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1-cocycles on the group of diffeomorphisms II
By

Hiroaki SHIMOMURA

§1. Introduction

In this paper we consider 1-cocycles 6 over finite or infinite configuration spaces
on C*-manifolds M and natural representations connected with 6, which is exactly a
continuation of the previous author’s work [22]. Here the 1-cocycle is as a definition
a U(H)-valued function on X x Diff§(M), which fulfills the so called cocycle equality,
and U(H) is the unitary group on a finite dimensional Hilbert space over C, Diff§(M)
is the connected component of the identity id in the group of diffeomorphisms with
compact supports on M, and X is a collection B}, of all n-point subsets in M, or
X is a space I'y, of all infinite configurations on M. Historically in the first paper
of Ismagilov [7] it is described that every irreducible unitary representation of the
group Difff(T') with some additional properties is characterized as the natural
representation U, , with a suitable measure 4 and a 1-cocycle 6 on a configuration
space or on an analogous one. After this natural representations frequently appeared
in order to analyse or to construct unitary representations of Diff§(M). (cf.
[5],[6],[9],[25]) But the study of 1-cocycles have been rather neglected. Recently
the author found that when the configuration space is M itself, the form of 1-cocycles
is closely connected with a geometrical structure of M. (cf.[22]) That is, under an
assumption that M is simply connected, every continuous! 1-cocycle 8 has a canonical
form consisting of only 1-coboundary and Jacobian term which are also the standard
examples of 1-cocycles. Besides 6 takes locally the canonical form without any
assumption on M. Thus it is thought that a glueing of pieces actually determines
the form of 1-cocycles on M. Combining these results with [7], we are led to a
motivation of the present paper. That is: Is the situation for a general configuration
space similar with the previous one?, and the answer is affirmative.

Let us explain our results in more detail. The next section begins with five
definitions for regularity of 1-cocycles. Among them a notion of precontinuity is
most fundamental. The principal part of this section is devoted to the study of
precontinuous 1-cocycles 6(P,g) on B}, x Diff¥(M). Since B%, is a quotient space
of M":={P=(P,,--,P,)e M"|"i#j, P;# P,} by an equivalence relation, we can always
lift § to M"x Diff§(M) as a symmetric one. So it is reasonable to start our study
at precontinuous, however not necessarily symmetric, 1-cocycles on M" x Diff¥(M).

The result is still true for precontinuous 1-cocycles as will be seen in the present paper.
Communicated by Prof. T.Hirai, January 20, 1999
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The analysis consists of three steps. The first one is a preparation for our tools
used in the analysis of Diff§(M) from the theory on infinite dimensional Lie
groups. The most important one among them are the primitive Campbell-Hausdorff
formula and a theorem for denseness which assures that diffeomorphisms of
exponential mappings generated by smooth vector fields with compact supports
generate the whole group. These were already obtained in [22], and as a byproduct
we are naturally led to a simple proof of the fact that the whole group Diff¥(M)
is generated by local diffeomorphisms. In the second step, the analysis of 1-cocycles
is turned to a linear one with a help of these theorems, and a partition of unity
reduces it to a local consideration of Lie algebras. Finally in Theorem 2.3 a linear
representation of a Lie algebra of smooth vector fields will be examined. In the
last step a local behaviour of 1-cocycles is first given by these results without any
assumption on M, and next it is observed in order to patch up them globally. It
is the time to need a geometrical condition for M or more directly for M". Simply
speaking, we have a situation closely resembling to analytic continuation. The
1-coboundary term appeared at this stage defines as a rule a many valued function. In
the case of analytic continuation, Principle of monodoromy works so effectively
that this kind of ambiguity is clearly resolved, and we will find that it is also useful
for our case. This is the reason why we impose the simply connected condition
on M". That is to say, whenever M" is simply connected, every precontinuous 0
takes a canonical form (Theorem 2.8). In addition a more general and precise
statement for cocycle form is given in Theorem 2.5 for our later discussions.
According to [3] for the simply connectedness on M" for every ne N, it is sufficient
that M is simply connected and dim(M)>3.

The rest of this subsection is devoted to the study of exceptional cases, that is
to say M=R',R? and T'. In the first case, B}, is itself simply connected, and M"
has n! connected components which are all isomorphic to Bj,. Taking a such
isomorphic section we can describe the cocycle form. Of course there are non
canonical 1-cocycles on M"x Diff¥(M), and a later theorem implies that natural
representations corresponding to these 1-cocycles are never irreducible, unless
dim(H)=1. So in this case, a class of irreducible natural representations are
something narrow. Next, if M =R?, we will see that there is also an example of
non canonical 1-cocycle being closely resemble to the one described in the cylindrical
case. (cf. [22]) Finally the last case M=T'=T is more interesting. B} and T"
are non simply connected, but the general form of precontinuous 1-cocycles and
an example of non canonical one are also given.

In the latter half of this section, we take up natural representations U; of
Diff§(M) corresponding to a standard measure i on B}, derived from a locally
Euclidean finite smooth measure u on M and to measurable 1-cocycles 0. According
to [7], a definition for irreducibility of 1-cocycles is given and a criterion for the
irreducibility of 1-cocycles is obtained in Theorem 2.12. Further it is assured in
Theorem 2.15 that for the irreducibility of Uj it is necessary and sufficient that 0 is
irreducible. It is noteworthy to remark that in the above theorem we assume that
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f is strongly Borelian but it is unnecessary to require that 0 is canonical. In the
proof we use only the local form of § which was already established in Theorem
24. Equivalence of natural representations corresponding to 1-cocycles is stated
in the last Theorem 2.16 in terms of the cohomologous relation.

In section 3 we assume that M is non compact, and first consider precontinuous
1-cocycles  over the infinite configuration space I'y;. As before we identify § with
a symmetric precontinuous one § over M*:={P=(P,,---,P,,--)|Vi#j, P;#P;,
{P,}, has no accumulation points}. Diff§(M) acts on M= diagonally and each
orbit [P] containig P cosists of all Qe M® whose components are all equal to that
of P except for finite numbers of n, of course under an additional but natural
assumption on M. So it is reasonable to first restrict our 1-cocycle § to each [4],
AeM™. Then the problem is reduced to the one on finite configuration spaces,
and we gather all the resuts in Theorem 2.5 and patch up them by an inductive
limit method. In particular If M is simply connected and dim(M)>3, every
precontinuous 1-cocycle on M ® x Diff¥(M) takes a canonical form. However the
canonical form obtained here is someting different from that one obtained in section
2. The Jacobian term is the difference between these formulas and it depends, in
the present case, on not only P of course but also the residue class [ P]. (cf. Theorem
3.2) As before we consider natural representations of Diff§(M) over I'), which are
alike to the one over the finite configuration space. This time, however
Diff§(M)-quasi-invariant measure on (I'),,B), B is the natural Borel field, is not
uniquely determined (up to equivalence), so we must consider also a factor of such
probabitiy measures v on (I'),,®B). Hence a natural representation is a function
of two variables, measure and 1-cocycle, and also a definition of irreducibility of
measurable 1-cocycles must be given in terms of v, which we «call it
v-irreducibility. However the resuts are almost parallel to the finite dimensional
case.

Finally we wish to say a few words about the dimension of the Hilbert space
H. As it was pointed out earlier, throughout this paper dim(H) is assumed to be
finite, unless otherwise stated. However most of the results obtained here seems
to be still (or under some additional conditions) true for the infinite dimensional
space, especially when M is compact, though I have no proofs yet for them. Perhaps
more profound study for the differential representation dU of a given infinite
dimensional representation will derive the proper proof.

§2. 1-cocycles on the finite configuration space

2.1. Five definitions of l-cocycles. Throughout this paper, M stands for
d-dimensional paracompact C*-manifold, Diff,(M) is a set of all C ®-diffeomorphisms
g on M with compact supports. Diff (M) is equipped with the inductive limit
topology t of 7x on DIiff(K), where K runs through all compact sets of M,
Diff(K):={g e Diffy(M)|suppg = K} and 1, is the natural C*-topology on it. The
connected component of the unit element id of Diff,(M) will be denoted by Diff§(M),
and it is noteworthy to remark that Diff§(M) is also arcwise connected. (cf. [22])
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Hereafter we will work on Diff§(M), and in a little while we denote Diff¥(M)
or its subgroup by G. Suppose that G acts on a measurable space (X, B) from left
as a measurable transformation, gx.

Then we consider a U(H)-valued function 0(x,g) on X x G, called 1-cocycle,
which satisfies the following relation.

(2.1 Vgl 826G, 0(x,8,)0(gy 'x,8,)=0(x,8,8,),

for all xe X, where H is a complex finite or infinite dimensional Hilbert space, and
U(H) is the unitary group. We give as below five definitions for regularity of
1-cocycles.

Definition 2.1. (1) 0 is said to be precontinuous, if for any fixed x,€ X,
O(xo,g) is continuous on G(x,):={geG|gx,=Xx,} as a function of g.
(Of course if G acts transitively, the word “any” can be replaced by “some”.)
(2) 0 is said to be continuous, if for any fixed x € X, 0(x,,g) is continuous on G
as a function of g.
(3) 0 is said to be Borelian, if it is precontinuous and for any fixed ge G, 0(x,g) is
B-measurable.
(4) 0 is said to be strongly Borelian, if it is precontinuous and 0(x,g) is jointly
measurable of both variables.
(5) 0 is said to be measurable, if for any fixed geG, 8(x,g) is B-measurable.

In addition it is sometimes expected that the following condition, a kind of
continuity, is imposed, whenever p is G-quasi-invariant, in order that the natural
representation corresponding to 6 is continuous.

6) “hy,h,eH, {0(x,g)h,,h,>y— <hy,hy)y in p, whenever g —id.

Anyway the relation between these five notions are as follows.
“Strong Borel” implies “Borel”, “Borel” implies “Measurability” and “Precontinuity”.’
Also “Continuity” implies “Precontinuity”, and sometimes it implies “Strong Borel”,
for example Theorem 2.13.  Of course “Continuity plus Measurabilty” implies “Strong
Borel”.

2.2. Local form of precontinuous 1-cocycles. In this subsection we consider
precontinuous 1-cocycles @ on B}, x Diff§(M), where By (n=1,2,---) is a collection
of all n-point subsets P={P,,---,P,} in M with a natural action g, ge Diff§(M)
from left.

In order to observe such cocycles, it is convenient to lift them as symmetric
1-cocycles on M":={P=(P,,--,P,)eM"|Vi#j, P;#P;} on which Diff§(M) acts
diagonally as g(P):=(g(P,),--,g(P,). Moreover also in order to prepare for
the discussions in section 3 we will begin more generally with a study of precontinuous
1-cocycles 6 on M,';xDiﬂ}‘;,A(M), where A:={A4,4,,A,+2,--+} is an arbitrary set
(may be empty set) of M which has no accumulation points, My:={PeM"|PnA
=0}, and Diff§ (M):={geDiff{(M)| there exists a continuous path {g}o<,<; in
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Diff{(M) such that g,=id, g, =g, and g(4;)=4; for Yi>n+1 and "re[0,1]}.
Throughout this section M’ will be sometimes denoted by M, for simplicity.

The following theorem and its proof is quite similar with theorem 2.2 in
[22]. We omit its proof.

Theorem 2.1. Put Ty (M):={XeT'o(M)| X(Q)=0 for all Qe A}, where T'o(M)
is the set of all C*®-vector fields on M with compact supports, and let {Exp(tX)},r
be a 1-parameter subgroup of diffeomorphisms generated by Xel'y (M). Then a
group generated by Exp(X), XeI'y (M) is dense in Diff§ ,(M).

Remark 2.1. Actually this theorem is true not only for the above set A but also
for any general subset of M.

As an immediate consequence of Remark 2.1 and primitive Campbell-Hausdorff
formula in [22],

Theorem 2.2. Let {V,},.o be any open covering of M. Then a group generated
by all subgroups of local diffeomorphisms, Diff§ V), A€ A, is dense in Diff§ ,(M).

Proof. Take any g from Diff§ ,(M). Then it is approximated by a finite product
of Exp(X), XeT'o (M) by Remark 2.1. Next decompose X into finitely many
X;eTy (M), using a partition of unity subordinate to a locally finite refinement of

X;

the above covering. Thus each Exp(—'), ne N belongs to our local diffeomorphism
n

groups. Finally applying the primitive Campbell-Hausdorff formula to them

repeatedly. This completes the proof.

In particular in the case of 4 =0, Theorem 2.2 assures that a group generated
by all local diffeomorphisms is dense in Diff§(M). It is somewhat well known, but
the proof stated here rather simple. Next we go to a key theorem in this
section.

Theorem 2.3. Let H be a Hilbert space over C whose dimension may be
infinite. For a>0 put

U,={xeR| Ix;|<a (k=1,---,d)},
G2 ={F=(filN1 <i<al /i CXU) k=1,---,d) and F0)=0},
where C$(U,) is the test function space in U,, and

[F,G]:= i {f,‘(x)a—G(x)—gk(x)a—F—(x)} for all F,Ge%?.
k=1 6xk axk

Then for any continuous linear representation dU from 49 to S(H):={T:bdd.op. on
H| T*= —TY), (the toplogy on %2 is the natural one derived from the test function
space and S(H) is equipped with the weak operator topology), there exists a Se S(H)
such that
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d
dU(F) =< y % (0)) S.
k

k=1
Proof. Before begining the proof let us write down explicitly the assumption
on preservation of the Lie brackets;
2.2) dU([F, G])= —[dU(F),dU(G)] :=dU(G)AU(F)—dU(F)dU(G).

Now take any point x#0 in U, and consider a cubic neighbourhood U(x) not
containig 0. Evidently CP(U(x)) = 42, so it follows from lemma 3.1 in [22] that

2.3) dU| C2(U(x))=0.

In other words, Fe%? and O¢supp F imply dU(F)=0. Henceforth we take and
fix a ¢ CL(U,) satisfying ¢=1 on a neighbourhood of 0. Then

(2.4) dU(F)=dU(¢F)
for any Fe%?. Here we break off the proof for a little while, since we need the

following lemma.

Lemma 2.1. Let A be a bounded operator on H and Be S(H), and suppose that
AB—BA=cB holds for some non zero ce C. Then we must have B=0.
Proof. From the assumption and mathematical induction on n,
AB"—B'"A=cnB" (n=1,2,--)
follows easily. Take the operator norm of both sides in the above equality. Then,
leln]| B"|| <2411 B"]l.
Thus either it holds 4 =0, which gives B=0 or it holds B"=0 for a sufficiently

large n, which also gives B=0 due to the assumption.

Let us return to the proof of Theorem 2.3. Put
Ceo(Uy):={fe C5(U,)| f(0)=0}
and
dU(f):=dU(f1) (1<k<d),

where 1, is an R%valued constant map whose kth component is equal to 1 and the
other components are all equal to 0. Further put

d d
[f,g]k:=f—g—g—f (f.8€ C5o(U,).

ox, — 0x

Then



Group of diffeomorphisms 499

(2.5) dU(L/f.g1) = —[dU(/),dUg)],

and for a polynomial with parameter te R‘™!; P(x)=P, (x):=1;x;+ - +l_ 1 X4—y
+ X,y 1 Xgs 1+ - +14x, and for all meN,

(2.6) [P.¢, Prdpli=(m— )P/
It follows from the definition of ¢ that
2.7) [dUP$), dU(P!$)] = —(m—1)dU(P7¢).

Therefore for m>2 we find that

(2.8) dU(P}'¢)=0
by virtue of Lemma 2.1. Consequently
2.9 dU,(x7' -+ x3°$)=0

holds for all d-tuple (o,,---,o;) of non negative integers satisfying o, + --- +ay
>2.
On the other hand take any ge C§(U,) and set

h(x) 3=¢(x)f 80Xy, X U Xy gy s e, X)L

Then,

O (= (g +£:(x),
0x,

where g, € C&(U,) is a function vanishing on a neighbourhood of 0. Thus for m>2
an equality

LPrh, P lu(x) = PEm(x)(h(x) ¢( )—¢(x )—( )

and (2.8) lead to

(2.10) dU(P¥"g)=0.

In particular for all (ay,---,ay) With o, + --- +0,=4, we find that
(2.11) dU, (x5 -+ x3%g)=0.

Now take any f'e C5%(U,) and choose the above ¢ so that it is equal to 1 on
a neighbourhood of suppfu{0}. Then it follows from Taylor’s expansion of f at 0,
o 1 1o*
fx)= ¢(X)Z > 7f(,[(0))€°{l XZ‘+—¢(X)J —{(tX)(l —1)’dt,
- Ox§? 3! o0 Ot

|a =i axall
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and from (2.9), (2.11) that

d
avn =3, L 0avixe)

i=10X;
By the way for i#k, it is straightforward to check that
[dU(x,9), dU(x,9)]i = — dU([x,$, x: 1) = dUix:9),
so we find again that
(2.12) dU(x;¢)=0

by virtue of Lemma 2.1. Hence

)
a0, (=L s,
0x,
in other words for all Fe%?
d
(2.13) dUF)=Y, %(O)Sk,
k=1 axk

where S, :=dU,(x,¢$) does not depend on a particular choice of ¢.
Lastly we show that S is the same one for all k. Let 4:=(a;;), B:=(b;;) be
any dxd matrices, and take F=(f}); <x<a» G=(81)1 <x<a€ %L such that

%(0)=a,.,j, and %
Ox; 0x;

(0)=bi,j
for all 1<i,j<d It follows from (2.2) and (2.13) that
d d
(2.14) Z ai’]’bj,i(si_Sj)—: Z ai'ibl',j[Si,Sj].
ij=1 tj=1

Thus a; j:==a;6; ; and b, ;:= 6, ;, («;, B;€ C) give [S;,S8;]1=0, while a; ;=b, ;:=6

l’.’
give that S, =S, for all 1<i,,j,<d.

i,ioé.i..io

With a help of Theorem 2.1, Theorem 2.3 and primitive Campbell-Hausdorff
formula in [22] it enables for us to decide a local form of precontinuous 1-cocycle

A

0 on M,xDifff (M). Take any 0=(Q0,,-Q,)eM, and fix it, Further put
To40oM):={XeT, M) X(Q)=0 for 1<"i<n}, and

Diff§ , o(M):={geDiff§ ,(M)| there exists a continuous path {g,},,<, in Diff§(M)
such that g, =id, g, =g, and §(0)= 0, g(4, . )=A,+, for Yie Nand Y1€(0,1]}. Then
Stone’s theorem and the primitive Campbell-Hausdorff formula lead to a weakly
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continuous linear representation dU from I'; , , to S(H) such that
(2.15) 6(Q, Exp(X)) = exp(dU(X))

for all Xel'y 4. Decompose X into finitely many X;s using a partition of unity
so that supp X; is contained in a cubic neighbourhood, and next apply the result
in Theorem 2.3. Finally calculating in the same way as in [22], we find that

16 dUN)=/ =T} 108 Seu( @it/ =1 3. 108 JeupnfA)H,

i=n+1

where {H;};.i<, is a commutative system of self-adjoint operators on H and
Jexpx)(Q)) is the Jacobian matrix of Exp(X) at Q;.
Now take open neighbourhoods V°(Q), V(Q,) of Q; (i=1,---,n) which fulfill
the following conditions.
(@) ¥%Q,) is diffeomorphic to R?,
(b) VO(Q)n VO(Q)=0 for Vi),
© VA@){Aps1, 412, -} =0 for 1<Vin,
(d) VY(Q,) is compact and it is contained in V°(Q,) for 1<Vi<n.
Put

VAQ)=VQ)x - xVAQ) and VYQ):=V'(Q)x - x V(Q,).

It is not hard to see that there exists a continuous section sp, € Diff§(V°(Q)) on
V(Q). Thatis, sp(Q;)=P; and a map P,e V'(Q)) sp e Diff§(V°(Q)) is continuous.
Thus

s,;2=Spl OstO e OSP"
verifies the following conditions
sf(@)=P; (1<i<n), sfd)=4; ("i=n+1), and

a map; PeV(Q) spe DIt (VQ,)u---uV*Q,)) is continuous.
Here let us impose the following fundamental condition (¥) on (P,g).

(*) For (P,g)e M, x Diff¥ (M), there exists a continuous path {g,}o,<; < Diff§ ,(M)
such that g,=id, g, =g, and g, '(P)e V(Q) for 0<Vt<1.

s5p ! °g 8- is defined for such a pair (P,g) and it gives a continuous path in
Diff§ 4,o(M) connecting id and s5'cgess-15. It follows from Theorem 2.1 and
from (2.16) that

@17 60.9)= TTM@Y ™™ T hcy~

k=n+1

holds for ¢:=s§’ogos§vl(;,), whenever (P,g) satisfies the condition (*). Let us
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introduce any o-finite smooth locally Euclidean measure u on M. Note that for
1<Vi<n

(2.18) Jig ogon, -1

)

_ d #s 1 P, _ -1
(@) ' = “g(P) (e %P»( (P)) ,
and that for 1<%i<n, Yj=n+1

_, du
(2'19) Js;'logosg--(P‘)(Aj) ! =d_:(AJ)

Hence from the cocycle equality,
0(P.g)=000,55 ") '0(Q.57 ' o g > 55- 10D, 534,

we have the following theorem with C(P) defined by

n ~ 1Hj
(2.20) aﬁ:ﬂ(‘ﬂm)¢ 00, s7 V).

Theorem 2.4 (Local form of precontinuous 1-cocycle). Let § be a U(H)-valued
precontinuous 1-cocycle on M’ x Difft (M). Then for any Qe M’ there exist a
relatively compact open neighbourhood of V'(Q) = M, a UH)-valued map C defined
on VYQ) and a commutative system of self-adjoint operators {H.}, i< on H
such that

o . " (d V-1Hy o V- 1Hx i
@221) 6B,g)=CcP) '] (;jf(f’k)) I (d"g(A,,)) clg=\(p)),

k=1 k=n+1 dll

provided that (P,g) satisfies the condition ().
If moreover 0 is continuous, then so is the map C.

2.3. Canonical form of precontinuous l-cocycles. Next we shall observe a
behaviour of the pair (C, {H,},) varying the basic point J. Take an open covering
{V?};, a locally finite refinement of the covering {V‘(Q)}é, so that any intersection
of any two sets in this collection is connected unless it is not empty. For example
it is enough to take a simple covering. Moreover take open coverings {V3};, {Vi*};,
{V?}; and {VF}; which satisfy,

VeV, VicVA, VEcV?, and Vi V2.
Finally take any one of V!(Q) containing ¥? and denote it by V!. We may
assume that VZ < V. Let (C;,{H,}:) be a pair corresponding to the relatively
compact open set V!, and restrict C; to V2, which will be again denoted by the
same letter C;. It is easy to see that for any point P=(P,,--,P)e V2 nV}, for
any k and for any a,>0 (k=1,---,n), there exists a continuous path {g:}05z51 in
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Diff§ (M) connecting id and g such that gd&(P,‘)=ak, suppg,N(AU{Py, -, P_y,
u

Piry,P})=0 and g '(P)=P for all te[0,1]. It together with (2.21) lead us to

(2.22) C{P)™'H, ,C(P)=C{P)"'H, ;,C{P)

for all PeVZn V?. Thus (2.21) and (2.22) imply that whenever (P, g) satisfies the
condition (*) in which V!(Q) is now replaced by V? or V,-z, and further satisfies
suppgn A=0, then

(2.23) CAPIC{(P)™' =C(& " "(B)C g~ "(P)".

Hence if V2 n V7 #0, using local diffeomorphisms repeatedly, we find that C(P)C(P)!
is constant on VZnV}?. Set

(2.24) K, ;:=C(P)C(P) .
Immediately (2.22) shows that

(2.25) Hk.izKi,ij,jKi:il
holds for 1 <Yk <n. Moreover taking difftomorphisms with small supports which
are alike to similar transformations at 4,, we find that (2.25) is also valid for all
k=n+1.

The third step is to patch up these results. Put
K, =Cl(V}u--uVd), I,={ieN|K,nV3+#0},

and

U, = {geDiff§ (M)| there exists a continuous path {g,}o <, = Diff§ ,(M) connec-
ting id and g such that suppg, € K,,, " '(V?) < V72, §(V?) = VE, g7 '(VH < V2,
and (V) < V2 for Viel, and “te[0,1]}.

Note that suppg,n4=0 for all te[0,1] and that m <m’ implies %,, < %,,. Finally
put

m(P):=inf{meN| PeV}u...uV2}.

It is not hard to see that {g(P)]| g€} contains a connected open neighbourhood
O of P in some VE.

i
From now on we assume that M} is simply connected, and use the Principle of
monodoromy. Put

D :=Up5,05 % Op,
and define a map ¢g g4, ((P,0)e D) on U(H) by

(2.26) e gdU)=C(Q)"'C(P)U, if (P,Q)eVExVE.
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This definition does not depend on i by virtue of (2.24). Now in order to check
the relation,

PER=PGR°PFG>

let (P,0)eO0ygx 0%, (0,R)€0yx 0y, and (P,R)e0;x 0z Then there exist
81826 Umiiys 83-84€Umyyy and i,j,keN so that

ng‘l(/"})’ QA=gA2("‘>)’ QA=gA3()’})’ jé:g:t(f/)a
O3y VP8 Oyc VP, and Oz Vy.
Put m:=max(m(X), m(¥)). Evidently,
g.€U, (s=1,2,3,4), X,YeKk,,, and i jel,.

So taking a continuous path {g,,},<,<; corresponding to g, appeared in the definition
u,, we find that

gA4,1OgA3_,xl ng,t ° g;zl(W) < Vi2 s
gﬂz,t“"gl_,tl(ViE) < Vi4’ g4.t OgAz‘_,rl(Vf) < V;‘;
and it follows from Theorem 2.4 that

o Sy dﬂg J—_fHk.i P
0P, g)=C(P) '] d_“'(Pk) C(g~'(P),

k=1

n

. . du NESY: % .
(j(P,glogz_l)=C,~(P)_ll_[ <d_:(Pk)> Ci(gz"gl_l(P)),

k=1

L —1 Ay n d#g V—1Hi . CC1h
0(P,g3°84 )=C;(Q) kl;ll E(Qk) Cj(g4°g3 (P),

where g:=g,0g; 'ogsogs . Note that Qe VN VP, which together with (2.22)
lead us to

C{(Q)'H,,,C(Q)=C(Q)™ ' H, ;C(Q).
Hence from the cocycle equality we get
(2.27) C{R) = C(Q)CAQ) ™' C(R).
In other words,
G(R) ™' CP)=C(R) ' C(P) = C(R) ' C(O)IC(Q) ' C(P),

and the desired result follows. (The first equality is an immediate consequence of
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P,Re VA V? and (2.24))
In conclusion we have a U(H)-valued map C on the whole of M, so that
(B,0)e DN (VE x V8) implies

(2.28) GO P =)

It is straightforward to check that the continuity of C follows from that of C;.
Let us go to the next step succesively. For 1<k<oo define H, on M, by

(2.29) H(P):=CB)C(P)"'H, ,C{P)C(P)~!, if PeV?.
It is well-defined by virtue of (2.25) and
(2.30) H(P)=Hy(0)

for all (P,0)e DN (VE x V8. Hence H(P) is locally and therefore globally constant,
say H,, due to the connectedness of M,. Consequently (2.21) in Theorem 2.4 now
becomes

A n n (d v-1Hk o d v~ 1Hk ”
(2.31) 0(P.g)=C(P) ' [] (—jﬂm) I (—”K(Ak)) c(g ~(P)),
k=1 u k=n+1\du

provided that (P,g)e M, x Diff§ ,(M) fulfills the following condition (**).

(**) For (P,g) there exists a continuous path {g}o,<; < Diff§ (M) connecting
id and g and an Xe M, such that

g \(P)e0yg for Yte[0,1].
Put
{(P,g):=the right hand side of (2.31).

We claim that §=_ at the final stage. Let K be any compact set of M and
set Diff*(K):= {g e Diff§(M)| there exists a continuous path {g,},.,., connecting id
and g such that suppg, < K for Vre[0,1]}.
Then for any Pe M, there exists a neighbourhood %y 5 of id in Diff*(K) so that
geUy ;s implies g !(P)eOs. Now take an arbitrary ge Diff§ ,(M) with the
corresponding path {g,}o<,<, < Diff§ ((M). By a property of inductive limit
topology there exist a compact set K of M such that suppg, < K for all 1€[0,1]. We
claim that

T:={te[0,1]] O(P,g)={(P,2.)}

coincides with [0,1]. First we show that it is open. Let teT and put
P:=g,'(P). Take a 6>0 such that |s—¢/<¢ implies g,:=g, 'g,e ¥y yp,. Thus
(P,,q,) satisfies the condition (**) and it follows that
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é(Pt » qs) = f(ﬁt s qs)
In other words,

0(P.g)=0(P,g)0(P,,q,)
=5(ﬁ’gt)f(ﬁtaqs)
={(P.g).

for all |s—#|<d. The closedness of T is similary proved, so the conclusion follows,
since 750. By the above we have the following theorem.

Theorem 2.5 (Global form of precontinuous 1-cocycle). (1) Suppose that M is
simply connected. Then for any precontinuous U(H)-valued 1-cocycle 6 on
M’ x Diff§ (M), there exists a U(H)-valued map C on M’ and a commutative system
of self-adjoint operators {H,}, on H such that

A . n d J—_IHk 0 J—_lHk o
232 OPg=Cap)'[] (%(Pk)) 11 (d—"g(Ak)) cg\(P)
k=1 \ap k=n+1 \dl

for all (P,g)e M, x Diff%_(M).

If 0 is continuous, then so is the map C.
(2) Assume that M’ is connected. Let 0 be given by (2.32) with (C,{H,},) and let
(C',{H}\) be another such pair. Then there exists some TeU(H) such that

C'(Py=TCP) for "PeM’ and H,=TH,T™' for 1<"k<c0.

Proof. We need only prove the uniqueness part. To this end we again take
difftomorphisms which were used in the just behind of (2.25). It follows from
them that

(2.33) C(P)"'H,C(P)=C'(P)"'H;C'(P)
for Yc>1 and YPeM,, and further
(2.34) C'g ' (P)=C'(P)C(B) 'C(g™"'(P)

for all geDiff§ 4(M). Thus the assertion follows from the transitivity of Diff§ (M)
on M,.

Corollary 2.6. If some connected component W of M is simply connected,
though M’} itself is not so, we have the same assertions in Theorem 2.5 as for 1-cocycles
on W x Diff§ (M).

Proof. 1t is carried out in a quite similar way with the above one, only
changing the open coverings {V¢}; of M, to those of W (s=1,---,6).
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Now it is important to search for sufficient conditions to assure the simply
connectedness of M,, and accoding to [3], thanks to Dimension theory, such a
condition, for example, is given as follows.

Theorem 2.7. Under the assumption that A has no accumulation points,
(1) if dim(M)>2 and M is connected, then so is M’ for every ne N.
() if dim(M)>3 and M is simply connected, then so is M", for every ne N.

Proof. (1) is derived from corollary 12.5 in [3] and from mathematical induction
on n. (2) is also assured from them, however using lately proposition 12.6 and its
proof in [3].

Hereafter till the end of this section we assume that 4=0. In this case, we have
Mi=M,=M" and Diff} (M)=Diff¥M),
and (2.32) becomes

n

o n du V= 1Hik A
(2.35) oP.g)=cP)~'[] (d_:(Pk)) g~ '(P).

k=1

Definition 2.2. It is said that 1-cocycle 0 has canonical form, or 0 is canonical,
if (2.35) holds for all (P,g)e M" x Diffs(M). (If it is so, then sometimes 0 will be
explicitly denoted by O(C, H,))

Thus as a special case of Theorem 2.5,

Theorem 2.8. Suppose that M" is simply connected. (For example it holds good,
if so is M and dim(M)>3) Then every precontinuous 1-cocycle on M" x Diff¥(M)
is canonical.

At the end of this subsection we consider 1-cocycles § on B}, x Diff{(M) to
which there corresponds a symmetric 1-cocycles § on M” x Diff¥(M). Of course, 0
is said to be symmetric if and only if,

(2.36) 0(P,.g)=0(P.g)
for all (P,g)e M" x Diff¥(M), where
ﬁa:=(Pa(l)""aPa(n)) (0'6(5"),

and ®, is the group of permutatins on {1,---,n}.

Theorem 2.9. Suppose that M" is connected. Then to every precontinuous
1-cocycle 0 on By x Diff§(M) the corresponding symmetric 1-cocycle is canonical, that
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is, 0=0(C,H,) and the pair (C,H,) fulfills the condition below with a unitary
representation (T, H) of ®,,,

Yoe®,, CP)=To)C(P,) for “PeM" and
H,=T(6) 'H,,yT(o) for 1<"k<n.

Proof. 1t is straightforward from the uniqueness in Theorem 2.5.

2.4. Further study of 1-cocycles in the exceptional case. In this subsection we
consider 1-cocycles when the manifold M is R', R? or T'. First let M=R!. Then
", is simply connected with the natural topology, and M" consists of n! connected
components which are all isomorphic to B},. So applying Corollary 2.6, we have
the following result.

Theorem 2.10. Let M=R' and take an isomorphic section t from Bl to
M?". Then the general form of precontinuous 1-cocycles on B}y x Dift§(M) is as follows.

n V- 1H,

(237) 0P.5)=cP [ (‘—3‘:7 ((r(P»k))

k=1

Retatlly)

where C is a U(H)-valued map and {H,}, is a commutative system of self-adjoint
operators on H.
If the 1-cocycle 0 is continuous, then so is map C.

Remark 2.2. Of course even in the case H=C, there exists a non canonical
1-cocycle on M" x Diff§(M) corresponding to the one given by (2.37).

The second case is that M =R2. Here M" is connected contrary to the previous
case, however it is not simply connected for n>2, and there exists a non canonical but
symmetric 1-cocycle as will be seen in the following example, n=2 and H=C.

For any (P,g)e M? x Diff(M), take an continuous angular function ¢(t, P) of
a path, te[0,1]—>g,~ '(P,)—g, '(P,)e R*\{0}, where {g,}o<.<; is a continuous path
in Diff§(M) connecting id and g, and put

(2.38) ®(P,g):= (1, P)— (0, P).

Actually this definition does not depend on a particular choice of {g,}o<,<; and ®
is a continuous function of g for each fixed P. Set for QeR,

(2.39) EoAP,g):=exp(/—1QD(P, g)).

Then the continuity, symmetry and cocycle equality are easily checked, however j, is
not canonical unless Qe N. For, take any point P=(P,, P,)e M? and take an open
disk U,(0) centered at the origin which contains P, and P,. Integrating a smooth
vector field with compact support, we have a ge Diff§(R*) which gives 1 rotation
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around 0 on U,(0). Therefore g acts identically near at P; (i=1,2). Nevertheless,
{a(P,g)#1, since we have ®(P,g)= —2m.

The last case M =T! =T is more interesting. Let J be a precontinuous 1-cocycle
on B} x Diff¥(T), and # be the corresponding symmetric one on 7" x Diff§(T). B
and T" are non simply connected, but they are connected. Now consider a set

I'={(zy, - z,)eT"| argz; ‘zy<argz; 'z, (k=1,---,n—1)},

where the value of the argument is taken so as to be in [0,2n). I is connected
open and Diff¥(T)-invariant. Take any point A=(a,, --,a,)el and fix it. Then
the following lemma gives a continuous section s, ... € Diff§(T)=Diff*(T) on
I. That is, 5g,..... (@) =z, for 1<%k <n, and s is continuous from I to Diff(T).

Lemma 2.2. Let 0<a,<a,< - <a,<l and 0<b,<b,< --- <b,<1. Then
there exists a ¢, ,e Diff§(R") which satisfies
1) P.ux)=x, if x<0 or x=1,
(2) d)a,b(ak):bk (k= la ~~~,n), and
(3) a map, (a,b)=(a,, - a,,b,, -, b)— ¢,,eDiff§(R"), is continuous.

Proof. Take a C®-function py(x) on R! such that p,>0, po=1 on (—o00,0],
po=0 on [1, 00), and put

pa,ﬁ»y,b(x):= Po (E”‘E) Po (;::) (x<B<y<d).

Clearly we have p,;,;=0 on (—o0,a]u[d, o), and p,s,;=1 on [B,y]. Now
consider a diffeomorphism

d
gn(x) = EXp(X")(X), Xn(x) = (bn - an)pO,m(a,,,b,.),M(a,.,b,,), l(x)a >

where

Ma,,b,):=Exp(Y,)b,). m(a,.b,):=Exp(Z,)b,) and

d d
Yn(x) = a,.p - 1, —an,an, l(x) 5 Zn(x) = (an - I)Po,a,., 1,a,+ l(x)_ .
dx dx

It is easy to see that 0<m(a,,b,)<a,,b,<Ma,,b,)<1 and that g, satisfies

WAX)=x, if x<0 or x>1,
(2‘40) {gn(an) = bn *

Moreover b,_,:=g,(a,_,)<b,, since g, is monotone increasing. Next take a
diffeomorphism
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8n—1(x)=Exp(X,_ )(x),

! d
X, 1(x):=(bp-1— b, 1)Po,m,(b; by yiba) My (b, b b,.).b,.(x)a >

n-1n-1*
where

b:l—l bn—l
b, ~ b,

ml(b;_l,bn-lrb,,):m( )bn. andMl(b;,_,,b,,_l:b,,):=M<b""‘,b"“)b",

b, b,
Then g,_, satisfies

{j,_l(x)=x, if x<0 or x>b,,

2.41
( ) n—l(b;l—l)zbn—l‘

Thus we have

—_10° =X, f S >1,
(2.42) {gn 1ogx)=x, if x<0 or x>1
g"_log"(a")=bn’ gn—logn(an—l)=bn—ls

and the proof follows from the above procedures repeated (n—1) times.

By virtue of the discussions on the local form of 1-cocycle and of using this
global section we find that

oA a1 (e /= 1Hx S
(2.43) or.g)=cP) '] d—(zk) g™ (P,
k=1 U

for all P=(z,,---,z,)eI and ge Diff*(T), where C is a U(H)-valued map on I, {H,},
is a commutative system of self-adjoint operators on H and p is a Haar measure

on T. Put
(1 2 ... n)
T:i= .
23 ...1

Since I is invariant under 7 and § is symmetric,
P . " (du V= 1Hi A
(2.44) 0P,g)=CP) ' [] (d—:(2k+1)> g~ '(P)),

k=1

where of course z,,,:=z,. Taking a difftfomorphism which acts as a translation
near at each z, (k=1,---,n), we see that C(z,,z3,+,2,,2)C(z,,25,* 2,) "' is locally,
hence globally constant. Put

(245) C(Zz,Z3,"',Z",Zl)=TC(Zl,22,"',2") ((21,22,'~',Z")EI).
It follows that

(2.46) T"=id,
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and
(2.47) H,=T %Yy Tk-D
for 1<k <n.

Conversely, suppose that a U(H)-valued map C on I, a commutative system
{H,}, of self-adjoint operators on H and a Te U(H) are given so that they satisfy
(2.45), (2.46) and (2.47). Then for Pe B} we oder its elements z, (k=1,---,n) in such
a way that P:=(z,,--,z,) belongs to I and define

k=1

_ . n d# V= 1Hy .
(2.48) 0P, g)=cp)'[] <75 (Zk)> (g '(P)).

Although there are many, exactly n, ways of this ordering, the definition does not
depend on them, and actually it gives a precontinuous 1-cocycle on Bj x Diff*(T).
Thus,

Theorem 2.11.  The general form of precontinuous 1-cocycles on B} x Dift*(T) is
given by (2.48).

Now a question arises: Is every symmetric precontinuous 1-cocycle on
T" x Diff*(T) canonical ?
The following example gives us a negative answer.

Let n=4 and H=C? and put

T:=< 0 —1>’
+1 0

10 00
H1=H3:=<0 0), H2=H4:=<0 1).

Finally for any point (z,,z,,25,2,)€l, put

Zy—2Z3 Z,—2Z4

—(2,—24) zy—23

1
C(zl’22923’z4):= 2 3 (
\/(|21—23| +1z; —24]%)

The triplet (C,{H,},,T) satisfies the above conditions, so they define a
l-cocycle. However it is not canonical, as is easily seen.

) ((Zl,"',Z,,)EI).

2.5. Natural representations I. As before we fix a smooth locally Euclidean
measure u on M, and additionally assume that it is finite. Let i= 4" be the product
measure on M" and ji be the image measure of /i by the map n, Pe M"— PeB],. Up
to the equivalence ji is the unique measure on Bj, being Diff¥(M)-quasi-invariant
under a natural assumption that M is connected. In this section, we consider
natural representations of Diff§(M) associated with p,

_ _ dil; - ~ - _
(249)  Uyg): f(P)eLi(By, H)— di;(l’)g(l’,g)f (&~ '(P)eLiBy . H),
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or
. DU dii; ~ ~ PO
(250)  Us(g): f(P)eLYM" H)+— di;(P)H(P»g)f (¢~ '(P)eli(M", H),

where 0(0) is a U(H)-valued measurable (symmetric measurable) 1-cocycle, respectively,
and l:f,(M",H) is the set of all square summable H-valued symmetric functions on
M". Of course the representations (Uj, LBy, H)) and (U;, I:ﬁ(M ", H)) are mutually
equivalent, if § and @ correspondes to each other. We will use more convenient
form of (2.49) or (2.50) alternatively. First of all let us introduce the following
definition according to [7].

Definition 2.3. (1) A measurable 1-cocycle 0 is said to be irreducible, if for
any U(H)-valued measurable map V(P) there exists some complex constant k such that

V(P)=kld
for ji-a.e.P, povided that
(2.51) P)O(P,g)=0(P,g)V (g~ "(P)

for ji-a.e.P.
(2) A parallel definition for a symmetric measurable 1-cocycle @ is given, in which V(P) is
replaced by a symmetric measurable map V(P).

Theorem 2.12. Assume that M" is connected and that a strongly Borelian
symmetric 1-cocycle 0(C, H,) has the canonical form (2.35). Then in order that 0 is
irreducible, it is necessary and sufficient that the representation (T,H) appeared in
Theorem 2.9 and {H,}, satisfy the following condition (c.1).

(c.1) A unitary operator A on H is a scalar one, provided that
(2.52) AT(0)=T(0)A for “6e®, and

(2.53) AH,=HA for 1<%k <n.

Proof. First we prove the necessity without the assumption on connectedness.
To this end take on operator A satisfying (2.52) and (2.53) and put

V(P):=C(P)" 1A~ 'C(P).
If follows from Theorem 2.9 that for any ce ®,

VP,)=C(P)"'To)A™ ' Tlo) ' C(P)= VP),
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and (2.51) is a direct consequence ot (2.53). The measurabilty of V follows from
that of C, which is assured by the strongly Borelian assumption. Hence by the
assumption we have V(P)=3%Id modj, in other words 4 is a scalar operator.

Next we prove the sufficiency. Let V(P) be a symmetric U(H)-valued measurabie
map satisfying the relation being parallel to (2.51). Take any P=(P,,---,P,)e M"
and take an open neighbourhood U, (P,) of P, for each 1 <k<n such that

@ UPY)nU(P,)=0 whenever k#k,
(b) Uy(P,) is diffeomorphic to a connected open set G, in R? via a map ¢,, and
(c) theimage measure u|U,(P,)° @, ' coincides with the Lebesgue measure dx, on G, .

Then for any h, e Diff§(G,) (1 <k <n) the equation (2.51) now becomes

(2.54) M) Cx)” 'k[j-ll(J w(6)Y R () Ph(x)) !

=80 T U~ 000

for dx, x -+ xdx,-a.ex=(x,,,x,), where h(x):=(h(x,), ---, h(x,)), C(x):=C(p7 (x,),
@ (x,) and P(x):= V(@7 M(xy), -+ ¢, '(x,). Taking parallel displacements with
small lengths as the difftomorphisms 4, and using Fubini’s theorem, we find that
Cx)P(x)C(x)~! is almost all equal to a constant Ae UH) on G, xG,x -+ xG,.
Hence globally

(2.55) CP)V(P)C(P)~'=4

holds for ji-a.e.P by the assumption on connectedness. (2.52) and (2.53) are direct
consequences of the symmetry of ¥ and (2.54). Thus the condition (c.1) is fulfilled,
and the rest of the proof follows from (2.55).

Here let us see the following property of 1-cocycles.

Theorem 2.13. If a 1-cocycle 0 on M" x Diff§(M) is continuous, then it is strongly
Borelian, and the same assertion holds for a 1-cocycle on By x Diff§(M).

Proof. To this end it is enough to show that # is measurable. Moreover
using cocycle equality, the continuous assumtption and Remark 2.1, we need only
check that f(-,g) is measurable, whenever g=Exp(X), XeI'o(M). Put g,:=Exp(tX),
and take a set V''(0) appeared in the arguments on the local form of 1-cocycles.  V''(0)
is approximated by an increasing sequence of compact sets. Let K be any one of
these compact sets and fix it. Then there exists a >0 such that

§K)=VD) for 0<Yi<4.

Hence (P,g;), PeK satisfies the condition (*¥) and it follows from (2.21) that 6(-,g,)
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is measurable on K. Now we claim that §(-, gks) is measurable on K for all ke N
by mathematical induction. Assume that it is O.K. for all 1,---,k. Since we have

é(ﬁ’g(k+l)é)=é(ﬁ,gk6)é(ék; l(ﬁ)sga),
it is enough to show that 0(-,g,) is measurable on 8e3'(K). To this end note that
g8 K) =g’ (V@) for  0<Yi<s,

and that there is a continuous section on the whole set g,;'(V''(Q)) transformed from
the section s on ¥'(Q). Thus the similar proof works on with the above one and
the claim has been proved. In other words, f(P,g) is measurable on K. As K
and V'(Q) are arbitrary, the measurability is proved.

A criterion for irreducibility is obtained for 1-cocycles of another type, for
example given by the formula (2.37).

Lemma 2.3. Assume that M=R"'. Then a strongly Borelian 1-cocycle 0(C, H,)
on By x Diff§(M) given by the formula (2.37) is irreducible if and only if the {H,},
satisfies the following condition (c.2).

(c2) An Ae U(H) is a scalar operator, provided that
AH,=H A for 1<% <n.
Proof. The proof of necessity is similar with it in Theorem 2.12.
The converse also goes in the same way, and we find an 4 e U(H) which satisfies
C(P)V(P)=AC(P) for ji-a.e.P, and hence
AH,=H,A for 1<%k<n.

Thus 4=%Id and the conclusion immediately follows.

Theorem 2.14. Under the same assumption of Lemma 2.3, 0 is irreducible if
and only if dim(H)=1.

Proof. Since {H,}, is commutative, the condition (c.2) implies that each H, is
a scalar operator, hence so is every bounded operator.

Theorem 2.15 (Irreducibility). Let 8 be a strongly Borelian 1-cocycle on
By x Diff§(M) and (Ug(g), L2(B , H)) be the corresponding natural representation given
by (2.49). Then (Ugg),LA(BYy,H)) is irreducible, if and only if so is 0.

Proof. The necessity is obvious, so let us assume that @ is irreducible, and
consider (Uj(g), I:ﬁ(lt?[ ,H)) given by (2.50). Take an open set G of M. Put
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He(Up):={feLAM,H)|Ug)f=f for YgeDiff§(G)},
and
Ag:={PeBy|'|PnG|=0}.

Throughout the proof we identify f el:ﬁ(ll:l, H) with the corresponding function on
L%(By,H). Now Theorem 2.4 leads us to that f belongs to H(U;), whenever
f(P)=0 for ji-ae.PeA§.

Let us prove the converse, so suppose that fe Hy(U;). Take any relatively
compact open subset Y of G and put for each 1<k<n

Y,:={PeM||Pn¥]=1 and P,eY}.

Further take any point Q€ Y, and a neighbourhood V'(Q), a U(H)-valued map C
defined on V!(Q) and a commutative system {H,}, of self-adjoint operators on H
assured by Theorem 2.4. If necessary, taking a smaller neighbouhood, we may
assume that V1(0)=V,(Q,)x -+ x V(@) x -+ x V,(@,), V(@) being diffeomorphic
to a connected open subset of R?, such one as in (c) of the proof of Theorem 2.12,
V{Q) € Y and V(Q) < ¥¢ for all i#k. Then by virtue of Theorem 2.4 we have
for any geDiff§(Vi(Q.))

d 14 v
(2.56) —: £(PC(P)” ‘(—” £ (Pk)) CPy, g " (P, Py)
i du

f(Pl s '”9g—1(Pk)’ ’Pn)=f(ﬁ)
for g-aePeV' (). As before considering local translations, we find that

(2.57)
C(P)_IC(PI""st—l’Rk’Pk+l""’Pn)f(Pl""’Pk—l’Rk’Pk+1a"’aPn)=f(P)

for pxjrae(R,,P)eV,(Q)x V1(0), and the left hand side of (2.57) is jointly
measurable. So by virtue of Fubini’'s theorem there exists an A, e V;(Q,) such that

(2.58)
C(P)—XC(PI"”’Pk—I’Ak’Pk+1s"'aPn)f(Pl""’Pk—l’Ak’Pk+1""’Pn)zf(P)

for p-a.e.Pe V'(Q). Of course (2.58) is also valid for g ~!(P,) in place of P, due to
the Diff§(V,(Q,))-invariance. Thus, substituting (2.58) to (2.56) we get for any
g € Diff§(Vi(QV)

4 d vo1He .
(2.59) 7"*5(1%)(ﬁ (P,,)) WP, A)=h(P, 4,
u du

for ji-a.e.Pe V'(Q), where

h(ﬁ’Ak):___C(Pl""aPk—l!Ak’Pk+19""Pn)f(Pl""5Pk—l’Ak’Pk+la""Pn)‘
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Moreover the left hand side of (2.59) is continuous as a function of P, for each fixed
(Pys s Pioy,Pryy,o, Py, A, 50 (2.59) holds for every P,. In particular taking a
diffeomorphism which is alike to a similar transformation at P, and taking the
norm of both sides of (2.59), we find that h(P, 4,)=0 and it follows from (2.58) that

(2.60) f(P)=0
mod g on V'(Q) and hence on Y,. Now
“PeAy” implies that “3k, Y,PeY,”,

and we can take such many Y, from a countable collection, so the desired result
follows from (2.60).

Let 4 be an intertwining unitary operator of the natural representation and
put

(PacNP):=1s(P)(P)  (feLiBiy, H)),
where x,, is the indicator function of the set A;. Then by what we have seen,
(2.61) APy =P, A

for all open sets G of M. Besides a collection B :={Q: Borel set of B}, | AP,=PapA}
forms a Borel field and {A;, G:open set} generates the natural Borel field B(Bj},).
(cf. p600-601 in [20]) Thus,

(262) APy=PoA

for every Qe B(By). It follows easily that there exists a U(H)-valued measurable
map W(P) defined on Bj, such that

(2.63) A(SNP)=V(PYS(P))
for j-a.e.P, and it leads to
V(P)O(P,g)=0(P,g)V(g ~'(P))

holds for j-a.e.P. The rest of the proof is obvious.

Theorem 2.16 (Equivalence.). Let 0(P,g) (i=1,2) be strongly Borelian 1-cocycles
and (Us(g), L3(By, H)) (i=1,2) be the corresponding natural representations. Then
the representations are equivalent, if and only if the 1-cocycles are 1-cohomologous.
That is, there exists a U(H, , H,)-valued measurable map V(P) on By, (UH,,H,) is
the set of all unitary operators from H, to H,) such that

(2.64) 0,(P,g)=V " (PO,(P.g)Vig " '(P)

for ji-a.e.P.
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Proof. The sufficiency is obvious. For the necessity, we proceed in the same
manner as before and first we get a relation correponding to (2.62), where A4 is an
intertwinig unitary operator from (Uj,(g), LBy, Hy)) to (Us,(g), LABy, Hy). It
follows that a U(H,, H,)-valued measurable map V(P) on B, is defined and it
satisfies the relation (2.63) for j-a.e.P. This gives us the cohomologous relation.

§3. 1-cocycles on the infinite configuration space

3.1. Canonical form of precontinuous 1-cocycles. Throughout this section M
is assumed to be non compact. Let

M®:={P=(P,, - P,,-)eM™| P, #P; for Visj, {P,}, has no accumulation points},
and G, be the infinite permutation group on the set V. Define an equivalence
relation ~ on M*® by

P~Qif and only if 36€®, s.t, Q=P :=(Py), s Popm> ).

s L a(n)»

The quotient space I'y:=M®/~ is called infinite configuration space (over
M), its element is generally denoted by P={P,,---,P,,---}, and the natural map,
P P is denoted by n. As before Diff¥(M) acts on M® or T, as § or g,
respectively. Consequently 1-cocycles (plus continuity, measurability or etc.) on
M * x Diff(M) or T, x Difff(M) are defined similarly, and they are denoted by 6 or 0.

Next let us consider a new equivalence relation & on M * defined by,

P~Q, if and only if P,=Q, for all n>3N.
Put for any A=(A4,,--,A,,)eM™,
M2 ={PeM>|PxA).
Clearly Mg is Difff(M)-invariant. Using the notation in section 2, we find that
(3.1) MY =0 M X (Ayr 1 Ayaas ),

where 4":={A,,,A4,+,, -}, and a sequence of the above sets is increasing. So
the inductive limit topology t$ on M% is given via the natural ones on
M. % (A, 41, A,44,+), and it will be used ocasionally. Hereafter we will write M}
instead of M. for simplicity.

Theorem 3.1. (1) Suppose that M, is simply connected for an A=(A,,---,A,, ")
eM® and for every neN. Let 0 be a U(H)-valued precontinuous 1-cocycle on
MZ x Diffs(M). Then there exists a U(H)-valued map C=C, on MP and a
commutative system {H,},={H{}, of self-adjoint operators on H such that

00

o " du v~ 1Hx .
(3.2) oPg)=aP) '] <d—;(Pk)> ag='(P)

k=1
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for all Pe M$ and ge Diffs(M).

Moreover if 0 is continuous, the map C is continuous on (M2 ,t%).
(2) For the uniqueness of the above pair (C,{H{},), we only assume that M, is
connected for every ne N. Then for another pair (C',{H,*},), there exists a Te U(H)
such that

(3.3) C(P=TCP) for "PeM> and
(34) HA=TH!T ! for 1<%k<oo.
Proof. For each n, put
0/P,.8)=0P,, Aps1 Anizs8)  (P,,8)e M} x Diff§ , (M),

where Diff§ , (M)=Diff} ,.(M) which was already defined in section 2. Then 6,
is precontinuous 1-cocycle and hence the assumption of simply connectedness and
Theorem 2.5 yield a map C, on M and a commutative system {H7}, of self-adjoint
operators on H so that

(3.5
. . n /d V-1Hp ® d —1H} .
0.P,.8)=C(P) ' ] (di: (Pk)) . HH( o )) C(g™'(P,)

k=1 =

for all (P,,g)e M’ x Diff§ , (M). Since Diffs , (M) < Diff% , . (M) and 0,(P,,g)
=0,,,(P,,A,+1,8), so by virtue of the uniqueness in Theorem 2.5 there exists a
T,e UH) such that

C,oi(P,,A,+)=T,C(P) for YP,eM’ and
H!*'=TH!T, ' for 1<%k<n.

Thus changing C,., to T, 'C,,,, it yields
(36) Cor1(Pr, Au1)=C(P,)
for all P,e M, and

H!*'=H! for 1<%k<n.

Put
3.7 C(P):=lim C(P,,---,P,) (PeMY),
and

(3.8 H,:=H{ (keN).
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These are well-defined, and since for any (P,g)e M P x Diff(M) there exists an N
such that (ﬁ,g)e M,: ><(‘4n+1 ’An+2 P “') X Diﬂ‘g,A,n(M)a we find that

00

o A LA " du V= 1Hx A
(39 0(P,g)=lim0,(P,,--,P,,g)=C(P)"'[] (d—:(i’k)> (g ~'(P).

n—o k=1

Moreover if § is continuous, C is continuous on (M ,t%), since P, A,,,,
A,ys,-)=C,P,) for all P,e M’ by virtue of (3.6) and (3.7). The uniqueness follows
from the relation,

C'(B)y=T,C(P) forall PeMix(Aysi,Apsr. ),

where T, e U(H) is some constant operator assured by Theorem 2.5.

Theorem 3.2. (1) Suppose that M is simply connected and dim(M)>3. Then
the general form of precontinuous U(H)-valued 1-cocycles on M ® x Diff§(M) is as
Sfollows.

(3.10

- L@ (dy o o

oP.g)=cP) '] (—E(Pk)> C(g (P,

k=1\du
where C is a U(H)-valued map on M®, and {H™}, is a commutative system of
self-adjoint operators on H depending on the residue class [Ple M/~ to which P
belongs. Moreover if 0 is continuous, C is continuous on (M P , %) for each Ae M ™.
As before we call § given by (3.10) canonical 1-cocycle.

(2) For the uniqueness of the above pair (C,{H™},) we assume that
(t) M is connected and dim(M)>2.
Then for another pair (C',{H\"1},), there exists a U(H)-valued map T on M/~
such that

(3.11) C'(P)=T[P)C(P)
for all Pe M> and
(3.12) HP=T(PYHI"T(P]) !

for 1<%k < oo and YPe M ™.
Proof. 1Tt is a direct consequence of the above theorem.

Theorem 3.3.  Under the assumption (1), a canonical 1-cocycle 6 on M ® x Diff¥(M)
is symmetric if and only if the pair (C,{H},) satisfies the following two

conditions. o "
13) C(P)=R(LP], 0)C(P,)
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for YPe M* and Yoe G, where R is a 1-cocycle on M®/~ x G . Namely,
"[P1,%s, R([P1,0)R([P,),7)=R([P],07), and
(3.14) H{P'=R([P]), o)H =y R([P], 0)~"
for 1<%k < o0, [PleM*®/~ and Y6e® .
Proof. 1t is obvious.

3.2. Maeasurability of canonical 1-cocycle.

Theorem 3.4. Let 0 be a canonical 1-cocycle given by (3.10). Then it is strongly
Borelian if and only if

(3.15) C(P)"'HP'C(P) is measurable for 1<k < oo,
and
(3.16) CP)'C(g ~1(P)) is jointly measurable on M ™ x Difft(M).

Proof. The sufficiency is obvious. Let us prove the converse. To this end
note that M ® is covered by at most countable sets of the form, M® (G x G x - x
G* x --+), where G is an open set being diffeomorphic to R?%. So for the measurability
of C(P)~'HIIC(P) we need only assure it on these sets. Now take a compact sets
K,1 G such that

KicK;c--cK,cK;,yc: .
Then for any QeK, and any ae R* there exists g, ,€Diff§(K, ) such that

dqu.a

20.4Q)=0, i

(Q)=a,

and a map, (Q,a)eK,x R g, ,€Diff§(K, ) is continuous.
Thus 0(P, 80.) is jointly measurable with respect to (B, Q,a), and so is

0P, gp, o= C(P)~ 'V~ THY'C(P),

with respect to (P,a). It follows that C(P)"'H{P'C(P) is measurable on
M>®A(K,x G x -- xG*x ---) and the conclusion follows. The rest of the proof is
straightforward.

3.3. Natural representation II. In this subsection we consider natural
representations of Diff¥(M) on I, which are alike to the one on the finite configuration
space. However Diff§(M)-quasi-invariant measure on (I'y;,B), B is the natural
Borel field, is not unique in this case, so we must consider also a factor of such
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probabitiy measures v on (I"),,B). It is known in [25] that to such a ¥ there
corresponds a Diff¥(M)-quasi-invariant pobability measure ¥ on (M ®,%), € is the
natural Borel field on M *®, such that

(3.17) WE)= Y c(o)sV)a(E)

d
aeG

for all Ee¥, where G2, :=u>,®,, ¢(d)>0, Zsee c(0)=1, s is a measurable section,
and (sv)o is an image measure of ¥ by a map, P (s(P)),. Note that for any
symmetric measurable function f on M®,

~ f(PyidP)= J S(Pyap)
M 'm
where we use a natural identification f with the corresponding function on I),.

Definition 3.1. (1) A measurable 1-cocycle 0 on Ty x Diff§(M) is said to be
v-irreducible, if for any U(H)-valued measurable map V on Ty, there exists a constant
ke C such that

V(P)=kId
for v-a.e.P, provided that
(3.18) V(PY(P,g)=0(P,g)V(& " (P)

for v-a.e.P.
(2) A parallel definition for a symmetric measurable 1-cocycle 0 is given, in which
V(P) and v are replaced by a symmetric measurable map V(P) and ¥, respectively.

Remark 3.1. (1) Of course 0 is v-irreducible, if the corresponding 0 is V-
irreducible and vice versa.
(2) If a v-irreducible 1-cocycle exists at any rate, v must be Diff§(M)-ergodic.

Theorem 3.5. Let 0=0(C,H,) be a canonical strongly Borelian symmetric
I-cocycle. Then in order that it is V-irreducible, it is necessary and sufficient that
for any U(H)-valued map A([P)) defined on M*®/~ which satisfies the conditions
(3.19) and (3.20) below, there exists a constant ke C such that

A([P])=kId
for V-a.e.P.

(3.19) A map, P C(P)"'A([P])C(P) is measurable and it coincides with a
symmetric measurable map V(P) for -a.e.P,

and
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(3.20) YkeN, A(PDH{"'=HPA(P))

for v-a.e.P. As before, the necessity requires no condition on M but for the sufficiency
we assume that M satisfies ().

Proof. Necessity. Take a symmetric measurable map V() which satisfies (3.19).
Then,

MPOP,g)=0(P,g)V (g~ (P)

holds for v-a.e.P, as is easily seen. Thus V, hence 4 is almost all equal to a scalar
operator.

Sufficiency. Let V(P) be a symmetric measurable map satisfying the relation
being parallel to (3.18). For each ne/V let &, n" be natural projections,

{n,,:ﬁ:(Pl,--~,P,,,---)GM°°|—>13,,=(P1,---,P,,)GM"
" P=(P,, - P, )EMX P =(P,,,,--)eM™,

and put

Vp=vom, ! vhi=Po(n") "L
Then we know that
(3.21) vy, XV

(cf. [21] or [25]) It follows that there exists a Borel set Q" with v'(Q")=1 such that
for all P"e Q"

(3.22) Ve, BnoP,, Pr.g)vig ~\(P,, Pn) ' =0(P,,Pg)

for 9,-a.e.P,. Let us fix a P"eQ", and use again the discussions in the proof of
Theorem 2.12, especially taking each neighbourhood U (P,) so as to be disjoint
from the set P. Then they give an A%(P")e U(H) such that

(3.23) aB,, PP, P\C~\(P,, P")=A}(P")
for 9,-a.e.P,e U:=U,(P,)x --- x U(P,), and
(3.24) AYPHIP = HIP AY(P")
for 1<%k <n. Since
Mp={(Py,-- PyeM"|{P,, -, P} P"=0}

is connected by the assumption (}), we can connect any two such sets U, U2 of
M}, by a finite chain of the U’s. Thus A4%(P") does not depend on U, denoted
simply by A"(P"), which satisfies
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(3.25) APy=| CGC, Py, PYC(E,, P, (dz,).
M3pn
Next let us observe the measurability of the function,

(3.26) C(P)~ ' A"(P)C(P).

For it, it is enough to show that C(P)"‘C(z‘,,,ﬁ") is jointly measurable with respect
to (P,7,). Take a countable open base {Wi}i in M?" so that each W, is equal to
a set of the form, U; x --- x U,, where U, are all diffeomorphic to R? and they are
disjoint, and set

Qil,n-,is = {(Pafn)lﬁne Wil s 2"6 Wis’ Wiln W,

iy+1 #0, Uj= 1 mjm?ﬁ:o}'
Then taking suitable diffeomorphisms on each W; we find that
ap,. Py~ 'aQ,. Py, aQ,.P)'AQ,. ), Q0,1 P C,, P

are all jointly measurable on Q; ... x (W, nW,)x -« x(W,; _ nW,) with respect
to the variables (P,7,,0,,--,0,_,). Thus their product yields the measurability
on € ., and hence on the whole space. It follows from (3.23) and Fubini’s
theorem that

V(P)= C(P)~ 1 A"(P")C(P)

for $-a.e.P. Finally put

limA"(P"),  if the limit exists.

(3.27) A([P):= {

Id, otherwise.
The well-definedness is obvious, C(P)~'A([P])C(P) is measurable, and
V(P)=C(B) 'A[PNC(P), and 1<"k<oo, A([PYH'=HPA(P))

holds for #-a.e.P. In other words-the assumption (3.19) and (3.20) are fulfilled and
we have

A[P)=3k1d

for 9-a.e.P. Hence the same holds for V(P).

Let v be a Diff§(M)-quasi-invariant measure on (I'y,,B) and § be a measulrable
l-cocycle on T’y x Diff§(M). Hereafter we consider natural representation (U,
L{T,;, H)) depending on these factors,

_ dvy _ o _
(328)  Usi(g): (P eL¥Ty, H) | d—vvf (P)O(P.g)f(§ ' (P)eLi(Ty, H).
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As before there correspondes a representation on the set L2(M®, H) of all square
summable H-valued symmetric functions on M > defined by

PP dvg o PP
(329  Uselg): f(PeLi(M >, H)— /%(P)O(P»g)f(é “i(P)eLiM™, H).

Theorem 3.6 (Irreducibility). The natural representation given by (3.28), where
we assume that @ is canonical and strongly Borelian, is irreducible if and only if
so is 0.

Proof. The necessity is obvious. The sufficiency is proved in a similar way
with that of Theorem 2.15. Take any open set G of M. Put

He(Us)={feLATy,H)| Uss(g)f)=f for "geDifi§(G)},
and

Ag:={PeTy| PnG=0}.

It is no problem to see that f e Hg(U;5), whenever f(P)=0 for v-a.e.PeAg.

Conversely suppose that feHg(U;5). We wish to prove that f(P)=0 for
v-ae.PeAy. Take a relatively compact open subset Y of G being diffeomorphic
to a connected open subset of R?, such one as in (c) of the proof of Theorem 2.12,
and put

By:={y = Y|*yl=n}.
We have a natural decomposition
L=l oBy X Ty,

of which the first and the second projection are denoted by =, and =,
respectively. Put

vn:=‘-’-| B']"XFM\Y/ﬁn, v;::vno(n;‘)_l and v;: :=vno(n;:)_la

where B,:=v(By xT'yy). It follows from lemma 1 in p.13 in [25] that

o0
7= Y vema=fiux v+ Y By x v
n=0

n#1

Using the natural map T defined by

(3.30) T:p(P)e LYy, H)— \/g—g (P)p(P)e LY(T s, H),
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we have
(3.31) h:=TfeHsU;p),
and for any ge Diff§(Y)

¢TIH[P1

d, n d _
(332) ﬁ(Pk)C(PY‘(ﬁ(PJ) Py Py 8 T P Prry )
du du
h(Pl , ""Pk-—l ag_l(Pk)’Pk+1 )=h(ﬁ)

for fi-ae.PeY,, where as usual we identify 4 with the corresponding symmetric
function on M®, and

Y,:={PeM>®||PnY|=1 and P.eY}.
Thus considering local translations as before, we find that
(3‘33) C(ﬁ)_IC(Pl""’Pk—I ’Qk’Pk+l,"')h(Pl9'“’Pk—1*Qk’Pk+1 ,"‘)=h(13)

for uxn-ae(Q,,P)e Ux Y (U), where U is a sufficiently small neighbourhood of
any point in ¥ and Y(U):= Y,n{Pe M*®|P,e U}. It follows from Fubini’s theorem
that there exists an 4, e U so that

(3.34) C(P)W(P)=h(P, A,)
for A-a.e.Pe Y, (U), where
h(ﬁaAk)1=C(P1 s P s Ay Py (P Py Ay Py, o0)

Thus substituting (3.34) to (3.32), we get for all ge Diff§(U)

Vv~ 1H|P)
| %(Pk)(%(m) "B, AY=HP A,
du du

for fi-a.e.Pe Y (U). Tt follows that h(P)=0 and hence f(P)=0 for A-acPe Y (U)
via the same pocedure as before. Therefore we have shown that f(P)=0 for
i-aePe{Qely| |QnY|=1}, whenever fe HyU;3 and hence f(P)=0 mod7 on
Aiz. Now we have gotten a result corresponding to (2.61), and the same
arguments work on with those parts after (2.61). This completes the proof.

Theorem 3.7 (Equivalence). Let v; (i =1, 2) be Diff§(M)-quasi-invariant probability
measures on (Uy,B) and 0, be canonical, strongly Borelian 1-cocycles on
[y x Diff§(M). Then (U;,5,,L3(Ty, Hy)) and (Us,5,,Li(Ty, Hy)) are equivalent
if and only if

(3.35)

<
=
12
<
[ 8]
S

and
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(3.36) 0, and 0, are cohomologous.

Proof. The sufficiency is obvious. In order to check the necessity take any
Bore set Q of I'y, and put

P;ﬁf(F)eLgi(rM»Hi)'—’Xn(ﬁ)f(P)ELgi(rM’Hi),

as the projections. Then for an intertwing unitary operator 4 between the natural
representations,

(3.37) P2A=AP)

is a direct consequence of the preceding arguments. Therefore v,(Q)=0 implies
v,(Q)=0 and vice versa. This proves (3.35).
Next put

_ _dv, -
T: f(P)eLi(Ty, Hy)— f(P) /d—v_'(P)E LI,(Ty, Hy).
2
Then we have
(3.38) PLC=CP}

for a map defined by C:=A4"'T. It follows that there exists a U(H,,H,)-valued
measurable map V(P) defined on TI'y, such that for any fe L2 (T, H,)

(3.39) AP =WP)f(P)
for v,-a.e.P. By the definition of 4 and T,
Us 5, C=C-Us, 5,,
in other words
V(P)0,(P,g)=0,(P,g)V(g "' P)

holds for v,-a.e.P. This proves the assertion.
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