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A generalization of the parallelogram
- equality in normed spaces

By

Pavie M. MiLi .dc

L et (X, • 11) be a  real normed sp a c e . T h e n  on X2 there alw ays exist the
functionals:

r± (x, y):= lim t - 1 (11x±tY11- 411) (x, y E X ). (1)
t-±0

\ (
g (T , J . =  2 ■r--(x,y)-1-1-+(x,y)) (x, y  X) 1). (2)

The functional g  is  a  natural generalization of the inner product
which follows from its properties:

g(x, x)=11x112E X ) ,

g (ax, )3y) = ai3g (x, y) (x, y E X  ; a, ,SER) ,

g (x, x +y) (x, y) (x, y EX ),

1g (x, Y ) 1 -‹ 1H111Y11 (x, y EX ),

(  •  ,  •  ) ,

(3)

(4)

(5)
(6)

(X,11 • 11) i s  a n  inner product space if  a n d  only if  g (x , y )  i s  a n  inner
product of vectors x  and y, for all x, y EX. (7)

B y u se  o f  th e  functional g , w e m ay define m any geom etrical points in
normed spaces (angle between two vectors, the projection of the vector x  on
the  vector y , many types o f orthogonalities, orthonormal system, and  so  on)
(cf.[2] to  [5]).

In an inner product space X the equality

11x +Y114 —  — Y114 = 8  (4112 + 11Y112) (x, y) (x, y EX) (8)
holds, which is equivalent to the parallelogram equality

Ikc +Y112 ± Ilx Y112 = 2  (11x112 +11Y112) (x, y E X ). (9)
In normed spaces, the equality

Ilx +Y114 — 11x — Y114=  8 (11x112,g (x, y) +11Y112g (y, x )), (x, y  X )  (10)

is  a generalization of the equality (8).
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1) The notation g  is according to the name Gâteaux.
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W e may put the question: Is there a  normed space, which is not an  inner
product space, satisfying the equality (10) ? The answer is yes.

L em m a 1. There exists nontrivial normed space in  which the equality
(10) holds.

Proof. L et us prove that the  equality  (10) holds true in  /4 a n d  does not
hold in 1'.

According to th e  definition of the  functional g  in  th e  space e (p 1) we
get

g (x , y) =11x11"E ixk l P - 1 (sgn xk)Yk (x= x2,—) E  /P \ (0)) . (n)
Hence, with p=4, we have

lixil2g(x, y ) =Ex?cyk yE/4)•

From this, we get (10 ). But, from  (11) with p= 1, we have

g (x, y) = (sgn xk) y k ( x ,  y E /I ) .

Taking x  =  (1,1,2,0,0, • • •) E l' and  y  = (1, — 1,1,0,0,•••) e/ I w e readily  see that
the equality (10) does not hold.

Definition 1. A  normed space  w ith  th e  e q u a lity  (10) is  c a lle d  a
quasi-inner product space (q.i.p.space).

We also use the following familiar definitions:

Definition 2. (cf. [1,p.20]) A  mapping x'— fx  of X \ {0}to X* \{0) 1) is
a support mapping whenever

( i ) E S  (X) implies VA = 1= fx (x) 2 )
,

__() implies flx= ilfx .

Definition 3. A normed space X is smooth if

7- (x, y) = r+(x, y) (x,y E X ).

Definition 4. A  normed space X  is uniformly smooth whenever given
E >0 there exists 5 > 0 such that

if x E S (X) and ilYll< 5.

Definition 5. A  normed space X  is very sm ooth if  it is sm ooth  and
its  support mapping x 1— ■fx  is norm  to w eak continuous from  S (X) to S (X*)

1) X * i s  the topological dual of X.

2) S (X) = {.TEX1411=1).
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(cf. [1, p.31]).

Definition 6. A normed space X  is strictly convex if whenever

Ilx+YII=111 11±1IYII
where x *0, y*O, then y =2.x for so m e  >0.

Definition 7. A normed space X  is uniformly convex whenever given
s >0 there exists 5>0 such that if x , y E S (X ) and

Ilx— Yll>-E then

The following facts are concerning the geometry of the unit sphere S (X)
in q.i.p. spaces.

Theorem 1. A q.i.p. space X  is smooth.

Proof. Let tER and x , y E X . F ro m  (10) it will then follows:

(x±ty) (x+-ty) — Y114 = 8 (11x±tYll2g (x±tY, y) HIY112g (y, x ± ty )) .

(12)

Since, in view o f (5)

g(y, x±ty)=g(y, x)-FtllY112, from  (12) we have:

Ilx+Y114 —  lix — Yli4 = 8  (41121 im g (x ± ty , y) +11Y1i2g (y, x) ). (13)
t-o

Making use of (10) once more, from (13) we get:

limg(x±ty, y) = g (x, y). (14)

On the other hand, applying (10) for vectors a n d  y, we get:

Ilx + ty 114 - 11x114 2g(x -qy, x-qY))

  

Hence,

  

ilx+11/11- 411  _  4  x ± f Y 

(i1x+tY112 +4112)(11x±tY11+11x11)

2 g(x y)±t2i1Y112g (Y, + 123-16114

(t 0) .

Therefore, in view o f (14),
(x )r±(x, y) * 0) , that is T_ (x, y) = r+ (x, y).

Corollary 1. I f  X  i s  q.i.p. space, then the m apping x  g  ( x ,  •  )  i s  a

x±y 
2
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support mapping.

Proof. Since (x, y )  =  Tr+. (x, y), g  is  linea r in the second variable and
this gives:

g(x , • ) e / x @ x :=I f e x * f (x) = .

  

This im plies that the mapping x (x , • ) of X\ WI to  X* \ 101 h as the
properties:

( i ) x ES (X ) implies lig (x, • )11= 1=g (x, x),
( i i )  2 E R  implies g (2x, • ) = Âg (x, • )

Theorem 2. A q.i.p. space X is uniformly smooth.

Proof. I t  h a s  b e e n  p ro v e d , (c f . [1, p.36]), th a t  a  normed space X  is
uniformly smooth if and only if there exists a support mapping x'—*fx  which is
norm-norm uniformly continuous from S (X) to S (X * ) .

S o , i t  s u f f ic e s  to  show  t h a t  th e  su p p o rt m apping x  1
— *  g  (x , •  ) is

norm-norm uniformly continuous from S (X) to S (X* ) . For this purpose, let x,
y , t E S (X ).

Then we have from  (10):

g (x, t) +g (t, x) = ,
1
8
- (11x +1114 —  l[x tli4),

g (y, +g (t, y) = —t114),

and hence,

g (x, t) — g (y, t) = Rilx -Ft114 - 6 ±t114) (11Y t114—  ilx— t114)1 — g (t, x — y).

(15)

This implies

Ig (x, (Y, t) I [32 1Ix — Y11+ 32 11x — y11] +Ifc 94'

and so

I g (x, • ) (y, • )11
F rom  th is , w e  conc lude  tha t th e  mapping x  — g  (x , •  ) is norm -norm

uniformly continuous from S (X) to S (X* ) .

Corollary 2 I f  X  is  a  q.i.p. space, then th e  norm of  X  is uniformly
Fréchet differentiable.

Proof. See Theorem 1, p.36 [1].
Corollary 3. If  X is a q.i.p. space, then X * is uniformly convex.
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Proof. See Theorem 1, p.36 [1].

Corollary 4. A  complete q.i.p. space X is reflexive.

Proo f . See Corollary 2, p.38 [1].

It is well known that uniform convexity implies stric t convexity.

Theorem 3. A  q.i.p. space X is very smooth.

Proof. From Definition 5 and Theorem 1 it suffices to prove that support
mapping xi—  (x , •  )  is norm to week continuous from S (X )  to S (X* ).

L et (x,z) cS (X ) and xoE S (X ) .  From  (15) we have:

g (xn , x) — g (xo, x) = —8
1 [(k + x114 — x114) ±  k —ilxn— x114)] g xo) ,

fo r  (x EX).
Therefore, it follows that

1g (xn, x) — g (xo, x) [411+8 (1+ 40) 3
]  i xoli (x EX).

By this inequality and Corollary 4, we conclude that

g (xn, ) g (x 0 , •  )  .

Corollary 5. If  X is  a  complete q.i.p. space, then, f or each subspace Y  of
X the density characters of  Y  and of  Y*  coincide.

Pro o f . See Theorem 2, p.31 [1].
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