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A generalization of the parallelogram
- equality in normed spaces

By

Pavle M. MILICIC

Let (X, ||+ Il) be a real normed space. Then on X? there always exist the
functionals:
s (x, y)=lim (e +tyl—ll) @ yEX). (1)
t—10
ce =l raey)  wyenr. @

The functional g is a natural generalization of the inner product (-, - ),
which follows from its properties:

g x)=lkl* @EX), (3)
g (ax, By) =apfg (x, y) (x, yEX ;a, BER), (4)
glx, xty) =lklP+e@ y) (@ yEX), (5)
lg@ »I<kllyl = yEX), (6)

(X, ) is an inner product space if and only if g(x, y) is an inner
product of vectors x and y, for all x, y EX. (7)

By use of the functional g, we may define many geometrical points in
normed spaces (angle between two vectors, the projection of the vector x on
the vector y, many types of orthogonalities, orthonormal system, and so on)

(cf.[2] to [B]).

In an inner product space X the equality

ke+ylt—le—ylt =8 (klt+lyl®) @ y) @ yEX) (8)
holds, which is equivalent to the parallelogram equality
ke+ylP+e—ylP=2(lP+lyl) & yEX). (9)

In normed spaces, the equality

e +ylt—le—yl¢=8 (lkl?g (x, y) +lyl*e (y, x)),  (x, yEX) (10)

is a generalization of the equality (8).

Communicated by Prof. K. Ueno, November 12, 1996
Revised September 10, 1997

1) The notation ¢ is according to the name Gateaux.
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We may put the question: Is there a normed space, which is not an inner
product space, satisfying the equality (10) ? The answer is yes.

Lemma 1. There exists nontrivial normed space in which the equality
(10) holds.

Proof. Let us prove that the equality (10) holds true in I* and does not
hold in .

According to the definition of the functional g in the space I (p=>1) we
get

gz, y) =|lt||2"§lxk|"‘l(sgn )y @=(x, xz00) €1°\{0}). (11)
Hence, with p=4, we have
kel (x, y) = Zxdye (@, yELY).
k

From this, we get (10). But, from (11) with p=1, we have
gz, y) =|lr||§ (sgnxye (&, y€.
Taking x = (1,1,2,0,0,**) €' and y= (1,—1,1,0,0,--*) €' we readily see that
the equality (10) does not hold.

Definition 1. A normed space with the equality (10) is called a
quasi-inner product space (q.i.p.space).

We also use the following familiar definitions:

Definition 2. (cf.[1,p.20]) A mapping x—f of X\{0}to X*\{0}" is
a support mapping whenever

(i) x€S(X) implies |fl=1=f. ()2,
(11) A=0 implies fiz=Afs.

Definition 3. A normed space X is smooth if
- (x, y) =74 (x, y) xyEX).

Definition 4. A normed space X is uniformly smooth whenever given
€>0 there exists 0>0 such that

e +yll+ e —yll<2+-ellyl
if r€S(X) and ||y|i<5.

Definition 5. A normed space X is very smooth if it is smooth and
its support mapping x—f; is norm to weak continuous from S (X) to S (X*)

1) X* is the topological dual of X.
2) S(X) = {xexllxl=1}.
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(cf.[1, p.31]).

Definition 6. A normed space X is strictly convex if whenever

e +yll =l +lyl
where x %0, y =0, then y =Ax for some 4>0.

Definition 7. A normed space X is uniformly convex whenever given
£>0 there exists 6 >0 such that if x, y €S(X) and

le—yll=¢ then “%1“31—5.

The following facis are concerning the geometry of the unit sphere S (X)
in q.i.p. spaces.

Theorem 1. A qip. space X is smooth.
Proof. Let t€R and x, y€X. From (10) it will then follows:

[atty) +ylf =l +y) —yl =8l + ke Gty v) +lylle (v, z+1) ).
(12)

Since, in view of (5)
gy, z+ty) =g (y, x) +tly[? from (12) we have:
b+l =l =yl =8(lel im g (e 1y, ) HPe 0. 2)). (1)
Making use of (10) once more, from (13) we get:
limg(x+ty, y) =g (x, y). (14)

t—0

On the other hand, applying (10) for vectors x+%y and %y, we get:

b eyl =8 (G o+ (ot 5. ) + (5) kv, =+ 50)

Hence,

e+ eyl = lkell _ 4Hx+%y Zg(x"‘%y, y) +tyle @y, x) 'f"tzi"y"4
f (et -+ el (e + ey + el

Therefore, in view of (14),

s (z, y) =g—(’ﬁ"f/l, (x#0), that is 7_(x, y) =7+ (x, y).

Corollary 1. If X is qip. space, then the mapping x—g(x, ) is a

' (t#0).
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support mapping.

Proof. Since 7-(x, y) =74+ (x, y), g is linear in the second variable and
this gives:

=[fle, 1A= el)).

This implies that the mapping x—g (x, * ) of X\ {0}to X*\ {0} has the
properties:

gz, ) EL (1,: = [fEX* fx)

(i) x€S(X) implies g, * ) |=1=g(x, x),
(ii) AER implies g Az, * ) =g (x, + ).

Theorem 2. A qip. space X is uniformly smooth.

Proof. It has been proved, (cf. [1, p.36]), that a normed space X is
uniformly smooth if and only if there exists a support mapping x—f; which is
norm-norm uniformly continuous from S (X) to S (X*).

So, it suffices to show that the support mapping x = g (x,*) is
norm-norm uniformly continuous from S(X) to S (X*). For this purpose, let x,
y, tES(X).

Then we have from (10):

glx, t)+g(t x)

) =g (bt =),
£ ) +2 0 v) =g (ly e —ly—d)

and hence,

gz, =gy, ) =% |(keel—ly+e9 + (y —thl—le—l)] =2 ¢, z—y).
(15)
This implies

lg @ £) —2(y, t)lé%[32llr—y||+32llx—y||] +le—yl=9—yl,

and so

le (@, - ) =gy, - ) I<Oe—yll

From this, we conclude that the mapping x — g (x, *) is norm-norm
uniformly continuous from S (X) to S (X*).

Corollary 2 If X is a qip. space, then the norm of X is uniformly
Fréchet differentiable.

Proof. See Theorem 1, p.36 [1].

Corollary 3. If X is a q.i.p. space, then X* is uniformly convex.
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Proof. See Theorem 1, p.36 [1].

Corollary 4. A complete q.i.p. space X is reflexive.

Proof. See Corollary 2, p.38 [1].

It is well known that uniform convexity implies strict convexity.
Theorem 3. A q.i.p. space X is very smooth.

Proof. From Definition 5 and Theorem 1 it suffices to prove that support
mapping x—g (x, * ) is norm to week continuous from S(X) to S (x*).
Let (x,) €S (X) and £o€S(X). From (15) we have:

¢ 2) g o, ) =% | (ol — brortall) + (eo—all — b —al) |~ ez =20,

for (x€X).
Therefore, it follows that

o Gon, 1) —g o, ) |< [kl 480+ Y ke 2EX).

By this inequality and Corollary 4, we conclude that

g(xn ) =g (xo ).

Corollary 5. If X is a complete qi.p. space, then, for each subspace Y of
X the density chavacters of Y and of Y* coincide.

Proof. See Theorem 2, p.31 [1].
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