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Height and arithmetic intersection for
a family of semi-stable curves

By

Shu KAawAGgucHI1

Abstract

In this paper, we consider an arithmetic Hodge index theorem for a family
of semi-stable curves, generalizing Faltings-Hriljac’s arithmetic Hodge index
theorem for an arithmetic surface.

1. Introduction

In papers [4] and [7], Faltings and Hriljac independently proved the arithmetic
Hodge index theorem on an arithmetic surface. Moriwaki [12] subsequently proved
a higher dimensional case of Faltings-Hriljac’s arithmetic Hodge index therem. In
this paper, we consider an arithmetic Hodge index theorem for a family of semi-stable
curves. Namely, we prove the following theorem.

Theorem A (cf. Theorem 5.2). Let K be a finitely generated field over Q, X a
geometrically irreducible regular projective curve over K, and Ly a line bundle on Xy with
deg Ly=0. Let B=(B, H) be a polarization of K, i.e., B a normal projective arithmetic
variety with the function field K, and H a nef C®-hermitian Q-line bundle on B. Let

(X iB, L) be a model of (Xx,Ly) (see §4 for terminology). We make the following
assumptions on the model:

(@) f is semi-stable;

(b) X¢ and B¢ are non-singular and f¢: X¢ — B is smooth.

Let Jg be the Jacobian of Xy and O a divisor on Jg which is a translation of
the theta divisor on Pic®~'(Xg) by a theta characteristic. Then we have

deg(éy (D) - &,(f X)) < — 263, (o ([Lx]).

where [Lg] denotes the point of Ji corresponding to Ly (For the definition of a
height function ﬁgJﬁ(eE,, see §4).
Furthermore, we assume that H is ample and c,(H) is positive. Then the equality
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holds if and only if L satisfies the following properties:

(@) There is a Zariski open set B" of B with codimg(B\B")> 2 such that deg(L|c)=0
for any fibral curves C lying over B

(b) The restriction of the metric of L to each fiber is flat.

We note that when B is the spectrum of the ring of integers, the above theorem
is nothing but the arithmetic Hodge index theorem for a semi-stable arithmetic surface.

Our proof uses arithmetic Riemann-Roch theorem, similar to that of Faltings
on an arithmetic surface, although we must consider the Quillen metric. Now we
outline the organization of this paper. In §1, we recall some properties of relative
Picard functors. In §2, we recall some facts on determinant line bundles, especially
for semi-stable curves. In §3, we deal with an arithmetic setting and give hermitian
metrics to the results of §2. In §4, we quickly review (a part of) the theory of
height functions over a finitely generated field over Q, due to Moriwaki [13]. Finally
in §5, we prove the main theorem.

I wish to express my sincere gratitude to Professor Moriwaki for his incessant
warm encouragement. Moreover, it is he who suggested that I consider this work.

1. The Picard functor

The purpose of this section is to review some properties of the relative Picard
functor, which we will use later. We refer to [2, §§8-9] for details. In this section,
we only deal with schemes which are locally noetherian.

Let S be a locally noetherian base scheme, f:X— S a flat, projective
morphism. The relative Picard functor Picy;s of X over S is the fppf-sheaf associated
with the functor

Py,s:(locally noetherian S-schemes) — (Sets), T+ Pic(X x sT).

If we assume f(Oy)=0;s holds universally, then for all locally noetherian
S-schemes g: 7 — S,

Picy,s(T)=Pic(X x sT)/Pic(T).
Furthemore, if X/S admits a section €:S — X, then one checks immediately,

group of isomorphism classes of
(1) Picy/s(T)=< invertible sheaves L on Xx T,
plus isomorphism (eog, 17)¥L)~0r

Such invertible sheaves are said to be rigidified along the induced section ez =¢o g.

If S consists of a field, then Picys is a group scheme. Let Picys be its identity
component. For a general locally noetherian scheme S, we introduce Picgs as the
subfunctor of Picys which consists of all elements whose restrictions to all fibers
X,, s being a point of S, belong to Picy -

If X is a proper curve over a field k, then Picy, consists of all elements of
Picy, whose partial degree on each irreducible components of X ®,k is zero, where
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k is an algebraic closure of k.
We note that if Picys (resp. Picys) is representable by a locally noetherian
scheme, then for all locally noetherian S-schemes T,

Picys X sT=Picy . (resp. Picg,s x sT=Picg, ;r/7)-

Now we introduce the notion of universal line bundles when Picys (resp. Picy/s)
is representable by a locally noetherian scheme. We assume that the structural
morphism f:X — S admits a section € and that f,(0Ox)=0s holds universally, so
that Picys is given by (1.1) for a locally noetherian S-scheme. If Picys (resp. Picy/s)
is representable by a locally noetherian scheme, then the identity on Picys (resp.
Pic}s) gives rise to a line bundle U (resp. U®) on X x sPicys (resp. X x sPic%s)
which is rigidified along the induced section. U (resp. U°) is called the universal
line bundle. The justification of the notion of “universal” is the following proposition
(cf. [2, 8.2. Proposition 4]).

Proposition 1.1. Let f: X = S be a flat morphism of locally noetherian schemes
and let € be a section of f. Assume that f(Oy)=0s holds universally. If Picys
(resp. Picys) is representable by a locally noetherian scheme, then the universal line
bundle U has the following property. For every locally noetherian scheme g:T — S,
and for every line bundle L' on X' x T which is regidified along the induced section
€ =€og, there exists a unique morphism g:T — Picy s such that L' is isomorphic to
(1 xg)XV).

If PicYs is representable by a locally noetherian scheme, the universal line bundle
U° has a similar property for a line bundle L' on X' =X x T which is rigidified along
the induced section and L€ Pic% , for all teT.

Now we restrict ourselves to the case of semi-stable curves. We recall that a
semi-stable curve of genus g is a proper flat morphism f: X - S whose fiber X; over
geometric point § of S is a reduced connected curve with at most ordinary double
points such that dim, H'(X;,0x,) equals to g.

Proposition 1.2. Let f:X— S be a semi-stable curve of locally noetherian
schemes. Then f(Ox)=0s holds universally.

Proof. We have only to prove that f(Oy)=0s. Let m-f be the Stein
factorization of f, where f: X — § is a proper morphism with connected fibers and
n:S§—> S is a finite morphism. Since every fiber is geometrically reduced and
geometrically connected, there is a section 5:S — 8 such that f=#no f by rigidity
lemma ([14, Proposition 6.17). Since O5~f,(O) factors through

(95 -7 *(@S) _’f*', *((95) = *(COX),

Oz - n,(0g) is injective. On the other hand, since # is a closed immersion,
O3 > n,(0g) is surjective, hence Oz =1n,0s). Then, f*((9x)=nj*((ﬂx)=n*(@§)
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= n*(ﬂ *((95)) =0s.

We finish this section by quoting a result obtained by Deligne concerning the
representability of the relative Picard functor (cf. [2, 9.4. Theorem 1] or [3, Proposition
4.3]).

Theorem 1.3. Let f:X— S be a semi-stable curve of locally noetherian
schemes. Then Picys is a smooth algebraic space over S. The identity component
Picys is a semi-abelian scheme.

2. Determinant line bundles

The purpose of this section is to review some properties of determinant line
bundles. Since we are concerned about a family of curves in this paper, we only
consider determinant line bundles in a restricted context. For a general treatment
of determinant line bundles, we refer to [11]. For the next theorem, we refer to
[11] or [10, VI §6].

Theorem 2.1. Let us consider a morphism f: X — S of noetherian schemes with
the following conditions:

@) f is proper, f(Ox)=0g, and dimf=1.

(ii) There is an effective Cartier divisor D on X such that D is f-ample and flat
over S.

For every f:X— S satisfying the above conditions, for every line bundle L

on X and isomorphism of sheaves ¢:L = L', one can uniquely construct a line bundle

det Rf (L) on S and an isomorphism det R f*(L)—N»det RfJAL") in such a way that

det Rf (L) becomes a functor with the following properties:
(@) If f,(L) and R'f (L) are both locally free, then

det Rf(L)=detf(L)®(det R'f (L))" };

(b) det Rf (L) is compatible with a base change, i.e. if g:T— S is a morphism
of noetherian schemes, then

g *(det Rf (L)) =det R(f7) (L7);
(c) If S is connected and M is a line bundle on S, then
det Rf(L® f (M) =det Rf (L)@ M?,

where y=x(Cs,L,) for some se€S;
(d) If D is an effective Cartier divisor on X which is flat over S, then

det Rf(L)=det Rf,(L(~ D))@det ,(Lly)

Suppose now that f:X — S is a semi-stable curve of noetherian schemes and
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assume that f admits a section e. Moreover, let 4 be a rigidified line bundle on
X of degree g—1. By Theorem 1.3, Pic}s is a semi-abelian scheme and there exists
a universal line bundle U® on X xPicks. Let P* be the scheme which is the
translation of Picys by 4, ie.,

P"(T)={ rigidified line bundle L on X7 }

such that L&A ™' belongs to Picy,s

Moreover, let U? be the line bundle on P* which is the translation of U° by 4. If
q*: X x gP* — P* is the second projection, then ¢* satisfies the condition of Theorem
2.1, because f: X — S satisfies the condition of Theorem 2.1. Thus the determinant
line bundle det Rg%(U®) on P* is defined. To simplify the notation, let us denote
det Rg%(U") by 7 ~ ..

In the following, we will see that  ~' is related to the theta divisor. Here
we further assume that f: X' — S is smooth of genus g>1. First, we define the
theta divisor.

Let (X/S)&~ 1 be the symmetric (g(; 1)-fold product, i.e.,

—1) times

-1

————
(X/S)(g—n:Xxs... xsx/eg_l,

(g—1) times
———

where the (g —1)-th symmetric group &,_, acts on XX ... xgX naturally. Let

(X/8)¢" > Picgs',  Dr—[Dr]

be a morphism, where for any locally noetherian S-schemes T and for any T-valued
point D, of (X/S)&~ Y (ie., for any effective Cartier divisors on X x sT of degree
(g—1)), we denote by [D;] the element of Pick;s' corresponding to Dy. The
schematic image of this morphism, which turns out an effective relative Cartier
divisor on Picgjs', is called the theta divisor for X/S and denoted by @ys.

Proposition 2.2. Let f: X — S be a projective smooth morphism of noetherian
schemes whose geometric fibers are smooth projective curves of genus g=>1. We
assume the existence of a section. Let Picks' be a Picard scheme of degree (g—1)
and U a universal line bundle on X x sPicks'. Then

det Rq (U)= Opicy- (— Oxis),

where ©y,s is the theta divisor for X/S and q:X x gPick;s' — Picks' is the second
projection.

Proof. When the base scheme is a point, or an arithmetic surface, this is
well-known (cf. [4, §5] or [10, VI Lemma 2.4]). The proof for a general base scheme
is similar to that for a point, as we will see in the following.

Let p: X x sPicgs' - Pics' be the first projection. Let D' be an effective
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relative Cartier divisor of sufficiently large degree on X (actually deg D' >g is enough)
and put D=p*D’). Since

HO(X37 U(—D)t)=0

for all points ¢ of Pic§s' and the point s of S lying below ¢, ¢ (U(—D))=0 by [6,
Corollorary II. 12.9], and R'q (U(—D)) is locally free. Thus, by (a) and (d) of
Theorem 2.1,

det Rq,(U)=detq(Ulp)®(R'q,(U(-D)) .

Since ¢,(U) is torsion-free and H°(X,,U)=0 for a general point ¢ of P, it follows
that ¢,(U)=0. Also, since D — Pic;s' is finite, R'q,(U]p)=0. Thus we get the
exact sequence:

0 - ¢,(Ulp) = R'q,(U(— D)) » R'q,(U)— 0.

We denote the homomorphism ¢ (Ulp) —» R'q (U(—D)) by a. Since R%*q (U)=0,
we get by [6, Theorem II. 12.11]

R'q (U)®k()=H'(X,,U)

for all points of Pic§s' and the point s of S lying below 1. If R'q (U)®k(r)=0,
then R'q(U) is also zero for some neighborhood of ¢, and especially R'q (V) is
flat for some neighborhood of ¢. Thus

«(f) is an isomophism<> R'q (U)®k(1)=0
¢>H1(Xs’ Ut)=0
<> 1¢0y;.

Therefore if we put E={tePic}s'|(deta)r)=0}, then E=a®y for some positive
integer a. By considering the case that the base scheme is a point, we get a=1.

Now we put everything together and get:

Theorem 2.3. Let f:X — S be a semi-stable curve of genus g=>1 of noetherian
schemes and assume that f admits a section €. Let A be a rigidified line bundle of
degree (g—1) and (P°,U% the translation of (Picys,U® by A. We put
T ~'=det Rq%(U"), where q°: X x sP* — P* is the second projection. Then,

(@) If T— S be a morphism of noetherian schemes such that fr:XxsT— T is
smooth, then

Tr'= (Omf( —Ox,r)

where @y, 1 is the theta divisor for Xr/T.
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(i) If L is a rigidified line bundle on X which belongs to P%(S), then there is a
canonical morphism g°:S — P such that the induced morphism

up:det Rf(L) > ()T ™)

is canonically isomorphic.

Proof. Noting that determinant line bundles are compatible with a base change,
we have already seen (i). Regarding as (ii), by the universal property of U* there
exists a canonical morphism g“:S — P such that

L=~(1xg"XU".

On the other hand, since deteminant line bundles are compatible with a base change,
we have canonically

(g°)X(det RgYUT ) =det Rf (1 x g)X(U).

Combining above two isomorphisms, we get the desired isomorphism.

3. Arithmetic setting

In this section, we consider an arithmetic setting. An arithmetic variety is an
integral scheme which is flat and quasi-projective over Spec(Z).

Let f: X — B be a semi-stable curve of genus g>1 of arithmetic varieties and
assume that f admits a section e. We also assume that f: X, — B¢ is a smooth
morphism. Let 4 be a rigidified line bundle of degree (g—1) and (P% U? the
translation of (Pic}s,U°% by 4. We put J ~'=detRq%(U?) on P° where
q*: X x P*— P* is the second projection. Then by theorem 2.3(ii), for a rigidified
line bundle L which belongs to Pic% s, we have a natural isomorphism

up:det Rf(L®A) - (g)XT 7Y,

where g?: S — P* is an induced morphism by L®A.
In this section we give metrics on the above line bundles, and consider the
norm of u;. Let Oy ;3 be the theta divisor for X./B¢, which is a relative Cartier

divisor on P‘é:Picﬁ,;,,‘,c. Then by Theorem 2.3(i), 7 ¢ ' =0picq- 1 (= Oxypy).
. . . c c .
In the following, we introduce a metric on @Pici_c/lnc (—Oxy,)- PutJ= Plc?(c,,,c
and let

2:Picthe >J  [Drlm(g—Nier]

be an isomorphism, where for any Bc-scheme T, [er] is the class of the induced
section by e. Let @?(C,BC be the image of Oy ;5 by A
We need some definitions to proceed. The Siegel upper-half space of deg2ree
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g. denoted by #,, is defined by
Ho={Q=X+./—-1YeGL(C)'Q=Q, Y>0}.
Moreover, the symplectic group of degree 2g, denoted by Sp,(Z), is defined by
Spo(Z)={S€GL,,(Z)|'SIS=J},

0 -1 A B
where J=<—I 0 ) An element S=<C D) of Sp,(Z) acts on ', by

S-Q=(4AQ+ B(CQ+ D)~ !

and Sp,(Z)\#, becomes a coarse moduli of principally polarized abelian varieties.
For z=x+,/—1yeC?® and Q=X+./—-1YeH,, we define

0z, Q=Y exp(n,/—1'mQm+2n./ —1'm-z),

meZg
101(z, ) ="*\/det Y exp(—n'y ¥y)|0(z, Q).

Then 0 becomes a holomorphic function on C#x #,. Moreover [0 becomes a
C>-function which is periodic with respect to Z%+QZ8, so that ||0] is seen as a
C*-function on C8/Z8+QZ5.

Going back to our situations, for any be B(C), let us write analytically

J,=C#/Z8+Q,Z¢

where Q,e#’,. Then there is a unique element #,eC#/Z%+QZ# such that
0%, =div(0(z +1,,9,)), where 0(z+1,,Q,) is seen as a function of z.

Proposition 3.1. With the notation being as above, let 1 denote the section of
(OJ(GXC,BC) which corresponds to ®§c,gc. For any pelJ, let be B(C) be the point

lying below p and write J,=C8|/Z8+QO,Z% and Of =div(0(z+1,,Q,) with
t,e C8/Z8+QZ8. Moreover,let z€ C8| Z& +QZE correspond top. Then, if we define

I1lee  @)=10lz+1,,Q,),
X¢/Be

. . . o
then |- "e,} o gives a C® metric on O J(GXC/BC)

Proof. If the base space B(C) is a point, the assertion is well-known (cf. [4,
§3]). Thus all we need to prove is that ”1"@0 s varies smoothly as be B(C)
varies. However, since the morphism ¢

®:B(C) > Spo(Z)\# gy, br—>the class of J,
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is holomorphic and ¢, is given the difference of the section ¢ and a theta characteristic,
[1lgo _ varies smoothly as be B(C) varies.
xC/BC

Finally, Op;cq ha. (—Ox ) is metrized by (¢ ’(Q?‘c/"c)’ Il 09 c/Bc) through 4. We

write this metric by ||-lle -

Next we give a C® nietfic on L, over X¢. Actually, there is a certain class
of C® metrics on L. which is suitable for our purpose. We introduce this class in the
following.

First we recall admissible metrics of line bundles on a compact Riemann
surface. Let M be a compact Riemann surface of genus g>1 and {w,,w,, -, w,}
a basis of HO(M,Q},) with

Let us put

Then u is a positive (1,1)-form on M, and is called the canonical volume form on
M. A C>®-metric h; of a line bundle L on M is said to be admissible if

¢1((L, hy)) = (deg L)p.

For every line bundle on M, we can endow an admissible metric unique up to a
constant multiplication.

Now let us go back to our situation, i.e., the case that f: X - B¢ is a smooth
family of curves of genus g>1. A C®-metric h; on L, over X is said to be
admissible if for any be B(C), its restriction (L,,h,,) on X, is admissible. The
following proposition guarantees the existence of an admissible metric.

Proposition 3.2. Let X and B be smooth varieties over C and f: X — B a smooth
projective morphism with a section whose fibers are curves of genus g>1. Let L be
a line bundle on X. Then there exists a (global) admissible metric on L over X.

Proof. First we construct a suitable (1,1)-form on X. Let

is the embedding induced by the section. On J, we have a C®-hermitian line
bundle ((9,(@?(,3), II- "9‘,} /B) by Proposition 3.1. We consider

1,
w =§] *c 1((9J(®?(/B), [ ||eg‘ /B))'
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Then, for any b € B, w, = w|y, is the canonical volume form on X, (cf. [4, Thoerem 17).
Let {Uj}2, be an open covering of B. Let us set Xy =f"'(U). By taking
suitable small open balls U;, we may assume that f |y,: X]y, > U; is differentiably

trivial, ie., there is a difftomorphism gi:XUiiX,,ix U; over U; with b,eU; ([9,
Theorem 2.4]). Moreover, we take a partition of unity {p;} subordinate to {U}}.

Let hy be any C*-hermitian metric on L over X. We set n=c,(L,h,), so that
n is a d-closed real (1,1)-form on X. First, we claim that, for each i, (deg(L)w —n)lx,,

is d-exact over Xy,. Indeed, (deg(L)w —n)ly,, =0 in H (X,,,C). On the other hand,
H*(Xy,C)=H?*X,,,C) by Poincaré’s lemma. Thus there is a real 1-form A, on
Xy, such that

(deg(L)w —n)lx,, = d(4y).

Now we set

1= 5 rea,
0= 5S4y 2.

so that A and 7 are real forms on X. By definition, the equality
d(A)=deg(L)w—n+1

holds. If we denote by A" (resp. A©") the (1,0)-part (resp. (0, 1)-part) of A and
by tV the (1,1)-part of 7, then we have

(A )+ (A1) =deg(L)w —n + 11V,

Here, since X is projective, we can apply dd*-lemma to 8(4®") and d(A**®). Then
there are C®-forms a, b on X with 8(A®")=dd(a) and J(A"*)=dd(b). Since
a+b+a+b

deg(L)w—n+t"Y is a real form, if we set a C®-form on X by |//=#,

then we have

dd‘(y)=deg(L)w—n + Y.

Now if we set h=exp(—y)h,, then we have c,(L,h)=deg(L)w +1"'Y. On the other
hand, since |y, =0 for any b€ B, we get t""V|y, =0 for any be B. Therefore we obtain

c(L, h)|x., = deg(L)w|x,,

for any be B, which shows that 4 is an admissible metric on L over X.
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Now we prove the main proposition of this section, which will be a key point
to prove Proposition 5.1.

Proposition 3.3. Let f: X — B be a semi-stable curve of genus g >1 of arithmetic
varieties and assume that f admits a section . We also assume that f¢: X — B is
a smooth morphism. Let

updet R (L®A) - (g)NT ~ b,

be the isomorphism given at the beginning of this section. We endow C*® metrics
on A and wyp, and an admissible metric on L, so that we have the Quillen metric
on detRf(L®A) determined by these metrics. Moreover, we endow a metric

I-lg) Lo J ~'. Then the norm of u, is independent of L.
c=c

Proof. Let be B(C). Since determinant line bundles are compatible with a
base change and since the Quillen metric is given fiberwise, we get

uy :det be*(Lb®Ab) i (9Pic§‘- (= ®x.,)|[Lb®,4,,] ,

where [L,®4,] is the point corresponding to L,®4, on Pick,'. Then by the
following lemma, we obtain Proposition 3.3.

Lemma 34. Let M be a compact Riemann surface of genus g>1, L a line

bundle of degree 0 on M. We endow a C®-metric hy on A, a C*-metric hg, O"
QL | and an admissible metric h;, on L. Then we have a canonical isomorphism

u: det T(L® A) = Opiey - (~ OmliLoay,

where detT'(L® A) is the determinant line bundle of LQA. We endow the Quillen
metric on det T(L®A) and | - |l g, on (Dpici{ -(=Oy). Then the norm of u, is independent
of L.

Proof. Let hy and hg, be admissible metrics on A4 and Qly respectively. We
write the Quillen metric defined by (L®4, h ®h,) and (Qy,hg, ) as hg®4. We

also write the Quillen metric defined by (L®4, h,®H,) and (Qy, kg, ) as h5®4. We
decompose u; into

(det T(L® A), h58%) — (det T(L® A4), h5®4)
] b4
- (det N(L@A), hp®4) - @Picg" (= Opm)liLe4)»

where hk®4 is the Faltings’ metric on L®A. By the definition of the Quillen
metrics, the norm of « is independent of L, because we only change the metric of
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A. The norm of § is the difference of the Quillen metric and the Faltings’ metric
for admissible line bundles, which is a constant depending only on M
(cf. [15, 4.5]). Moreover, the norm of y is also independent of L, which is actually
given by exp(6(M)/8) with the Faltings’ delta function §(M) (Or rather, this is the
definition of d(M)). Therefore the norm of u; is independent of L.

4. Arithmetic height function over function fields

A. Moriwaki [13] has recently constructed a theory of arithmetic height function
over function fields, with which he recovered the original Raynaud theorem (i..,
over a finitely generated field over Q). In this section, we see a part of his theory.

Let K be a finitely generated field over Q with tr.degg(@)=d. Let B be a
normal projective arithmetic variety with the function field K. Let H be a
nef C®-hermitian Q-line bundle on B, ie., deg(H|)=>0 for any curve C and cy(H)
is semi-positive on B(C). A pair B=(B, H) with the above properties is called a
polarization of K. Moreover, we say that a polarization B is big if tk HB, H®™)
grows the order of m? and that there is a non-zero section s of H(B, H®") with
Isllsup<1 for some positive integer n.

Let X be a projective variety over K and Ly a line bundle on Xx. By a

model of (X, Lg) over B, we mean a pair (X —f> B, ) where f: X — B is a projective
morphism of arithmetic varieties and L=(L,h;) is a C®-hermitian Q-line bundle
on X such that, on the generic fiber, X and L coincide with X and L respectively.

By abbreviation, a model (X —f> B, I) is sometimes written as (X,L). We note
that although we use the notation X, and Ly, a model of (Xg,Ly) is not a priori
determined.

P
For Pe X(K), we denote by A, the Zariski closure of the Image (Spec(K) — Xy)

f —
in X. Then we define the height of P with respect to (X — B, L) to be

= 1 —_— _
h(%{,i)(P) = m deg(é,(Lla,)- él(f*H]Ap)d)'

If we change models of (Xk,Lg), then height functions differ by only bounded
functions on X(K). Namely, if (X, L) and (X', L) are two models of (X, Ly), then
there is a constant C>0 with

@.1) B o (P)—hE. £ (P <C

for all Pe Xi(K) ([13, Corollary 3.3.5]). Thus the height associated with Ly and

B is well-defined up to bounded functions on Xi(K). We denote th the class of
h% ;) modulo bounded functions.
Now let Lz be a line bundle on Xg=X®K. We would like to define

hfk : Xz = R. For this, we need the following proposition (cf. [ 13, Proposition 3.3.1]).
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Proposition 4.1. Let K' be a finite extension field of K, and let g: B — B be a
morphism of projective normal arithmetic varieties such that the function field of B’
is K'. Let X' be the main component of X x gB' and

g
X > X
" 7|
B 5 B

. : B’ .gx(H)) _ /N B,H
the induced morphism. Then h3.5\0)=[K': K] hx).

Let L; be a line bundle on Xz. We take a finite extension field K’ of K such
that Lz is defined over Xi.. Take a projective normal arithmetic variety B’ such
that there is a morphism g: B’ — B and that the function field of B' is K'. Let X’
be the main component of X x'zB. We take a blow-up X’ — X’ if necessary so
that Lz extends to a line bundle £’ on X"

Then we define

1 (B',g+(H))
[K:k]

B _
n =

By (4.1) and Proposition 4.1, it is easy to see that hiz is well-defined up to bounded
functions on Xg(K). Moreover, if Lg is defined over Xy, then hiE is equal to
hE -

The next theorem shows some fundamental properties of hfi (cf. [13, Proposition
3.3.6 and Theorem 4.3]).

Theorem 4.2. (i) (positiveness) If we denote Supp(Coker (H°(Xg,Lg)®0y,)
— Lg) by Bs(Lg), then hEE is bounded below on (Xg\Bs(Lg)).

(ii) (Northcott) Assume H is big and that Lg is ample. Then for any e>1 and
M>0,

{Pe X(K)| K} (P)<M, [K(P):K]<e}
is a finite set.

If Xz is an abelian variety, we can choose the good representative of a class
hf . For a line bundle Lg on Xz and a point Pe Xg(K), define g7 (P,P) and
IEE(P) to be

& (P, P)= lim L 2'P)

n—oo



482 Shu Kawaguchi
5 . 1/1 5 B
ILK(P)= hm ? EhLR(Z"P)_qLR(P’P) .
Then qfi is a bilinear form, while lﬁi is a linear form. We define ﬁ’-’i by
hE (P)=q} (P,P)+IE (P),

and call it the canonical height of Lg with respect to a polarization B.

Proposition 4.3. Let Xi be an abelian variety.

(i) If Lg is ample and symmetric, then EEKZO.

(ii) If Lz and Mg are two line bundles on Xz, then
hE @ o(P)=hE (P)+hiy (P)

(iti) If P is a torsion point, then ﬁfﬁ(P)=0. If we assume H is big, then ﬁfK(P)=0
if and only if P is a torsion point.

Proof. The first assertion follows from Theorem 4.2(1). The second assertion
can be readily checked. The third assertion is an easy consequence of Theorem
4.2(ii). We note that in (i) we need the symmetricity of a line bundle.

We need the next lemma to prove Proposition 5.1,

Lemma 44. Let Lg is an ample symmetric line bundle on an abelian variety
Xz, P an element of Xg(K). Let t be an element of Xg(K) and T,:Xg— Xi the
translation by t. Then there is a constant C such that

20 0nP)—n*hE (P)) = Cn
for any positive integers n.
Proof. Let T_,:Xz— Xg be the translation by —t. We write T,5Lg)®? as
THLR®? =(THLR)® T*(LR)(THLY®(T*(Lg) ")
Since THXLz)®T*(Lg)=L§? by the theorem of square, we obtain
THLR)®? =(LEHR(THLR)®(T*(Lg) ™).

Thus we get 4’;‘;’?@,2):452&"'5;?(1-&)@(”— (Lgn-t- Since Lg is symmetric and
THLR®(T*(Lg)™" is anti-symmetric, EBK is quadric, while ﬁ‘;;(LK,QD(T*_ (Len-1 18
linear. Thus if we set C=|ﬁ';;(LE,®(T*_r(LK,)_l(P), then we obtain the lemma.
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5. Height and intersection

By a big Zariski open set of a noethrian scheme B, we mean a Zariski open
set B' of B with codimgz(B\B')>2.

We first prove the following proposition, which is a special case of the main
theorem (Theorem 5.2).

Proposition 5.1. Let K be a finitely generated field over Q, Xy a geometrically
irreducible regular projective curve over K, and Ly a line bundle on Xy with

deg Ly=0. Let B=(B,H) be a polarization of K, and (X -i B, L) a model of
(Xx,Lg). We make the following assumptions on the model:

(a) B is regular,

(b) f is semi-stable with a section ¢

() X¢ and B¢ are non-singular and f.: X — B is smooth.
Let Jg be the Jacobian of Xg and O a divisor on Jg which is a translation of the
theta divisor on Pic® ™ (Xg) by a theta characteristic. If there is a big Zariski open
set B' = B such that deg(L|c)=0 for any fibral curve C lying over B' and if the metric
of L is flat along fibers, then

(5.1) "deg(é, (D) &,(f AN = — 24, 0 [Lx]).

where [ L] denotes the point of Jy corresponding to Ly.

Proof. We note that since deg L =0, the admissibility of L means that the metric
of L is flat along fibers. Since deg(Lg)=0, if we change L to L®f*M) with M
being a hermitian line bundle on B, then each side of (5.1) does not change. Thus
we may assume that L is rigidified along the section e. Let us set 4 =0,((g— 1)[€]).
Then A is a rigidified line bundle of degree (g—1) on X. Let (P° U" be the
translation of (Picy,z,U® by A, where U° is the universal line bundle on
X x gPicy5. We put J ~!=det Rg(U"), where ¢":Xx, P*— P* is the second
projection.

We give an admissible metric 4, on 4 and an admissible metric b, on wys
and then give detRf,(L®"®A) the Quillen metric A5 4 with r/espect to
L®"®A=(L®"®A, h} h,) and wyp=(wysp.h, o) Moreover we endow |- [lg! o
on J ! (cf. Proposition 3.1).

Let us put X'=f"YB), f'=f|ly. and A'=A|y.. Moreover Let (P*,U%),
(Pic%p, U®), ¢ and J ~ "' =det Rq’,(U") be the restriction of (P% U®), (Picys, U°),
¢* and J ~'=det Rqg%(U") over B, respectively.

Now we consider L'®"® A’ for a positive integer n. Since deg(L'|c)=0 for any
fibral curve lying over B, L' belongs to Pic3. 5. Thus by Theorem 2.3(ii), there
is a canonical morphism g,: B = P* such that

u,:det Rf(L'®"®A) Sg,XT ")
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is canonically isomorphic over B. Since both sides are metrized, we can consider
the norm a, of u,. Then

ty: (det RF(L'C"@ANKG N S g% T VI la) |, )®O(o; ")
is an isometry. Moreover, by Proposition 3.3, the function a,:B/{C)— R, is
independent of n.

Next we consider a compactification of P°. Since there is a relatively ample
line bundle on P° we first embed P° into a large projective space P§ and then
take its closure. If 7 ! does not extend to a line bundle on this closure, then we
make blow-ups along the boundary. Then we get a projective arithmetic variety
P* with n:P°— B and a line bundle ' on P* with 7 !,.=7 ~!. We note
that since f¢ is smooth, P¢= P¢

Let A, be the Zariski closure of the Image(g,: B — P*) in P°. Now we claim
the following equation;

(52)  deg(é,(det Rf,(L®"®A), k5" ®%)- &,(Y)

—_— . _ _ . _ 1 _
=deg(é,(Op(T "N, I lla) | Ma, - E1(m¥(H)) 1) ——J (loga,) Ac, (HY.
X /B 2 B,(©)

Actually, since B is regular and B’ is big, a line bundle on B’ extends uniquely
to a line bundle on B. The line bundle detRf(L'®"®A’) on B’ extends to
det Rf (L®"®A) and the line bundle g,%7 ~") on B’ extends to a line bundle on
B, which we denote by M,. Let us set M,=(M,,g,*(ls " ). Since 7|y :A,—» B
is an isomorphism over B and codimg(B\B')>2, W!J: s actually equal to
(7ls) (OplT 1), I+ |I§x‘cwc). Then since the infinite part is not changed at all, we

get the isometry
u,:(det RS (L8 "®A),h5™"®h) 5 M, @050, ).
Then by intersecting é,(H)" and taking degrees on both sides, we get
deg(é,(det Rf(LO"®A). K507 ¢,(AY)

=&E(51(V..)'51(H)")—% J (loga,) Acy(H)!

B((©)

— _ 1 _
=deg(¢,(Op(Z ") 1" 6 xlcfvc)l“" “E3(m*(H))a,) —3 j (loga,) Ac,(HY,
B,(C)

where we use the projection formula in the second equality.
First we conmpute the left hand side of (5.2). By the arithmetic Riemann-Roch
theorem established by Gillet and Soulé [5], we have
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éy(det Rf(LB"® A), h5™"®4)

1 _ - _ - . _
= Ef*(él(LG’"@A)z - 61(L®"®A) : él(wX/B)) +¢é,(det Rf (Oy), hgx)

1
=5f H{C1(LY)n? + O(n).
Thus, we obtain
(5.3) deg(é,(det Rf (LB"® A), K5™"®4)- ¢, (1))

1 _ _
=2 degl/(EA( D7) &Y+ )
=%deg(c‘l(1:>2~élcf*(ﬁ»")nuom)

Next we compute the right hand side of (5.2). Let 1,,:Pic‘,},B:>P" be the

isomorphism which is given by the translation by 4. By way of this identification,
let P° be the compactification of Pic}; which corresponds to P°. Similarly, we
define (7°7', A? and n° which correspond to 4 7', A, and = respectively. We
note that a metrlc on (7%~ ! induced from 1, is nothmg but | - ”90 by Proposition
3.1. Then we have J =0, (®%), where

O)=0¢+[a theta characteristic] —(g — 1)[ex].

Since (n°: P° = B, (7)1, || g - )) is a model of (J,, 0, (— %)), (4.1) shows
that there is a constant C such that o

(deg(E(OpZ s, o, xtm*(A1a) — 8, - oy ((LE"D)
= 1deg(E\ O 1y, Vo, Ex(@ DY)~ L, o ((LEDI<C
Then using Lemma 4.4, we get
(54)  [degles(Op(T )N 15} M, N 1a) ~1PhE, o, [ LiD) = On).

Taking into consideration (5.3) and (5.4) and the fact that «, is independent of
n, if we divede (5.2) by n? and let n goes to oo, we get (5.1).

Now we prove the main theorem of this paper.

Theorem 5.2, Let K be a finitely generated field over Q, X, a geometrically
irreducible regular projective curve over K, and Ly a line bundle on Xy with

_ _ ! _
degLy=0. Let B=(B,H) be a polarization of K, and (X - B, L) a model of
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(Xg,Lg). We make the following assumptions on the model.
(a) f is semi-stable;
(b) X¢ and B¢ are non-singular and f¢: X¢ = B¢ is smooth.
Then we have

deglé, (- &,(f (M) < — 2L, o p([LiD),

where [Ly] denotes the point of Jg corresponding to L.

Furthermore, we assume that H is ample and c,(H) is positive. Then the equality
holds if and only if L satisfies the following properties:

(a) There is a big Zariski open set B" of B such that deg(L|c)=0 for any fibral
curves C lying over B'.

(b) The metric of L is flat along fibers.

The next corollary is an immediate consequence of the main theorem and
Proposition 4.3(iii).

Corollary 5.3. Let the notation and the assumption be as in Theorem 5.2. We
assume that H is big, H is ample and c,(H) is positive. Then

deglé,(E)-é,(f ) =0

if and only if the following properties hold:

(a) There is a big Zariski open set B" of B such that deg(L|c)=0 for any fibral
curves C lying over B”;

(b) The restriction of the metric of L to each fiber is flat,

(c) There is a positive integer m with L§™=0y_ .

We need three lemmas to prove the theorem.
Lemma 54. Let K be a finite extension field of K, and let g:B— B be a

morphism of projective normal arithmetic varieties such that the function field of B is
K. Let X=Xx B and

.z
X - X
ooy
. &
B - B

the induced morphism. Then

Qeglés (8 *E) - 6,(T*g ")) =[R: K1deg(é (D) - &,(f ).
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Proof. 1t is an easy consequence of the projection formula.

Lemma 5.5. Let L=(L,h;) be a C®-hermitian line bundle on X and L' =(L, hy)
be a hermitian line bundle whose metric is flat along fibers. Then

deg(é, (D) &,(f*)Y) < deg(éy (£ - &,(f HA)).

If ¢,(H) is positive over a dense open subset of B(C), then the equality holds if and
only if the metric of L is flat along fibers.

Proof. Let us write h;.=uh;. Then u is a positive smooth function on
X(C). Since

¢ (L) =¢,(L')+(0,log u),
we have
¢(D)*=¢ (L) +(0,2¢,(L)og u)+ (0, log u)dd<(log u)).
Thus
deg(é,(L)? - &,(f *)) = deg(é, (L) é,(f DY)

- J (logu)c, (L) Aey(fH)Y +% ‘[ (log u)dd(log u) Ac(f H(H))".
X(€)

X(€)

Now the assertion follows the following two claims.
CLAIM 5.5.1. jxc(c,(logu)cl(I:')/\cl(f*(ﬁ))"’=0

Proof. For be B((C), ¢,(L),=0. Then

J (logu)e,(L) Ae,(f¥H))' = J (J (log u)ﬁ@')) ¢y (H)'=0.
X,(©) BLC)\J f: X~ B,

CLam 5.2.2. [y cfloguydd<(logu) A (f HH))'<0. Moreover, if ¢\(H) is positive
over a dense open set of B(C), then the equality holds if and only if u=f*v) with
some C* function v on B(C).

Proof. We have

(log w)dd“(log u)= Vz_ ! (log u)od(log u)
Y/

=—V2—1 d(logu- &log u))—_—"z“l d(log u) Ad(log u).
¥ T
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Since ¢,(f*(H))" is a closed (d,d)-form, by Stokes’ lemma, we get

'[ (log w)dd‘(logu) Ac,(f {H))*
X(€)

1 _
=— I (/ —19(log u) Ad(log u) Ac,(f HH)Y"
X((©)

2n

By the definition of the polarization of B=(B, H), c¢,(H) is semipositive. Moreover,
d(logu) Ad(logu) is semipositive. Thus we get the first assertion.
Suppose now c,(H) is positive over a dense open set of B(C). We have

J (\/ — 18(logu) Adlog w)) Ac,(f H )
X (0

= J (J </ —18(logu) Ad(log u)) c (A
BL(O)\J [ :X ~B,

If this value is zero, then, for any be B¢, / —10(logu)Ad(logu)|x,=0. Then uly,
is a constant function on X,(C). This shows the second assertion.

Lemma 5.6. We assume that B is regular. Let A be the set of critical values
of f, ie, A={beB|f is not smooth over b}. Let A=uU]_,A; be the irreducible
decomposition of A such that A,,---,A;, are divisors on B while codimgA;)=2 for

1
i>I +1. LetussetT;=f""(A)fori=1,---, I, and write T';= U]L T';; as its irreducible
decomposition. Note that T';; are all divisors on X for 1<i<I,, 1<j<J;. Then
there are a big Zariski open set B’ of B, integers e;; (1<i<I,, 1<j<J)) and a positive
integer such that L®"® Ox(—X;e;;T;))|p belongs to Pic)-i g p .

Proof. 1If I, =0, then we heve nothing to prove. Thus, we assume I, >1. To
ease the notation, we first assume the irreducibility of A. Since f¢ is smooth, A is
defined over the finite field F, for some prime number p. Let k(A) be the rational
function of A and write n=Spec(k(A)). Moreover, let k(A) be an algebric closure
of k(A) and write 7= Spec(k(A)).

Let X;=U;j<sU1<a<ayC; be the irreducible decomposition of X; such that
C¢ and Cf are Gal(k(A)/k(A))-conjugate to each other for 1 <a, f<a(j). We denote
by T'; the Zariski closure of C} in X for some (hence all) a.

We put c}‘=deg(L,,|C7). Since L is defined over X, ¢j=cf for 1<u, f<a(j).
Moreover, since the degree of L is zero, £ ;< 1 <a<aj¢;=0-

We put g% =dim,,(Cfn Cf) for (j,a)#(k, ), and ¢5=—Zu 5209t . Then
by Zariski’s lemma ([1, I, Lemma (2.10)]), there are rational numbers a} (1<j</J,
1<a<a(j) such that ai=af and that X;,ajqi¥ =cf for 1<k<J and 1<f<a(k).
Moreover, X;,, 50595 =0 if and only if ai=aj for any (j,o) and (k, f).
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Let Y be the subset of |A| consisting of F,-valued points b such that:

(a) The irreducible decomposition of X, is of form X,=uU, o ;U caca;y CO);
such that T';n X, = U 4,4 C0)};

(b) deg(LIC(,,,;,):c;';

(©) Ty CON =%, cacarif -

Then there is a divisor Z on A such that Y < |Z|. We set B=B—|Z|.

Now we set e;=ma} (1<j<J) for sufficiently divisible m and L'=L%®m"
®0Ox(—Z{-e;l'). We claim that L'|p belongs to Pic%-15, 5. Indeed, if b¢A, then
X, is a smooth connected curve and deg(L'|ly,)=0. Thus L'|y, belongs to
Picy,. Next, if be A\|Z|, then X,=u;,C(b); is the irreducible decomposition of X,
and

deg(L'|C(.,)g)=m(c£— q;£a£)=o

1<j<J,1<asga(j)
for any j and f. Thus also in this case, L'|y, belongs to Pic},. Therefore L'l
belongs to PicY- iy p -

We have just shown the lemma when A is irreducible. Now we consider a general
case, ie, A=uUlL A;. For each A, (1<i<lI,), take a divisor Z, of A, and

X cicn,i<j<s€ly; in the same way as above. If we set
B =B—(Z,|u- U|Z;|u(UIA|N]A]D)
ij

then B’ is a big open set, and it is easy to see that L®"@0Ox(—X e, T";)lp belongs
tO Picg-l(g')/gr.

Proof of Theorem 5.2. First we prove the first assertion of the theorem. In
virtue of Lemma 5.4, by taking a suitable generically finite cover of B, we may
assume that f: X — B has a section. Moreover, by [8, Theorem 8.2], there is a
surjective generically finite morphism B — B of arithmetic varieties such that B is
regular. Thus, by Lemma 5.4, we may also assume that B is regular.

We follow the notation of lemma 5.6, and let L®™® O( —ZX;e;l;;) be a line
bundle on B whose restriction to a big open set B’ of B belongs to Pic}-14) . For
simplicity, we set E=—X;e;I';;. Then

deg(e, (L™ - ¢,(f %))
= deg((¢,(L¥"®OLE)) — &, (OHE))*- &,(f *(H)Y)
=deg(é,(L¥"®ULE)) - &,(f *(H))
— 2deg(é, (LB OLE))- ¢,(O(E)) - &,(f () + deglé (OxE) - ,(f )

Since deg(L®™"® O4(E)|c)=0 for any vertical curve C lying over B, the second term
in the last expression becomes zero. Moreover, for the third term in the last



490 Shu Kawaguchi

expression, we have

—_— - Iy .
deg(¢,Ox(E)* - ¢,(f X H))= ) degm(Ai)‘(1 Zk ei,eikq}k>,
i= <jk<Ji

i=1

where g% =dimy (T a9 O Tiray) From the proof of lemma 5.6, this value is
non-positive. Moreover the equality holds if and only if e;,=--=¢;,, for
1<i<I,. To sum up, we get

deg(é,(T%™)? - &,(f HY)) < deg(é, (LT @ OE))? - &,(f *(H))).

Next let 4; be an admissible line bundle on L. Then by Lemma 5.5 and
Proposition 5.1,

deg((&,(LF™R@OLEN - é,(f ).
<deg((,(LO"®O(E), ) - &,(f *(H)Y).
= —2mg, (o ([Lx]).

Thus we get the first assertion of Theorem 5.2.

Now assuming that H is ample and c¢,(H) is positive, we consider when the
equality holds.

Let g: B — B be a surjective generically finite morphism of arithmetic varieties
such that B is regular and f: X — B has a section, where X=X x ,B and

2

X - X
o1y
B B

l =

is the induced morphism. Let us set £L=g*L) and H=g*H).

Now let us assume the condition (a) and (b) in the second assertion of the
theorem. By Lemma 5.6 there are a big open set B’ of B, a positive integer and
a vertical divisor ' of X such that go f(I') =« B\B” and that £®"® O[Tz belongs
to Pic%slz -

CLAIM 5.6.1. If K denotes the function field of B, then
deg(¢y(£)? - &,(FHA)) = — 2[R : K1AE, o[ Lx])-
Proof. By Proposition 5.1, we get

deglé,(E2m@ O+ &,(THAN) = —2m*AEEEN[L])
= —2m*[R: K1AG, 0 ([Lk)).



Height and intersection 491
On the other hand, since
(LB @O(D))? =m?¢,(L)* + 2mé,(E) - &,(Ox(I) +&,(0x(I)>
and JX(H)=/*(g *(H)), we get
deg(é,(L2"@O(T)? - &(JH(AY) = m?deg(é (D) - (T,
by projection formula (Note that go AT') = B\B"). Thus we obtain the claim.

From the claim, we get
deg(é, (L) - ¢,(f )= — 288, (o ([Lx])

by projection formula.
Next we assume that

deg(é,(L) - &,(/ ()= —2h5, 0 ([Lx]).
Then by projection formula, we have
deg(é (D)% &,(FH)) = — 2R LLD).

Let A be the set of critical values of fand A= uU!_,A, be the irreducible decomposition
of A, where A, , ---,Z,l are divisors on B such that g(A) are also divisors on B for

I<igliy, Zn+ 1» Ay, are divisors on B such that codimy(g(&,)>2 for I, +1 <i<l,,
and A, (i>1,) satisfy codimg(8,)>2. Then we take T, _, I.1<j<Js€ilij as in Lemma

5.6 (which is applied to f: ¥ - B). If we look back closely the proof of the first
assertion of the theorem, we find that the equality holds if and only if (a) e;; = --- =¢;,

for 1<i<I, and (b) L is flat along fibers (Note that the reason we need to consider
I, and I, is that degg,(,,,(Zi)=O for I, +1<i<I,). Moreover the condition (a) is
equivalent to the existence of a big open set B” of B such that deg(L|c)=0 for any fibral
curves C lying over B”. This proves the second assertion.
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