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Two results on branched coverings of
Grassmannians

By

Meeyoung KM and Andrew ]J. SOMMESE

1. Introduction

In this paper we present two results on branched coverings of
Grassmannians.

Throughout this introduction, let G:=Gr (r, n) denote the Grassmannian of
r-dimensional complex vector subspaces of C". Further, assume that n=
r+2>4, and let p: G—P{")™" denote the Plicker embedding.

First we give some examples of branched covers of G that are not the
pullbacks under p of branched covers from a manifold to P Our
interest in such examples grew out of the paper [7] of the first author. The
main result of that paper, which generalized a theorem of Lazarsfeld [10, 11]
for branched covers of projective space, showed that a manifold, which is a
branched cover of G, has the same complex cohomology groups as the
Grassmannian in an appropriate range of dimensions depending only on G and
the degree of the covering. Our construction technique is to consider divisors
on a P'-bundle # over the Grassmannian G. By the “principle of counting
constants” [6], it is known that the general divisor contained in the linear
system of a sufficiently high power of a very ample line bundle on ® is a
branched cover of G under the bundle projection. It is staightforward to see
that we can choose this cover to have degree dim G. If the branched cover
X—G extends to a branched covering from a projective manifold X' to P('; -
then we can use the estimate of the covering degree 0 and Lazarsfeld's
theorem [10, 11] to conclude that the second homotopy group of X  is one
dimensional. The Lefschetz hyperplane section theorem lets us conclude that
the second homotopy group of X is two dimensional. Finally we use a
theorem of Fulton and Lazarsfeld [4] to conclude that this is impossible.

Our second result about the geometry of Grassmannians, Theorem 2.3,
shows that an obvious natural way to construct branched covers of
Grassmannians only leads to trivial examples. Let G, r, n be as above. For
r<u<un, let G' C G be the subgrassmannian Gr(r, ) of G for a fixed

embedding of C*—C". If X is a subvariety of G whose homology class is a
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positive multiple of the homology class of G’, then after moving X by an
automorphism of G there is a branched cover of X onto G’. Motivated by the
analogous result for surfaces in Gr(2, 4) (see [3] and [1]), we show in §2
that such X’s are subgrassmannians. This result is equivalent to the
statement that, if # is the rank » — r tautological quotient vector bundle of
GXC” and if f: X— G is any branched cover, then every section of f* %
arises as the pullback of a section of #. This result is reminiscent of
Gieseker's examples [5, Chapter 3].

We thank Mark De Cataldo for explaining the proof of the classical case,
which we have heard attributed to Fano, of Theorem 2.3 for multiples of a
plane in Gr (2, 4).

We thank the Mathematical Institute of the University of Gottingen and
the University of Notre Dame for their partial support during Summer 1995.
The second author thanks the Alexander von Humboldt Stiftung and the
National Science Foundation (DMS 93-02121) for their support.

1. Some branched covers of Grassmannians

By a variety we always mean an irreducible and reduced quasiprojective
complex algebraic variety.

Given a coherent sheaf b on an algebraic set Z, we denote the i-th sheaf
cohomology group by H'(Z, 8), or by H' (J) when Z is clear from context.
Similarly, we denote dim H' (Z, 8) by h'(Z, 8) or by h'(JS).

Let # be a rank 2 vector bundle on a complex projective manifold X. Let
P(%) denote the P'-bundle of one dimensional vector space quotients of
fibers of #. We do not distinguish between vector bundles and locally free
sheaves. Thus letting. 7 : P (#)—X denote the induced projection and letting
&z be the tautological line bundle on P (%), we have that &= %. We say
that & is big if there is some integer N> 0 such that the mapping given by
INEs| has a (dim P (%)) -dimensional image. If % is spanned (or even nef)

this is equivalent to the condition that ¢, (&) 9™F® >0

Theorem 1.1. Let F be a big and spanned vank 2 vector bundle on a
connected complex projective varviety X. Let m:P(F)— X and & be as above.
For and d = dimX, let D be a generic element of |d€z|. It follows that D is a
variety and mp: D—X is a degree d branched cover.

Proof. Since &5 is spanned we see that given any fiber F = P! of 7, the

map H°(E§(I)—>H“(09n (d)) is onto for all d=0. Thus, letting £ denote the
®

ideal sheaf of F, it follows that for any d =0 we have h° (E?d) —h° (Egd®o¢p) =

h®(0p (d)) =d+1. Thus if d >dim X a generic DE|d&s| contains no fiber F.
It remains show that D is irreducible. This is a simple consequence of
the fact that & is big and spanned, e. g., [14, Theorem (3.42)].

Corollary 1.2. Let p: G—P") =" denote the Pliicker embedding of G : =
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Gr(r, n). Assume that n=>r~+2>4. Then there exists a projective manifold Y
and branched covering f:Y—G of degree dim G such that theve is no branched
covering f: y—pt)-! of a projective manifold Y' with f the pullback of f under
D.

Proof. We will need a few simple estimates that follow from the
inequalities, n =>¥+22>4. First note that dimG=7(n—7) and that

<">2<Z)Zr(n—r)+226. (1)

4

Take an ample and spanned vector bundle # of rank 2 on G, e.g., O (1) ®
0O¢(1) with Og (1) the very ample line bundle whose sections give the Pliicker
embedding. By Theorem 1.1, it follows that by choosing a generic YE
| (dimG) &5| we obtain a degree dimG =7(n —7) branched covering 7y : Y—G.
Note that since Y is generic it is smooth by Bertini's theorem. Let f=1y.

We proceed by contradiction. Let P: =P()"" Assume that the
covering f: Y—G is the pullback of a branched covering [ : Y'—P of degree
dimG, where Y’ is a projective manifold. Using equation (1), it follows from
the first Lefschetz hyperplane section theorem that h,(Y, C)=h,(P(%),
C)=2. By Lazarsfeld’s Barth type theorem for branched coverings of
projective spaces[10,11], m; (Y') =x; (P) for

iSdimP—degf’-l-l:((;)—1>—r(n—r) +1=<;)—r(n—r).

Thus by equation (1), 7, (Y') =7, (P) =Z. On the other hand, a result of
Fulton and Lazarsfeld [4. Theorem 9.6] gives the following isomorphisms
between two relative homotopy groups:

faim (Y, Y,9) — 7P, G.f (3)) where yEY,
if j<dimY' —codG=r(n—7), ie. for j <4 by equation (1). Now consider the
homotopy sequences of the pairs (Y’, Y) and (P, G):
(V) — m(Y,Y) = m(Y) — m,(y) — (Y, Y)
3(P) — mP,G) — m(G) — mP) — (P, G).

Therefore by the five lemma (note that 73 (P) =0), 7, (Y) =7, (G) =Z, which,
by Hurewicz’s theorem, implies the contradiction that h, (Y, C) =1.

Remark 1.3. Take an ample and spanned vector bundle # of rank 2
on a projective manifold X. For a branched covering f: Y—X constructed as
above with degree d = dimX, let & be the vector bundle (f«0y/0x)* (see
Lazarsfeld [10, 11]). The ampleness and spannedness of ¥ gives the same
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positivity condition on 8. To see this, note that the exact sequence 0— £5%—
@p(g)—’@y_’o gives

8= (m4O0y/m40p3)) ¥*= (m 1) E5%) ¥ = 14 (E;_2®7f*detg;) =S 2FQRdetF

by using relative duality (cf., [2]) and the canonical bundle formula.

Remark 1.4. We call attention to the recent result of L. Manivel [12]
extending the results of Kim [7] to show that if X is a Grassmannian Gr (v, ),
then (f«0y/0x) * is ample. We also want to mention the paper [8], which
deals with coverings of nonsingular quadrics.

2. A result on the geometry of Grassmannians

We first need a characterization of projective space in terms of the sizes
of the families of linear subspaces. This result should be well known, but we
do not know a reference.

Let G :=Gr (r+1, n+1) denote the Grassmannian of (r+1)-dimensional

complex vector subspaces of C"!. Let # CG X P” denote the tautological
family of linear P”s in P”. Let p:%—G and g:%—P” denote the two
morphisms of # induced by the product projections.

Proposition 2.1. Let P*, G, ®, p, and q be as in the preceding

paragraph. Let Z C G be a subvariety. Let X:=gq (p™*(2)) with 6 = dimX.
Then dimZ < (r+1) (0 —7) with equality only if X is a linear P° and Z is a
subgrassmannian Gr(r+1, 6+1) CG.

Proof. The proposition is clear if dimZ=0. We proceed by induction
assuming that the result is true when dimZ <d for some positive integer d.
Thus let d:=dimZ >0.

Since p and ¢ are fiber bundles with connected fibers we have that X is a

variety. Let fi=dim p~!(Z) —dimX. Then
r+d=dimp="(2) =f+6 (2)

Let G:=Gr(r, 0) denote the Grassmannian of linear P”~Vs in the (6 —1)
-dimensional projective space P (T%;) for a general point x €X. Let ' C
G'X P (T%.:) denote the tautological family of linear P""Vs in P(T%.). Letp
:®'—G and ¢’ : P —P (T%,) denote the two morphisms of % induced by the
product projections.

Every linear P” in X containing x gives rise to a linear P"*C P (T%,).
This gives rise to a morphism i:gyhe (1) G’. Since distinct linear P”'s
containing » go to distinct linear P”7"'s under i, we have that i is one-to-one.
Let Z' denote i (7' (x)). Note that since x is a general point, Z' is the fiber
g5 (x) and we have that dimZ'=f. Let X:=¢ (p'"'(Z')) and & =dimX".
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By the induction hypothesis we have dimZ <7(§’+1—v). Using equation 2
and noting that 9 <Jd—1 we have that

d<r(6—nr)+o—r=(0—r) r+1).

This gives the desired inequality. If we have equality here, then 0 =0—1
which implies that X’=P(T¥.). Thus the projection from x €P" expresses X
as a cone. Since x is a general point of X and hence smooth we conclude from
[13, Theorem 5.11] that X is a linear P®. In this case we have that ZCGr (7,
0). Since dimZ =d =(6 — 1) (r + 1)= dimGr(r, 6), Z must be this
subgrassmannian of G.

We need the fact that certain subgrassmannians of a Grassmannian have
vector bundle neightborhoods. On G: = Gr(r+1, n+1) we have the

tautological sequence of vector bundles, 0— F*—G X C”“—¢>8—>O, with rank
#=r+1 and rank6 =n —r. Given any integet =1, we have an embedding
G—Gr (r+1, n+1+1t) given by sending *+ €G to the point in Gr (r+1, n+1
+t) corresponding to the subspace FF¥P {0} of C***=C"'@C'. We can
extend this map to an embedding of F® into Grr+1, n+1+t). Send f:=(f,
o ) EFE to the point in Gr (v +1, n+1+¢) corresponding to the image of
F¥ in C"*'@PC* under the map sending vEF ¥ to (v, f(v)) EC*PC".
We need an easy consequence of a well known theorem of Kleiman [9].

Lemma 2.2. Any variety X in Gr (r +1, n +1+1t) homologous to a
multiple of G:=Gr (r+1, n+1) can be translated so that it is in the above vector
bundle neighborhood.

Proof. Let U denote the vector bundle neighborhood of G:=Gr (r+1, n+
1+t¢). Note that the complement of U is a union U ;e; Z; of a finite number of
irreducible subvarieties Z; of G'. Kleiman's theorem [9] guarantees that we
can find a translate gX of X that for each i €I meets Z; in either the empty set
or a set of dimension dimZ; +dimX —dimGr (r+1,n+14+1¢t). If Z;NgX+ @,
then because the dimension is the dimension of the homology class &
representing Z; N gX, the intersection Z; N gX with multiplicities represents h.
Since GNZ;= @ and since the homology.class representing & is a multiple of
the homology class GNZ;, we are done.

For a subvariety V in Gr (r+1, n+1), let Ry be the union of P”s in P*
represented by V,

Theorem 2.3. Let n=n">v21. If a subuariety X of Gr (r+1, n+1) is
homologous to a nontrivial multiple d [G'] of a subgrassmannian G':=Gr (r +1,
n'+1) in Gr(r+1, n+1), then X is a translate gG’ of the subgrassmannian G’ by
an automorphism of Gr (r+1, n+1).

Proof. Since the truth or falsity of the theorem is not affected by
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replacing X by a translate of X by an automorphism of Gr (r+1, n+1), we
will simply rename as X, the different translates that arise of X by
automorphisms of Gr (r+1, n+1).

Let U denote the vector bundle neighborhood of G’ constructed in the
paragraph before Lemma 2.2, By Lemma 2.2 we can assume that some
translate of X, which we rename X is in U.

Note that R¢ is a linear P”. By the construction before Lemma 2.2

there is a vector bundle neighborhood V of P” in P".

Let : U—G’ be the bundle projection. For a general fiber f of 7, X * f
=dG + f =d. Therefore x: X—G’ is generically d to 1. Since 7 is affine,
we conclude that mx:X—G’ is a finite morphism of degree d. By using
multipication in U by an element of C* that is sufficiently small in absolute
value, X can be assumed to be as close as we want to the zero section, G’ in U.
In particular, we can assume that the union of the P”s in P” represented by
X, Rx, is a compact connected subvariety contained in V. Therefore since the

vector bundle projection V—P" is affine Rx is at most n'-dimensional. By

Proposition 2.1. ®Rx must be P and X must be isomorphic to some
subgrassmannian Gr(r, n—1) and d=1.

The above result can be rephrased as saying that given a Grassmannian
G:=Gr (n—r, n) with a rark =2 tautological quotient bundle & of the trivial
bundle G X C” and given an irreducible subvariety X representing a nonzero
multiple of ¢, ()" for some t>0 it follows that X is a subgrassmannian of G
defined by t sections of §. It is natural to ask the following question.

Question 2.4. Which homology classes on a Grassmannian have no
irreducible subvariety representing them ?

The following more restricted version of this question is very natural in light
of Theorem 2.3.

Question 2.5. Given positive integers 7, 7, n, n’ with ¥ <7 and n’ —7'
<n—r, there are embeddings of G:=Gr (# +1, n'+1) into G:=Gr (r+1, n+
1). For which quadruples, 7, n’, r, n, is it true that any irreducible subvariety
of G homologous to a multiple of G” is a translate of G’ by an element of the
automorphism group of G.
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