof. See Theorem 1, p.36 [1].

Corollary 4. A complete q.i.p. space X is reflexive.

Proof. See Corollary 2, p.38 [1].

It is well known that uniform convexity implies strict convexity.

Theorem 3. A q.i.p. space X is very smooth.

Proof. From Definition 5 and Theorem 1 it suffices to prove that support mapping $x \mapsto g(x, \cdot)$ is norm to week continuous from S(X) to $S(X^*)$.

Let $(x_n) \subset S(X)$ and $x_0 \in S(X)$. From (15) we have:

$$g(x_n, x) - g(x_0, x) = \frac{1}{8} \left[\left(\|x_n + x\|^4 - \|x_0 + x\|^4 \right) + \left(\|x_0 - x\|^4 - \|x_n - x\|^4 \right) \right] - g(x_n, x_n - x_0),$$

for $(x \in X)$.

Therefore, it follows that

$$|g(x_n, x) - g(x_0, x)| \le \left[||x|| + 8(1 + ||x||)^3 \right] ||x_n - x_0|| \qquad (x \in X).$$

By this inequality and Corollary 4, we conclude that

$$g(x_n, \cdot) \xrightarrow{w} g(x_0, \cdot).$$

Corollary 5. If X is a complete q.i.p. space, then, for each subspace Y of X the density characters of Y and of Y^* coincide.

Proof. See Theorem 2, p.31 [1].

Jurija Gagariana 255/56 11000 Beograd Yugoslavia

References

- J. Diestel, Geometry of Banach Spaces-Selected Topics, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
- [2] P. M. Miličić, Une généralisation naturelle du produit scalaire dans un espace normé et son utilisation, Publ. Inst. Math. Beograd, 42(56) (1987), 63-70.
- [3] P. M. Miličić, La fonctionelle g et quelques problemes des meilleures approximations dans des espaces normés, Publ. Inst. Math. Beograd 48(62) (1990), 110-118.
- [4] P. M. Miličić, Sur le g-angle dans un espace normé, Mat. Vesnik, 45 (1993), 43-48.
- [5] P. M. Miličić, On orthogonalities in normed spaces, Mathematica Montisnigri vol III (1994), 69-77.