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Two results on branched coverings of
Grassmannians

By

Meeyoung KIM and Andrew J. SOMMESE

1. Introduction

I n  t h i s  p a p e r  w e  p r e s e n t  tw o  r e s u l t s  o n  b ran ch ed  co v e rin g s  of
Grassmannians.

Throughout this introduction, let G:= G r (r, n) denote the Grassmannian of
r-dim ensional com plex vector subspaces of C .  F u r t h e r ,  assum e tha t n
r-1-2 and let p:G-- , P ( )  I  denote the Plücker embedding.

First w e give som e exam ples o f  branched covers o f G  th a t  a re  no t the
p u llb ack s  u n d e r p  o f  b ranched  covers  from  a  m a n ifo ld  t o  13' '

\
. Our

interest in  such examples grew out of the paper [7 ] of the f ir s t  a u th o r . The
main result of tha t paper, which generalized a  theorem of Lazarsfeld [10,11]
fo r branched covers of projective space, show ed that a manifold, w h ich  is  a
b ranched  cover o f  G , h a s  t h e  sam e com plex cohom ology groups a s  th e
Grassmannian in an appropriate range of dimensions depending only on G and
the degree of the c o v e r in g . Our construction technique is to consider divisors
o n  a  P 1

-  bundle g)  o v e r  the Grassmannian G .  By th e  "principle of counting
constan ts"  [6 ], it  is  k n o w n  th a t th e  general divisor contained in  th e  linear
system o f  a  sufficiently high pow er o f a  v e ry  am ple line bundle o n  g ' i s  a
branched cover of G under the bundle p ro jec tio n . It is staightforward to see
that w e can choose this cover to  have degree dim G .  If  the  branched cover
X—>G extends to a  branched covering from a projective manifold X ' to
th e n  w e  c a n  u s e  th e  estim ate o f  th e  covering  degree  5  and Lazarsfeld's
theorem  [10 , 11] to  conclude that the second hom otopy group  of X ' i s  one
dim ensional. The Lefschetz hyperplane section theorem le ts us conclude that
the second hom otopy g ro u p  o f  X  is  tw o  d im e n s io n a l. F in a lly  w e  u se  a
theorem of Fulton and Lazarsfeld [4] to conclude that this is impossible.

O ur second re su lt abou t the  geometry of Grassm annians, Theorem 2.3,
sh o w s  t h a t  a n  o b v io u s  n a tu ra l w a y  to  c o n s tru c t  b ra n c h e d  c o v e r s  of
Grassmannians only leads to triv ia l e x a m p le s . Let G, r, n  be  a s  a b o v e . For
r < n < n ,  l e t  G' C  G  b e  th e  su b g ra ssm an n ian  G r (r , n ')  o f  G  f o r  a  fixed
embedding of C ' — *C7'. I f  X  is  a subvariety of G whose homology class is a
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positive  m ultip le  o f the  homology class o f  G ', then  after m oving  X  b y  an
automorphism of G there  is a  branched cover of X onto G'. Motivated by the
analogous result for surfaces in  Gr (2, 4) (see  [3 ] a n d  [1 ]), w e show  in  §2
t h a t  s u c h  X 's  a r e  subgrassmannians. T h is  r e s u l t  is  e q u iv a le n t  to  the
statem ent that, if  g  is  th e  rank  n — r tautological quotient vector bundle of
G X  Cn and if f :  X— > G is  any  b ranched  cover, th en  ev e ry  section of f *
a r is e s  a s  th e  pullback o f  a  s e c t io n  o f  g .  T h is  re su lt is  rem in iscen t of
Gieseker's examples [5, Chapter 3].

W e thank Mark De Cataldo for explaining the proof of the classical case,
w hich w e have heard  a ttribu ted  to  Fano, of Theorem 2.3 for m ultiples of a
plane in Gr (2, 4).

W e thank th e  Mathematical Institute of the U niversity  of Goatingen and
the University of Notre D am e for the ir  partia l support during Summer 1995.
T he  second  a u th o r  th a n k s  the  A lexander von  H um bold t Stiftung and the
National Science Foundation (DMS 93-02121) for their support.

1. Some branched covers of Grassmannians

By a  variety we always mean an  irreducible and reduced quasiprojective
complex algebraic variety.

Given a  coherent sheaf .0 on an algebraic set Z, we denote the i-th sheaf
cohomology group by H i (Z, s3), o r  by  H i (.0) when Z  is c lear from  context.
Similarly, we denote dim H i (Z, .0) by h  (Z, .0) or by hi (.0).

Let g  be a  rank 2 vector bundle on a complex projective manifold X .  Let
P ( f l )  denote th e  P'-bundle o f  o n e  dim ensional vector space quotients of
fibers of g .  W e do not distinguish between vector bundles and  locally free
sheaves. Thus le tting . it:   P (7) — )X denote the induced projection and letting

be the tautological line bundle on P (g) , w e have tha t 7C 4c g - .  We say
tha t g  is  big if  there is som e integer N> 0 such  that th e  mapping given by
INeg I has a  (dim P (g)) -dimensional im a g e . If  g  is  sp an n ed  (o r even nef)
this is equivalent to the condition that C ( ) d i m " )  > 0.

Theorem 1.1. L et g  be a b ig  and  spanned rank 2 vector bundle on a
connected complex projective variety X. Let i t :  P (g)—> X  and be as  above.
For and d  d im X , le t D  be a  generic element of  'deg '. It follows that D  is a
variety and irD:D— Q- is a degree d  branched cover.

Proof. Since eg  is  spanned  w e  see that given any fiber F "=" of i t ,  the
map H° (e d) — >110 ((d ( d ) )  is on to  fo r all O. T h u s , le t t in g  j g  denote  the
ideal sheaf of F, it follows that for any we have h

° (e )  h
0
(e r0 iF ) =

h° (0p. (d)) =d + 1 .  Thus if d  dim X a generic D Eld contains no fiber F.
It rem ains show tha t D  is  ir re d u c ib le . T h is  is  a sim ple consequence of

the fact that is  big and spanned, e. g., [14, Theorem (3.42)].

Corollary 1.2. Let p : G—+P ( 7 ) - 1  denote the Plücker embedding of G: =
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Gr (r, n). Assume th a t n  r  + 4. Then there exists a projective manifold Y
and branched covering f : Y— G of degree dim G such that there is no branched
covering f :  Y'—>P (0

 - 1  of a projective manifold Y' with f  the pullback of f  under
P.

Proof. W e  w il l  n e e d  a  f e w  s im p le  e s tim a te s  th a t fo llo w  fro m  the
inequalities, n 4. F irst note that dimG =r (n — r) and that

( n ) r ( n — r )  + 2
r 2

Take an ample and spanned vector bundle .7 of rank  2 on G, e.g., CG (1) 0
VG (1) w ith CG (1) the very  ample line bundle whose sections give the Plücker
em bedding . B y  T heorem  1.1, it  fo llo w s  th a t b y  c h o o s in g  a  generic  Y E
1(dimG) w e obtain a  degree dimG =r(n — r) branched covering Try: Y—>G.
Note that since Y is generic it is smooth by Bertini's theorem . L et f = z y .

W e  p r o c e e d  b y  c o n tra d ic tio n . L e t P : = P ( 0
-

1. A ssu m e  t h a t  the
covering f :  Y—, G is  the  pullback o f  a  branched covering f  : Y'—>13  o f  degree
dimG, w here  Y  is  a  projective m anifold. Using equation (1), it follows from
t h e  f i r s t  Lefschetz hyperplane sec tion  th e o re m  th a t h2(Y, C) =h2(P(g),
C ) = 2 . B y  Lazarsfeld's B a r th  ty p e  theo rem  f o r  b ranched  coverings of
projective spaces [10, 11] , r i (Y') Tri ( P )  for

i dimP — deg" +1 = (( r 1 )  — r (n — r ) + 1  =  r  — r — r) .

T hus by  equation  (1), 7r2i r 2  ( P )  =  Z. O n  t h e  o ther hand , a  resu lt of
Fulton  and  L azarsfe ld  [4 . Theorem 9.6] gives th e  following isomorphisms
between two relative homotopy groups:

f  : Irj ( Y' , Y, y ) —> 7r ;  (P, G , f (y)) where y E Y,

if j dimY' — codG=r (n — r), i.e., for j 4 by equation (1). Now consider the
homotopy sequences of the  pairs (Y', Y ) and  (P, G):

7r3 (11 " 1r3 (Y', Y) 7r2 (Y) 7r2 (Y') " 7r2 (Y',

:/-* i* 1 7* 1 f * 1
z3 (P) 7r3 (P, G) ir2 (G) 7r2 (P) 7C2 (P, G) .

Therefore by the five lemma (note that 7r3  (P) = 0) , ir2 ( Y)  72 (G) Z, which,
by Hurewicz's theorem, implies the contradiction that h2 (Y, C) =1.

Remark 1.3. Take an am ple and spanned vector bundle g  of rank  2
on a projective manifold X .  F or a  branched covering f : Y- - *X  constructed as
above with degree dimX, le t  8  b e  th e  v ec to r  b u n d le  (40r/Ox) *  ( s e e
Lazarsfeld [10, 11]). T h e  ampleness and  spannedness o f g  gives th e  same

(1)
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positivity condition on 8. To see this, note that the exact sequence
p (9) — >ey— >0 gives

(7c*CY/z*Cp(g)) *
-= (1r(i)W )* -='Ir*(1 -

207c*detg) --=•Sd
-

2 0detg
by using relative duality  (cf., [2] ) and the canonical bundle formula.

Remark 1.4. W e call attention to the récent result of L. Manivel [12]
extending the results of Kim [7] to show that if X is a Grassmannian Gr (r, n),
then ( f Ù / 'd )  *  is  a m p le . W e a lso  w ant to  m ention the p a p e r  [8], which
deals with coverings of nonsingular quadrics.

2 .  A result on the geometry of Grassmannians

W e first need a  characterization of projective space in  term s of the sizes
of the families of linear subspaces. This result should be well known, but we
do not know a reference.

Let G :=Gr (r+1, n +1) denote the Grassmannian o f  (r+1) -dimensional
complex vector subspaces o f  Cn+ 1 . L et 9' C  G x Pn denote th e  tautological
fam ily o f  lin e a r  P r s  i n  P n . L et p : Y- - G  a n d  q : Y—>Pn denote  th e  two
morphisms of Y induced by the product projections.

Proposition 2.1. L e t  Pn, G , Y, p, an d  q  be as  in  th e  preceding
paragraph. L et Z C G  be a  subvariety. Let X : = q (p (z)) w ith  5 = dimX.
Then d im Z  (r +1) (6 — r) with equality only if  X  is a  linear P o an d  Z  is a
subgrassmannian Gr (r+ 1, 6 + 1 )  CG.

Proof. The proposition is  c le a r  i f  dimZ = O. W e  p ro c e e d  b y  induction
assum ing that th e  re su lt is  true  w hen  dimZ < d  fo r  some positive integer d.
Thus let d: =dimZ >O.

Since p and q are fiber bundles with connected fibers we have that X is  a
varie ty . L e t f: = dim p-  (Z ) —dimX. Then

r+d=dimp - '(Z ) = f+  5 (2)

L et G': = Gr (r, (5) denote th e  Grassmannian o f linear Pr - t 's  in  th e  (5 — 1)

-dimensional projective space P  (T t x ) fo r  a  general point x E X .  Let b"'' C
G' X  P  ( T x * , )  denote  the tautological family of l in e a r  P r 's  in  P  (T tx ) .  Let p'

and q' : 9Y- 43
 ( T x * , )  deno te  the two morphisms of 9Y induced by the

product projections.
Every linear 1 ' in  X  containing x gives rise  to  a  linear P r - 1 C P

T h is  g iv e s  r ise  to  a  morphism j  :q 1,- -11(z) (x) — > G'. Since d istinc t linear Prs

containing x go to  distinct l in e a r  P r 's  u n d e r  i, we have that i  is one-to-one.
Let Z ' denote i (q - 1 (x)). Note that since x is  a  general point, Z ' is  the  fiber
qp- "(Z) (x ) and w e have th a t d im Z '= f.  Let X': =  (p' - ' (z ')) and  5' = dimX'.
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By the induction hypothesis we have dimZ' (5' + 1 —  . Using equation 2
and noting that 5' 5  — 1 we have that

d r (5 — r) +5 — r= (5 —r) (r+1).

T his gives the  desired  inequa lity . If  w e have equality here, then 5' = 5 — 1
which implies that X '= P (71,x ). Thus the projection from x E I"  expresses X
as a cone. S ince x is  a  general point of X and hence smooth we conclude from
[13, Theorem 5.11] that X is  a  linear P 5 . In this case we have that Z c G r , (r,
5 ) .  S in ce  dimZ = d  =  (5 —  (r  - F  1) = dimGr (r, 5), Z  m u s t  b e  th is
subgrassmannian of G.

W e need the  fact that certain subgrassmannians of a  Grassmannian have
v e c to r  b u n d le  neightborhoods. O n  G : =  G r (7+ 1 , n+ 1) w e  h av e  th e

tautological sequence o f vector bundles, 0— .7 * — >G X  Cn+ 1 4 8- 0, with rank
.7= r + 1 and  rankg = n — r. Given any integet 1, w e have an  embedding
G—>Gr (r + 1 , n  1  + t) given by sending x E G to  the point in  Gr (r+ 1, n + 1
-F t)  corresponding to the  subspace gj'ED {0} of Cn+ 1 + ` We can
extend this map to an embedding of g .133` into Gr (r+1, n ± 1 +t). Send f: =
" , f t )  E ' to  the point in G r (r+ 1, n +1 -Ft) corresponding to the image of

+ig : in C " l e e  under the map sending v  E g : to  (v , f (v)) E  cn @ct .

We need an easy consequence of a well known theorem of Kleiman [9].

Lemma 2.2. A ny  variety  X  in  G r (r + 1, n 1  ±  t )  homologous to a
multiple of G := G r (r+ 1, n +1) can be translated so that it is in the above vector
bundle neighborhood.

Proof. Let U denote the vector bundle neighborhood of G':=Gr (r+1, n+
1 + t ) .  Note that the complement of U is a union U ,./  Z, of a finite number of
irreducible subvarieties Z , of G'. Kleiman's theorem [9 ] guarantees that we
can find a translate gX of X that for each i E/ meets Z, in either the empty set
or a set of dim ension dimZ,±dimX— dimGr (r+ 1, n +1 t). If Z i n g X ±  0 ,
th e n  b e c a u se  th e  d im e n s io n  i s  th e  d im e n s io n  o f  th e  hom ology c lass h
representing Z  f l gX, the intersection Z i (1 gX with multiplicities represents h.
Since G n Z 0  and since the homology.class representing h  is  a multiple of
the homology class G fl Z i , we are done.

F o r a  subvariety V in Gr (r+ 1, n +1), let gIv  b e  the union of Pr's in  P"
represented by V,

Theorem 2.3. Let n n ' > r l .  If  a subuariety X of Gr (r+1, n + 1 )  i s
homologous to a  nontriv ial multiple d [G ]  of  a subgrassmannian G':= Gr (r ± 1,
n '+ 1) in  Gr (r+1, n +1), then X is a translate gG' of the subgrassmannian G' by
an automorphism of Gr (r+ 1, n + 1) .

Proof. S ince  t h e  t r u th  o r  fa ls ity  o f  t h e  theo rem  is  no t a ffec ted  by
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replacing X  b y  a  transla te  of X  b y  an autom orphism  of G r (r+ 1, n + 1), we
w ill s im p ly  re n a m e  a s  X ,  t h e  d iffe ren t tra n s la te s  t h a t  a r i s e  o f  X  by
automorphisms of Gr (r+1, n +1) .

L e t U  denote th e  vector bundle neighborhood o f  G ' constructed in  the
p a ra g ra p h  b e fo re  L e m m a  2 .2 . B y  L e m m a  2 .2  w e  c a n  assum e that som e
translate of X , which we rename X is in  U.

Note th a t 9? G' i s  a  l in e a r  P i" .  B y  the construction before Lemma 2.2
there is a  vector bundle neighborhood V of P's' in  P .

Let 7r : U— •G' be the  bundle p ro jec tion . F o r a  general fiber f  of 7r, X  f
=dG ' • f = d. Therefore irx : X—+G' is generically d  to 1. S in c e  iv  is  affine,
w e  conc lude  tha t r x  : X— >G' i s  a  finite  m orphism  o f  degree d. By using
multipication in  U b y  a n  element o f  C "  that is sufficiently sm all in  absolute
value, X can be assumed to be as close as we want to the zero section, G' in  U.
In particular, w e can assume tha t the union of the P r 's  in  P "  represented by
X , 94, is  a compact connected subvariety contained in  V . Therefore  since the

vector bundle projection V—> P a ' is  affine 94 is a t m ost n '-d im ensional. B y
P ro p o s it io n  2 .1 . R x m u s t  b e  P " '  a n d  X  m u s t  be  isom orph ic  to  som e
subgrassm annian G r (r, n-1) and d=1.

T he above result can be rephrased a s  saying that given a Grassmannian
G :=G r , (n — r, n ) w ith  a  r a r k  r  2  tautological quotient bundle g  of the trivial
bundle G X C " and given an  irreducible subvariety X  representing a  nonzero
multiple of Cr (g)  t  f o r  some 1> 0 it follow s that X  is  a subgrassmannian of G
defined by t sections of g. It is natural to ask the following question.

Question 2.4. Which homology classes on a G rassm annian have no
irreducible subvariety representing them ?

The following more restricted version of th is question is very  natural in  light
of Theorem 2.3.

Question 2.5. Given positive integers r, r', n, n ' w ith r' and n' —r'
there are embeddings of G':=Gr (r' +1, n ' + 1 )  into G:=Gr (r + 1, n+

1). For which quadruples, r', n ', r, n, is it true that any irreducible subvariety
of G  homologous to a m ultiple of G ' is  a  translate of G ' by  an  element of the
automorphism group of G.

MAX-PLANCK-INSTITUT FUR MATHEMATIK
GOTTFRIED - CLAREN - STRASSE 26
D-53225 BONN, GERMANY
kim@mpim-bonn.mpg.de
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF NOTRE DAME
NOTRE DAME, INDIANA 46556, U.S.A.
sommese.1@nd. edu



Branched coverings of Grassmannians 27

References

[ 1 ] E . Arrondo a n d  I .  Sols, C lassification of sm ooth congruences of low  degree, J .  re in e  angew.
Math., 393 (1989), 199-219.

[ 2 ] W . Barth, C . Peters, and A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3)
4, Springer-Verlag, Berlin, 1984.

[ 3 ] W . B arth  and  A . V an  de  Ven, O n the  geometry in  codimension 2 o f Grassmann manifolds, in
Classification of a lgebraic  varie ties and compact complex manifolds, ed . b y  H . Popp, Springer
Lecture Notes in Math. 412 (1974), 1-35.

[ 4 ] W . F u lto n  a n d  R .  L azarsfeld, Connectivity a n d  i t s  a p p lic a tio n s  in  algebraic geom etry, in
Algebraic Geometry, Chicago, 1981, ed. by A. Libgober and P. Wagreich, Springer Lecture Notes
in Math. 862 (1981), 26-92.

[ 5 ] D. Gieseker, P-ample bundles and their Chern classes, Nagoya Math. J ., 43  (1971), 91-116.
[ 6 ] H. Hironaka, Smoothing of algebraic cycles of small dimensions, Amer. J. Math., 90 (1968), 1-54.
[ 7 ] M . K im , A  Barth - Lefschetz ty p e  theorem  fo r  branched coverings o f  Grassmannians, J .  reine

angew. Math., 470 (1996), 109-122.
[ 8 ] M. Kim, On branched coverings of quadrics, Arch. Math., 67 (1996), 76 - 79.
[ 9 ] S. L. Kleiman, The transversality of a general translate, Compos. Math., 38 (1974), 287-297.
[10] R . Lazarsfeld, B ranched coverings of projective space, P h . D . T hesis, Brown University, June

1980.
[11] R. Lazarsfeld, A Barth - type theorem for branched coverings of projective space, Math. Ann., 249

(1980), 153-162.
[12] L. Manivel, Vanishing theorems for ample vector bundles, Invent. math., 127 (1997), 401 - 416.
[13] D . Mumford, Algebraic geometry 1, Grundlehren Math. Wiss. 221, Springer-Verlag, New York,

1976.
[14] B . Shifman a n d  A . J .  Sommese, Vanishing theorem s o n  com plex manifolds, Progr. M ath. 56,

BirkhAuser, Boston, 1985.


