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Height and arithmetic intersection for
a family of semi-stable curves

By

Shli KAWAGUCHI

Abstract

In  this paper, we consider an arithmetic Hodge index theorem for a family
of semi-stable curves, generalizing Faltings-Hriljac's arithmetic Hodge index
theorem for an arithmetic surface.

1. Introduction

In papers [4] and [7], Faltings and Hriljac independently proved the arithmetic
Hodge index theorem on an arithmetic surface . Moriwaki [12] subsequently proved
a  higher dimensional case of Faltings-Hriljac's arithmetic Hodge index therem. In
this paper, we consider an arithmetic Hodge index theorem for a family of semi-stable
curves. Namely, we prove the following theorem.

Theorem A (cf. Theorem 5.2). L et K be a finitely generated field over Q, X K a
geometrically irreducible regular projective curve over K, and LK a line bundle on XK  with
deg LK= O. Let 13- =(B ,R) be a polarization of K, i.e., B a normal projective arithmetic
variety with the function field K, and R  a nef C-hermitian Q-line bundle on  B . L et

(X —411,1,) be a model of  (XK , L K ) (see §4 f o r terminology). W e  m ak e  the following
assumptions on the model:

(a) f  is semi-stable;
(b) Xc  and  Bc  are  non-singular and f c : X c  B c  is smooth.
L et d r „  be the Jacobian of  X K  and OK a divisor on JR  which is a translation of

the theta divisor on Pie ' ( X lz) by  a  theta characteristic. T hen w e have

deg(e1 (L) 2 • e1(f *(17))d ) —  2fig,,R ( 0 ) (EL0),

where [L K ] denotes the point of  J K  corresponding to LK  (For the definition of  a
height function fit , z ( e s e e  §4).

Furthermore, we assume that H  is ample and ci (R ) is positive. Then the equality
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holds if  and only if  L satisfies the following properties:
(a) There is a Zariski open set B" of B with codim B(B \B ") 2  such that deg (L  I) = 0

f o r any f ibral curves C  lying over B".
(b) The restriction of  the metric of  E to each fiber is flat.
We note that when B is the spectrum of the ring of integers, the above theorem

is nothing but the arithmetic Hodge index theorem for a semi-stable arithmetic surface.
O ur proof uses arithmetic Riemann-Roch theorem, similar to that of Faltings

on an arithmetic surface, although we must consider the Quillen metric. Now we
outline the organization of this paper. In  §1 , we recall some properties of relative
Picard functors. In §2, we recall some facts on determinant line bundles, especially
for semi-stable cu rves. In §3, we deal with an arithmetic setting and give hermitian
m etrics to the  results o f  § 2 . In  § 4 , we quickly review (a part o f) the  theory of
height functions over a finitely generated field over Q, due to Moriwaki [13]. Finally
in §5, we prove the main theorem.

I wish to express my sincere gratitude to Professor Moriwaki for his incessant
warm encouragement. Moreover, it is he who suggested that I consider this work.

1. The Picard functor

The purpose of this section is to review some properties of the relative Picard
functor, which we will u se  la te r . We refer to [2, §§8-9] for details. In this section,
we only deal with schemes which are locally noetherian.

L e t  S  b e  a  locally noetherian b a se  scheme, f  : X —* S a flat, projective
m orphism . The relative Picard functor Picx is  of X  over S is the fppf-sheaf associated
with the functor

P , 15 : (locally noetherian S-schemes) (Sets), T  Pic(X x s T).

I f  w e  assume f ,(t9 x )=C s  holds universally , then fo r  all locally noetherian
S-schemes g:T—> S,

Pic(X x s T)/Pic(T).

Furthemore, if X IS  admits a section c:S —> X, then one checks immediately,

group of isomorphism classes of
Picx is(n= invertible sheaves L  on  X x s T,

plus isomorphism (c .g, 1 T )*(L ) CT

Such invertible sheaves are said to be rigidified along the induced section c, = cog.
If S  consists of a field, then Pic x is  is a group schem e. Let Piel is be its identity

com ponent. For a general locally noetherian scheme S , we introduce Pic?us as the
subfunctor of Pic x is  which consists of all elements whose restrictions to all fibers
Xs , s  being a point of S , belong to Pic 0 0 0

If X  is  a  proper curve over a field k , then PicS),/, consists of all elements of
PiCXIk whose partial degree on each irreducible components of X() kk  is zero, where
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k is an  algebraic closure of k.
W e note  tha t if P ic„  (resp . P ic / )  is representable by a  locally noetherian

scheme, then for all locally noetherian S-schemes T,

Picx i s  x s T =Pic x X  s r( r e s p .  P i c (
x
)
/s x T = Pic  x  s TIA

Now we introduce the notion of universal line bundles when Pic„ (resp. l is )
is representable by a  locally noetherian scheme. W e assume th a t the structural
morphism f : X  —) S admits a  section  c  and that f ( 0 x )=C s  holds universally, so
that Pic" is given by (1.1) for a locally noetherian S-scheme. If P ic". (resp . P i4 s)
is representable by a  locally noetherian scheme, then the identity o n  P ic" (resp .
Pic(

x
)
/s) g ives rise  to  a  line bundle U  (resp. U °)  o n  X x s P ic "  ( re sp . X x s P id is )

which is rigidified along the induced section. U (resp. U
°
)  is called the universal

line bundle. The justification of the notion of "universal" is the following proposition
(cf. [2, 8.2. Proposition 4]).

Proposition 1.1. L et f  :X  S  be a f lat m orphism  of locally noetherian schemes
and let c  be  a section o f  f  A ssume th at  f (0 x )-= Cs  holds univ ersally . I f  Pic x i s

(resp. Pic
(
x
)
 i s ) is representable by  a  locally noetherian scheme, then the universal line

bundle U has the following property: For every locally noetherian scheme g:T — ) S,
and for every  line bundle L ' on X ' x s T  which is regidified along the induced section
c' =6 o g, there exists a unique morphism g:T --*Pic x i s  such that L ' is isom orphic to
(1 x g)*(U).

If  Pic i s  is representable by a locally noetherian scheme, the universal line bundle
U

°
 has a similar property f or a line bundle L' on X ' = X x s T  which is rigidified along

the induced section and L ;ePicL k( ,) f or all t e T.

Now we restrict ourselves to the case of semi-stable curves. W e recall that a
semi-stable curve of genus g is a  proper flat morphism f  : X  S  whose fiber X i  over
geometric point .  S  is a  reduced connected curve with at most ordinary double
points such that dim k(s) 111 (Xi 3 O0 equals to g.

Proposition 1.2. L et f  : X  S  b e  a sem i-stable curv e o f  locally noetherian
schem es. T hen f (0 x ) =C9s  holds universally.

P ro o f  W e  h av e  o n ly  to  p ro v e  th a t fe,g9 x )---- Cs . L e t  n o  b e  the Stein
factorization of f  where /: X —) S

.
" is a  proper morphism with connected fibers and

it: S  i s  a  finite m orphism . Since every fiber is geom etrically reduced and
geometrically connected, there is a section q : S  :5" such that 7=q o f  by rigidity
lemma ([14, Proposition 6.1]). Since Og fq , ( 0 x ) factors through

4g
9s) *(es)=.7*(0x),

*( ) i s  injective. O n  t h e  o th e r  h an d , since q  i s  a  closed immersion,
q * ((!2s) i s  surjective, hence = ri.(0 s ). T hen , f ,( 0 x )= it 41 (&  x)= it ,,,(co



472 S hu Kawaguchi

= 7r * (17 Oa= es

We finish this section by quoting a  result obtained by Deligne concerning the
representability of the relative Picard functor (cf. [2, 9.4. Theorem 1] or [3, Proposition
4.3]).

Theorem 1 .3 .  L et f  :X  -+ S  b e  a sem i-stable  curv e o f  locally noetherian
schem es. T hen Picxis is  a smooth algebraic space over S. T h e  identity component
Pic i sis a semi-abelian scheme.

2. Determinant line bundles

The purpose of this section is to review some properties of determinant line
bundles. Since we are concerned about a  family of curves in  this paper, we only
consider determinant line bundles in  a  restricted con tex t. F o r a  general treatment
of determinant line bundles, we refer to [ 1 1 ] .  For the  next theorem, we refer to
[11] or [10, VI §6].

Theorem 2 .1 .  L et us consider a morphism f :  X  S  of noetherian schemes with
the following conditions:

(i) f  is proper, f s,(0 5 )=0 s , and dimf=1.
(ii) There is an effective Cartier divisor D on X  such that D  is f-ample and flat

over S.
Fo r every f: X  — * S satisfying the  above conditions, for every  line bundle L

on X  and isomorphism of sheaves 4): L  L ' ,  one can uniquely construct a line bundle

det R f (L ')  on  S  and  an  isomorphism det R f (L )  3  det R f ( L ')  in  such a  w ay  that
det R f(L ) becom es a functor w ith the following properties:

(a) I f  f ( L )  and R l f * (L ) are both locally f ree, then

det R f (L ) = det f  0(det R 1f ,(L)) -

(b) det R f *(L) is compatible with a base change, i.e., i f  g :T  S  is a morphism
of noetherian schemes, then

g *(det R f det R(fT)*(LT);

(c) I f  S  is connected and M  is a  line bundle on S , then

det R f  * (L  f  * (M ) )  det R f(L )Ø M x,

w here x=x(C,,L s) f o r some s E S;
(d) If  D  is an effective Cartier divisor on X  which is f lat over S, then

det R f * (L)L-2 det R f(L( —  D)) det f  * (LI D).

Suppose now that f: X —> S is a semi-stable curve of noetherian schemes and
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assume that f  admits a  se c tio n  c . Moreover, let A  be a rigidified line bundle on
X of degree g— 1. By Theorem 1.3, Pic 1 i s  a semi-abelian scheme and there exists
a  universal line bundle U °  o n  X x s P id is . L e t  P  b e  th e  scheme which is the
translation of Pick s  b y  A , i.e.,

P a ( T ) =
rigidified line bundle L on X ,

such that L O A ' belongs to Pi4 is

Moreover, let Ua be the line bundle on P  which is the translation of U °  b y  A .  If
q" : X x s P  P  is the second projection, then qa satisfies the condition of Theorem
2.1, because f : X —' S satisfies the condition of Theorem  2.1. Thus the determinant
line bundle det Re,(U ") o n  P  is defined. To simplify the notation, let us denote
det Rga,(U") b y  5 - 1 .

In  the  following, we will see that <% - 1 is  re la ted  to  the  theta divisor. H ere
we further assume that f :  X -4 S is sm ooth o f genus g> 1. First, we define the
theta divisor.

Let (X/S)(g- 1 )  b e  the symmetric (g— 1)-fold product, i.e.,
(g— 1) ti mes

(X /S )—  1 ) = X  X s X sX
g - 1 ,

(g— 1) ti mes

where the (g— 1)-th symmetric group S g - 1 a c ts  on X x s ••• x s X  na tu ra lly . Let

(X /S)S) g  1 ) ,  D EDT]

be a morphism, where for any locally noetherian S-schemes T and for any T-valued
point D , of (X/S) (g- 1 )  (i.e., for any effective Cartier divisors o n  X x s T  of degree
(g — 1)), w e deno te  by  [D r ]  th e  element of PicVs

1 corresponding  to  DT . T h e
schematic im age of this morphism, which turns out an effective relative Cartier
divisor on  P ic lis l  , is called the theta divisor for X/S and denoted by el- x/s •

Proposition 2.2. Let f : X  S  be a projective smooth morphism of  noetherian
schemes whose geometric fibers are smooth projective curves of  genus g > 1 .  We
assume the existence of a section. Let Pic ' be  a Picard scheme of degree (g -1 )
and U a universal line bundle on X x s PicVs

1 . Then

det Rq,,,(U) Opicv . j ( — Oxis),

where Ox i s  i s  the theta divisor f o r X IS  and q:X x s PicVs
1 — )Piclis i i s  the second

projection.

P ro o f  W hen the  base  scheme is a  p o in t , o r  a n  arithmetic surface, this is
well-known (cf. [4, §5] or [10, VI Lemma 2.4]). The proof for a general base scheme
is sim ilar to that for a point, as we will see in the following.

Let p : X x s PicVs l P ic 7 s
1 b e  th e  first p ro jec tion . L et D ' b e  an effective
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relative Cartier divisor of sufficiently large degree on X (actually deg D' >g is enough)
and put D =p * ( D ' )  S in ce

H°(X„U(— D),)= 0

for all points t of PicVs
1 and the point s of S lying below t, q * ( U(—D))=0 by [6,

Corollorary II. 12.9], and R 1q,k(U(—D)) is locally free. Thus, by (a) and (d) of
Theorem 2.1,

det Rq * (U)-= det q iSUID)0(R 1
 * (U(— D)))- •

Since q 4(U) is torsion-free and H ° (Xs , U )=0 for a general point t of P, it follows
that q 4(U )=O . Also, since D  Pic ' is finite, R 1q* (U1D) = 0 .  Thus we get the
exact sequence:

0 --+ q* (UID) R 1 q* (U(— D))—> R i g * (U )-- 0.

We denote the homomorphism q 4(UID) R 1 q * (U( — D)) by a. Since R2 q* (U)=0,
we get by [6, Theorem II. 12.11]

q * (U)Ok(t);_t H 1 (Xs, Ut)

for all points of PicVs
l  and the point s of S lying below t. If R 1q* (U)Ok(t)=0,

then R i g * (U) is also zero for some neighborhood of t, and especially R1 q* (U ) is
flat for some neighborhood of t. Thus

a(t) is an isom ophism  R i g * (U)Ok(t)= 0

.4=>H 1 (X,,U,)=

. . t e x/s .

Therefore if we put E={te  Pic ' I (det Xt)= 0}, then E= a® 15 fo r  some positive
integer a. By considering the case that the base scheme is a point, we get a= 1.

Now we put everything together and get:

Theorem 2 .3 . Let f :X -+ S be a semi-stable curve of genus g>1 of  noetherian
schemes and assum e that f  admits a section c .  L et A  be a  rigidified line bundle of
degree  ( g - 1 )  a n d  (Pa , U l  th e  tran s lat io n  o f  (Pid is , U ° ) b y  A .  W e  put
5 . - 1 = det Re* (U"), where q":X x sP a  P "  is the second projection. Then,

(0 I f  T—> S b e  a morphism of  noetherian schemes such that f T :Xx s T—> T is
smooth, then

1 = -  x

where ex T / T  is the theta divisor for XT/T.
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(ii) If  L  is a  rigidified line bundle on X  which belongs to Pa(S), then there is a
canonical morphism ga:S—) Pa such that the induced morphism

:det R f(L )— )(g
(
l)*(5- -  1 )

is canonically isomorphic.

P ro o f  Noting that determinant line bundles are compatible with a base change,
we have already seen ( i ) .  Regarding as (ii), by the universal property of Ua, there
exists a  canonical morphism ga : S Pa such that

L ( l  x ga)*(Ua).

On the other hand, since deteminant line bundles are compatible with a base change,
we have canonically

(g a) *(det R e*( W ) )  det R f *((1 x g a)*(W)).

Combining above two isomorphisms, we get the desired isomorphism.

3 .  Arithmetic setting

In this section, we consider an arithmetic setting. An arithmetic variety is an
integral scheme which is flat and quasi-projective over Spec(Z).

Let f : X —> B be a semi-stable curve of genus g >1 of arithmetic varieties and
assume that f  admits a section E. W e  a ls o  assume that f e  : Xe  B e  i s  a  smooth
morphism. Let A  b e  a  rigidified line bundle of degree (g — 1) and (Pa, W ) the
translation of (Pid is , U ° ) b y  A .  W e  put =det Rqa*( U " )  o n  P a, where
qa : X X Pa  P a  is  the second projection. Then by theorem 2.300, for a rigidified
line bundle L  which belongs to P i4 5 , we have a natural isomorphism

UL :det R f*(LOA)—)(ga)*(5 - 1 ),

where ga :S Pa is an induced morphism by LOA .
In  th is section we give metrics on the above line bundles, and consider the

norm of uz, . Let ® x  /B  be the theta divisor for Xc lB c , which is a relative Cartier
divisor on Pae  = Pic k . T h en  b y  T h eo rem  2.3(i), =Cpicg -1 (— c).X IB

x c/B c
In the following, we introduce a metric on O - ( — Ox c / B c ). Put J=Pic% m c

X  CIB C
and let

[DT]i—)(g-1)[6T]

be an isomorphism, where for any B e -scheme T, [ET ]  is  the class of the induced
section by 6 . Let 0%/Bc b e  the  im age of xc mc b y  A.

W e need some definitions to proceed. The Siegel upper-half space of  deg2ree
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g, denoted by Y f g , is defined by

g = X  + 1Y e GLg (C) =  Y> 01.

Moreover, the symplectic group of  degree 2g, denoted by Spg (Z ), is defined by

Spg (Z)= { Se GL 2 g (Z )ItS JS =./} ,

A  Bw h e r e
= (  o 1

•  An element S = of Spg (Z )  acts on  el  g  by
—   0 C  D

S •  = (AO + B )(Cf1+ D)'

and Spg (Z )V e g  becomes a coarse moduli of principally polarized abelian varieties.
For z = x + ly e Cg and f I=X + \  / - 1 Y e le g , we define

0(z, =  E exp(ir,/ — lttni2m + 2n.\/ — • z),
mEzg

11011(z,p=  4 .‘ /det Yexp( — 7tiy Yy)I0(z, S2)1.

Then 0  becomes a  holomorphic function o n  Cg x ,i( g . Moreover 11011 becom es a
C'-function which is periodic with respect to  Zg + SV g , so  th a t 11011 is seen as a
C'-function o n  Cg/Zg + nZg.

Going back to our situations, for any beB (C), let us write analytically

cg/zg+nbzg

w here S2, e Y f g. . T h e n  th e re  is  a  u n iq u e  elem ent tb e Cg/Zg + S IZ g such that
0 Cif b = div (0(z + tb , f2b)), where 0(z + tb , (4) is seen as a  function of z.

Proposition 3.1. W ith the notation being as above, let 1 denote the section of

(9.1(0 xc iad  which corresponds to  O L B c . Fo r an y  p e J, le t beB (C ) be the point

ly in g  b e lo w  p  a n d  write C g  Z g  f l b Z g  a n d  O L =  div (0(z + tb , S-11,)) with

ti, e Cg/Zg + f lZ g. M oreov er, let z e Cg I Zg +S2Zg correspond top. T h e n , if we define

(z+ t b , no,11111.1 . 11011
, / B ,

(P)=

then ll • 1100 gives dgives a C " ' m etric on (9p:in B )

P ro o f  If the base space B(C) is a point, the assertion is well-known (cf. [4,
§ 3 ]) . T h u s a ll w e  n eed  to  p ro v e  is  th a t 11111,0 varies smoothly a s  beB (C)

X C M ,
v a rie s . However, since the morphism

(D:B(C)—> Spg (Z)\,Y eg , b  the class of Jr,
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is holomorphic and 1,, is given the difference of the section cc  and a theta characteristic,

1111100 varies smoothly as be B(C) varies.
X CIB C

Finally, Op i c i -c i . ,  ( — e x e nd is metrized by (0 .,(O /BC), )  through A. We
" Ic

write this metric by 11' 11€1 .X,413 c
Next we give a  Cm metric on  Lc  ove r X . A c tua lly , the re  is  a certain class

of Cm metrics on Lc  which is suitable for our purpose. We introduce this class in the
following.

F irst w e recall admissible metrics o f  line bundles on a com pact R iem ann
surface. Let M  be a compact Riemann surface of genus 1 and  {col , co2  ,  • • . ,  cog }
a  basis of 1-P(M,f/k) with

■/— 1
2  m co,Aco, =6, i .

Let us put

E
2 g  1= 1

Then ,u is a positive (1,1)-form on M, and is called the canonical volume form on
M .  A  Cm-metric hi , of a  line bundle L  on  M  is said to  be admissible if

C = (deg L)jt.

For every line bundle o n  M, we can endow an admissible metric unique u p  to  a
constant multiplication.

Now let us go back to our situation, i.e., the case that f :X e —* Be  is  a  smooth
family o f curves o f genus g> 1. A  Cm-metric hi ,  o n  L ,  over X , is  sa id  to  be
admissible if  fo r  any  b e B(C), i ts  restriction (L b , h " )  o n  X b i s  admissible. The
following proposition guarantees the existence of an admissible metric.

Proposition 3.2. L et X and B be smooth varieties over C and f :X -1 3  a smooth
projective morphism with a section whose fibers are curves of  genus g > 1 . L et L be
a  line bundle on  X . T hen there ex ists a (global) admissible m etric on  L  over X .

Pro o f . First we construct a  suitable (1,1)-form on  X .  Let

j:  X - + J=Pic?( IB

is  the  embedding induced by th e  sec tio n . O n  J, w e have a Cm-hermitian line
bundle ((9./(0 X / B ),1 1 '1 1 9 1 / ) b y  Proposition 3.1. We consider

1
=  - j* ( c # 9.,(0:n/B), II Ile. )).

./ B
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Then, for any b e B, cob = wix ,, is the canonical volume form on Xb (cf. [4, Thoerem 1]).
L et {U1}7)=0  b e  an  open covering of B .  L et us set X u ,= f - 1 (U1). By taking

suitable small open balls U , w e m ay assume that f Xl u , ---■ U. i s  differentiably

trivial, i.e ., there is a  diffeomorphism g i : X u , x U, o v e r U. w ith  b, e U. ([9,
Theorem 2.4]). Moreover, we take a partition of unity {A} subordinate to {Ui }.

Let ho  be any C"-hermitian metric on L  over X .  We set I) = c i (L,h,), so that
is a d-closed real (1,1)-form on X .  First, we claim that, for each i, (deg(L)w — glIxu ;

is d-exact over Xu r . Indeed, (deg(L)w = 0 in H 2(Xb , , C ) .  On the other hand,
, C)= H 2(Xb , , C ) b y  Poincaré's lem m a. T hus there  is a  real 1-form ,1,1 o n

X . that

(deg(L)w — dR).

Now we set

2 =  f*(P)1i= 0

=  f *(dp,) A  ,
o

so that A and t  are real forms on X .  By definition, the equality

d(A) = deg(L)w— +

h o ld s . If we denote by /1( " ) (resp. 1
°
' 1)) the (1,0)-part (resp. (0, 1)-part) of A and

by T(1 ' 1) th e  (1,1)-part of T, then we have

a(2
°
'11)+J(2(1 '° ) )=deg(L)w — ( 1 , 1 ).

Here, since X  is projective, we can apply ddc-lemma to  a().(0 , 1)) and J(A( ' ' ' )). Then
there a re  Cm-forms a ,  b  o n  X  w ith 0 (2  (0 ,1 ))=ddc(a) a n d  J(2(1 m))=ddc(b). Since

deg(L)w—ri + T(1 ' 1) i s  a  real form, if we se t  a  C '-form  o n  X  b y  tfr —
a -p h  +  + F

then we have

ddc(t//)= deg(L)o — +

Now if we set h= exp(—tp)h then we have c i (L,h)= deg(L)w+ T(1 ' 1 ) .0 , On the other
hand, since t  =  0 for any b e B, we get T ( I M IXI, = 0 for any b e B .  Therefore we obtain

c,(L,h)l x ,,=deg(L)wl x „

for any be B, which shows that h  is an admissible metric on  L  over X.

2
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Now we prove the main proposition of this section, which will be a key point
to prove Proposition 5.1.

Proposition 3 .3 .  L et f : X —> B be a semi-stable curve of genus g>1 of arithmetic
varieties and assume that f  admits a section c. W e also assume that f c :Xc —, Bc  is
a smooth morphism. Let

R ft ( L  A )  (0 * (5 —  1 ),

be the isomorphism given at the beginning of  this section. W e endow C°° metrics
on A  and cox i ,, and an admissible metric on L, so that w e have the Quillen metric
o n  detRf* (L O A ) determ ined by  these m etrics. M oreover, w e endow  a  metric
11'110-1 on .1-  1 . Then the norm of Liz, is independent of  L.xc lBc

P ro o f  Let b e B (C ). Since determinant line bundles are compatible with a
base change and since the Quillen metric is given fiberwise, we get

UL : det R fb * (L b 0 A b) pie v b ,( — e l  11- xb,.[LboAbi ,

where [L b OAb ]  is the point corresponding to L b 0A b on  PicVb .  Then by the
following lemma, we obtain Proposition 3.3.

Lemma 3 .4 .  L et M  be a compact Riemann surface of genus g >  I, L  a  line
bundle of  degree 0  o n  M . We endow a  C°°-metric h, on A , a C-metric h o , on
nilf , and an admissible metric h i ,  on L . T hen  w e hav e a canonical isomorphism

pi c t f-1( C U I [ L O A ) ,UL : det Al (
0

where det F(LO A ) is the determinant line bundle of  L OA . W e endow  the Quillen
metric on det F(LO A) and 11 • Ile-  m

i on ON , -  ,( — 0 14). Then the norm of uL  is independent
of L.

P ro o f  Let h, and h'0 1 ,  be  admissible metrics on A  and ni, respectively. We
write the Quillen metric defined by (L OA , hL Oh A )  and (Qk ,h, L )  as h -r6- 0 , -4. We
also write the Quillen metric defined by (LOA , hi3 Oh,) and Mk , hp' k{ ) as 4 ° 11 . We
decompose uz, into

(det F(LO A ),hr A) (det f(LOA), h r A ')

(det F(LOA),14")—■ep i c v  i( - 0 m)ILL0A],

where 4 "  is  the Faltings' metric on L O A . By the definition of the Quillen
metrics, the norm of a is independent of L, because we only change the metric of
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A . T h e  norm of fi is the difference of the Quillen metric and the Faltings' metric
fo r adm issib le  lin e  b u n d le s , w h ic h  is  a  c o n s ta n t  d ep en d in g  o n ly  o n  M
(cf. [15, 4.5]). Moreover, the norm of y is also independent of L, which is actually
given by exp(5(M)/8) with the Faltings' delta function S(M) (O r rather, this is the
definition of 6(M )). Therefore the norm of viz,  is independent of L.

4 .  Arithmetic height function over function fields

A. Moriwaki [13] has recently constructed a theory of arithmetic height function
over function fields, with which he recovered the original Raynaud theorem (i.e.,
over a  finitely generated field over Q ). In  this section, we see a part of his theory.

L et K  be  a  finitely generated field over Q w ith tr.degx (Q ) = d . Let B  b e  a
norm al projective arithm etic variety w ith th e  function fie ld  K .  L e t  171  b e  a
nef Cc°-hermitian Q-line bundle on  B, i.e., d e g f l i c ) : 0  fo r  any curve C and ci(R)
is semi-positive on B (C ). A  pair A' =(B ,R ) with the above properties is called a
polarization of K .  Moreover, we say that a  polarization f3- is  big if rk H°(B,H®m)
grows the order of Ind a n d  that there is a non-zero section s  of H

°
(B,H®") with

sI , < l  for some positive integer n.
L et XK  b e  a projective variety over K  and  L K  a  line bundle o n  X 5 .  By a

model of (X5 ,L K ) over B, we mean a pair (X -* B, iT) where f :  X  B  is a projective
morphism of arithmetic varieties and L =(L ,h L ) is  a  C'-hermitian Q-line bundle
on X such that, on the generic fiber, X and L coincide with XK and LK respectively.

By abbreviation, a  model (X - + B, 1
-
.) is sometimes written as (X ,L ) . We note

that although we use the notation X5 and L K , a  model of (X 5 , L K ) is not a priori
determined.

For Pe X(1?), we denote by Ap the Zariski closure of the Image (Spec(k) --+ XK )

in  X .  Then we define the height of P with respect to  (X -+ B, E) to be

1 
[ K ( P ) : K ]  

deg(ei(Ele,)•el(f*171A,)d).

If  w e  change models o f (XK  , L K ), then height functions differ by only bounded
functions on X 5 ( K). Namely, if (X, 1,) and (X ', L') are two models of (XK ,L 5 ), then
there is a constant C > 0 with

(4.1) Ihrx,E)(P)—qx,,T,,)(P)I C

for all Pe X i c (1?) ([13, Corollary 3.3.5]). Thus the height associated with L K  and
is well-defined up to bounded functions on XK (K ) .  W e  d e n o te  h  the class of

hrK ,L)  m odulo bounded functions. K

N ow  le t  L k  b e  a  line  bundle  o n  Xiz = XO K E .  W e w ould like to define
14_:X R -* R .  For this, we need the following proposition (cf. [13, Proposition 3.3.1]).
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Proposition 4 . 1 .  L et K ' be a f inite extension field of K, and let g: B' B  be a
morphistn of projective normal arithmetic varieties such that the function f ield of B'
is K '.  L et X ' be the main component of X  x B B ' and

f

B ' -g4 B

the induced m orphism . Then h(
( P,gg *,41,1{

)
=[K':K] h{11?.

Let LK be a  line bundle on X k .  We take a  finite extension field K ' of K  such
that L k  is defined over Xic . Take a projective normal arithmetic variety B ' such
that there is a  morphism g : B' B  and that the function field of B ' is K'. L e t  X'
be the m ain component of X x'B B'. W e take a  blow-up X ' if  necessary so
that LK extends to a  line bundle L' on  k'.

Then we define

1
_= 1,(c,g.,*(Rn“oc,L')K  [K ':K ]

By (4.1) and Proposition 4.1, it is easy to see that h t7 is well-defined up to bounded
functions on X (g ) .  Moreover, if L g is defined over X „, then  h is equal to
11'3 •

The next theorem shows some fundamental properties of h (cf. [13, Proposition12

3.3.6 and Theorem 4.3]).

Theorem 4 .2 .  (i) (positiveness) I f  w e denote Supp(Coker (H °(Xi-,, Lk)0(ox iz )
–) LE) by B s(L ), then h tz. is bounded below on (X I-ABs(14)).

(ii) (Northcott) A ssume fi is big and that L k is  am ple . Then f or any and
11/1>0,

{PE X10) I M , [K (P ) :K ]e l

is a f inite set.

If X ,  is  a n  abelian variety, we can choose the good representative o f a  class
q .  F o r  a  line bundle L k  o n  X17 a n d  a  p o in t P  X iz(E), define qf . (P,P) and

R (P) to be

1
qf g (P, P)= lirn — 121,' _(2n P)

„. ° 0 4n K
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i f  _(P)= lim —1 ( -1 14 _(2"P)— qt(P,P)).
4"

Then q f ..
 i s  a  bilinear form, while /1,!.. is a  linear fo rm . We define  f i L  by

K K

R(P) = q tz (P, P) + 14(P),

and call it the canonical height of Lk with respect to  a  polarization /3.

Proposition 4 .3 . Let X k  be an abelian variety.
(i) If  Lk is qmple and symmetric, then 1 . >0.
(ii) If  LR and M k are two line bundles on X k , then

Riz emg (P)= fit z (P)+fifi,7 (P)

(iii) If P is a torsion point, then fif,i7 (P)= O. If  we assume R is big, then fitc (P)= 0
if  and only if  P is a torsion point.

P ro o f  The first assertion follows from Theorem 4.2(i). The second assertion
can be readily checked. The th ird  assertion is  an  easy consequence of Theorem
4.2(ui). We note that in (i) we need the symmetricity of a line bundle.

We need the next lemma to prove Proposition 5.1.

Lemma 4 .4 .  L et L k  is an ample symmetric line bundle on an abelian variety
X k , P an element of  X R (I?). L et t be an element of  X k(K) and T t :Xk—> Xg the
translation by  t. T hen there is a constant C such that

Ifil; ( L R ) (nP)—n 2 h4(P)I=Cn

for any  positive integers n.

P ro o f  Let T_,:Xiz XR b e  the translation b y  — t. W e w rite 7',*(LK)®2 as

T,*(Lk) ® = (T,*(LR)0 P.`,(LK))0( T,*(LK)0( T !,(4)) -

Since T,*(4 )0 T ! ,(L k )=L F 2 b y  the theorem of square, we obtain

7',*(4 ) ®  2 = (LF2 )0(1,*(14)0(TULR)) - 1 ).

T h u s  w e  g e t  4 0 7 (L k ) =4fitz +fill (L i7 )0 (T . t ( L ) ) - i. S ince  L k  is sym m etric  and
T,*(4 ) 0 ( T ! , ( L ic-)) - 1 is  an ti -symmetric, hfi z  i s  quadric, while fill ( L i z ) (  r  r(Lio)- 1 is
lin e a r . T h u s  i f  w e  s e t  C=Ifill ( L k ) 0 ( T . t(LR )) -1(P), th e n  w e  o b ta in  th e  lemma.
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5 . Height and intersection

By a  big Zariski open set of a noethrian scheme B , we mean a  Zariski open
set B ' of B  with codimB(B\ B') > 2.

We first prove the following proposition, which is a  special case of the main
theorem (Theorem 5.2).

Proposition 5.1. L et K  be a finitely generated field over Q, X K  a geometrically
irreducible regular projectiv e curv e ov er K , an d  L K  a  line bundle o n  X K  with

deg LK= O. L e t 13=(B,17) b e  a  polarization o f  K , and  (X  B ,  L )  a  m odel of
(XK ,L K ). W e make the following assumptions on the model:

(a) B  is regular;
(b) f  is semi-stable with a section c;
(c) X c  and  Bc  are  non-singular and f c :Xc  B c  is smooth.

L et JK  be the Jacobian of  X K  and Ok  a  divisor on Jk  which is a translation of  the
theta divisor on P ie -  b y  a  theta characteristic. If  there is a big Zariski open
set B ' c B  such that deg(LI,)=- 0 f o r any f ibral curve C lying over B' and if  the metric
of  L is f lat along fibers, then

(5.1) deg(61(L)2 • e 1(f *(R))°)= —2fig,R ( i c .)([L K ]),

where ELK ] denotes the point of  JK  corresponding to LK .

P ro o f  We note that since deg L= 0, the admissibility of L means that the metric
of L is flat along fibers. Since  deg(L)=O, if we change E., to  Lof *070 with /1?
being a  hermitian line bundle on B, then each side of (5.1) does not change . Thus
we may assume that L is rigidified along the section c .  Let us set A =0 K ((g— 1)[c]).
Then A  is  a  rigidified line bundle o f  degree (g —  1) o n  X .  Let (Pa, U°) b e  the
transla tion  of (Pic6 , u°) b y  A , w here  L I° i s  t h e  universa l line  bundle  on
X x s Picc

x
)
/B . W e put = det R q(Ua), where q": X x B — > P °  i s  the second

projection.
We give an admissible metric hA  o n  A  and an admissible metric on coK / B

a n d  th e n  g iv e  det RA ,(L®"®A ) t h e  Q u illen  m etric  h r ° 2 w i t h  xrespect to
L®"0,4 =(LenCIA ,14,•h A ) and cow = (coK / B ,h,,,x 0 3 ). M oreover w e endow  ' 110- 1

on J Proposition 3.1).
L e t  u s  p u t  X '=f -1 (13'), f ' = f ,  a n d  A' = A K . . M oreover Let (P"',

(Pi4 7 B ,, U° '), g"' and 5 - -  1 " = det R q ;(V )  be the restriction of
 ( p a ,

 U"), (Pic (103 , U°),
qa and 3- -  =  det Rqn,(U") over B', respectively.

Now we consider L'®"®A  for a positive integer n. Since deg(L'I c ) = 0 for any
fibral curve lying over B ', L ' belongs to Pic, /, . Thus by Theorem 2.3(ii), there
is a  canonical morphism g„' : B' Pa' such that

un
. : det R f ,'„(L'®" A') *(5-
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is canonically isomorphic over B'. Since both sides are metrized, we can consider
the norm cc„ of u .  T h e n

u R  f (L ' ® " A'), h rd®"®11) L. ; g,*(.9-- ,11 1 . ;

J
i
‘  c la c .

)0(9r(a; 1)

is  a n  isometry. Moreover, by Proposition 3.3, th e  function an :B (C ) -- R, 0  is
independent of n.

Next we consider a  compactification of P a .  Since there is a  relatively ample
line bundle o n  Pa, we first embed Pa into a large projective space 11, and  then
take its closure. If 9 - 1  does not extend to a  line bundle on this closure, then we
make blow-ups .along the  boundary. Then we get a projective arithmetic variety
Pa with n :P a  B  a n d  a  line bundle o n  Pa with 5 - 1 1p.=,.F - 1 . W e note
that since f c  is smooth, F"=-Pac

Let An be  the Zariski closure of the Image(gn': B' - ■ Pa ' ) in  Pa . Now we claim
the following equation;

(5.2) deg(e i (det R f(L °31" A), h1-6®"® 11 )•  ,(Fly)

= dew Jo p.(5 --- 1),II. 114-  1)IA • e i(n*(n)Y1,6,)—! (log an)Ac i (17)d.
.c/B c " 2  Bc(C)

Actually, since B is regular and B' is big, a line bundle on B' extends uniquely
to  a  line bundle o n  B .  T h e  line bundle det Rf,,(L' ® "0 A ')  o n  B ' extends to
det R f (L ® n0A ) and the line bundle g ( 5 - 1 ') on B' extends to a  line bundle on

nB, which we denote by M n . Let us set M„=(M„,g .„*(11 )). Since niA : B
i s  a n  isomorphism over B ' a n d  codimB (B\B)>2, M n is  a c tu a lly  e q u a l to
(nle„),g E 0 - -  1 ), ' 11 e- x ,B c ). Then since the infinite part is not changed at all, we
get the isometry

: (det R f * (0 110A), fr7"®`1 ) M „ 0

Then by intersecting e,(Fl)' and taking degrees on both sides, we get

deg(el (det Rf(0"0A),12 16® A )• ê1 (1 )

= deg(e i (M„) • e,(17)d ) -  -21 B c ( o (log a„) A ci (17)d

= dew i(e ,n(g- 114-xcmc)1A„•ei(n * (171 ))d le„) - - ( l o g  an) A ci(R)d ,

gc (C)

where we use the projection formula in the second equality.
First we conmpute the left hand side of (5.2). By the arithmetic Riemann-Roch

theorem established by Gillet and Soulé [5], we have
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ei (det R f (L °"0A ),/i rd®'®À )

1 _ _ _ _=-

2
f.(eicr') . ®A>2 —e,(L®nom • ei(cox/B))+ ei (det R f ( 7x),14x)

485

1 _
= - f,,,("e i (L)2 )n2 + 0(n).

2

Thus, we obtain

(5.3) deg(61(det R f (L e n0A ),h 1d6 "® A )•e i (.17)a)

= -

1  

deg(f(e i (L)2)• e i (R)d)n2 + 0(n)
2

1 -
=-deg(e l (L)2 • e i (f *(FI))d)n 2 + 0(n)

2

N ext w e com pute th e  righ t hand  side  o f  (5.2). L e t /la :PicYc i, -).- Pa b e  the
isomorphism which is given by the translation by A .  By way of this identification,
let P °  b e  the  compactification of P ic- / B  w hich  corresponds to  Pa. Similarly, we
define (3 - 0 ) - 1 ,  A,? and  n° which correspond to  .T - 1 ,  An a n d  it respectively. We
note that a metric on (5 m

) -
 1 induced from 1„ is nothing but Il 'Ile- 01 b y  Proposition

xc/B c.3.1. Then we have g lc = 0,,,,(0•K ) , where

4:YK = OK + [a  theta characteristic] - ( g -  O ka

Since (70:P°  -> B, ((g- ° ) -  ',II• 11 €,,i, IB)) is a model of (4,(9,.(— 00), (4.1) shows
that there is a constant C  such that c  c

Ideg(e1(6e 45-  1 ), II • II €;,1,c/Be)le„ • eice(mdie„)— Ate - 0,,ALIT1)1

= Ideg(ei(CeoRg- ° ) -  t ), II ' Il c,1) I A  '  el or vindiA„)— fig,k(-0,,)u rn D i C
X C/B C

Then using Lemma 4.4, we get

(5.4) Ideg(ei (e e .(5 -  1 ), II ' II ti; 1)IA  •  e i(n * (17 ))d1,6,„)- n2fit i (e„)([-La i =0(n).
xcli3c

Taking into consideration (5.3) and (5.4) and the fact that a n is independent of
n, if we divede (5.2) by n2 and  le t n  goes to co, we get (5.1).

Now we prove the m ain theorem of this paper.

Theorem 5 .2 .  L et K  be a f initely  generated f ield over Q, XK a  geometrically
irreducible regular projectiv e curv e ov er K , an d  L K  a  line bundle on  X K  with

f
deg L =O.= O .  L et f l=(B ,F1) b e  a  polarization o f  K , and  ( X - ' B, L )  a  m odel of
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(XK ,L K ). W e make the following assumptions on the model:
(a) f  is semi-stable;
(b) Xc  and Bc  are non-singular and fc : Xc  B c  is smooth.
Then we have

deg(e 1(L) 2 • e 1(f *(17))d ) —  2figj ( o R ) ([Lo),
where EL K ] denotes the point of .IK  corresponding to L .

Furthermore, we assume that H  is ample and OR ) is positive. Then the equality
holds if  and only if  L satisfies the following properties:

(a) There is a big Zariski open set B " of  B  such that deg(Li c )=0 f or any fibral
curves C lying over B".

(b) The metric of  L is flat along fibers.

The next corollary is a n  immediate consequence of the m ain theorem and
Proposition 4.3(iii).

Corollary 5 .3 .  Let the notation and the assumption be as in Theorem 5.2. We
assume that 1-7 is big, H  is ample and c i (H ) is positiv e. Then

deg(e 1(L)2 • e i (f*(17))4 )=0

if  and only if the following properties hold:
(a) There is a big Zariski open set B" of B  such that deg(L1 c )=0 f or any fibral

curves C lying over B";
(b) The restriction of the metric of  L to each fiber is flat;
(c) There is a positive integer m with LK " I =OK K .

We need three lemmas to prove the theorem.

Lemma 5.4. L et k be a f inite ex tension f ield of  K , and let g:i3-  --+ B  be a
morphism of projective normal arithmetic varieties such that the function field of h.  is
k  L e t  =X x BB and

f i,

g  B

the induced morphism. Then

deg(e,(g . e i (j* g  *(R)) d )=[k : K]cleg(e 1(L) 2  • e l (f *(R))d).
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P ro o f  It is an easy consequence of the projection formula.

Lemma 5.5. Let L-=(L,h L ) be a C"-hermitian line bundle on X and L '= (L ,k )
be a hermitian line bundle whose metric is flat along fibers. Then

deg(6 i (E)2 • e ,( f *(H))d) deg(e i (0 2 • e i (f *(17-1))d).

If  c1 (171) is positive over a dense open subset of B(C), then the equality holds if  and
only if  the metric of  L is flat along fibers.

P ro o f  L e t u s  write hL , = uhL . T h e n  u  is  a positive smooth function on
Xc (C ) .  Since

,(L)= ,(E) + (0 ,log u),

we have

el(L)2 = 61(0 2 + (0, 2c t(E)log u)+ (0, log u)dc/c(log u)).

Thus

deg(6 (n 2 ' ei(f *(17))d)= deg& (1 7 )2 ' e (f *(R))d)

— (log  toc i ( t )  A ci(f *(1 7 ))d + (log u)dc/c(log Aci(f*(171»a.
x(c) 2  x c(c)

Now the assertion follows the following two claims.

CLAIM 5.5.1. fv ociog oc ,(E) ci *(17)) d  = o

Pro o f  Fo r b e Bc (C), 1(E)1b= O. T h e n

J
( l o g  u)c i (E ) c  i (f *(1-1))d = f

( I
(log u)c,(E)) c,(fl) d =

vc)
O.

ac(c) fc:x, - *Bc

CLAIM 5.2.2. x c (c ) (1 0 g  u)dcr(log u) A c i (f  *(1-7))d O .  Moreover, if c i (R) is positive
over a dense open set of  B(C), then the equality holds if  and only if  u=f*(y) with
some C  function y  on B (C).

P ro o f  We have

1
(log u)dcr(log u)— (log u)a(log u)

2ir

N/— 11a(log u  (log u)) 0 ( lo g  u )  A J ( lo g  u ) .• J
27r
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Since c,(f*(1-7))d  is  a  closed (d,d)-form, by Stokes' lemma, we get

(log u)ddc(log u) A ci (f*(1-1))d

-= f ( — 1 a(log u)AJ(log u)) A c,(f *(17))d

2ir x-c ( c )

By the definition of the polarization of 13= (B , fl), c,(TI) is semipositive. Moreover,
O(log u)AJ(log u) is semipositive. Thus we get the first assertion.

Suppose now  c1 (17) is  positive over a  d en se  o p en  se t o f  B (C ) .  W e have

(\/-10(log u)AJ(log u))Ac i ( f „ . „ ,

fBc (c)(ff,:xc .Bc

 / — 1 0(10 g u) A J(log u)) c )d

If this value is  zero, then, for any be B , — 10(log u)AJ(log u)l x , = O . T h e n  ulx b

is a constant function on  Xb(C ) .  This shows the second assertion.

Lemma 5.6. We assume that B  is regular. Let A be the set of  critical values
of f  i.e., A=tb e B if  is not sm ooth over b l .  L et A=u f,,A i b e  the irreducible
decomposition of  A such that A 1 ,•••, Ah  are  divisors on B  while codimB(Ai) > 2 for
i>1 1 + 1 . Let us set Fi =f - 1 (Ai)for i =1,...,1, and write F =  ufL 1 Ff , as its irreducible
decomposition. N ote that F , are all divisors on X f o r 1 <i<1 1 ,  1 < j< J i . Then
there are a big Zariski open set B' of B, integers eu  (1 i  ,  1  and a positive
integer such that 0 '0 ( 9 x ( —Ei jef i f i i )1B , belongs to Pic') - i(B)nr •

P ro o f  If 11 =0, then we heve nothing to p ro v e . Thus, we assume I i > 1. To
ease the notation, we first assume the irreducibility of A . Since f c  is smooth, A is
defined over the finite field F,, for some prime number p. Let k(A) be the rational
function of A  and write n=Spec(k(A)). Moreover, let k(A) be a n  algebric closure
of k(A) and write q=Spec(k(A)).

Let Xi = u i < i <  j u i < O E < G 0 C7 be the irreducible decomposition of Xi  such that
Cc;  and Cf  are Gal(k(A)/k(A))-conjugate to each other for (1,13 _ oc(j). We denote
by Fi  th e  Zariski closure of C I in  X for some (hence all) a.

W e p u t q=deg(L,,I c ; ). Since L  is defined over X, c = c '  f o r  1 . x,fl <a(j).
Moreover, since the degree of L is zero, Ei , i <  j ,i , a ,„ ( i ) / =O.

W e put dimk(6)(C7n Ce) for (j, a )  (k, fl), and qr = — E(k , # )# (im a  . Then
by Zariski's lemma ([1, I, Lemma (2.10)]), there are rational numbers a"; (1
1 < a < a(j)) such  that di = a l  a n d  th a t E (27,q1r, = cf  fo r  1 k  J  a n d  1 a(k).
Moreover, Ei ,,,„,f laWif =0 if and only if dl=af  for any (j,a) and (k, 13).
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Let Y  be the subset of AlI  consisting of Fr -valued points b  such that:
(a) The irreducible decomposition of Xb is  of form Xb= <JU < 7 ,,,u ) gbri

such that L i  n Xb= U1 oi)gbri ;
(b) deg(Li c ,0 7 )=  ;
(c) IT; • C(b)f, = E ,„ < 0 .4  .

Then there is a  divisor Z  on A  such that Y c IZ I. W e  set B' = B —IZI.
N o w  w e  s e t  ei =m a; ( 1 <j<J)  f o r  sufficiently divisible m  a n d  L'= L®"'

®(9x ( — DI= l ei f i ). We claim that L'18  belongs to Pic7---1(B ,),B , . Indeed, if b A , then
X b  i s  a  sm ooth  connected  curve  a n d  d e g (L 'I )= 0 . T h u s  L'Ix b  b e lo n g s  to
P id b . Next, if be A\IZI, then X b =  j ,„C(b); is the irreducible decomposition of X b
and

deg(Elc(b)g)=m (4, E qcitaf)=o
1 sj 5,1,1 sccSa(i)

for any j  and [I. T h u s  a ls o  in  this case, L'Ix , belongs to P id b . Therefore L'IB .
belongs to Pic- J o n i ,  .

We have just shown the lemma when A is irreducible. Now we consider a general
case, i.e., A  = I A , .  F o r  e a c h  A . (1 < i< /1), ta k e  a  d ivisor Z. o f  A . a n d

< J < J ,e,i f i i  in  th e  same way as a b o v e . If we set

B' = B —(1Z • • • ulZ i t lu(ulA il n IN A
i.j

then B ' is a big open set, and it is easy to see that L ® m(S)ex ( —Zu e,i f, i )IB , belongs
to Pic °f  1 (101B' •

Proof of Theorem 5.2. First we prove the first assertion of the theo rem . In
virtue o f Lemma 5.4, by taking a  suitable generically finite cover o f B , we may
assume that f :  X  B  has a  se c tio n . Moreover, by [8 , Theorem 8.2], there is a
surjective generically finite morphism B  of arithmetic varieties such that f3 is
regular. Thus, by Lem m a 5.4, we may also assume tha t B  is regular.

We follow the notation of lemma 5.6, and  le t L ® "10(9x (—Eo e,i f, i ) be a  line
bundle on B whose restriction to a big open set B' of B belongs to Pic- i on/B .• F o r
simplicity, we set E= —Ei j eu r ip  T h e n

deg(e 1(E435T")2  • ei (f *(R)d ))

=  deg((e ,(L "O  ,(E)) — ê 1(& (E))) 2  e i (f*( f i r )

=deg(e 1(L " ® 9 x (E)) 2  • e i ( f *(R)Y 1)

— 2 d eg (e ,(L "0  (E)) • e,(C x (E)) • 61(f *(H))d )+ deg(e 1((Ox (E)) 2  • e,(f *(17))d ).

Since deg(L° 1"00 ,(E )1 )=  0  for any vertical curve C lying over B', the second term
in  th e  last expression becomes z e r o . Moreover, fo r  th e  th ird  te rm  in  th e  last
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expression, we have

I
_ ik( fir,deg(e i Cx (E))2 • e i (f *(FI)d )) =  E d e g ( ) • E e

i= t

where q iik = dim k o ,.(r, k(Ai) rk,k(Ai))• From  the proof of lemma 5.6, th is value is
non-positive. M oreover th e  equa lity  ho lds i f  a n d  o n ly  i f  eu  = ••• =eu ,  for
1 < . To sum  up, we get

deg(e 1(r w n)2 é ,(f *(17)d )) <deg((e i (L ° m  00 x(E))) 2 ê 1 (f  *WY)).

N ext let h  b e  an admissible line bundle o n  L .  Then by Lem m a 5.5 and
Proposition 5.1,

deg((e 1(L® m O (9(E)))2 • e i(f *(1-0Y).
<deg((e i (L® m () x (E), h'i")) 2 • ê1 (f *(FI))d ).

= —2mg,. ( 0 . ) ([L K ]).

Thus we get the first assertion of Theorem 5.2.
Now assuming that H  is  ample and c1(11) is  positive, we consider when the

equality holds.
Let g:B  be a surjective generically finite morphism of arithmetic varieties

such that /3 is regular and /: AT-  —* /3 has a section, where :k= X x B /3 and

—* X

I f

—+ B

is the induced morphism. Let us set f *(L) and fl =gg *(H).
N ow  let us assume the condition (a) and (b) in the second assertion of the

theorem . By Lem m a 5.6 there are a big open set i f  of a  p o s i t iv e  integer and
a vertical divisor r of 1  such that  g 0 7 ( f )  B\B" and that L®mOes,-(F)li, belongs
to

CLAIM 5.6.1. If  k  denotes the function f ield of  13, then

deg(e i (E)2 • e 1 (7*(fi))r)= —2[k: K ]f it (e k-)([4 ] ) .

Pro o f . By Proposition 5.1, we get

de g (e, (re m  (0i (f))2 ê 1 ( 7 *( fhd)  = _ 2m  2 h(11,1*(411)))(EL0)

= — 2M2 [k: K]fiti(ek)([LK]).
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O n the other hand, since

6(E® m002(0) 2 =m2 6(L) 2 +2m6(E)• e1(02(0) + 6(02(0) 2

and /*(1-/)=f  *(g *(H)), we get

d e g ( e '1' 
0  0 2 ( n )  2 e i tr*(fi))d)=  m 2de g v i (t)2 ( . 7 *( fa d).

b y  projection form ula (Note th a t g B \B ") . T hus w e  ob ta in  th e  claim.

From  the claim, we get

deg(e,(L) 2  • e lu-vny)= -2hg, e d[L,d)

by projection formula.
Next we assume that

dew  1 (42 e,(f *(H))d )= — 2fit i z ( 9 ,0 (EL,J).

Then by projection formula, we have

de g( , (L) 2 e iV v rim =  -20;  k_g*(4);([1,0).

Let A be the set of critical values off and A= uf=,A, be the irreducible decomposition
of A, where A, , •.., A,, are divisors on such that g(3,1)) are also divisors on B  for
1< , , • • 4, 2 are divisors on fl such that codim B(g( 1)) 2  for /1 + 1  i 12,
and A, (i. 12 ) satisfy codim(A i) 2 .  Then we take E ,  < 12 , 1  < i < a s  i n  Lemma
5.6 (which is applied to 7: h). If we look back closely the proof of the first
assertion of the theorem, we find that the equality holds if and only if (a) e = • • • = e i

for 1 < i< /1 an d  (b) E is flat along fibers (Note that the reason we need to consider
I ,  and /2 is  th a t degg ,,,H ,(3,)= 0 for /1 + 1 <1 2 ). M o re o v e r  the condition (a) is
equivalent to the existence of a big open set B" of B such that deg(Li c ) = 0 for any fibral
curves C lying over B " .  This proves the second assertion.
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